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Abstract. A class-II-model for multi-component mixtures recently introduced in
D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid miz-
tures, Acta Mech., 226 (2015), 1757-1805, is investigated for simple mixtures. Bothe and
Dreyer were aiming at deriving physically admissible closure conditions. Here the focus
is on mathematical properties of this model. In particular, hyperbolicity of the inviscid
flux Jacobian is verified for non-resonance states. Although the eigenvalues cannot be
determined explicitly but have to be computed numerically an eigenvector basis is con-
structed depending on the eigenvalues. This basis is helpful to apply standard numerical
solvers for the discretization of the model. This is verified by numerical computations
for two- and three-component mixtures with and without phase transition and chemical
reactions.

1. Introduction. For the modeling and simulation of multi-phase flows Baer-
Nunziato (B-N) type models [3] are frequently used. These can be derived from the
ensemble averaging procedure of Drew [§]. A comprehensive introduction to these mod-
els can be found in the classical book of Drew and Passman [J]. In the literature there
are simplified two-phase models available that can be derived from the above general
model by assuming zero relaxation times; see [I8]. A detailed discussion of these models
is beyond the scope of this work. For this purpose the interested reader is referred to
[23] and the references cited therein.
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Typically B-N type models consist of balance equations for each constituent and fur-
ther transport equations for their volume fractions. This ansatz leads to several problems:
(i) A key problem is the thermodynamically correct closure of the artificial quantities
such as interfacial velocity or interfacial pressure that cannot be closed from the entropy
principle of thermodynamics; cf. [21]. (ii) The exchange of mass, momentum, and en-
ergy between the constituents is modeled usually by relaxation terms. Frequently, an
equilibrium assumption is used; cf. [24]. This is a very restrictive assumption and is not
applicable for all situations of interest. (iii) The models cannot be written in divergence
form. Thus, the classical notion of a weak solution and the entropy solution cannot be
applied; cf. [6]. Moreover, the discretization of non-conservative products leads to nu-
merical difficulties; cf. [I]. (iv) The models do not conserve momentum and energy in
the non-equilibrium case, thus, violating a classical physical principle. (v) The mixture
model is conservative only when assuming velocity equilibrium.

The aforementioned disadvantages of B-N type models can be avoided by a new multi-
component model introduced by Bothe and Dreyer [4]. This model can be employed
to simulate chemically reacting flows as well as phase transitions. In particular, we
apply this model to two phases where each phase is a simple multi-component mixture.
Fluid mixtures can be modeled using different levels of details. The basic variables in
our approach are the partial densities and the partial velocities of the constituents for
each of the two phases and the temperature of the mixture. Accordingly the model
under consideration is a so-called class-II-model that consists of balance laws for partial
densities, partial momenta, and the total mixture energy. To close this system we have
to provide equations of states for partial pressures and energies and reaction rates.

In the work of Bothe and Dreyer [4] the focus is on the derivation of a class-II-
model that is thermodynamical consistent. They provide necessary and sufficient closure
conditions but do not address solvability of the model and how to solve it numerically.
The main objective of the present work is to verify that this model can be used in practice
to simulate multi-component fluid flows with chemical reactions and two-phase flows with
phase transitions.

To close the system of balance laws in a thermodynamically consistent manner Bothe
and Dreyer [4] provide criteria for the (Helmholtz) free energy that ensure thermody-
namical stability, i.e., the physical entropy is concave. Furthermore, by means of the
entropy production terms they give thermodynamical admissible closures for the reac-
tion rates. In the literature, typically no free energies are specified but calorical and
thermal equations of states can be found. For this reason, we derive free energies for
well-known equations of states, e.g., ideal gas, stiffened gas, van der Waals fluids, and
verify the aforementioned criteria ensuring thermodynamical stability. In this context it
turns out that the notions of partial pressures and densities are different from those used
in B-N type models. For instance, the partial densities in our model correspond to the
product of volume fractions and densities in the B-N type models. Thus, the equation of
state is evaluated with respect to different densities. For a non-linear equation of state,
e.g., stiffened gas, van der Waals, this leads to different pressures, energies, and temper-
ature. As a consequence, model parameters have to be carefully chosen, in particular,
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when performing comparisons between the models. Thus, not all equations of states are
applicable to model total mass transfer of a component.

Furthermore, we consider phase transition and chemical reactions in more detail by
means of special configurations. Here it turns out that the relaxation models used in
the B-N context are related to the chemical reaction terms in the Bothe-Dreyer model.
However, in our model we can choose the rate coefficient characterizing the reaction
times. This coefficient is chosen typically as infinity in the B-N model and, thus, drives
the fluid state to equilibrium restricting the range of applications. Appropriate rate
coefficients can either be determined from experiments or, if available, can be looked up
in the literature.

The available theory of conservation laws as well as numerical methods for these
type of equations relies very much on the knowledge of eigenvalues and eigenvectors
corresponding to the Jacobian of the inviscid fluxes. Therefore a key point in our work is
related to determine these quantities for our Bothe-Dreyer model. Although we cannot
explicitly compute the eigenvalues and eigenvectors except for the additional contact
waves introduced in the multi-dimensional case, we can prove that all eigenvalues are real
and a full set of linearly independent eigenvectors exists, i.e., the system is hyperbolic
provided that a non-resonance condition holds and all eigenvalues corresponding to the
acoustic waves are distinct. In particular, for a two-component mixture we can give
sufficient criteria ensuring that all eigenvalues other than those corresponding to the
additional contact discontinuities introduced in the multi-dimensional case are distinct
for a given state. Finally we are able to give an upper bound for the spectral radius.

To perform numerical simulations we discretize the Bothe-Dreyer model by an adaptive
DG solver. Since we are using an explicit time stepping, the time steps are restricted
by a CFL constraint. Depending on the fluid state and the relaxation times either the
characteristic velocities of the fluid or the chemical relaxation rates will be dominating
the CFL number. Therefore, we investigate the stiffness of the system introduced by
the chemical reactions. In particular, we determine the eigenvalues corresponding to the
ODE system of the relaxation model incorporating mass conservation.

This work is structured as follows. First we introduce in Section[2lthe model specifying
the balance equations for chemically reacting fluids, the equation of states for simple
mixtures derived from Helmholtz free energies and the reaction rates. This is concluded
with a discussion on the entropy principle. Then in Section 3] we verify hyperbolicity of
the model where we investigate the eigenvalues and eigenvectors of the Jacobian of the
inviscid fluxes. In particular, we derive sufficient conditions. The stiffness of the chemical
relaxation model is investigated in Section [l Numerical results are presented in Section
where we consider a two-component flow with phase transition and a three-component
flow with chemical reactions. We conclude with a summary of our findings and give an
outlook on future work.

2. Model. Hutter and J6hnk [I7] describe a hierarchy of fluid mixture models with
three different levels of detail, class-I-, class-II-, and class-III-models. The highest level of
detail is considered in class III, where for all constituents balances of mass, momentum,
and energy have to be formulated. In class II mass and momentum balances for all
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components are formulated but only one energy balance for the mixture. The basic
variables in that class are the mass densities, the velocities, and the mixture temperature.
Finally, in class I beside the mass balances only one balance of momentum and one
balance of energy are used. Here we consider a class-I1I-model for reacting fluid mixtures.
This is a special case of a more general model derived by Bothe and Dreyer in [4].

2.1. Balance equations for reacting fluid miztures. We consider fluid mixtures of N
constituents Ay, ..., Ay, i.e., multi-component mixtures of liquids and/or gases. Each
component ¢ is described by its partial mass density p;, its partial velocity v;, and the
mixture temperature T. All these quantities are functions of time ¢t > 0 and space x € R9.
The partial mass densities and the partial velocities define the total mass density p and
the barycentric velocity v of the mixture according to

N N
P:ZM and P’U:vai-
=1 =1

Using the notation of Bothe and Dreyer [4] we introduce the diffusion velocities u; =
v; — v and the corresponding diffusion mass fluzes j,; = p;u; with Zf\; J; = 0. Then
the fluid mixture is described by

Ot(pi) + V- (psvi) = 1y, (2.1a)
O (pivi) + V(pivi @ v; — Si) = f; + piby, (2.1b)
O¢(petot) + V - (perorv + quop — v - S) = pv - b+ pm, (2.1¢)

with i = 1,..., N. Here pe;,; denotes the total energy density of the mixture which is
related to the specific internal energies e; of the components by

N 1 N
2 2
Petot = ;Pi(ei + 5’”1) = pe+ ; §pivi

with pe the thermal energy of the mixture. The stresses of a component are given by
Si=—(pi + )T+ 89 = —p, T+ SI" (2.2)

with the identity matrix I, the partial thermodynamic (hydrodynamic) pressure p;, and
II; the irreversible partial pressure contribution (dynamic pressure). Here S? is the
traceless part and Sgrr the irreversible part of the stress S;. The mizture stress is then
given by S = Zi]\il(si — pitt; @ u;).

