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Abstract. A class-II-model for multi-component mixtures recently introduced in

D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mix-

tures, Acta Mech., 226 (2015), 1757–1805, is investigated for simple mixtures. Bothe and

Dreyer were aiming at deriving physically admissible closure conditions. Here the focus

is on mathematical properties of this model. In particular, hyperbolicity of the inviscid

flux Jacobian is verified for non-resonance states. Although the eigenvalues cannot be

determined explicitly but have to be computed numerically an eigenvector basis is con-

structed depending on the eigenvalues. This basis is helpful to apply standard numerical

solvers for the discretization of the model. This is verified by numerical computations

for two- and three-component mixtures with and without phase transition and chemical

reactions.

1. Introduction. For the modeling and simulation of multi-phase flows Baer-

Nunziato (B-N) type models [3] are frequently used. These can be derived from the

ensemble averaging procedure of Drew [8]. A comprehensive introduction to these mod-

els can be found in the classical book of Drew and Passman [9]. In the literature there

are simplified two-phase models available that can be derived from the above general

model by assuming zero relaxation times; see [18]. A detailed discussion of these models

is beyond the scope of this work. For this purpose the interested reader is referred to

[23] and the references cited therein.
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Typically B-N type models consist of balance equations for each constituent and fur-

ther transport equations for their volume fractions. This ansatz leads to several problems:

(i) A key problem is the thermodynamically correct closure of the artificial quantities

such as interfacial velocity or interfacial pressure that cannot be closed from the entropy

principle of thermodynamics; cf. [21]. (ii) The exchange of mass, momentum, and en-

ergy between the constituents is modeled usually by relaxation terms. Frequently, an

equilibrium assumption is used; cf. [24]. This is a very restrictive assumption and is not

applicable for all situations of interest. (iii) The models cannot be written in divergence

form. Thus, the classical notion of a weak solution and the entropy solution cannot be

applied; cf. [6]. Moreover, the discretization of non-conservative products leads to nu-

merical difficulties; cf. [1]. (iv) The models do not conserve momentum and energy in

the non-equilibrium case, thus, violating a classical physical principle. (v) The mixture

model is conservative only when assuming velocity equilibrium.

The aforementioned disadvantages of B-N type models can be avoided by a new multi-

component model introduced by Bothe and Dreyer [4]. This model can be employed

to simulate chemically reacting flows as well as phase transitions. In particular, we

apply this model to two phases where each phase is a simple multi-component mixture.

Fluid mixtures can be modeled using different levels of details. The basic variables in

our approach are the partial densities and the partial velocities of the constituents for

each of the two phases and the temperature of the mixture. Accordingly the model

under consideration is a so-called class-II-model that consists of balance laws for partial

densities, partial momenta, and the total mixture energy. To close this system we have

to provide equations of states for partial pressures and energies and reaction rates.

In the work of Bothe and Dreyer [4] the focus is on the derivation of a class-II-

model that is thermodynamical consistent. They provide necessary and sufficient closure

conditions but do not address solvability of the model and how to solve it numerically.

The main objective of the present work is to verify that this model can be used in practice

to simulate multi-component fluid flows with chemical reactions and two-phase flows with

phase transitions.

To close the system of balance laws in a thermodynamically consistent manner Bothe

and Dreyer [4] provide criteria for the (Helmholtz) free energy that ensure thermody-

namical stability, i.e., the physical entropy is concave. Furthermore, by means of the

entropy production terms they give thermodynamical admissible closures for the reac-

tion rates. In the literature, typically no free energies are specified but calorical and

thermal equations of states can be found. For this reason, we derive free energies for

well-known equations of states, e.g., ideal gas, stiffened gas, van der Waals fluids, and

verify the aforementioned criteria ensuring thermodynamical stability. In this context it

turns out that the notions of partial pressures and densities are different from those used

in B-N type models. For instance, the partial densities in our model correspond to the

product of volume fractions and densities in the B-N type models. Thus, the equation of

state is evaluated with respect to different densities. For a non-linear equation of state,

e.g., stiffened gas, van der Waals, this leads to different pressures, energies, and temper-

ature. As a consequence, model parameters have to be carefully chosen, in particular,
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when performing comparisons between the models. Thus, not all equations of states are

applicable to model total mass transfer of a component.

Furthermore, we consider phase transition and chemical reactions in more detail by

means of special configurations. Here it turns out that the relaxation models used in

the B-N context are related to the chemical reaction terms in the Bothe-Dreyer model.

However, in our model we can choose the rate coefficient characterizing the reaction

times. This coefficient is chosen typically as infinity in the B-N model and, thus, drives

the fluid state to equilibrium restricting the range of applications. Appropriate rate

coefficients can either be determined from experiments or, if available, can be looked up

in the literature.

The available theory of conservation laws as well as numerical methods for these

type of equations relies very much on the knowledge of eigenvalues and eigenvectors

corresponding to the Jacobian of the inviscid fluxes. Therefore a key point in our work is

related to determine these quantities for our Bothe-Dreyer model. Although we cannot

explicitly compute the eigenvalues and eigenvectors except for the additional contact

waves introduced in the multi-dimensional case, we can prove that all eigenvalues are real

and a full set of linearly independent eigenvectors exists, i.e., the system is hyperbolic

provided that a non-resonance condition holds and all eigenvalues corresponding to the

acoustic waves are distinct. In particular, for a two-component mixture we can give

sufficient criteria ensuring that all eigenvalues other than those corresponding to the

additional contact discontinuities introduced in the multi-dimensional case are distinct

for a given state. Finally we are able to give an upper bound for the spectral radius.

To perform numerical simulations we discretize the Bothe-Dreyer model by an adaptive

DG solver. Since we are using an explicit time stepping, the time steps are restricted

by a CFL constraint. Depending on the fluid state and the relaxation times either the

characteristic velocities of the fluid or the chemical relaxation rates will be dominating

the CFL number. Therefore, we investigate the stiffness of the system introduced by

the chemical reactions. In particular, we determine the eigenvalues corresponding to the

ODE system of the relaxation model incorporating mass conservation.

This work is structured as follows. First we introduce in Section 2 the model specifying

the balance equations for chemically reacting fluids, the equation of states for simple

mixtures derived from Helmholtz free energies and the reaction rates. This is concluded

with a discussion on the entropy principle. Then in Section 3 we verify hyperbolicity of

the model where we investigate the eigenvalues and eigenvectors of the Jacobian of the

inviscid fluxes. In particular, we derive sufficient conditions. The stiffness of the chemical

relaxation model is investigated in Section 4. Numerical results are presented in Section

5 where we consider a two-component flow with phase transition and a three-component

flow with chemical reactions. We conclude with a summary of our findings and give an

outlook on future work.

2. Model. Hutter and Jöhnk [17] describe a hierarchy of fluid mixture models with

three different levels of detail, class-I-, class-II-, and class-III-models. The highest level of

detail is considered in class III, where for all constituents balances of mass, momentum,

and energy have to be formulated. In class II mass and momentum balances for all
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components are formulated but only one energy balance for the mixture. The basic

variables in that class are the mass densities, the velocities, and the mixture temperature.

Finally, in class I beside the mass balances only one balance of momentum and one

balance of energy are used. Here we consider a class-II-model for reacting fluid mixtures.

This is a special case of a more general model derived by Bothe and Dreyer in [4].

2.1. Balance equations for reacting fluid mixtures. We consider fluid mixtures of N

constituents A1, . . . , AN , i.e., multi-component mixtures of liquids and/or gases. Each

component i is described by its partial mass density ρi, its partial velocity vi, and the

mixture temperature T . All these quantities are functions of time t ≥ 0 and space x ∈ R
d.

The partial mass densities and the partial velocities define the total mass density ρ and

the barycentric velocity v of the mixture according to

ρ =

N∑
i=1

ρi and ρv =

N∑
i=1

ρivi .

Using the notation of Bothe and Dreyer [4] we introduce the diffusion velocities ui :=

vi − v and the corresponding diffusion mass fluxes ji := ρiui with
∑N

i=1 ji = 0. Then

the fluid mixture is described by

∂t(ρi) +∇ · (ρivi) = ri, (2.1a)

∂t(ρivi) +∇(ρivi ⊗ vi − Si) = f i + ρibi, (2.1b)

∂t(ρetot) +∇ · (ρetotv + qtot − v · S) = ρv · b+ ρπ, (2.1c)

with i = 1, . . . , N . Here ρetot denotes the total energy density of the mixture which is

related to the specific internal energies ei of the components by

ρetot =

N∑
i=1

ρi(ei +
1

2
v2
i ) = ρe+

N∑
i=1

1

2
ρiv

2
i

with ρe the thermal energy of the mixture. The stresses of a component are given by

Si = −(pi +Πi)I + S0
i =: −piI + Sirr

i (2.2)

with the identity matrix I, the partial thermodynamic (hydrodynamic) pressure pi, and

Πi the irreversible partial pressure contribution (dynamic pressure). Here S0
i is the

traceless part and Sirr
i the irreversible part of the stress Si. The mixture stress is then

given by S =
∑N

i=1(Si − ρiui ⊗ ui).

