Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Spectral synthesis in the kernel of a convolution operator on weighted spaces
HTML articles powered by AMS MathViewer

by R. S. Yulmukhametov
Translated by: S. V. Kislyakov
St. Petersburg Math. J. 21 (2010), 353-363
DOI: https://doi.org/10.1090/S1061-0022-10-01098-8
Published electronically: January 26, 2010

Abstract:

Weighted spaces of analytic functions on a bounded convex domain $D\subset \mathbb C^p$ are treated. Let $U =\{ u_n\} _{n=1}^\infty$ be a monotone decreasing sequence of convex functions on $D$ such that $u_n(z)\longrightarrow \infty$ as $\operatorname {dist}(z,\partial D) \longrightarrow 0$. The symbol $H(D,U)$ stands for the space of all $f\in H(D)$ satisfying $|f(z)|\exp (-u_n(z))\longrightarrow 0$ as $\operatorname {dist}(z,\partial D)\longrightarrow 0$, for all $n\in \mathbb N$. This space is endowed with a locally convex topology with the aid of the seminorms $p_n(f)=\sup _{z\in D}|f(z)|\exp (-u_n(z))$, $n=1, 2, \dots$. Clearly, every functional $S\in H^*(D)$ is a continuous linear functional on $H(D,U)$, and the corresponding convolution operator $M_S : f\longrightarrow S_w(f(z+w))$ acts on $H(D,U)$. All elementary solutions of the equation \[ M_S[f]=0, \tag{*} \] i.e., all solutions of the form $z^\alpha e^{\langle a,z\rangle }$, $\alpha \in \mathbb Z_+^p$, $a\in \mathbb C^p$, belong to $H(D,U)$. It is shown that the system $E(S)$ of elementary solutions is dense in the space of solutions of equation $(*)$ that belong to $H(D,U)$.
References
  • Leon Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1970. MR 0285849
  • I. F. Krasičkov-Ternovskiĭ, A homogeneous convolution type equation on convex domains, Dokl. Akad. Nauk SSSR 197 (1971), 29–31 (Russian). MR 0277729
  • Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271–355 (French). MR 86990
  • Leon Ehrenpreis, Mean periodic functions. I. Varieties whose annihilator ideals are principal, Amer. J. Math. 77 (1955), 293–328. MR 70047, DOI 10.2307/2372533
  • V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, “Nauka”, Moscow, 1982 (Russian). MR 678923
  • R. S. Yulmukhametov, Homogeneous convolution equations, Dokl. Akad. Nauk SSSR 316 (1991), no. 2, 312–315 (Russian); English transl., Soviet Math. Dokl. 43 (1991), no. 1, 101–103. MR 1100598
  • O. V. Epifanov, Duality of a pair of spaces of analytic functions of bounded growth, Dokl. Akad. Nauk SSSR 319 (1991), no. 6, 1297–1300 (Russian); English transl., Soviet Math. Dokl. 44 (1992), no. 1, 314–317. MR 1150105
  • N. F. Abuzyarova and R. S. Yulmukhametov, Dual spaces of weighted spaces of analytic functions, Sibirsk. Mat. Zh. 42 (2001), no. 1, 3–17, i (Russian, with Russian summary); English transl., Siberian Math. J. 42 (2001), no. 1, 1–14. MR 1830787, DOI 10.1023/A:1004812706564
  • Alexandre Grothendieck, Sur les espaces ($F$) et ($DF$), Summa Brasil. Math. 3 (1954), 57–123 (French). MR 75542
  • A. S. Krivosheev and V. V. Napalkov, Complex analysis and convolution operators, Uspekhi Mat. Nauk 47 (1992), no. 6(288), 3–58 (Russian); English transl., Russian Math. Surveys 47 (1992), no. 6, 1–56. MR 1209144, DOI 10.1070/RM1992v047n06ABEH000954
  • Nessim Sibony, Approximation polynomiale pondérée dans un domaine d’holomorphie de $\textbf {C}^{n}$, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, x, 71–99. MR 430312
  • L. I. Ronkin, Vvedenie v teoriyu tselykh funktsiĭ mnogikh peremennykh, Izdat. “Nauka”, Moscow, 1971 (Russian). MR 0320357
  • I. F. Krasičkov-Ternovskiĭ, Estimates for a subharmonic difference of subharmonic functions. I, Mat. Sb. (N.S.) 102(144) (1977), no. 2, 216–247, 326 (Russian). MR 0507987
  • Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
  • R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 32A50, 45E10, 46E10
  • Retrieve articles in all journals with MSC (2000): 32A50, 45E10, 46E10
Bibliographic Information
  • R. S. Yulmukhametov
  • Affiliation: Institute of Mathematics with Computing Centre, 112 Chernyshevsky Street, Ufa 450077, Russia
  • Email: Yulmukhametov@mail.ru
  • Received by editor(s): April 2, 2007
  • Published electronically: January 26, 2010
  • Additional Notes: Supported by RFBR (grant 06-01-00516-a.)
  • © Copyright 2010 American Mathematical Society
  • Journal: St. Petersburg Math. J. 21 (2010), 353-363
  • MSC (2000): Primary 32A50, 45E10, 46E10
  • DOI: https://doi.org/10.1090/S1061-0022-10-01098-8
  • MathSciNet review: 2553049