The total energy flux q,,, is related to the individual heat fluzes g; via

N

N N
1 1 .
Qiot = ;_1(% —u; - S; + pile; + 5“?)%) =q+; ;_1 piu;u; — ;_1 u; - S7", (2.3)

where g = Zij\;(‘h + (pie; + pi)u;) denotes the heat flux composed of non-convective
transport of heat and diffusive transport of species enthalpy. Further quantities are
the mass productions due to chemical reactions r;, the momentum productions f,, the
body forces b; acting on constituent A; with the corresponding total external force pb =
Zf;l p:b; and finally the power of body force due to diffusion pm = Ziil pibju;. With
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this notation conservation of total mass and total momentum are ensured by the con-
straints

N N
Zri =0 and Z fi=0. (2.4)
i=1 i=1

To close system (2.1]) we need to provide additional information on the equation of state
and the chemical reaction rates. The remaining constitutive quantities are determined
from the entropy principle of thermodynamics.

2.2. Equation of state. First of all an equation of state (EoS) is required to relate the
partial pressures p; and the thermal energy pe to the partial densities p; and the mizture
temperature T. In order to derive a complete EoS; cf. [20] for a discussion on complete
and incomplete EoS, we start with the mixture entropy ps

Psng(Pe,Pla---aPN)- (25)

Obviously, the mixture temperature T and the chemical potentials p; are defined as
follows:
1 0 ps 175 0 p§
—=—>0 d - == .
T 0 pe a T a p;
To perform the change of variables from {pe, p1,...,pn} to {T,p1,...,pn} it is useful to
introduce the specific Helmholtz free energy

(2.6)

U:=e—Ts. (2.7)
Then it follows from (Z8) with ¥ = \il(T, P1s---s PN}

d pv dpv , 0 (W
= —-— i = 5 d = —T he— p— . 2.
PE="or HT 9, andoe aT \ T (28)
Finally, the Gibbs-Duhem equation relates the mixture pressure p to the free energy via
N
p=—pV+> wipi. (2.9)
i=1

Note that this is not sufficient to close the model. In addition one needs to know consti-
tutive functions for the partial specific energies and the partial pressures or, alternatively,
for the partial pressures and g. Unfortunately, these are not given in [4, Section 15]. To
avoid this problem we confine ourselves to simple mixtures defined by

DEFINITION 2.1 (Simple mixture). A mixture of N components is called a simple
mixture if the partial pressures and the partial specific energies are of the form

ei = ei(T, pi) and  p; = pi(T, ps).

For simple mixtures the partial quantities can be calculated directly from the partial
Helmbholtz free energies ¥; = U, (T, p;) via

1 0p; 'V, 0 v, 0p;V;
Si:_E%v ei:—TQﬁ (%) ; /Li:%, and  p; = —piV; + piji -
(2.10)
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From these the mixture quantities are determined as

N N N N N
ps = pisi, pe=Y piei, pU=> piV; pr=> pwi, p=Y pi. (211)
i=1 =1 i=1 i=1 i=1

Finally, the sound speed a; of component i is defined by the slope of the isentropes in
the pressure-density plane, i.e., p; = p;(p;, $i), as

0pi(pissi) _ Opi(pi,T) dei(pi, Y\ " (0pi(pi, T)\?
2. _ 2
af = S = SRR T (A L L (212)

Here we make use of the following thermodynamic identity (cf. [19]):

de; ap;
L 2 7 _ 7
(pz P; Z) =T . (2.13)

Introducing the specific heat capacity and the isothermal speed of sound

dei(pi,T) _9 pi(pi,T)
vi = Ty O = 2.1
¢ oT “ 0 pi ( )

then the sound speed can be written as

T A\
a2 =a%+ (Z’;) . (2.15)

2
Pi Cui

To ensure finite speeds of propagation, the sound speed a; and @; have to be real numbers,
ie.,

a; > 0. (2.16)

Since this condition guarantees hyperbolicity of a single fluid system, we refer to it as the
hyperbolicity condition. As will be proven in Theorem B3] below it is also a necessary
condition for the multi-component system. Note that a? > @} because of the positivity
of the temperature (Z0) provided that ¢,; > 0. The latter is a necessary condition to
ensure the second law of thermodynamics; see Theorem 2.7] below.

For examples of simple mixtures we now consider mixtures of stiffened gases and
van der Waals fluids, respectively.

2.2.1. Mizture of stiffened gases. Let the constant material parameters c,;, v; m; and
¢; denoting the specific heat capacity at constant volume, the adiabatic exponent, the
minimal pressure and the heat of formation of component ¢, respectively, chosen such
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that ¢,; > 0, m; > 0, ¢; and v; > 1. Let further p;o be some reference density at reference
temperature Ty. Then by

T T T
W, (T, p;) = —cp; T In — (1 — — i — 1 Thn — + ——
z( apz) Cui nTo + ( TO) + ; +( )Cm o0 + i To

the stiffened gas equation of state for component i is specified. From (Z.10), (2Z12), and

2I4)) we conclude

ei = coil +mi/pi + qi, (2.17a)
T T Pi m T

cmTln —1— 2(1——)—1— i — ey TIn — + (v; — Ve T — ——, (2.17b

i q T (vi —1) p” (vi —1) oo T ( )

Ppi = pi(’}/i — 1)CivT — T, (2.176)
T 1 Di w1

Si = Cyi + Co; In — + @ i — DeysIn — — —— | 2.17d

To L To — O ) pio  pioTo’ ( )

ai = e (v — )y = i@ - (2.17¢)

For the mixture temperature we then deduce from (27 and (211))

A (2.18)
PCy
with
N N N
pq = Zﬂi% ™= Zﬂiv and Plv = Zpicm : (2.19)
i=1 i=1 =1

Obviously, the mixture temperature may become negative depending on the state of the
internal energy. According to (28], these states are not physically admissible.

REMARK 2.2. For m; = 0 and ¢; = 0 the stiffened gas equation of state reduces to the

ideal gas equation.

REMARK 2.3. The hyperbolicity condition (2I6) reads
a? =az/y; >a: = (v — Ve T > 0. (2.20)

This condition holds because of the constraints on the material parameters c,; and ~;
and the positivity of the temperature (2.6]).

2.2.2. Mixtures of van der Waals fluids. Let the constant material parameters c,;, v;,
M;, by;, and bg; denoting the specific heat capacity at constant volume, the adiabatic
exponent and the molar mass of component i, the cohesion pressure and the covolume of
component i, respectively, be chosen such that c,; > 0, by;,b9; > 0, M; > 0, and ~; > 1.
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Let further p;o be some reference density at reference temperature Ty. Then

T biipi | biipio T i M; — baip;
T, M? M? Ty 7 FoimDewT I Pio (i=DewTIn M; — baipio

defines the van der Waals equation of state for component ¢. From (ZI0), (212), and

(ZI4) we conclude

v; (Ta pz) = —cyT'In

b1ips
e; = cyil — iR (2.21a)
T biipi  biipio T i M;
= —cyTln— — 2 —DewTn 2L 4 (7 = Ve T—ti
H ¢ . T M? M? T, + (i = 1)e . Pio +( Je M; — baip;
(2.21b)
M; — baip;
— (v — DeyiTIn ———— |
9 ) i — b2ipio
b1ip? M;
pi = — Zl\f; +pi(yi — I)C”TMZ ~boipy (2.21c)
T bupio 1 i M; — baip;
8i=Cyi+Cpill - —%— — (Vi — l)cpsIn — + (v — 1)cpi In ———,
T M2 T, ( ) Pio ( ) M; — baipio
(2.21d)
a? = —2b1ipi + i T (v — 1)—Mi2% =a +c TM (2.21e)
i aE o (M; —boipi)® 0 " (M = baipi)? '

For the mixture temperature we then deduce from (2.7) and (2.11))

<pe + Z biip; ) cv) (2.22)

with pe, defined in (2.19))..

REMARK 2.4. For by; = 0 and by; = 0 the van der Waals equation of state reduces to
the ideal gas equation.

REMARK 2.5. The hyperbolicity condition (2I6) reads

- MP(vi—1)* buip; M?
af = a? + Cvam > a; = —2 ]\2121 + CviT(’Yi — 1)m > 0. (223)

REMARK 2.6. In the literature typically one will find formulae for e; and p;. To
check whether these correspond to a thermodynamically consistent EoS one has to find
a Helmholtz free energy W, such that the relations ([2.10), and (ZI0). hold true. By
the following procedure it can be checked whether a pair of given EoS for e; and p; is
thermodynamically consistent:

Step 1: Determine partial Helmholtz free energy ¥; by integration of [2I0),, i.e.,

Wi(pi,T) /T ei(pi, T)
ZRPL2) e To) — [ SRR g 2.24
T C(p 0) T T2 ( )

Step 2: Determine the integration constant ¢(p;,Tp) by plugging (224]) into (2.10).
and integrating the resulting ODE

dc(pi, To) _ pilpi, To) /T 1 Jei(pi, 1)
d pi p;T T dpi

C(pio, To) = Cp - (2.25)
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Step 3: Check whether the Helmholtz free energy ¥, satisfies (210). for the given
pressure p;. In case of a stiffened gas FEoS and a simple van der Waals EoS the above
procedure verifies thermodynamical consistency.