The total energy flux qtot is related to the individual heat fluxes qi via

qtot =

N∑
i=1

(qi − ui · Si + ρi(ei +
1

2
u2
i )ui) = q +

1

2

N∑
i=1

ρiu
2
iui −

N∑
i=1

ui · Sirr
i , (2.3)

where q =
∑N

i=1(qi + (ρiei + pi)ui) denotes the heat flux composed of non-convective

transport of heat and diffusive transport of species enthalpy. Further quantities are

the mass productions due to chemical reactions ri, the momentum productions f i, the

body forces bi acting on constituent Ai with the corresponding total external force ρb =∑N
i=1 ρibi and finally the power of body force due to diffusion ρπ =

∑N
i=1 ρibiui. With
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this notation conservation of total mass and total momentum are ensured by the con-

straints
N∑
i=1

ri = 0 and
N∑
i=1

f i = 0 . (2.4)

To close system (2.1) we need to provide additional information on the equation of state

and the chemical reaction rates. The remaining constitutive quantities are determined

from the entropy principle of thermodynamics.

2.2. Equation of state. First of all an equation of state (EoS) is required to relate the

partial pressures pi and the thermal energy ρe to the partial densities ρi and the mixture

temperature T . In order to derive a complete EoS; cf. [20] for a discussion on complete

and incomplete EoS, we start with the mixture entropy ρs

ρs = ρs̃(ρe, ρ1, . . . , ρN ). (2.5)

Obviously, the mixture temperature T and the chemical potentials μi are defined as

follows:
1

T
:=

∂ ρs̃

∂ ρe
> 0 and − μi

T
:=

∂ ρs̃

∂ ρi
. (2.6)

To perform the change of variables from {ρe, ρ1, . . . , ρn} to {T, ρ1, . . . , ρN} it is useful to

introduce the specific Helmholtz free energy

Ψ := e− Ts. (2.7)

Then it follows from (2.6) with Ψ = Ψ̂(T, ρ1, . . . , ρN}

ρs = −∂ ρΨ̂

∂ T
, μi =

∂ ρΨ̂

∂ ρi
, and e = −T 2 ∂

∂ T

(
Ψ̂

T

)
. (2.8)

Finally, the Gibbs-Duhem equation relates the mixture pressure p to the free energy via

p = −ρΨ+
N∑
i=1

μiρi . (2.9)

Note that this is not sufficient to close the model. In addition one needs to know consti-

tutive functions for the partial specific energies and the partial pressures or, alternatively,

for the partial pressures and q. Unfortunately, these are not given in [4, Section 15]. To

avoid this problem we confine ourselves to simple mixtures defined by

Definition 2.1 (Simple mixture). A mixture of N components is called a simple

mixture if the partial pressures and the partial specific energies are of the form

ei = ei(T, ρi) and pi = pi(T, ρi) .

For simple mixtures the partial quantities can be calculated directly from the partial

Helmholtz free energies Ψi = Ψi(T, ρi) via

si = − 1

ρi

∂ ρiΨi

∂ T
, ei = −T 2 ∂

∂ T

(
Ψi

T

)
, μi =

∂ ρiΨi

∂ ρi
, and pi = −ρiΨi + ρiμi .

(2.10)
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From these the mixture quantities are determined as

ρs =

N∑
i=1

ρisi, ρe =

N∑
i=1

ρiei, ρΨ =

N∑
i=1

ρiΨi, ρν =

N∑
i=1

ρiνi, p =

N∑
i=1

pi. (2.11)

Finally, the sound speed ai of component i is defined by the slope of the isentropes in

the pressure-density plane, i.e., pi = p̌i(ρi, si), as

a2i :=
∂ p̌i(ρi, si)

∂ ρi
=

∂ pi(ρi, T )

∂ ρi
+ T

(
ρ2i

∂ ei(ρi, T )

∂ T

)−1 (
∂ pi(ρi, T )

∂ T

)2

. (2.12)

Here we make use of the following thermodynamic identity (cf. [19]):

(
pi − ρ2i

∂ ei
∂ ρi

)
= T

∂ pi
∂ T

. (2.13)

Introducing the specific heat capacity and the isothermal speed of sound

cvi :=
∂ ei(ρi, T )

∂ T
, a2i :=

∂ pi(ρi, T )

∂ ρi
, (2.14)

then the sound speed can be written as

a2i = a2i +
T

ρ2i cvi

(
∂ pi
∂ T

)2

. (2.15)

To ensure finite speeds of propagation, the sound speed ai and ai have to be real numbers,

i.e.,

a2i ≥ 0 and a2i ≥ 0. (2.16)

Since this condition guarantees hyperbolicity of a single fluid system, we refer to it as the

hyperbolicity condition. As will be proven in Theorem 3.3 below it is also a necessary

condition for the multi-component system. Note that a2i ≥ a2i because of the positivity

of the temperature (2.6) provided that cvi > 0. The latter is a necessary condition to

ensure the second law of thermodynamics; see Theorem 2.7 below.

For examples of simple mixtures we now consider mixtures of stiffened gases and

van der Waals fluids, respectively.

2.2.1. Mixture of stiffened gases. Let the constant material parameters cvi, γi πi and

qi denoting the specific heat capacity at constant volume, the adiabatic exponent, the

minimal pressure and the heat of formation of component i, respectively, chosen such
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that cvi > 0, πi ≥ 0, qi and γi > 1. Let further ρi0 be some reference density at reference

temperature T0. Then by

Ψi(T, ρi) = −cviT ln
T

T0
+ qi

(
1− T

T0

)
+

πi

ρi
+ (γi − 1)cviT ln

ρi
ρi0

+
πi

ρi

T

T0

the stiffened gas equation of state for component i is specified. From (2.10), (2.12), and

(2.14) we conclude

ei = cviT + πi/ρi + qi , (2.17a)

μi = −cviT ln
T

T0
+ qi

(
1− T

T0

)
+ (γi − 1)cviT ln

ρi
ρi0

+ (γi − 1)cviT − πi

ρi0

T

T0
, (2.17b)

pi = ρi(γi − 1)civT − πi , (2.17c)

si = cvi + cci ln
T

T0
+ qi

1

T0
− (γi − 1)cvi ln

ρi
ρi0

− πi

ρi0

1

T0
, (2.17d)

a2i = cviT (γi − 1)γi = γia
2
i . (2.17e)

For the mixture temperature we then deduce from (2.7) and (2.11)

T =
ρe− π − ρq

ρcv
(2.18)

with

ρq :=

N∑
i=1

ρiqi, π :=

N∑
i=1

πi, and ρcv :=

N∑
i=1

ρicvi . (2.19)

Obviously, the mixture temperature may become negative depending on the state of the

internal energy. According to (2.6)a these states are not physically admissible.

Remark 2.2. For πi = 0 and qi = 0 the stiffened gas equation of state reduces to the

ideal gas equation.

Remark 2.3. The hyperbolicity condition (2.16) reads

a2i = a2i /γi > a2i = (γi − 1)cviT ≥ 0. (2.20)

This condition holds because of the constraints on the material parameters cvi and γi
and the positivity of the temperature (2.6).

2.2.2. Mixtures of van der Waals fluids. Let the constant material parameters cvi, γi,

Mi, b1i, and b2i denoting the specific heat capacity at constant volume, the adiabatic

exponent and the molar mass of component i, the cohesion pressure and the covolume of

component i, respectively, be chosen such that cvi > 0, b1i, b2i ≥ 0, Mi > 0, and γi > 1.
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Let further ρi0 be some reference density at reference temperature T0. Then

Ψi(T, ρi) = −cviT ln
T

T0
− b1iρi

M2
i

+
b1iρi0
M2

i

T

T0
+(γi−1)cviT ln

ρi
ρi0

−(γi−1)cviT ln
Mi − b2iρi
Mi − b2iρi0

defines the van der Waals equation of state for component i. From (2.10), (2.12), and

(2.14) we conclude

ei = cviT − b1iρi
M2

i

, (2.21a)

μi = −cviT ln
T

T0
− 2

b1iρi
M2

i

+
b1iρi0
M2

i

T

T0
+ (γi − 1)cviT ln

ρi
ρi0

+ (γi − 1)cviT
Mi

Mi − b2iρi
(2.21b)

− (γi − 1)cviT ln
Mi − b2iρi
Mi − b2iρi0

,

pi = −b1iρ
2
i

M2
i

+ ρi(γi − 1)cviT
Mi

Mi − b2iρi
, (2.21c)

si = cvi + cvi ln
T

T0
− b1iρi0

M2
i

1

T0
− (γi − 1)cvi ln

ρi
ρi0

+ (γi − 1)cvi ln
Mi − b2iρi
Mi − b2iρi0

,

(2.21d)

a2i = −2
b1iρi
M2

i

+ cviT (γi − 1)
M2

i γi
(Mi − b2iρi)2

= a2i + cviT
M2

i (γi − 1)2

(Mi − b2iρi)2
. (2.21e)

For the mixture temperature we then deduce from (2.7) and (2.11)

T =

(
ρe+

N∑
i=1

b1iρ
2
i

M2
i

)
/(ρcv) (2.22)

with ρcv defined in (2.19)c.

