Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On an elliptic curve defined over $\mathbb {Q}(\sqrt {-23})$
HTML articles powered by AMS MathViewer

by L. V. Dieulefait, M. Mink and B. Z. Moroz
St. Petersburg Math. J. 24 (2013), 575-589
DOI: https://doi.org/10.1090/S1061-0022-2013-01254-4
Published electronically: May 24, 2013

Abstract:

Recently, the first three examples were found of elliptic curves without complex multiplication and defined over an imaginary quadratic field that have been proved to satisfy the Hasse–Weil conjecture. In the paper, the same algorithm is employed to prove the modularity and thereby the Hasse–Weil conjecture for the fourth elliptic curve without CM defined over the imaginary quadratic field $\mathbb {Q}(\sqrt {-23})$.
References
  • Tobias Berger and Gergely Harcos, $l$-adic representations associated to modular forms over imaginary quadratic fields, Int. Math. Res. Not. IMRN 23 (2007), Art. ID rnm113, 16. MR 2380006
  • N. Bourbaki, Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1261, Hermann, Paris, 1958 (French). MR 0098114
  • Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, DOI 10.1090/S0894-0347-01-00370-8
  • Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313, DOI 10.1007/978-1-4419-8489-0
  • J. E. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields, Compositio Math. 51 (1984), no. 3, 275–324. MR 743014
  • Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
  • Luis Dieulefait, Lucio Guerberoff, and Ariel Pacetti, Proving modularity for a given elliptic curve over an imaginary quadratic field, Math. Comp. 79 (2010), no. 270, 1145–1170. MR 2600560, DOI 10.1090/S0025-5718-09-02291-1
  • J. Elstrodt, F. Grunewald, and J. Mennicke, On the group $\textrm {PSL}_{2}(\textbf {Z}[i])$, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 255–283. MR 697270
  • G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI 10.1007/BF01388432
  • H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. MR 618323, DOI 10.2307/2374103
  • Frazer Jarvis and Jayanta Manoharmayum, On the modularity of supersingular elliptic curves over certain totally real number fields, J. Number Theory 128 (2008), no. 3, 589–618. MR 2389858, DOI 10.1016/j.jnt.2007.10.003
  • M. Lingham, Modular forms and elliptic curves over imaginary quadratic fields, Ph. D. Thesis, Univ. Nottingham, 2005.
  • M. Mink, Beweis der Hasse–Weilschen Vermutung für eine elliptische Kurve über einem imaginär-quadratischen Körper, Diplomarbeit, Rheinische Friedrich-Wilhems-Univ., Bonn, 2010.
  • The PARI Group (Bordeaux), PARI/GP, version 2.4.3 (see pari.math.u-bordeaux.fr).
  • I. I. Piatetski-Shapiro, Multiplicity one theorems, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 209–212. MR 546599
  • Alexander Scheutzow, Computing rational cohomology and Hecke eigenvalues for Bianchi groups, J. Number Theory 40 (1992), no. 3, 317–328. MR 1154042, DOI 10.1016/0022-314X(92)90004-9
  • Matthias Schütt, On the modularity of three Calabi-Yau threefolds with bad reduction at 11, Canad. Math. Bull. 49 (2006), no. 2, 296–312. MR 2226253, DOI 10.4153/CMB-2006-031-9
  • Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 0263823
  • —, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou. Théoire des nombres 11 (1969/70), no. 2, exp. no. 19, 1–15.
  • —, Résume des cours de 1984–1985, Annuaire du Collége de France 1985, 85–90.
  • —, Représentations linéaires sur des anneaux locaux, d’apres Carayol, Prépubl. no. 49 (1995), Inst. Math. Jussieu, Univ. Paris VI et Paris VII/CNRS, 1995.
  • Richard Taylor, $l$-adic representations associated to modular forms over imaginary quadratic fields. II, Invent. Math. 116 (1994), no. 1-3, 619–643. MR 1253207, DOI 10.1007/BF01231575
  • A. Weil, Dirichlet series and automorphic forms, Lecture Notes in Math., vol. 189, Springer-Verlag, Berlin etc., 1971.
  • Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI 10.2307/2118559
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11G05, 11G40, 14G10
  • Retrieve articles in all journals with MSC (2010): 11G05, 11G40, 14G10
Bibliographic Information
  • L. V. Dieulefait
  • Affiliation: Departament D’Álgebra Geometria, Facultat de Matemátiques, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
  • MR Author ID: 671876
  • Email: ldieulefait@ub.edu
  • M. Mink
  • Affiliation: Seminar für Mathematik und ihre Didaktik, Universität zu Köln, Gronewaldstr 2, D-50931 Köln, Germany
  • Email: mmink@uni-koeln.de
  • B. Z. Moroz
  • Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany
  • Email: moroz@mpim-bonn.mpg.de
  • Received by editor(s): June 10, 2011
  • Published electronically: May 24, 2013
  • © Copyright 2013 American Mathematical Society
  • Journal: St. Petersburg Math. J. 24 (2013), 575-589
  • MSC (2010): Primary 11G05, 11G40, 14G10
  • DOI: https://doi.org/10.1090/S1061-0022-2013-01254-4
  • MathSciNet review: 3088007