2.2.3. Material parameters. Later on in Sections Hl and Bl we will investigate phase
transition for water vapor and liquid water as well as a chemical reaction of hydrogen
and oxygen. For all computations we will consider mixtures of stiffened gases using the
parameters summarized in Table [I1

TABLE 1. Parameters for water, oxygen, and hydrogen

v | o [J/kg/K] | qlJ/kg] | w[Pa]|pokg/m?] | Ty [K] | M [kg]

vapor 1.43 1040 2.03 - 106 0 0.9 293 | 0.01802

liguid | 2.35 1816 —1.167-10% | 10° 999 293 | 0.01802
orygen 1.4 920 0 0 1.429 293 0.032

hydrogen | 1.4 14304 0 0 0.09 293 | 0.00202

2.3. Reaction rates. In the model we consider Nr chemical reactions between the
constituents A; according to

afAr+ ...+ afAN = BTAL + ...+ BN AN a=1,...,Np (2.26)

with stoichiometric coefficients af, 5 € Ng and v := 8¢ — of. The mass productions
are of the form

Ngr
ri=Y M'R, (2.27)

a=1
with the molar mass M; and R, the rate of reaction a which is the difference of the rate
of the forward and the backward path, R, = R} — R%. Due to mass conservation in every
single reaction it must hold that Zf\il M;vi =0 for all a.

According to Bothe and Dreyer [4] the reaction rates of the forward and the backward

path satisfy the relation

(2.28)

with R/, R’ > 0. From this we determine for the difference of the forward and the

backward path
1 X
—_ pf _ il E anf.,,.
R, Ra (1 exp <RT 2 v; Mlﬂi)) .

Usually the rates are not constant but depend on the state. For more details on this we
refer to [4], [10], [I2]. Note that only one of the rates Rf and R can be modeled, while
the other one has to be determined by (2:28]). For an example see [I1].

(2.29)
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2.4. Entropy principle. To derive thermodynamically consistent closure conditions for
i S?, II;, and vazl g,, we first derive a balance law for the thermal energy. For this
purpose we substitute the partial balances of the mass densities (Z.1al) and the momentum
(21D and the definition of the mixture quantities in the balance of total energy ([Z.Id)
to obtain

N N
T 1
Ot(pe)+V-(pev+q) = ; S Vo, —pV-v—; w;- (f; —rivi+ T —Vp;). (2.30)
According to Bothe and Dreyer [4] the interaction force

fi—rvi= "+ S —rv, (2.31)

is split into a mechanical part

N
M ==TY" fijpipj(vi —v;)  with (2.32a)
j=1
fij = [i;(T, pi,pj) 20, fij = fii, i #J (2.32b)
and a chemical part
N
flC —Triv; = — Z C’ij(vi — ’Uj) with (2.33&)
j=1
Nr
MZM a . a a Qa
Cij =Y —x——2—(RIBfaf + RbalBy). (2.33D)

N a
a1 Don—1 QR M,

We emphasize that ([232) differs from [4] due to the assumption of a simple mixture.

It remains to verify that this approach is in agreement with the second law of ther-
modynamics. For this purpose we derive from the equation of state (28] the entropy
balance

Ou(ps) + V- (psv+ @) = ¢, (2.34)

where we employ the evolution equations for the partial densities (2Ia) and the thermal
energy (Z30). Here the entropy flux @ is given by

N
1
® = T <q - ;pmiui> . (2.35)

According to Bothe and Dreyer [4] the entropy production ¢ is composed of the following
additive contributions:

C = Cheat + Cdif,nonreact + Cdif,react + Cchem + Cm'sc (236)
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corresponding to heat flux, diffusion flux with respect to non-reacting and reacting mix-
tures, chemical reaction kinetics and viscosity, respectively. These are

Cheat = éqi : V%, (2.37a)
1 Y M
Caif monreact 7= — ;u - (2.37b)
1
Cdif,react = Z:uz T ( —riv; + 2r1uz) : (2.37¢)
18 1 &
Cehem = — 7 ; Rodo =~ ; rifli, (2.37d)
1S qirr 1 T
Cuise 1= 7 ; SI":Di.  Di=g (Voi+ Vo). (2.37¢)

Note that the body forces do not cause a production of energy. To ensure non-negativity
of the entropy production terms (Z37) we have to make some assumptions. The following
ansatz:

1
Zqi :ﬁVT with  k=k(T,p1,...,pn) >0 (2.38)
guarantees
1 1
Cheat = QVT . VT 2 0. (239)
Using the closure condition (232 we deduce
Cdif,nonreact Z fngiP; i ’U]) = >0. (240)

4,j=1
Further, employing the definition of the coefficients C;; defined by (2.33D)) the entropy
production corresponding to the diffusion flux with respect to reacting mixtures can be
rewritten as

Ngr
Cdif react = Z (Cdzf + Cdzf) (2.41)
a=1
with
R[S M; N MM
ngff == Z - (af + Biul — Z ———— B afuiu; |, (2.42a)
T i=1 2 Q=1 > k=1 O My
Ry [~ M, N MM,
Cg{fl) = Z _(O‘(il +ﬂ?)u3 - Z Nijafﬂfuiuj . (242b)
T i=1 2 ij=1 > o M,

By means of the Cauchy-Schwarz inequality and positivity of the temperature (20 it
follows

Gif =0, ¢G>0, (2.43)
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Moreover, from the closure condition ([2.28) and monotonicity of the logarithm we deduce

Ngr
Conem = RY (R} — Rb)(In(R]) — In(R})) > 0. (2.44)

a=1

Furthermore, using the closure conditions

N N

j=1 j=1
1N = (0ij)i j=1,.a (shear viscosity), (2.45b)
A = (Nij)ij=1,...a (bulk viscosity) positive semi-definite (2.45¢)

we conclude that the entropy production due to viscosity is non-negative, i.e.,
1 & 1 1 & 1 &
vise ==Y (SV—ILI): (DY’+=(V-u)I) ==Y 8%:D'—— ) ILV-v; > 0. (2.46
Grise = 73SV (D4 (V D) = 3787 D=7 3 MLV w: 2 0. (240

Here D? denotes the traceless part of D;.

Finally, we verify that the entropy is a strictly concave function. Since the temperature
introduced in (26]) is positive, i.e., p§ is strongly monotone in pe, we can perform a
variable transformation exchanging pe and T, i.e.,

pe = pé(T,p1,...,pN)- (2.47)

Plugging this into the definition of the Helmholtz free energy (2.7)) we obtain

oV (T, p1,...,o~8) = pe(T,p1,...,on) — Tps(pe(T,p1,...,pPN)s P1,---,PN).  (2.48)

From this we derive

op¥  _ 9p¥ 0 [V
= —p8, B = Ui, €= T@T <T> (2.49)

Then Bothe and Dreyer give a criterion for the entropy that can easily be checked.

THEOREM 2.7 (Bothe-Dreyer [4]). The entropy pS$ is a strictly concave function and —p3

is a strictly convex function in (pe, p1, ..., pn), respectively, if and only if
0é 0 fu;
Cy 1= Z° 5 0and <ﬂ> is positive definite . (2.50)
oT Pi/ij=1,.N

REMARK 2.8. In case of a stiffened gas the thermodynamic stability condition (2.50)
reads
deé; o 1 @’
= Cyi > 0, =y — DeyiT—=—>0. 2.51
or ‘ 9 pi < )e Pi Pi ( )
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For a van der Waals fluid the thermodynamic stability condition (Z50) becomes

oe; 0 1 M? bi; a?
=cyi >0, = —DepilT——7—— —2 =-=L>0. 2.52
=0 pi(M; —baipi)®>  “ME  p; (2:52)

Obviously, if the hyperbolicity condition ([.I6) holds strictly, i.e., @ > 0, then it implies
thermodynamical consistency provided the specific heat capacity at constant volume is
positive.

Note that in general for B-N type models the entropy is not a strict convex function;

cf. [21].

3. Hyperbolicity. Neglecting viscosity and heat conduction as well as relaxation
processes and external forces in the fluid equations (ZI]) the model reduces to a first
order system describing transport effects only. In the following we investigate for which
states the inviscid system is hyperbolic, i.e., all eigenvalues of the Jacobian of the inviscid
flux in any direction are real and there exists a basis of right (left) eigenvectors that spans
the state space. Then all wave speeds are finite and the system may be locally decou-
pled. From a mathematical point of view, this property is helpful in the construction of
numerical fluxes, in particular, Riemann solvers, reconstruction polynomials and limiters
based on characteristic decomposition. Therefore we need to determine the eigenvalues
and eigenvectors as well as the corresponding characteristic fields.