Remark 2.4. For b1i = 0 and b2i = 0 the van der Waals equation of state reduces to

the ideal gas equation.

Remark 2.5. The hyperbolicity condition (2.16) reads

a2i = a2i + cviT
M2

i (γi − 1)2

(Mi − b2iρi)2
> ai = −2

b1iρi
M2

i

+ cviT (γi − 1)
M2

i

(Mi − b2iρi)2
≥ 0. (2.23)

Remark 2.6. In the literature typically one will find formulae for ei and pi. To

check whether these correspond to a thermodynamically consistent EoS one has to find

a Helmholtz free energy Ψi such that the relations (2.10)a and (2.10)c hold true. By

the following procedure it can be checked whether a pair of given EoS for ei and pi is

thermodynamically consistent:

Step 1: Determine partial Helmholtz free energy Ψi by integration of (2.10)a, i.e.,

Ψi(ρi, T )

T
:= c(ρi, T0)−

∫ T

T0

ei(ρi, T )

T 2
dT . (2.24)

Step 2: Determine the integration constant c(ρi, T0) by plugging (2.24) into (2.10)c
and integrating the resulting ODE

∂ c(ρi, T0)

∂ ρi
=

pi(ρi, T0)

ρ2iT
+

∫ T

T0

1

T 2

∂ ei(ρi, T )

∂ ρi
, c(ρi0, T0) = c0 . (2.25)
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Step 3: Check whether the Helmholtz free energy Ψi satisfies (2.10)c for the given

pressure pi. In case of a stiffened gas EoS and a simple van der Waals EoS the above

procedure verifies thermodynamical consistency.

2.2.3. Material parameters. Later on in Sections 4 and 5 we will investigate phase

transition for water vapor and liquid water as well as a chemical reaction of hydrogen

and oxygen. For all computations we will consider mixtures of stiffened gases using the

parameters summarized in Table 1.

Table 1. Parameters for water, oxygen, and hydrogen

γ cv [J/kg/K] q [J/kg] π [Pa] ρ0 [kg/m3] T0 [K] M [kg]

vapor 1.43 1040 2.03 · 106 0 0.9 293 0.01802

liquid 2.35 1816 −1.167 · 106 109 999 293 0.01802

oxygen 1.4 920 0 0 1.429 293 0.032

hydrogen 1.4 14304 0 0 0.09 293 0.00202

2.3. Reaction rates. In the model we consider NR chemical reactions between the

constituents Ai according to

αa
1A1 + . . .+ αa

NAN � βa
1A1 + . . .+ βa

NAN a = 1, . . . , NR (2.26)

with stoichiometric coefficients αa
i , β

a
i ∈ N0 and νai := βa

i − αa
i . The mass productions

are of the form

ri =

NR∑
a=1

Miν
a
i Ra (2.27)

with the molar mass Mi and Ra the rate of reaction a which is the difference of the rate

of the forward and the backward path, Ra = Rf
a−Rb

a. Due to mass conservation in every

single reaction it must hold that
∑N

i=1 Miν
a
i = 0 for all a.

According to Bothe and Dreyer [4] the reaction rates of the forward and the backward

path satisfy the relation

Rf
a

Rb
a

= exp

(
− 1

RT

N∑
i=1

νai Miμi

)
(2.28)

with Rf
a , R

b
a > 0. From this we determine for the difference of the forward and the

backward path

Ra = Rf
a

(
1− exp

(
1

RT

N∑
i=1

νai Miμi

))
. (2.29)

Usually the rates are not constant but depend on the state. For more details on this we

refer to [4], [10], [12]. Note that only one of the rates Rf
a and Rb

a can be modeled, while

the other one has to be determined by (2.28). For an example see [11].
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2.4. Entropy principle. To derive thermodynamically consistent closure conditions for

f i, S
0
i , Πi, and

∑N
i=1 qi, we first derive a balance law for the thermal energy. For this

purpose we substitute the partial balances of the mass densities (2.1a) and the momentum

(2.1b) and the definition of the mixture quantities in the balance of total energy (2.1c)

to obtain

∂t(ρe)+∇·(ρev+q) =

N∑
i=1

Sirr
i : ∇vi−p∇·v−

N∑
i=1

ui ·(f i−rivi+
1

2
riui−∇pi) . (2.30)

According to Bothe and Dreyer [4] the interaction force

f i − rivi = fM
i + fC

i − rivi (2.31)

is split into a mechanical part

fM
i = −T

N∑
j=1

fijρiρj(vi − vj) with (2.32a)

fij = fij(T, ρi, ρj) ≥ 0, fij = fji, i �= j (2.32b)

and a chemical part

fC
i − rivi = −

N∑
j=1

Cij(vi − vj) with (2.33a)

Cij =

NR∑
a=1

MiMj∑N
k=1 α

a
kMk

(Rf
aβ

a
i α

a
j +Rb

aα
a
i β

a
j ). (2.33b)

We emphasize that (2.32) differs from [4] due to the assumption of a simple mixture.

It remains to verify that this approach is in agreement with the second law of ther-

modynamics. For this purpose we derive from the equation of state (2.5) the entropy

balance

∂t(ρs) +∇ · (ρsv +Φ) = ζ, (2.34)

where we employ the evolution equations for the partial densities (2.1a) and the thermal

energy (2.30). Here the entropy flux Φ is given by

Φ :=
1

T

(
q −

N∑
i=1

ρiμiui

)
. (2.35)

According to Bothe and Dreyer [4] the entropy production ζ is composed of the following

additive contributions:

ζ := ζheat + ζdif,nonreact + ζdif,react + ζchem + ζvisc (2.36)
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corresponding to heat flux, diffusion flux with respect to non-reacting and reacting mix-

tures, chemical reaction kinetics and viscosity, respectively. These are

ζheat :=

N∑
i=1

qi · ∇
1

T
, (2.37a)

ζdif,nonreact := − 1

T

N∑
i=1

ui · fM
i , (2.37b)

ζdif,react := −
N∑
i=1

ui ·
1

T

(
fC
i − rivi +

1

2
riui

)
, (2.37c)

ζchem := − 1

T

NR∑
a=1

RaAa = − 1

T

N∑
i=1

riμi, (2.37d)

ζvisc :=
1

T

N∑
i=1

Sirr
i : Di, Di :=

1

2

(
∇vi +∇vT

i

)
. (2.37e)

Note that the body forces do not cause a production of energy. To ensure non-negativity

of the entropy production terms (2.37) we have to make some assumptions. The following

ansatz:
N∑
i=1

qi = κ∇ 1

T
with κ = κ(T, ρ1, . . . , ρN ) ≥ 0 (2.38)

guarantees

ζheat = α∇ 1

T
· ∇ 1

T
≥ 0 . (2.39)

Using the closure condition (2.32) we deduce

ζdif,nonreact =
1

2

N∑
i,j=1

fijρiρj(vi − vj)
2 ≥ 0 . (2.40)

Further, employing the definition of the coefficients Cij defined by (2.33b) the entropy

production corresponding to the diffusion flux with respect to reacting mixtures can be

rewritten as

ζdif,react =

NR∑
a=1

(
ζa,fdif + ζa,bdif

)
(2.41)

with

ζa,fdif :=
Rf

a

T

⎛
⎝ N∑

i=1

Mi

2
(αa

i + βa
i )u

2
i −

N∑
i,j=1

MiMj∑N
k=1 α

a
kMk

βa
i α

a
juiuj

⎞
⎠ , (2.42a)

ζa,bdif :=
Rb

a

T

⎛
⎝ N∑

i=1

Mi

2
(αa

i + βa
i )u

2
i −

N∑
i,j=1

MiMj∑N
k=1 α

a
kMk

αa
i β

a
j uiuj

⎞
⎠ . (2.42b)

By means of the Cauchy-Schwarz inequality and positivity of the temperature (2.6) it

follows

ζa,fdif ≥ 0, ζa,bdif ≥ 0 . (2.43)
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Moreover, from the closure condition (2.28) and monotonicity of the logarithm we deduce

ζchem = R

NR∑
a=1

(Rf
a −Rb

a)(ln(R
f
a)− ln(Rb

a)) ≥ 0. (2.44)

Furthermore, using the closure conditions

S0
i =

N∑
j=1

2ηijD
0
j , Πi = −

N∑
j=1

λij∇ · vj with (2.45a)

η = (ηij)i,j=1,...d (shear viscosity), (2.45b)

λ = (λij)i,j=1,...d (bulk viscosity) positive semi-definite (2.45c)

we conclude that the entropy production due to viscosity is non-negative, i.e.,

ζvisc =
1

T

N∑
i=1

(S0
i−ΠiI) : (D

0
i+

1

d
(∇·vi)I) =

1

T

N∑
i=1

S0
i : D0

i−
1

T

N∑
i=1

Πi∇·vi ≥ 0. (2.46)

Here D0
i denotes the traceless part of Di.