3.1. Primitive variables. To determine the eigenvalues and eigenvectors it is conve-
nient to consider the system of equations for the primitive variables: mass densities,
velocities and temperature. For this purpose we first derive from the balances of momen-
tum and mass densities (2.10) and (ZIal), respectively, the balances of partial velocities

Oyv; + (v - V)v; — p; 'V - 8 = pi (i — ryvs) + by . (3.1)

Furthermore, we rewrite the balance of total energy ([ZId) in terms of the mixture tem-
perature and obtain

9 pe d pe dpe\ e -
8tT+Z< ) (h mai) .l+Z( ) Fpprivi- VI =0. (3.2)

This balance law can be derived computing the time derivative of the relation (Z47) and
then employing the balance laws for the mass densities (ZIal) and the thermal energy
([2Id) for a non-reacting and inviscid mixture. The balance equations of partial densities
[213), partial velocities BI) and B2) form a quasi-conservative system

d
Ow + Y Bi(w)dy,w =0 (3.3)
k=1
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for the primitive variables w := ((p1,v7),..., (pn,v%), T)T with By being block matri-
ces
B b1k
Bk = :
By by
cly o CNk o Gk
with
N
B - Vik pier b 0 o 0 o — Z piaTez‘v_
ik B;Zipi er UikI s Uik 8;5% ex s Cik T;?CTUp,i er s Ck e ey ik -

Here ej, and I denote the k-th unit vector in R% and the unit matrix in R?, respectively.
To verify hyperbolicity we have to check that for any direction n € R?, |n| = 1, the
projected matrix

d
B, =) Bin (3.4)
k=1

has real eigenvalues and the corresponding eigenvectors form a basis for R2V*1, In-
troducing the normal velocity v;, = Zzzl virng and the orthogonal block diagonal
matrix R, = diag(Qq,...,Q,,1), with Q,, = diag(1, O,,) and orthogonal matrix O,, =
(n,t1,...,tq—1) we can rewrite B,, as

Bl,n Bl,n
B, =R'B,R, = 5 - (3.5)
BN,n bN,n
é{n e é%yn Cn

with entries

T N
- Vin  pi€1 \ s 0 _ 0 piore;
Bz’,n = <8pipi el va> y bi,n = <8T?i61> ;, Cip = (Ta'rm 61) ;, Cn = E oCy Vin-
(3.6)

Pi Pi PCy i=1

3.2. Euxistence of real eigenvalues. A straightforward calculation gives
N
det(B,, — \I) = det(R] By R,, — M) = (pc,) ™' [[(vin — M) 'pn (M) (3.7)
i=1
with the polynomial py of degree 2IN + 1 defined as

N N
pN(A) = Zpicvi(vin - /\)((Um - /\)2 - CL,?) H ((’an - >‘>2 - a?)v (38)

i=1 j=1,5#i
where the partial sound speed a; and @? are defined by [2I2) and (ZI4)), respectively.
Obviously, there are N eigenvalues A = v;y,, ¢ = 1,..., N, with multiplicity d — 1. The
other 2N + 1 eigenvalues are determined by the roots of the polynomial py. In slight
abuse of notion we call py the characteristic polynomial that is only correct in the one-
dimensional case.
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REMARK 3.1. In case of a single-component fluid, i.e., N = 1, the roots of py are
given by
A= Vin, A+ =i ta, i =1. (3.9)
These coincide with the well-known eigenvalues of the Euler equations.
REMARK 3.2. In case of a mixture of stiffened gases the sound speed a; tends to @;
for T — 0 and ; — 1. In the limit the roots of py are given by

N
Cos
/\i = E PiCvi Vin, /\i7i = Uin + Q. (310)
- PO

In general, it is hard, if not impossible, to determine explicitly all roots of the charac-
teristic polynomial py, and thus, it is not obvious that all eigenvalues are real. However,
this follows directly if the matrix B,, can be symmetrized using similarity transforma-
tions.

THEOREM 3.3 (Existence of real eigenvalues). Let p;, pc,, Orp; # 0 (non-isothermal). If
the state satisfies the condition

T T o, T
pi— >0, Oppi— =1a;
pC’U pcv PCv

>0, i=1,...,N, (3.11)

then all eigenvalues of B,, are real.

Proof. The basic idea is to symmetrize B using a similarity transformation. For this
purpose, we multiply B,, by the block diagonal matrix D := diag(D;,...,Dx,1) with
D; := diag(ay, 1+(B;—1)e1) and its inverse D! from the left and the right, respectively.
Here we assume that the parameters «; and §; are non-zero. This results in the matrix

Dl_Bl,anl Dlal,n

B, =DB,D ! = (3.12)

el,.DY ... &y,Dy Cn
Obviously, this matrix is symmetric if
D;B,;,D;' = (D,B;,D;"Y", &,D;'=Db,,, i=1,...,N,
or, equivalently,

1 TOrp; Orp;
aip} = B0, pi, B - = Bi—,
PCy Pi

According to the assumptions (BII]) there exist non-vanishing real parameters a; and

i=1,...,N.

Bi. Since a symmetric matrix has only real eigenvalues and these are invariant under the
similarity transformation (12 the assertion follows. O
REMARK 3.4. Obviously, the symmetrization condition ([BII) holds because of the
positivity of the temperature (2.8]), the hyperbolicity condition (216, and the stability
condition (Z50). In particular, in case of a stiffened gas the symmetrization condition
BII) reads
T cyi(yi — T piT

= —2 0 50, =10 (3.13)
PCy pi pCy
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For a van der Waals fluid the symmetrization condition ([BI1]) becomes

T RT 1 i T
al = — (7—2 - 2piai) >0, p2="" s (3.14)
pco \1/pi = b; p; peu

3.3. Eigenvectors. Since now we know that all roots of the characteristic polynomial
B are real, we determine the corresponding left and right eigenvectors. The following
result is obvious and is given only for sake of completeness.

PROPOSITION 1. There exist (d — 1)-multiple eigenvalues \; o = v, ¢ = 1,..., N with
corresponding left and right eigenvectors li—i o and 7"?,0 determined by
=7k =(0,...,0,(0,t),0,...,0,007, k=1,...,d—1. (3.15)
’ ’ N—— N—_——
i—1 N—i

In particular,
Vwio- T8y =0, (3.16)

i.e., the corresponding characteristic fields are linearly degenerated.

The eigenvectors determined in Proposition [I] correspond to the multi-dimensional

case. The remaining eigenvectors can be determined from the one-dimensional case. For
- (1 ~(1 _ )
this reason we introduce the matrix BE; and the vectors bgg and cglg which are the

one-dimensional counterparts to Bm, lN)i’n and &; ,, defined in (3. In particular,

- ~ (1) T . =(1) ~(1)
Bi,n - Bi,n Od71 5 bi,n - bi’n s éln = ci,n . (317)
0g-1 vinda— 041 ' 0g—1

To determine the remaining eigenvectors we verify two lemmata. First of all, we de-

- (1
termine the eigenvalues and eigenvectors of the matrix BE,Z that are subject to the

non-resonance condition.
DEFINITION 3.5. Let A € R. Then A\ is considered to be in non-resonance if

op(\) = (6F(\)? —a; #0 Vk=1,...,N (3.18)
with 67 (A) := vgn — A
LEMMA 3.6. The eigenvalues and corresponding eigenvectors of the matrices B,(:ZL are
determined by
M=o, £, (3.19)
ri = (£pr/ar, )" (3.20)
If the non-resonance condition ([BI8) holds, i.e., A is not an eigenvalue of BSZL, then the
inverse B,(:ZL — M exists and is given by
(B, — A~ = U;@) ( fak%(?p)k 5%&) , (3.21)
The non-resonance condition essentially indicates that the eigenvalues of the matrices

B,(:ZL, k =1,...,N are no roots of the characteristic polynomial py defined by (B.g].

Because of Remark this may happen for a mixture of stiffened gases if ax = @x. The
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latter only holds true for isothermal fluids, i.e., px, = pi(px), that are of no interest here;

cf. equation (2.I5]).

Furthermore, we need the following identity.

LEMMA 3.7. Let A € R be such that the non-resonance condition (3.I8) holds. Then the
following relation is true:

N
_(\r, 51 <1> pn(A)
n—A—3Y (& B, —\,) ‘b, = 2 3.22
§_ (€n)” (By, )~ N (3.22)

with
N
= [ or») #o0. (3.23)
k=1

Proof. First of all, the non- resonance condition BI8) implies o7 (X) # 0 and, thus,

ko # 0. Then by definition of bk ,, and € ck n, see equations ([B.0) and BI7), as well as
Lemma [3.6] and the inverse [B.2I)) and using 2.I1]) it follows
T (Orpr)? 62(N) _ 9 07 (N)
1 k 1 2 _ -2 9%
———— = = (pcy) T prCur(ay — Ty) =
e opy ) )
(3.24)
Finally, the assertion follows by definition of ¢, and the polynomial py; see equations

BE) and (B8)), respectively. O

Now we can determine the right eigenvectors to the roots of the polynomial py.

1 ~(1
@D)T(Byl) = ML) "By = (pcy)

PRrROPOSITION 2. Let A € R be one of the existing 2N + 1 roots of the characteristic
polynomial B.8)), i.e., px(A) = 0, and let the non-resonance condition ([B.I8]) hold true.
Then the corresponding right eigenvector is determined by

T = (Ll ) (3.25)

with
1
T n T
s = —————O0rpr(pr, —0p (A)n")*. 3.26
L= gy drelon, — ) (3.26)
Proof. First of all, we determine the right eigenvectors to the matrix B, where we
consider the following splitting in sub-vectors:

~(1)
Fr = (Fai,-- Fan.TA) With 7yp= ((’)"M) e R 1y € R (3.27)
d—1
For the right eigenvalues it must hold that (B, — AI)#y = 0. Using 33), 3I1), and
B27) this is equivalent to
(Biy = AL)F) +byara =0, k=1,...,N, (3.284)
D@0 T+ (e = Ara =0, (3.28b)

k=1
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o . . . (1)
Because of the non-resonance condition A is not an eigenvalue of the matrices By ,.

Thus, we can make the following ansatz for the vectors r& L

_(1 = (1)
rg\}c = _(Bk,n

We now plug (3:29) into (B.28D)) to determine r as
( - Z )T (B, — A2)~ 1B,ifl> = 0. (3.30)

According to Lemma [37] the factor on the left-hand side of (B30) can be written as

—AL) by (3.29)

B (1) (1) PN (A)
A— chn — M) 'b,, = e (3.31)

Note that ko(A) # 0 because of the non-resonance condition. Since by assumption
pNn(A) = 0, we are free to choose a non-vanishing value r, # 0. We now may simplify
B29). By definition (BI7) of B,(:ZL as the one-dimensional counterpart of by, ,, defined by
B0) as well as Lemma and the inverse ([B2I)) we obtain

(1) 1 n Ay WT

r = T)\niank ks -0 (A . 3.32

Ak oy (/\)pk (P k( )) ( )

Finally, the right eigenvector to B, can be determined by multiplication with the matrix
R, from the left

ri = (R,#)" = (r{)l, .. .,rf,N,r,\) (3.33)
with
1
T ~T n T\NT
™k = QT k= "x— 9Pk Pk, —0 (Mn)". (3.34)
Ak Ak o ()\)Pk k
From this the assertion follows with ry = 1. O

Similarly, the corresponding left eigenvectors can be determined.

ProPOSITION 3. Let A € R be one of the existing 2N + 1 roots of the characteristic
polynomial [B.8)), i.e., px(A) = 0, and let the non-resonance condition (B.I8]) hold true.
Then the corresponding left eigenvector is determined by

17 = (lM,.. 2 ) (3.35)
with
Orpk _
15, = bh——rT(@/pr, —0p(N)n")T. 3.36
Ak APCUUZ(A) (a’k/pku k:( )n ) ( )
Choosing the scaling factor
a PKC 1
=S B (0 —ad) (@) + (67 (V)?) >0, 3.37
Z PCo (0_]?()\))2( k k)( ( k( )) ) ( )

then lf,k’"hk =1, where 7 j is the corresponding right eigenvector.
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Proof. Again, we first determine the left eigenvectors to the matrix B, where we
consider the following splitting in sub-vectors:
7(1)

i) = (Zil, o ,ZiN,l,\> with Iy = <ém> eR [, €R. (3.38)
d—1

For the 1ef‘5 eigenvalues it must hold that if(Bn — M) = 07 or, equivalently,
(B,, — \I)Tl, = 0. Using 3.35), .I7), and [B.38) this is equivalent to

(Bg,)z /\Iz)Tl(;L +ellin=0, k=1,...,N, (3.39a)
N
1)\ 751 B
> (by) T + (e — A)lx = 0. (3.39D)
k=1

Because of the non-resonance condition A is not an eigenvalue of the matrices B k,n and,
thus, we can make the following ansatz for the vectors I j:

1 1 .
Ivh = —(Bjs — M) el )y, (3.40)

Then we plug (3:40) into (3.39b) to determine Iy as

N
(cn —A=> nyn(Bk,n - AI)Ték,n> I =0. (3.41)

k=1
According to Lemma [377] the factor on the left-hand side of (B30) can be written as

1 -
—A- Z bk n BECT)’L AI?)iTcgcl,Zl

N
== A= Y@ (B, — M) 'y, (3.42)

k=1
_ pr(A)
~ ro(M)pey
Note that ko(A) # 0 because of the non-resonance condition. Since by assumption
pNn(A) = 0, we are free to choose a non-vanishing value I, # 0. By definition (B.I7) of
c,(:zb as the one-dimensional counterpart of ¢, defined by (B.6) as well as Lemma
and the inverse ([B.2I)) we obtain

iy TOrpy, @2/ o, —07 (A . .
Ak Aak()\)( 7/ Pk =0 (A), 04-1)" (3.43)

From the orthogonality condition 1 AeTak = 1 and (3.32) we conclude (3.37). In par-
ticular, we make use of the identity (ZI3). Finally, the left eigenvector to B, can be
determined by multiplication with the matrix RT from the left:

17 = (R,1))T (l“,.. l,\N,l,\) (3.44)
with 7o
B = (Quban) = a2 @k /v ~6 T (3.45)

From this the assertion follows. O
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3.4. Ezxistence of an eigenvector basis. It remains to verify that the eigenvectors are
linearly independent. Since the eigenvectors 7y and I in [B.25) and (B:35]), respectively,
depend on the eigenvalues, this can only hold true when the roots of the polynomial py
are simple and are at non-resonance. Then we can prove the following result.

THEOREM 3.8 (Existence of an eigenvector basis). Let there be 2N + 1 simple roots A;,
1 =1,...,2N + 1, of the characteristic polynomial (B.8]) satisfying the non-resonance
condition (B.I8). Then the corresponding left eigenvectors ly,, ¢ = 1,...,2N + 1, and
lﬁo, t=1,...,N, k=1,...,d — 1, given by (B30) and ([B.I3), respectively, and right
eigenvectors ry,, ¢ = 1,...,2N + 1, and ri—fo, i=1,....,N, k=1,...,d — 1 given by
B2Z0) and (BIH), respectively, are orthogonal to each other.

Proof. First of all, we rewrite the left and right eigenvectors in block matrices L and
R with rows and columns containing the left and right eigenvectors, respectively:

L, ... Ly 1 R, R{
L{ ; 5
L= , ,R=| * : (3.46)
. Ry RS,
L‘fv rT

with block matrices Ry = (Ta, 4r- -+ Pagnyry) € ROTDXENFD R ¢ Rd+Dx(d=1)

r € R?N*! as well as L] B3 (Iag s s bgnen k) L € RUTDXWHD) ¢ RENFL fo;
k=1...,N. In particular, we obtain by Propositions [l 2 and [

1 1
B =20 | —qpon 0 0w |
(07 (A1)pr) (o (NeNy1)pk)
R (szﬂ) (O ... 0 )
k t1 ... tg1)’
r = lonyi,
T Dxa s S
LT (B:_SE) TOrpw Morpr A2K+1 GF (2K +1)Pk
ko= —6r (M) —0¢(Aant1) ’
pCv In U?k(h) n ZAQN“UQICT%
Iy,
Li "=7 (R, U TS
l)\2N+1

For £k = 1,..., N the vectors 'rf’o, i =1,...,d — 1, are d — 1 linearly independent
right eigenvectors to the (d — 1)-multiple eigenvalue vy, of the matrix B,,. Since by
assumption all roots \;, i = 1,...,2N +1, of the characteristic polynomial py defined by
(B8] are distinct, then the vectors 7y, are linearly independent right eigenvectors of the
matrix B,,. Note that these eigenvectors coincide for multiple roots. Furthermore, the
eigenvectors 7‘?,0 and 7y, are linearly independent as can be directly concluded from the
matrices Ry and RZ. Thus, the vectors rfi o and ry, form a right eigenvector basis to the
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matrix B, i.e., the matrix R is invertible. Then the matrix L must coincide with the
inverse R™! except for a scaling of the rows, i.e., L = SR with S = diag(s*,st,...,s")
Y = (x5 Sxanga)r 8 = (shose o, 8_1,0)- The scaling factors are determined by the

)

orthogonality conditions sy, := 7y, - I, and 5?,0 = T?,o . lﬁo. By definition of the left
and right eigenvectors it can be verified that S = I. Thus we conclude LR = I, i.e., the
assertion holds. O

Finally we conclude from Theorems B3] and B.§

CoNcLUSION 1 (Hyperbolicity). Let the assumptions of Theorems and 3.8 hold
true. Then the non-reacting, inviscid class-IT-model (Z1]) without external forces is
hyperbolic.

So far, it is open whether the assumptions in Theorem 3.8 on the roots of the poly-
nomial ([B.8)) always hold. In particular, we cannot yet conclude from the non-resonance
condition (BI8) that all roots of py are simple. However, for subsonic mixtures at
non-resonance we can verify that all roots of py are simple.