Finally, we verify that the entropy is a strictly concave function. Since the temperature

introduced in (2.6) is positive, i.e., ρs̃ is strongly monotone in ρe, we can perform a

variable transformation exchanging ρe and T , i.e.,

ρe = ρê(T, ρ1, . . . , ρN ). (2.47)

Plugging this into the definition of the Helmholtz free energy (2.7) we obtain

ρΨ̂(T, ρ1, . . . , ρN ) = ρê(T, ρ1, . . . , ρN )− Tρs̃(ρê(T, ρ1, . . . , ρN ), ρ1, . . . , ρN ). (2.48)

From this we derive

∂ ρΨ̂

∂ T
= −ρs̃,

∂ ρΨ̂

∂ ρi
= μi, e = −T 2 ∂

∂ T

(
Ψ̂

T

)
. (2.49)

Then Bothe and Dreyer give a criterion for the entropy that can easily be checked.

Theorem 2.7 (Bothe-Dreyer [4]). The entropy ρs̃ is a strictly concave function and −ρs̃

is a strictly convex function in (ρe, ρ1, . . . , ρN ), respectively, if and only if

cv :=
∂ ê

∂ T
> 0 and

(
∂ μ̂i

∂ ρj

)
i,j=1,...N

is positive definite . (2.50)

Remark 2.8. In case of a stiffened gas the thermodynamic stability condition (2.50)

reads

∂ êi
∂ T

= cvi > 0,
∂ μ̂i

∂ ρi
= (γi − 1)cviT

1

ρi
=

a2i
ρi

> 0. (2.51)
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For a van der Waals fluid the thermodynamic stability condition (2.50) becomes

∂ ei
∂ T

= cvi > 0,
∂ μi

∂ ρi
= (γi − 1)cviT

M2
i

ρi(Mi − b2iρi)2
− 2

b1i
M2

i

=
a2i
ρi

> 0. (2.52)

Obviously, if the hyperbolicity condition (2.16) holds strictly, i.e., a2i > 0, then it implies

thermodynamical consistency provided the specific heat capacity at constant volume is

positive.

Note that in general for B-N type models the entropy is not a strict convex function;

cf. [21].

3. Hyperbolicity. Neglecting viscosity and heat conduction as well as relaxation

processes and external forces in the fluid equations (2.1) the model reduces to a first

order system describing transport effects only. In the following we investigate for which

states the inviscid system is hyperbolic, i.e., all eigenvalues of the Jacobian of the inviscid

flux in any direction are real and there exists a basis of right (left) eigenvectors that spans

the state space. Then all wave speeds are finite and the system may be locally decou-

pled. From a mathematical point of view, this property is helpful in the construction of

numerical fluxes, in particular, Riemann solvers, reconstruction polynomials and limiters

based on characteristic decomposition. Therefore we need to determine the eigenvalues

and eigenvectors as well as the corresponding characteristic fields.

3.1. Primitive variables. To determine the eigenvalues and eigenvectors it is conve-

nient to consider the system of equations for the primitive variables: mass densities,

velocities and temperature. For this purpose we first derive from the balances of momen-

tum and mass densities (2.1b) and (2.1a), respectively, the balances of partial velocities

∂tvi + (vi · ∇)vi − ρ−1
i ∇ · Si = ρ−1

i (i − rivi) + bi . (3.1)

Furthermore, we rewrite the balance of total energy (2.1c) in terms of the mixture tem-

perature and obtain

∂tT +
N∑
i=1

(
∂ ρe

∂ T

)−1(
hi − ρi

∂ ρe

∂ ρi

)
∇ · vi +

N∑
i=1

(
∂ ρe

∂ T

)−1
∂ ei
∂ T

ρivi · ∇T = 0 . (3.2)

This balance law can be derived computing the time derivative of the relation (2.47) and

then employing the balance laws for the mass densities (2.1a) and the thermal energy

(2.1c) for a non-reacting and inviscid mixture. The balance equations of partial densities

(2.1a), partial velocities (3.1) and (3.2) form a quasi-conservative system

∂tw +

d∑
k=1

Bk(w)∂xk
w = 0 (3.3)
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for the primitive variables w := ((ρ1,v
T
1 ), . . . , (ρN ,vT

N ), T )T with Bk being block matri-

ces

Bk =

⎛
⎜⎜⎜⎝
B1,k b1,k

. . .
...

BN,k bN,k

cT1,k . . . cTN,k ck

⎞
⎟⎟⎟⎠

with

Bi,k =

(
vik ρie

T
k

∂ρi
pi

ρi
ek vikI

)
, bi,k =

(
0

∂T pi

ρi
ek

)
, ci,k =

(
0

T∂T pi

ρcv
ek

)
, ck =

N∑
i=1

ρi∂T ei
ρcv

vik.

Here ek and I denote the k-th unit vector in R
d and the unit matrix in R

d, respectively.

To verify hyperbolicity we have to check that for any direction n ∈ R
d, |n| = 1, the

projected matrix

Bn =
d∑

k=1

Bknk (3.4)

has real eigenvalues and the corresponding eigenvectors form a basis for R
2N+1. In-

troducing the normal velocity vin =
∑d

k=1 viknk and the orthogonal block diagonal

matrix Rn = diag(Q1, . . . ,Qn, 1), with Qn = diag(1,On) and orthogonal matrix On =

(n, t1, . . . , td−1) we can rewrite Bn as

B̃n := RT
nBnRn =

⎛
⎜⎜⎜⎝
B̃1,n b̃1,n

. . .
...

B̃N,n b̃N,n

c̃T1,n . . . c̃TN,n cn

⎞
⎟⎟⎟⎠ (3.5)

with entries

B̃i,n =

(
vin ρie

T
1

∂ρi
pi

ρi
e1 vinI

)
, b̃i,n =

(
0

∂T pi

ρi
e1

)
, c̃i,n =

(
0

T∂T pi

ρcv
e1

)
, cn =

N∑
i=1

ρi∂T ei
ρcv

vin.

(3.6)

3.2. Existence of real eigenvalues. A straightforward calculation gives

det(B̃n − λI) = det(RT
nBnRn − λI) = (ρcv)

−1
N∏
i=1

(vin − λ)d−1pN (λ) (3.7)

with the polynomial pN of degree 2N + 1 defined as

pN (λ) =

N∑
i=1

ρicvi(vin − λ)((vin − λ)2 − a2i )

N∏
j=1,j �=i

((vjn − λ)2 − a2j ), (3.8)

where the partial sound speed ai and a2i are defined by (2.12) and (2.14), respectively.

Obviously, there are N eigenvalues λ = vin, i = 1, . . . , N , with multiplicity d − 1. The

other 2N + 1 eigenvalues are determined by the roots of the polynomial pN . In slight

abuse of notion we call pN the characteristic polynomial that is only correct in the one-

dimensional case.
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Remark 3.1. In case of a single-component fluid, i.e., N = 1, the roots of pN are

given by

λ = vin, λi,± = vin ± ai, i = 1. (3.9)

These coincide with the well-known eigenvalues of the Euler equations.

Remark 3.2. In case of a mixture of stiffened gases the sound speed ai tends to ai
for T → 0 and γi → 1. In the limit the roots of pN are given by

λi =

N∑
i=1

ρicvi
ρcv

vin, λi,± = vin ± ai. (3.10)

In general, it is hard, if not impossible, to determine explicitly all roots of the charac-

teristic polynomial pN , and thus, it is not obvious that all eigenvalues are real. However,

this follows directly if the matrix Bn can be symmetrized using similarity transforma-

tions.