THEOREM 3.9 (Sufficient condition for simple roots). Consider a subsonic simple mixture,
ie.,
[vin] < @; and [Vin, — Vjn| < min(a;,a;) i,j=1,...,N, (3.47)
at non-resonance. Then the roots of the characteristic polynomial py defined in (B.8])
are simple.
Proof. First of all, we note that the non-resonance condition is equivalent to
Vjrn — Gjy < VUjon — Qjy < -+ < Vjyn — Qjy (348&)
Vkyn + Oky < Vkon + gy < -0+ < Vknyn + Qkyn- (348b)

Thus, we may reorder the terms in the characteristic polynomial (B.8)) as follows:

N N N
pN()‘) = Zpilcviz (Uilﬂ_A)((vim_)‘)Q_a?,,) H (Uijn_)\_aij) H (vkjn_)‘+akj)'
=1 =151 J=1k; i
Then a simple calculation using the assumptions (B47) and (B4])) gives
sign(pn (vjn — @;,)) = (1) and  sign(pn (vgn + ax,)) = (1) (3.49)

for{=1,...,N. In addition,
pn(A) = +oo for A\ — Foo.

Thus, there exist 2N + 1 intervals where the polynomial py of degree 2N + 1 changes

its sign. Obviously, the roots cannot be at resonance, i.e., coincide with some v;, +@;

because of [349). This proves the above statement. O
From Theorem [B.9] we conclude on an upper bound for the maximum of the absolute

values of the characteristic speed, i.e., the spectral radius of the flux Jacobian.
CONCLUSION 2. For a subsonic simple mixture we define

Umin := min{v; — a@1,..., o8y —an} and Umax = max{vy +a,..., oy +an}.
Then for the roots of the characteristic polynomial py defined in (B3],

Umin S )\min <0 and 0< )\max S Umax-
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This result can be used in numerical calculations to determine appropriate time steps.

3.5. Characteristic fields. For the construction of a Riemann solver it is important to
determine the characteristic field corresponding to an eigenvalue. This is characterized
by the sign of the product VepA(w) - rx(w). Although we do not yet know explicitly
the eigenvalues in general we nevertheless may determine their derivatives with respect
to the state in phase space.

LEMMA 3.10. Let A\ = A(w) be an eigenvalue to some state w of primitive variables
satisfying the non-resonance condition BI8)). If w — A(w) is a differentiable function
in a local neighborhood of w, then the derivative of the eigenvalues are given by

INw) _ Aw,(A(w))

dw — BAw))

with
N ~n
Ay, = ; (3 gufl (0im — A) + picm?—;w 28; (3.50a)
X 2um — )
2 P o
(= NG 200 - (argbot )~ mg et ) )
N ~
N O A BN B W10
BOY =2 p “(1”( =) (&m) om))) T (3.500)

i=1
provided that B(A(w)) # 0.

Proof. First of all, we note that for any A satisfying the non-resonance condition
BI8) we may rewrite the characteristic polynomial (B8] as py(A) = ko(A)ry(N) with
polynomial kg introduced in Lemma [3.7] The rational function ry is defined as

N ~n
rn(A) = picyi(Vin — A) 2 8;
i=1 4

(o

where 07 () is defined by [BI8) and, similarly, 67(\) := (vin, — A)? — a?. If X is a root
of the polynomial py satisfying the non-resonance condition, then it is also a root of the
rational function 7.

By assumption A = A(w) is an eigenvalue at non-resonance corresponding to the state
w in the phase space spanned by the primitive variables w; see equation [B3). Since the
eigenvalues depend continuously on the coefficients of the characteristic polynomial py,
the function w — o' (A(w)) is continuous. Thus there exists a small neighborhood of w
in phase space where the corresponding eigenvalues are also at non-resonance. Then the
derivatives of the function w — ry(A(w)) can be determined as

drn(AMw)) 0N w)
dwy owy

= A, (AM(w)) B(AMw))
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with A,, and B defined by @.50). Note that o?(\) — 67()\) = a2 — a?. Finally, the
assertion follows because for any eigenvalue, i.e., root of the characteristic polynomial
PN, at non-resonance ry(A(w)) = 0. O
By means of the derivatives of the eigenvalues and the right eigenvectors, see Lemma,
and Proposition [2] respectively, we may now investigate the characteristic field.

PRrROPOSITION 4. Under the assumptions of Lemma [3.10] the characteristic field is deter-
mined by

N+a?—a? [y O nss0Cy
:Zpl(vln_)‘)a [+ o - o ( LB o ()\)—l>

et (o' (N))? dp OT oT
6]01 1 8(512 _alQ) n 8512 —2 2
+Zﬂlcvz Uin, — 8T( TONE < 9 al'(A) + 9 (@ —aj)

dpi (@i — af)
+2ZCvl(”l”_M36_T(0l?<—A)§3

N a2 — a2
+szcvz(vzn—A)(U?(1/\))2 (6(3T D (A)+88—T( —a?)). (3.51)

Proof. Since we are dealing with simple mixtures, see Section [22] the terms A,

simplify:
a; Oq ap 8@)) 5’?()\)
— 2p1¢0 | = —— — ) ===, (3.52a
g l(”z"()\)apz N op)) opoy G0

Av, . =picul (1 + 2(vin, — A)? (6?1(/\) _ 0;(/\))) 2:85 N, (3.52b)

N -
0y a; Oa; a; 0T Uin()\
A =2 pilvin =) (57— (zim 97 ~ 7oy a7)) i

By (3:28) we then compute for the characteristic field corresponding to the eigenvalue A

8Cvl
A, =(vp, — ) Ll
o =V = A) (Cl“’lapl

g

(3.52¢)

o)

Nag

N
BA(w))VapA(w) - ma(w) =D (Ap, Ay, s Ay )T + Ar.

=1

From the definition of ¢]'(A), 7' () and the sound speed (2.I5]) we deduce
o' () = 61" (\) = af — i,

oar _0a ., 1(0(}—-7a}) , oa; 5
alﬁ%()\) B . (A) = ) (T (A + m( i—a) ), *€{pT}
Then after some further calculus we obtain (B.51]). O

Although the formula (B.51) is not very handy it might be helpful for a particular
choice of fluids to determine the characteristic fields to a given eigenvalue, for instance
in case of velocity equilibrium.
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3.6. Velocity equilibrium. Of particular interest are states at velocity equilibrium, i.e.,
Vin=v Yi=1,...,N.

For these states we are able to determine the eigenvalues explicitly and determine the
corresponding characteristic fields at least for a two-component mixture.

PROPOSITION 5. In case of velocity equilibrium and N = 2 there exist 2N + 1 distinct
roots of the characteristic polynomial (B8] determined by

_ _ PPy
Ao =0, )\ii_vj:\/ - (2) q (3.53)

p=—(pco) H(p1co1(ai+a3)+pacu2(a3+a3)), ¢ = (pey) ' (previaias+paciazar) (3.54)

with

provided that
a?>a >0 and c,; >0 Vi=1,...,N. (3.55)

In particular, the roots [B53) satisfy the non-resonance condition (BI8) if and only if
the conditions (B:55) and @3 # a3 hold.

Proof. For a state in velocity equilibrium the characteristic polynomial ([B.8]) reduces
to

N N
pv(N) =Y picwi(v=N((w =N =ai) [ (v=N*-7a). (3.56)
i=1 j=1,5%#i
Obviously, A = v is always a root. In case of N = 2 the remaining polynomial reduces
to a polynomial of degree 4 that due to symmetry reduces to a quadratic polynomial for
A = (v —A)2. From this the roots ([3.53) can be determined. It remains to verify that
both the discriminants are positive. For this purpose we check that

_ _ —2\\2 — —_
p? = 4q = (pen) 2 (preun (0 = @) = paca(ad — a1)” + dprcurpacia(al — @) (af — a3))
> 0.

Finally we have to verify that —p — «/p2 —4¢ > 0. Since p < 0, this is equivalent to
verify

q = (pcy) ™" (previal@s + pacooasa;) > 0.

This holds by assumption.

To verify the non-resonance condition ([B.I8]) we first note that in the equilibrium case
it reads oy () := (v—A)?2—a3, k=1,..., N. Obviously, o(\o) # 0 if @ # 0 holds true.
For the other roots, we observe that ox(A+ +) = 0 is equivalent to Eé +aip+q=0.
Rearranging terms we can rewrite this as (—1)¥pgc k(a2 — @3) (@3 — @3). From this the
assertion follows immediately. O
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Probably, this result can be extended to N = 3 proceeding similarly but determining
the roots of a cubic polynomial for X = (v — A)? that are known to be real. For the
general case we easily conclude from (3.56])

PROPOSITION 6. In case of velocity equilibrium Ay = v is a simple root and is at non-
resonance. The remaining 2N roots of the polynomial py take the form \; + = v £ /z;,
t=1,...,N, for some z > 0 provided the hyperbolicity condition (ZIG]) holds.