Theorem 3.3 (Existence of real eigenvalues). Let ρi, ρcv, ∂T pi �= 0 (non-isothermal). If

the state satisfies the condition

ρi
T

ρcv
> 0, ∂ρi

pi
T

ρcv
≡ a2i

T

ρcv
> 0, i = 1, . . . , N, (3.11)

then all eigenvalues of B̃n are real.

Proof. The basic idea is to symmetrize B̃ using a similarity transformation. For this

purpose, we multiply B̃n by the block diagonal matrix D := diag(D1, . . . ,DN , 1) with

Di := diag(αi,1+(βi−1)e1) and its inverse D−1 from the left and the right, respectively.

Here we assume that the parameters αi and βi are non-zero. This results in the matrix

B̌n := DB̃nD
−1 =

⎛
⎜⎜⎜⎝
D1B̃1,nD

−1
1 D1b̃1,n

. . .
...

DNB̃N,nD
−1
N DN b̃N,n

c̃T1,nD
−1
1 . . . c̃TN,nD

−1
N cn

⎞
⎟⎟⎟⎠ . (3.12)

Obviously, this matrix is symmetric if

DiB̃i,nD
−1
i = (DiB̃i,nD

−1
i )T , c̃i,nD

−1
i = Dib̃i,n, i = 1, . . . , N,

or, equivalently,

α2
i ρ

2
i = β2

i ∂ρi
pi, β−1

i

T∂T pi
ρcv

= βi
∂T pi
ρi

, i = 1, . . . , N.

According to the assumptions (3.11) there exist non-vanishing real parameters αi and

βi. Since a symmetric matrix has only real eigenvalues and these are invariant under the

similarity transformation (3.12) the assertion follows. �
Remark 3.4. Obviously, the symmetrization condition (3.11) holds because of the

positivity of the temperature (2.6), the hyperbolicity condition (2.16), and the stability

condition (2.50). In particular, in case of a stiffened gas the symmetrization condition

(3.11) reads

α2
i =

T

ρcv

cvi(γi − 1)T

ρi
> 0, β2

i =
ρiT

ρcv
> 0. (3.13)
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For a van der Waals fluid the symmetrization condition (3.11) becomes

α2
i =

T

ρcv

(
RiT

1/ρi − bi

1

ρ2i
− 2ρiai

)
> 0, β2

i =
ρiT

ρcv
> 0. (3.14)

3.3. Eigenvectors. Since now we know that all roots of the characteristic polynomial

(3.7) are real, we determine the corresponding left and right eigenvectors. The following

result is obvious and is given only for sake of completeness.

Proposition 1. There exist (d − 1)-multiple eigenvalues λi,0 = vin, i = 1, . . . , N with

corresponding left and right eigenvectors lki,0 and rki,0 determined by

lki,0 = rki,0 = (0, . . . ,0︸ ︷︷ ︸
i−1

, (0, tTk ),0, . . . ,0︸ ︷︷ ︸
N−i

, 0)T , k = 1, . . . , d− 1. (3.15)

In particular,

∇wλi,0 · rki,0 = 0, (3.16)

i.e., the corresponding characteristic fields are linearly degenerated.

The eigenvectors determined in Proposition 1 correspond to the multi-dimensional

case. The remaining eigenvectors can be determined from the one-dimensional case. For

this reason we introduce the matrix B̃
(1)

i,n and the vectors b̃
(1)

i,n and c̃
(1)
i,n which are the

one-dimensional counterparts to B̃i,n, b̃i,n and c̃i,n defined in (3.6). In particular,

B̃i,n =

(
B̃

(1)

i,n 0T
d−1

0d−1 vinId−1

)
, b̃i,n =

(
b̃
(1)

i,n

0d−1

)
, c̃i,n =

(
c̃
(1)
i,n

0d−1

)
. (3.17)

To determine the remaining eigenvectors we verify two lemmata. First of all, we de-

termine the eigenvalues and eigenvectors of the matrix B̃
(1)

i,n that are subject to the

non-resonance condition.

Definition 3.5. Let λ ∈ R. Then λ is considered to be in non-resonance if

σn
k (λ) := (δnk (λ))

2 − a2k �= 0 ∀ k = 1, . . . , N (3.18)

with δnk (λ) := vkn − λ.

Lemma 3.6. The eigenvalues and corresponding eigenvectors of the matrices B̃
(1)

k,n are

determined by

λk
± = vkn ± ak, (3.19)

rk
± = (±ρk/ak, 1)

T . (3.20)

If the non-resonance condition (3.18) holds, i.e., λ is not an eigenvalue of B̃
(1)

k,n, then the

inverse B̃
(1)

k,n − λI exists and is given by

(B̃
(1)

k,n − λI)−1 =
1

σn
k (λ)

(
δnk (λ) −ρk
−a2k/ρk δnk (λ)

)
. (3.21)

The non-resonance condition essentially indicates that the eigenvalues of the matrices

B̃
(1)

k,n, k = 1, . . . , N are no roots of the characteristic polynomial pN defined by (3.8).

Because of Remark 3.2 this may happen for a mixture of stiffened gases if ak = ak. The
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latter only holds true for isothermal fluids, i.e., pk = pk(ρk), that are of no interest here;

cf. equation (2.15).

Furthermore, we need the following identity.

Lemma 3.7. Let λ ∈ R be such that the non-resonance condition (3.18) holds. Then the

following relation is true:

cn − λ−
N∑

k=1

(c̃
(1)
k,n)

T (B̃
(1)

k,n − λI2)
−1b̃

(1)

k,n =
pN (λ)

κ0(λ)ρcv
(3.22)

with

κ0(λ) :=

N∏
k=1

σn
k (λ) �= 0. (3.23)

Proof. First of all, the non-resonance condition (3.18) implies σn
k (λ) �= 0 and, thus,

κ0 �= 0. Then by definition of b̃
(1)

k,n and c̃
(1)
k,n, see equations (3.6) and (3.17), as well as

Lemma 3.6 and the inverse (3.21) and using (2.11) it follows

(c̃
(1)
k,n)

T (B̃
(1)

k,n − λI2)
−1b̃

(1)

k,n = (ρcv)
−1T (∂T pk)

2

ρk

δnk (λ)

σn
k (λ)

= (ρcv)
−1ρkcvk(a

2
k − a2k)

δnk (λ)

σn
k (λ)

.

(3.24)

Finally, the assertion follows by definition of cn and the polynomial pN ; see equations

(3.6) and (3.8), respectively. �
Now we can determine the right eigenvectors to the roots of the polynomial pN .

Proposition 2. Let λ ∈ R be one of the existing 2N + 1 roots of the characteristic

polynomial (3.8), i.e., pN (λ) = 0, and let the non-resonance condition (3.18) hold true.

Then the corresponding right eigenvector is determined by

rTλ =
(
rTλ,1, . . . , r

T
λ,N , 1

)
(3.25)

with

rTλ,k =
1

σn
k (λ)ρk

∂T pk(ρk,−δnk (λ)n
T )T . (3.26)

Proof. First of all, we determine the right eigenvectors to the matrix B̃n where we

consider the following splitting in sub-vectors:

r̃Tλ =
(
r̃Tλ,1, . . . , r̃

T
λ,N , rλ

)
with r̃λ,k =

(
r̃
(1)
λ,k

0d−1

)
∈ R

d+1, rλ ∈ R. (3.27)

For the right eigenvalues it must hold that (B̃n − λI)r̃λ = 0. Using (3.5), (3.17), and

(3.27) this is equivalent to

(B̃
(1)

k,n − λI2)r̃
(1)
λ,k + b̃

(1)

k,nrλ = 0, k = 1, . . . , N, (3.28a)

N∑
k=1

(c̃
(1)
k,n)

T r̃
(1)
λ,k + (cn − λ)rλ = 0. (3.28b)
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Because of the non-resonance condition λ is not an eigenvalue of the matrices B̃
(1)

k,n.