To determine the corresponding characteristic fields we make the following observation.
REMARK 3.11. For A\¢ we obtain the estimate

N s N
a’
B(\o) = E picvia_; > E PiCvi = pcy > 0.
i=1 i i=1

If all the roots A\g +, k=1,..., N, are at non-resonance, i.e., z; # @7, then we obtain
-1
N N 2 _ =2
n 2 a; —a;
Bs)=[=X) [Jo7Oks) | pvQuz) +200 = Mex)? D pici—i—r5 e
j=1 P (07 (Mk,+))
> 0,

because py(Ag,+) = 0 and a? > a;. Hence, condition (B.50D) is satisfied in case of
velocity equilibrium.
Finally, we conclude from Remark 3.1} Proposition @, and Lemma [3.10 the following

result.

PROPOSITION 7. Let the fluid be a mixture of stiffened gases. In case of velocity equilib-
rium the eigenvalue Ao = v corresponds to a linearly degenerated field. The remaining
eigenvectors \; + = v & /z;, i = 1,..., N, are assumed to be at non-resonance. Then
the corresponding characteristic fields are genuinely non-linear if

((v = Apx)? —a7)

Proof. For a mixture of stiffened gases equation ([BE1]) simplifies to
(vin — A(w))?

((vin — Mw))? —a7)?

For an equilibrium state w with A(w) = Ag or A(w) = Ag 1 it holds that B(A(w)) # 0
by assumption and Remark B.IIl Obviously, the right-hand side vanishes in case of
A(w) = Ao whereas it is non-zero for A(w) = A, + because of (B.57). O

N

v— A\ 4_ gt
> ek (v —1)° v = Ae) L #£0 Yk=1,... N (3.57)
=1

(v —Mw))* +ay).

N
B(A(w))VaA(w)-ra(w) = =Y pieyy (n—1)°
=1

4. Stiffness of chemical relaxation model. In a numerical calculation the time
step size is restricted due to transport and the stiffness introduced by the chemical
reactions. To investigate the latter we perform an operator splitting where we separate
the fluid motion and the chemical reactions. Then the relaxation process is described by
the ODE

dpi - d piv; d peqot

:_iT7 ey 5 :O, :O, 4.].
di (T, p1 PN) di dt (4.1)
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or, in short form

2 fw) (12)

vyith u = (p1,..,pn, p107 . o pero)T, f = (P17, 00,007 7 o= ri(u),
T ="T(u).

The constraint of the time discretization is characterized by the largest absolute eigen-
value of the Jacobian J f/0w that coincides with the largest eigenvalue of the matrix
R := (d7;/dp;):j. Because of the conservation property (2.4) this matrix is a rank-1 ma-
trix, and thus has one eigenvalue 0. In case of a single reaction the Jacobian exhibits at
most one non-trivial eigenvalue; cf. (@3] and ([@4). For two components the non-trivial
eigenvalue is determined by dri/dp; — dFy/dps. This eigenvalue is unchanged if there
are other additional inert components, i.e., 7, =0, ¢ > 2.

It remains to calculate the required derivatives. Assuming a single reaction and start-

ing with
N —
7 = v, M;R' (1 —exp (”’“éw’“> <“’“(’%"T)>> (4.3)

k=1

we obtain for constant rate RS

N —
dr; M\ d [ p(pr,T)
= (r; — ;R M; —_— | — | —= . 44
dp; s = )kz_:l< R ) dp; ( T 44

Using the relations ([ZI0) a straightforward calculation gives

d (ﬂk(pk;T)> ) (€k+’$—2—%%Pk(PkaT))37T k# 7,
dpj T %m%pj(pjaT) (e]—l—z—l ij(pJaT)) %7 k=j.
Finally we obtain

dr;
dp;

= (’I"l‘ — l/lRfMZ)

N —
viM; 1 0pi(p;,T 1 ( p, T 0O ) oT

x S y P2 O e T)) )
( R Tp; 0p;  1? E e~ prortee D)) 55

For stiffened gases this expression simplifies to

N
vy (v —e; 1 3 v My, (qr + corT) (g5 — 507 + cva)>
2 .

dri = (Ti—UinMi) J
pj P

dp;

REMARK 4.1. The rate R may depend on the states of the substances under con-
sideration, e.g., on concentrations, on partial pressures, or on the temperature. There
is some literature available on how to determine such rates; see for instance [2, Chap-
ter 21] or [22]. Nevertheless, the computations are complicated and one needs to know
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reaction constants, specific activation energies, etc. This is beyond the scope of this
paper. Therefore for simplicity we choose different constant rates in our numerical ex-
amples.

For an example, we first consider a mixture of a water vapor and liquid water. The
material parameters are chosen as in [23]; see Table[ll The exchange of mass between the
phases correlates to a phase transition, where condensation is assumed to be the forward
reaction

1(H2O)vapo7’ - 1(H2O)liquid . (45)
Accordingly we have vyqpor = —1 and vjgui¢ = 1. The initial state is chosen at rest
With papor = 2+ 10° Pa, priguia = 10° Pa and T = 298 K. Because phase transition is
a slow process we use a small forward reaction rate Rf = 102, We solve system (&)
numerically using a fourth order Runge-Kutta scheme and obtain the results presented
in Figure [

It can be observed that the density of liquid water increases whereas the density
of water vapor decreases, i.e., vapor condensates, resulting in a temperature increase.
The pressures of the fluids show a similar behavior as the densities. From a numerical
point of view it is important to note that the stiffness of the relaxation system increases
moderately by a factor of about 5 until the equilibrium state is reached.

x10

4 4
15 15
1 1
0.5 0.5

0 1 2 3 4 5 0 1 2 3 4 5

(a) Density water vapor (b) Pressure water vapor
5
%10

1370 B
1369.5 4
1369 4
1368.5 0

0 1 2 3 4 5 0 1 2 3 4 5

(c) Density liquid water (d) Pressure liquid water

299.5 3
299 2
298.5 1
298 0

0 1 2 3 4 5 0 1 2 3 4 5

(g) Temperature (h) Spectral radius

Fia. 1. Relaxation process 1 - Liquid-vapor phase transition

As a second example we consider a mixture of three components. The material pa-
rameters chosen are related to liquid water, oxygen, and hydrogen; see Table [Il The
corresponding chemical reaction is the so-called oxyhydrogen reaction

2H5 + 109 = 2(H20)liquid . (46)
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We observe that vy, = —2, v, = —1, and vg,0 = 2. As before we choose an initial state
at rest with pg, = 2-10° Pa, po, = 10° Pa, py,o = 10* Pa and T = 298 K. Since the
process is a very fast chemical reaction, a large forward reaction rate Rf = 10° is used.
The results are shown in Figure 2l

o o o
= o
N -1

2
0 0.01 0.02 003 004 0 0.01 00z 003 004
{a) Density oxygen (b) Pressure oxygen
H

%10

(_

0
0 0.01 00z 003 004 0 0.01 0.02 003 0.04
(c) Density hydrogen (d) Pressure hydrogen
6

%10

1370 2

1369.5

N

1369

1368.5 0

0 0.01 0.0z 003 0.04 1} 0.01 0.02 003 0.04

(e) Density liquid water (f) Pressure liquid water
2984 600
400
298.2

200
298 0

0 0.01 00z 003 0.04 0 0.01 0.02 003 0.04

(y) Temperature (h) Spectral radius

Fic. 2. Relaxation process 2 - Oxyhydrogen reaction

We observe that the density of liquid water increases whereas the density of oxygen and
hydrogen decrease due to the recombination reaction resulting in a slight temperature
increase. Again, the pressures of the fluids show a similar behavior as the densities.
Obviously, the stiffness of the relaxation system increases significantly by a factor of
about 500 until the equilibrium state is reached.

Both, the condensation process as well as the chemical reaction relax into an equilib-
rium state. Obviously the equilibrium state is achieved much faster for the oxyhydrogen
reaction. This effect is mostly induced by the higher reaction rate R'. As a consequence
the Jacobian of ([.2]) for this reaction exhibits a significantly larger spectral radius. This
introduces a severe stiffness into the system and can lead to an additional time step
restriction of the coupled system besides the CFL constraint.
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5. Numerical results. In order to solve model (2.1) we apply a third order Runge-
Kutta discontinuous Galerkin (RK-DG) method [5] to the inviscid system

d
Oru+ > 0n, Fr(u) = Q(u) (5.1)

k=1

with conserved quantities u, fluxes F'j, and source Q

u = ((pl,ﬂlv,{), C) (pvaNv%)apetot)T,
F’f:(FZ,N""Fg,Nanetot)Tv kzlv'“ada

Q = (Q,{W, et Q?’\"/”O)T7
and partial fluxes and sources

Fii = (pive, pivwiv; +piep)’, i=1,...,N,
N
Floeror = Zpﬂfz',k(@i + pi/pi + 0.5v7),
i=1

Q,=(ri, f1)¥, i=1,...,N.

We use polynomial elements of order p = 3 and a third order SSP-Runge-Kutta method
with three stages for the time discretization. For the numerical flux and the limiter, we
choose the local Lax-Friedrichs flux and the minmod limiter from [5], respectively. The
time stepping is controlled by the CFL number. The performance of this RK-DG solver
is enhanced by local multi-resolution based grid adaptation; see [I6]. Details on the
adaptive solver can be found in [I3][14].