Thus, we can make the following ansatz for the vectors r̃
(1)
λ,k:

r̃
(1)
λ,k = −(B̃

(1)

k,n − λI2)
−1b̃

(1)

k,nrλ. (3.29)

We now plug (3.29) into (3.28b) to determine rλ as(
cn − λ−

N∑
k=1

(c̃
(1)
k,n)

T (B̃
(1)

k,n − λI2)
−1b̃

(1)

k,n

)
rλ = 0. (3.30)

According to Lemma 3.7 the factor on the left-hand side of (3.30) can be written as

cn − λ−
N∑

k=1

(c̃
(1)
k,n)

T (B̃
(1)

k,n − λI2)
−1b̃

(1)

k,n =
pN (λ)

κ0(λ)ρcv
. (3.31)

Note that κ0(λ) �= 0 because of the non-resonance condition. Since by assumption

pN (λ) = 0, we are free to choose a non-vanishing value rλ �= 0. We now may simplify

(3.29). By definition (3.17) of b̃
(1)

k,n as the one-dimensional counterpart of b̃k,n defined by

(3.6) as well as Lemma 3.6 and the inverse (3.21) we obtain

r̃
(1)
λ,k = rλ

1

σn
k (λ)ρk

∂T pk(ρk,−δnk (λ))
T . (3.32)

Finally, the right eigenvector to Bn can be determined by multiplication with the matrix

Rn from the left

rT
λ := (Rnr̃λ)

T =
(
rTλ,1, . . . , r

T
λ,N , rλ

)
(3.33)

with

rTλ,k := Qnr̃
T
λ,k = rλ

1

σn
k (λ)ρk

∂T pk(ρk,−δnk (λ)n
T )T . (3.34)

From this the assertion follows with rλ = 1. �
Similarly, the corresponding left eigenvectors can be determined.

Proposition 3. Let λ ∈ R be one of the existing 2N + 1 roots of the characteristic

polynomial (3.8), i.e., pN (λ) = 0, and let the non-resonance condition (3.18) hold true.

Then the corresponding left eigenvector is determined by

lTλ =
(
lTλ,1, . . . , l

T
λ,N , 1

)
(3.35)

with

lTλ,k = lλ
∂T pk

ρcv σn
k (λ)

T (a2k/ρk,−δnk (λ)n
T )T . (3.36)

Choosing the scaling factor

l−1
λ = 1 +

N∑
k=1

ρkcvk
ρcv

1

(σn
k (λ))

2
(a2k − a2k)(a

2
k + (δnk (λ))

2) > 0, (3.37)

then lTλ,krλ,k = 1, where rλ,k is the corresponding right eigenvector.
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Proof. Again, we first determine the left eigenvectors to the matrix B̃n where we

consider the following splitting in sub-vectors:

l̃
T

λ =
(
l̃
T

λ,1, . . . , l̃
T

λ,N , lλ

)
with l̃λ,k =

(
l̃
(1)

λ,k

0d−1

)
∈ R

d+1, lλ ∈ R. (3.38)

For the left eigenvalues it must hold that l̃
T

λ (B̃n − λI) = 0T or, equivalently,

(B̃n − λI)T l̃λ = 0. Using (3.5), (3.17), and (3.38) this is equivalent to

(B̃
(1)

k,n − λI2)
T l̃

(1)

λ,k + c̃
(1)
k,nlλ = 0, k = 1, . . . , N, (3.39a)

N∑
k=1

(b̃
(1)

k,n)
T l̃

(1)

λ,k + (cn − λ)lλ = 0. (3.39b)

Because of the non-resonance condition λ is not an eigenvalue of the matrices B̃k,n and,

thus, we can make the following ansatz for the vectors l̃λ,k:

l̃
(1)

λ,k = −(B̃
(1)

k,n − λI2)
−T c̃

(1)
k,nlλ. (3.40)

Then we plug (3.40) into (3.39b) to determine lλ as(
cn − λ−

N∑
k=1

b̃
T

k,n(B̃k,n − λI)−T c̃k,n

)
lλ = 0. (3.41)

According to Lemma 3.7 the factor on the left-hand side of (3.30) can be written as

cn − λ−
N∑

k=1

(b̃
(1)

k,n)
T (B̃

(1)

k,n − λI2)
−T c̃

(1)
k,n

= cn − λ−
N∑

k=1

(c̃
(1)
k,n)

T (B̃
(1)

k,n − λI2)
−1b̃

(1)

k,n

=
pK(λ)

κ0(λ)ρcv
.

(3.42)

Note that κ0(λ) �= 0 because of the non-resonance condition. Since by assumption

pN (λ) = 0, we are free to choose a non-vanishing value lλ �= 0. By definition (3.17) of

c̃
(1)
k,n as the one-dimensional counterpart of c̃k,n defined by (3.6) as well as Lemma 3.6

and the inverse (3.21) we obtain

l̃
(1)

λ,k = lλ
T∂T pk
σn
k (λ)

(a2k/ρk,−δnk (λ),0d−1)
T . (3.43)

From the orthogonality condition lTλ,krλ,k = 1 and (3.32) we conclude (3.37). In par-

ticular, we make use of the identity (2.13). Finally, the left eigenvector to Bn can be

determined by multiplication with the matrix RT
n from the left:

lTλ := (Rn l̃λ)
T =

(
lTλ,1, . . . , l

T
λ,N , lλ

)
(3.44)

with

lTλ,k := (Qn l̃λ,k)
T = lλ

T∂T pk
ρcv σn

k (λ)
(a2k/ρk,−δnk (λ)n

T )T . (3.45)

From this the assertion follows. �
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3.4. Existence of an eigenvector basis. It remains to verify that the eigenvectors are

linearly independent. Since the eigenvectors rλ and lλ in (3.25) and (3.35), respectively,

depend on the eigenvalues, this can only hold true when the roots of the polynomial pN
are simple and are at non-resonance. Then we can prove the following result.

Theorem 3.8 (Existence of an eigenvector basis). Let there be 2N + 1 simple roots λi,

i = 1, . . . , 2N + 1, of the characteristic polynomial (3.8) satisfying the non-resonance

condition (3.18). Then the corresponding left eigenvectors lλi
, i = 1, . . . , 2N + 1, and

lki,0, i = 1, . . . , N , k = 1, . . . , d − 1, given by (3.35) and (3.15), respectively, and right

eigenvectors rλi
, i = 1, . . . , 2N + 1, and rki,0, i = 1, . . . , N , k = 1, . . . , d − 1 given by

(3.25) and (3.15), respectively, are orthogonal to each other.

Proof. First of all, we rewrite the left and right eigenvectors in block matrices L and

R with rows and columns containing the left and right eigenvectors, respectively:

L =

⎛
⎜⎜⎜⎝
L1 . . . LN l

Ld
1

. . .

Ld
N

⎞
⎟⎟⎟⎠ , R =

⎛
⎜⎜⎜⎝

R1 Rd
1

...
. . .

RN Rd
N

rT

⎞
⎟⎟⎟⎠ (3.46)

with block matrices Rk
(3.25)
= (rλ1,k

, . . . , rλ2N+1,k
) ∈ R

(d+1)×(2N+1), Rd
k ∈ R

(d+1)×(d−1),

r ∈ R
2N+1 as well as LT

k

(3.35)
= (lλ1,k, . . . , lλ2N+1,k) Ld

k ∈ R
(d−1)×(d+1), l ∈ R

2N+1 for

k = 1 . . . , N . In particular, we obtain by Propositions 1, 2, and 3

Rk
(3.25)
= ∂T pk

⎛
⎝ 1

σn
k (λ1)

. . . 1
σn
k (λ2N+1)

−δnk (λ1)
(σn

k (λ1)ρk)
n . . .

−δnk (λ2N+1)
(σn

k (λ2N+1)ρk)
n

⎞
⎠ ,

Rd
k

(3.15)
=

(
0 . . . 0

t1 . . . td−1

)
,

r
(3.25)
= 12N+1,

LT
k

(3.35)
=

T∂T pk
ρcv

⎛
⎝ lλ1

a2
k

σn
k (λ1)ρk

. . . lλ2K+1

a2
k

σn
k (λ2K+1)ρk

lλ1

−δnk (λ1)
σn
k (λ1)

n . . . lλ2N+1

−δnk (λ2N+1)
σn
k (λ2N+1)

n

⎞
⎠ ,

Ld
k

(3.15)
= (Rd

k)
T , lT

(3.37)
=

⎛
⎜⎝

lλ1

...

lλ2N+1

⎞
⎟⎠ .

For k = 1, . . . , N the vectors rki,0, i = 1, . . . , d − 1, are d − 1 linearly independent

right eigenvectors to the (d − 1)-multiple eigenvalue vkn of the matrix Bn. Since by

assumption all roots λi, i = 1, . . . , 2N+1, of the characteristic polynomial pN defined by

(3.8) are distinct, then the vectors rλi
are linearly independent right eigenvectors of the

matrix Bn. Note that these eigenvectors coincide for multiple roots. Furthermore, the

eigenvectors rki,0 and rλi
are linearly independent as can be directly concluded from the

matrices Rk and Rd
k. Thus, the vectors r

k
i,0 and rλi

form a right eigenvector basis to the
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matrix Bn, i.e., the matrix R is invertible. Then the matrix L must coincide with the

inverse R−1 except for a scaling of the rows, i.e., L = SR with S = diag(sλ, s1, . . . , sN ),

sλ = (sλ1
, . . . , sλ2N+1

), si = (si1,0, . . . , s
i
d−1,0). The scaling factors are determined by the

orthogonality conditions sλi
:= rλi

· lλi
and ski,0 := rki,0 · lki,0. By definition of the left

and right eigenvectors it can be verified that S = I. Thus we conclude LR = I, i.e., the

assertion holds. �
Finally we conclude from Theorems 3.3 and 3.8

Conclusion 1 (Hyperbolicity). Let the assumptions of Theorems 3.3 and 3.8 hold

true. Then the non-reacting, inviscid class-II-model (2.1) without external forces is

hyperbolic.

So far, it is open whether the assumptions in Theorem 3.8 on the roots of the poly-

nomial (3.8) always hold. In particular, we cannot yet conclude from the non-resonance

condition (3.18) that all roots of pN are simple. However, for subsonic mixtures at

non-resonance we can verify that all roots of pN are simple.

Theorem 3.9 (Sufficient condition for simple roots). Consider a subsonic simple mixture,

i.e.,

|vin| < āi and |vin − vjn| < min(āi, āj) i, j = 1, . . . , N, (3.47)

at non-resonance. Then the roots of the characteristic polynomial pN defined in (3.8)

are simple.

Proof. First of all, we note that the non-resonance condition is equivalent to

vj1n − āj1 < vj2n − āj2 < · · · < vjNn − ājN (3.48a)

vk1n + āk1
< vk2n + āk2

< · · · < vkNn + ākNn. (3.48b)

Thus, we may reorder the terms in the characteristic polynomial (3.8) as follows:

pN (λ) =

N∑
l=1

ρilcvil(viln−λ)((viln−λ)2−a2il)

N∏
j=1,j �=l

(vijn−λ−aij )

N∏
j=1,kj �=il

(vkjn−λ+akj
).

Then a simple calculation using the assumptions (3.47) and (3.48) gives

sign(pN (vjln − ājl)) = (−1)l and sign(pN (vkln + ākl
)) = (−1)N+l (3.49)

for l = 1, . . . , N . In addition,

pN (λ) → ±∞ for λ → ∓∞.

Thus, there exist 2N + 1 intervals where the polynomial pN of degree 2N + 1 changes

its sign. Obviously, the roots cannot be at resonance, i.e., coincide with some vjn ± aj
because of (3.49). This proves the above statement. �

From Theorem 3.9 we conclude on an upper bound for the maximum of the absolute

values of the characteristic speed, i.e., the spectral radius of the flux Jacobian.

Conclusion 2. For a subsonic simple mixture we define

vmin := min{v1 − a1, . . . , vN − aN} and vmax := max{v1 + a1, . . . , vN + aN}.
Then for the roots of the characteristic polynomial pN defined in (3.8),

vmin ≤ λmin < 0 and 0 < λmax ≤ vmax.
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This result can be used in numerical calculations to determine appropriate time steps.

3.5. Characteristic fields. For the construction of a Riemann solver it is important to

determine the characteristic field corresponding to an eigenvalue. This is characterized

by the sign of the product ∇wλ(w) · rλ(w). Although we do not yet know explicitly

the eigenvalues in general we nevertheless may determine their derivatives with respect

to the state in phase space.

Lemma 3.10. Let λ = λ(w) be an eigenvalue to some state w of primitive variables

satisfying the non-resonance condition (3.18). If w → λ(w) is a differentiable function

in a local neighborhood of w, then the derivative of the eigenvalues are given by

∂ λ(w)

∂ wl
=

Awl
(λ(w))

B(λ(w))

with

Awl
:=

N∑
i=1

(
∂ ρicvi
∂ wl

(vin − λ) + ρicvi
∂ vin
∂ wl

)
σ̃n
i (λ)

σn
i (λ)

(3.50a)

+

N∑
i=1

ρicvi
2(vin − λ)

(σn
i (λ))

2

×
(
(vin − λ)

∂ vin
∂ wl

(σn
i (λ)− σ̃n

i (λ))−
(
ai

∂ ai
∂ wl

σn
i (λ)− ai

∂ ai
∂ wl

σ̃n
i (λ)

))
,

B(λ) :=

N∑
i=1

ρicvi

(
1 + 2(vin − λ)2

(
1

σ̃n
i (λ)

− 1

σn
i (λ)

))
σ̃n
i (λ)

σn
i (λ)

. (3.50b)

provided that B(λ(w)) �= 0.

Proof. First of all, we note that for any λ satisfying the non-resonance condition

(3.18) we may rewrite the characteristic polynomial (3.8) as pN (λ) = κ0(λ)rN (λ) with

polynomial κ0 introduced in Lemma 3.7. The rational function rN is defined as

rN (λ) :=

N∑
i=1

ρicvi(vin − λ)
σ̃n
i (λ)

σn
i (λ)

,

where σn
i (λ) is defined by (3.18) and, similarly, σ̃n

i (λ) := (vin − λ)2 − a2i . If λ is a root

of the polynomial pN satisfying the non-resonance condition, then it is also a root of the

rational function rN .

By assumption λ = λ(w) is an eigenvalue at non-resonance corresponding to the state

w in the phase space spanned by the primitive variables w; see equation (3.3). Since the

eigenvalues depend continuously on the coefficients of the characteristic polynomial pN ,

the function w → σn
i (λ(w)) is continuous. Thus there exists a small neighborhood of w

in phase space where the corresponding eigenvalues are also at non-resonance. Then the

derivatives of the function w → rN (λ(w)) can be determined as

∂ rN (λ(w))

∂ wl
= Awl

(λ(w))− ∂ λ(w)

∂ wl
B(λ(w))
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with Awl
and B defined by (3.50). Note that σn

i (λ) − σ̃n
i (λ) = a2i − a2i . Finally, the

assertion follows because for any eigenvalue, i.e., root of the characteristic polynomial

pN , at non-resonance rN (λ(w)) = 0. �
By means of the derivatives of the eigenvalues and the right eigenvectors, see Lemma

3.10 and Proposition 2, respectively, we may now investigate the characteristic field.

Proposition 4. Under the assumptions of Lemma 3.10 the characteristic field is deter-

mined by

B(λ(w))∇wλ(w) · rλ(w)

=
N∑
l=1

ρl(vln − λ)
σn
l (λ) + a2l − a2l

(σn
l (λ))

2

(
∂ cvl
∂ ρl

∂ pl
∂ T

+ σn
l (λ)

∂ cvl
∂ T

)

+

N∑
l=1

ρlcvl(vln − λ)
∂ pl
∂ T

1

(σn
l (λ))

3

(
∂ (a2l − a2l )

∂ ρl
σn
l (λ) +

∂ a2l
∂ ρl

(a2l − a2l )

)

+ 2
N∑
l=1

cvl(vln − λ)3
∂ pl
∂ T

(a2l − a2l )

(σn
l (λ))

3

+

N∑
l=1

ρlcvl(vln − λ)
1

(σn
l (λ))

2

(
∂ (a2l − a2l )

∂ T
σn
l (λ) +

∂ a2l
∂ T

(a2l − a2l )

)
. (3.51)

Proof. Since we are dealing with simple mixtures, see Section 2.2, the terms Awl

simplify:

Aρl
=(vln − λ)

(
cvl + ρl

∂ cvl
∂ ρl

− 2ρlcvl

(
al

σ̃n
l (λ)

∂ al
∂ ρl

− al
σn
l (λ)

∂ al
∂ ρl

))
σ̃n
l (λ)

σn
l (λ)

, (3.52a)

Avl,k =ρlcvl

(
1 + 2(vln − λ)2

(
1

σ̃n
l (λ)

− 1

σn
l (λ)

))
σ̃n
l (λ)

σn
l (λ)

nk, (3.52b)

AT =
N∑
i=1

ρi(vin − λ)

(
∂ cvi
∂ T

− 2cvi

(
ai

σ̃n
i (λ)

∂ ai
∂ T

− ai
σn
i (λ)

∂ ai
∂ T

))
σ̃n
i (λ)

σn
i (λ)

. (3.52c)

By (3.25) we then compute for the characteristic field corresponding to the eigenvalue λ

B(λ(w))∇wλ(w) · rλ(w) =
N∑
l=1

(Aρl
, Avl,1 , . . . , Avl,d)rλ,l +AT .