The limiter is applied to the local characteristic variables. For this purpose we need
to compute the left and right eigenvectors of the Jacobian of the projected flux F',, =
22:1 Fyny, in direction n € R?, |n| = 1. Since the eigenvalues are not explicitly known
we proceed as follows:

(1) Determine the eigenvalues of the symmetric matrix B, = DB, D~" defined in
(BI2) with appropriate coefficients a; and 3; by means of a numerical eigenvalue
solver. Because of similarity transformations these coincide with the eigenvalues
of the matrices B,, and B,, defined by B4) and (BX), respectively. Note that
in the multi-dimensional case (d > 1) the matrix M decouples, i.e., there exists
a permutation matrix P such that

Bp
PB P! Vinla—1

UNnda—1
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Thus it suffices to determine the eigenvalues of the reduced matrix By coinciding
with the roots of the characteristic polynomial [B.8]). The reduced matrix can be
determined from B,, by deleting the ((i — 1)(d + 1) 4+ 2 + j)-th column and row
forj=1,...,d—1landi=1,..., N.

(2) Check whether the eigenvalues of Bp are all simple roots and the non-resonance
condition (ZI8) holds. Then the left and right eigenvectors I and r of the matrix
B,, can be computed according to (BI5H), 320), and B35). Otherwise an
iterative solver has to be applied to B to compute the eigenvectors numerically.

(3) Since by the variable transformation u = u(w),

a4, =280 _ 0u g ) (a“)

du  Ow ow
the left and right eigenvectors of the matrix A, are determined as (g—w)_Tl
and g—gf’r, respectively.
For the computations we consider different Riemann problems for two- and three-compo-
nent flows with and without phase transition or chemical reaction. The discontinuity in
the initial data is located in the middle of the domain. The computational domain is
given by Q = [—1,1] discretized by 10 cells on the coarsest level and using L = 10
levels of refinement. For the time discretization we choose a fixed CFL number of 0.1.
Since we cannot construct explicitly the solution of the Riemann problem, we choose the
discretization fine enough to ensure grid converged solutions.

5.1. Example 1: Two-phase flow with phase transition. First we consider a Riemann
problem for a mixture of a water vapor and liquid water. The material parameters are
chosen as in [23]; see Table[ll The exchange of mass between the phases correlates to a
phase transition, where condensation is assumed to be the forward reaction ({f3]). Since
phase transition is a slow process we use a small value for the forward reaction rate:

R’ =100. The initial data are given in Table 2

TABLE 2. Initial for data Example 1

pr [Pa] | vg [m/s] | T [K] | pr [Pa] | vg [m/s] | Tr [K]

vapor | 5 x 103 2 293 10 3 2983

liquid 10° 3 — 105 2 —

In Figure Bl we show the results for both computations with and without relaxation.
We can distinguish five different waves: four waves move at approximately sound speed
and one with flow velocity, probably corresponding to four acoustic waves and one contact
wave as in case of a B-N model. The acoustic waves split in two pairs where the slow
moving pair and the fast moving pair are only visible in the vapor phase and the liquid
phase, respectively.

Taking into account phase transition does not change the wave structure but due to
the reaction the states of the mixture are affected. Due to vaporization the density and
the pressure in the vapor phase increase significantly whereas the respective quantities
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in the liquid decrease slightly. Note that a change in the density of the liquid is hardly
visible because it is about 4-5 orders of magnitude larger than the density of the vapor,
i.e., a small amount of vaporizing liquid increases the amount of vapor significantly.
Correspondingly, the vapor velocity decreases when the acoustic wave has passed whereas
the liquid velocity is hardly affected.
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Fi1G. 3. Example 1 - two-phase flow with (black, solid) and without
(red, dash-dot) phase transition, t = 6 x 10~ %s.



284

MAREN HANTKE anp SIEGFRIED MULLER

These results meet the expectations due to the fact that water is a liquid at atmo-
spheric pressure in the present temperature regime.
5.2. Example 2: Three-phase flow with chemical reaction. Next we consider a mix-
ture of three components. The material parameters chosen are related to liquid water,
oxygen and hydrogen; see Table[[l The corresponding chemical reaction is the so-called
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FiG. 4. Example 2 - three-component flow with (black, solid) and
without (red, dash-dot) chemical reaction, ¢t = 4.5 x 10~ %s.
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oxyhydrogen reaction (6). Since this is a very fast chemical reaction, we choose a large
reaction rate: Rf = 10°. The Riemann initial data are summarized in Table Bl

TABLE 3. Initial data for Example 2

pr [Pa] | vy [m/s] | Ty [K] | pr [Pa] | vg [m/s] | Tk [K]
oxygen | 1.5 x 10° 0 298 | 3 x10° —10 298
hydrogen | 3 x 10° 10 — 6 x 10° 0 —
water 1.5 x 107 ) - 107 ) -

In Figure M we show the results for both computations with and without relaxation.
We can distinguish seven different waves, see the total energy of the mixture: six waves
move at approximately sound speed and one with flow velocity, probably corresponding
to six acoustic waves and one contact wave as in case of a B-N model. Again, not all
waves are present in each component.

Taking into account phase transition does not change the wave structure but due to
the fast reaction the states of the mixture are strongly affected. Due to the forward
reaction the density and the pressure for oxygen and hydrogen decrease whereas the
density of water increases. On the other hand, the oxygen and hydrogen are significantly
accelerated when the fastest of the acoustic waves has passed whereas the water velocity
is hardly affected.

6. Conclusion. We investigated the class-II-type recently introduced by Bothe and
Dreyer in [4]. Here we confine ourselves to simple mixtures. This model has several
advantages in comparison to classical Baer-Nunziato type models: (i) Each component
can undergo a phase transition or a chemical reaction. In the Bothe-Dreyer approach
phase transitions are modeled as a chemical reaction, where the exchange terms are
modeled by stoichiometric relations. (ii) Due to the algebraic nature of the exchange
terms for simple mixtures the system can be rewritten in divergence form and it is
conservative. Thus, there exists an entropy-entropy flux pair and the system can be
symmetrized according to Godlewski and Raviart [15]. (iii) Volume fractions or artificial
interfacial quantities have not yet been introduced. (iv) The modeling of source terms
starts from thermodynamics. Thus, it is ensured by construction that the model is
thermodynamically consistent, i.e., the second law of thermodynamics is satisfied. All
closure conditions can be derived from the entropy principle of thermodynamics; cf. [4].
(v) The extension of the model to more constituents or the allowance of further reactions
is an easy task. This is a notable difference to B-N type models; cf. [2I]. In particular,
the system is also well defined for vanishing constituents.

In the focus of the present work has been the investigation of hyperbolicity of the
model. Although we cannot give explicitly the eigenvalues of the flux Jacobian, we
constructed an eigenvector basis where the eigenvalues enter as parameters provided the
non-resonance condition holds. The eigenvalues can be computed numerically for a given
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state. This is very useful in numerical schemes to locally decouple the system and is
used for instance, to perform flux vector splitting, limiting, reconstruction, etc. Thus, a
classical DG discretization could be applied to our model and computations for two- and
three-component flows with and without phase transition have been performed.

Since we do not ezplicitly know the eigenvalues nor the corresponding right eigenvec-
tors, we cannot investigate the characteristic fields. We only can characterize the fields
to a given state once the eigenvalue has been computed either by numerical tools or is
known. Thus, we cannot conclude that there exists a unique solution of the Riemann
problem. Also classical results known for single component fluids could not be confirmed
for multi-component fluids: (i) For a single component fluid it is known that the pressure
is a Riemann invariant across a contact discontinuity. In our model, it turned out that
in general neither the mixture pressure nor the partial pressures are invariants. (ii) The
same holds true for the mixture velocity and the partial velocities. (iii) Similarly, one
can verify that neither the partial entropy nor the mixture entropy are invariants. Note
that in the single component case the entropy is an invariant across a rarefaction wave.
(iv) For multiple eigenvalues we could prove that the mixture temperature is a Riemann
invariant across the corresponding fields in our model.

Our current results open several interesting perspectives for future investigations:

e Since our class-II-model exhibits severe problems in the calculation of the eigen-
values and eigenvectors, we want to consider also the reduced class-I-model com-
posed of balance laws for partial densities, mixture momentum, and mixture
energy. Here we hope to find the eigenvalues and eigenvectors explicitly because
for a two-component model the characteristic polynomial is of degree 4.

e In the literature numerous models are available to model two-phase or multi-
component flows. However, a thorough comparison of different model classes is
missing. Therefore we would like to compare our class-II-model with a reduced
B-N model composed of balance laws for volume fractions, partial densities,
partial momenta, and a total mixture energy.

e Our model has been embedded in a parallel, adaptive, multi-dimensional DG
solver. This allows us to investigate more complex applications also in several
space dimensions.

e In contrast to B-N type models where relaxation times are typically assumed to be
infinite, the choice of the relaxation time is a free parameter in our model related
to the forward reaction rates. For our computations we used constant rates.
Further investigations are needed to derive realistic reaction rates depending on
the state.
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