From the definition of σn
l (λ), σ̃

n
l (λ) and the sound speed (2.15) we deduce

σn
l (λ)− σ̃n

l (λ) = a2l − a2l ,

al
∂ al
∂ ∗ σl

n(λ)− al
∂ al
∂ ∗ σ̃n

l (λ) =
1

2

(
∂ (a2l − a2l )

∂ ∗ σn
l (λ) +

∂ a2l
∂ ∗ (a2l − a2l )

)
, ∗ ∈ {ρl, T}.

Then after some further calculus we obtain (3.51). �
Although the formula (3.51) is not very handy it might be helpful for a particular

choice of fluids to determine the characteristic fields to a given eigenvalue, for instance

in case of velocity equilibrium.
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3.6. Velocity equilibrium. Of particular interest are states at velocity equilibrium, i.e.,

vin = v ∀ i = 1, . . . , N.

For these states we are able to determine the eigenvalues explicitly and determine the

corresponding characteristic fields at least for a two-component mixture.

Proposition 5. In case of velocity equilibrium and N = 2 there exist 2N + 1 distinct

roots of the characteristic polynomial (3.8) determined by

λ0 = v, λ±,± = v ±

√
−p

2
±
√(p

2

)2

− q (3.53)

with

p = −(ρcv)
−1(ρ1cv1(a

2
1+a22)+ρ2cv2(a

2
2+a21)), q = (ρcv)

−1(ρ1cv1a
2
1a

2
2+ρ2cv2a

2
2a

2
1) (3.54)

provided that

a2i > a2i > 0 and cvi > 0 ∀ i = 1, . . . , N. (3.55)

In particular, the roots (3.53) satisfy the non-resonance condition (3.18) if and only if

the conditions (3.55) and a21 �= a22 hold.

Proof. For a state in velocity equilibrium the characteristic polynomial (3.8) reduces

to

pN (λ) =
N∑
i=1

ρicvi(v − λ)((v − λ)2 − a2i )
N∏

j=1,j �=i

((v − λ)2 − a2j). (3.56)

Obviously, λ = v is always a root. In case of N = 2 the remaining polynomial reduces

to a polynomial of degree 4 that due to symmetry reduces to a quadratic polynomial for

λ = (v − λ)2. From this the roots (3.53) can be determined. It remains to verify that

both the discriminants are positive. For this purpose we check that

p2 − 4q = (ρcv)
−2

( (
ρ1cv1(a

2
1 − a22)− ρ2cv2(a

2
2 − a21)

)2
+ 4ρ1cv1ρ2cv2(a

2
1 − a21)(a

2
2 − a22)

)
> 0.

Finally we have to verify that −p −
√
p2 − 4q > 0. Since p < 0, this is equivalent to

verify

q = (ρcv)
−1

(
ρ1cv1a

2
1a

2
2 + ρ2cv2a

2
2a

2
1

)
> 0.

This holds by assumption.

To verify the non-resonance condition (3.18) we first note that in the equilibrium case

it reads σk(λ) := (v−λ)2−a2k, k = 1, . . . , N . Obviously, σk(λ0) �= 0 if a2k �= 0 holds true.

For the other roots, we observe that σk(λ±,±) = 0 is equivalent to a4k + a2k p + q = 0.

Rearranging terms we can rewrite this as (−1)kρkcvk(a
2
k − a2k)(a

2
1 − a22). From this the

assertion follows immediately. �
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Probably, this result can be extended to N = 3 proceeding similarly but determining

the roots of a cubic polynomial for λ = (v − λ)2 that are known to be real. For the

general case we easily conclude from (3.56)

Proposition 6. In case of velocity equilibrium λ0 = v is a simple root and is at non-

resonance. The remaining 2N roots of the polynomial pN take the form λi,± = v±√
zi,

i = 1, . . . , N , for some zi > 0 provided the hyperbolicity condition (2.16) holds.

To determine the corresponding characteristic fields we make the following observation.

Remark 3.11. For λ0 we obtain the estimate

B(λ0) =

N∑
i=1

ρicvi
a2i
a2i

>

N∑
i=1

ρicvi = ρcv > 0.

If all the roots λk,±, k = 1, . . . , N , are at non-resonance, i.e., zi �= a2i , then we obtain

B(λk,±) =

⎛
⎝(v − λk,±)

N∏
j=1

σn
j (λk,±)

⎞
⎠−1

pN (λk,±) + 2(v − λk,±)
2

N∑
i=1

ρicvi
a2i − a2i

(σn
i (λk,±))2

> 0,

because pN (λk,±) = 0 and a2i > a2i . Hence, condition (3.50b) is satisfied in case of

velocity equilibrium.

Finally, we conclude from Remark 3.11, Proposition 4, and Lemma 3.10 the following

result.

Proposition 7. Let the fluid be a mixture of stiffened gases. In case of velocity equilib-

rium the eigenvalue λ0 = v corresponds to a linearly degenerated field. The remaining

eigenvectors λi,± = v ± √
zi, i = 1, . . . , N , are assumed to be at non-resonance. Then

the corresponding characteristic fields are genuinely non-linear if

N∑
l=1

ρlc
2
vl(γl − 1)2

(v − λk,±)
4 − a4l

((v − λk,±)2 − a2l )
4
�= 0 ∀ k = 1, . . . , N. (3.57)

Proof. For a mixture of stiffened gases equation (3.51) simplifies to

B(λ(w))∇wλ(w)·rλ(w) = −
N∑
l=1

ρlc
2
vl(γl−1)2

(vln − λ(w))3

((vln − λ(w))2 − a2l )
3
((vln−λ(w))2+a2l ).

For an equilibrium state w with λ(w) = λ0 or λ(w) = λk,± it holds that B(λ(w)) �= 0

by assumption and Remark 3.11. Obviously, the right-hand side vanishes in case of

λ(w) = λ0 whereas it is non-zero for λ(w) = λk,± because of (3.57). �

4. Stiffness of chemical relaxation model. In a numerical calculation the time

step size is restricted due to transport and the stiffness introduced by the chemical

reactions. To investigate the latter we perform an operator splitting where we separate

the fluid motion and the chemical reactions. Then the relaxation process is described by

the ODE
d ρi
d t

= ri(T̄ , ρ1 . . . , ρN ),
d ρivi

d t
= 0,

d ρetot
d t

= 0, (4.1)
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or, in short form

du

d t
= f(u) (4.2)

with u = (ρ1, . . . , ρN , ρ1v
T
1 , . . . , ρNvT

N , ρetot)
T , f = (r̄1, . . . , r̄N ,0T , 0)T , r̄i = ri(u),

T̄ = T (u).

The constraint of the time discretization is characterized by the largest absolute eigen-

value of the Jacobian ∂ f/∂ u that coincides with the largest eigenvalue of the matrix

R := (dri/dρj)ij . Because of the conservation property (2.4) this matrix is a rank-1 ma-

trix, and thus has one eigenvalue 0. In case of a single reaction the Jacobian exhibits at

most one non-trivial eigenvalue; cf. (4.3) and (4.4). For two components the non-trivial

eigenvalue is determined by dr1/dρ1 − dr1/dρ2. This eigenvalue is unchanged if there

are other additional inert components, i.e., ri = 0, i > 2.

It remains to calculate the required derivatives. Assuming a single reaction and start-

ing with

ri = νiMiR
f

(
1− exp

N∑
k=1

(
νkMk

R

)(
μk(ρk, T̄ )

T̄

))
(4.3)

we obtain for constant rate Rf

dri
dρj

= (ri − νiR
fMi)

N∑
k=1

(
νkMk

R

)
d

dρj

(
μk(ρk, T̄ )

T̄

)
. (4.4)

Using the relations (2.10) a straightforward calculation gives

d

dρj

(
μk(ρk, T̄ )

T̄

)
=

⎧⎨
⎩− 1

T 2

(
ek + pk

ρk
− T

ρk

∂
∂T pk(ρk, T )

)
∂T̄
∂ρj

, k �= j,

1
Tρj

∂
∂ρj

pj(ρj , T )− 1
T 2

(
ej +

pj

ρj
− T

ρj

∂
∂T pj(ρj , T )

)
∂T̄
∂ρj

, k = j.

Finally we obtain

dri
dρj

= (ri − νiR
fMi)

×
(
νjMj

R

1

Tρj

∂pj(ρj , T )

∂ρj
− 1

T 2

N∑
k=1

νkMk

R

(
ek +

pk
ρk

− T

ρk

∂

∂T
pk(ρk, T )

)
∂T̄

∂ρj

)
.

For stiffened gases this expression simplifies to

dri
dρj

= (ri−νiR
fMi)

(
νjMj

R

(γj − 1)cj
ρj

+
1

T 2

N∑
k=1

νkMk

R

(qk + cvkT )(qj − 1
2v

2
j + cvjT )

ρcv

)
.

Remark 4.1. The rate Rf may depend on the states of the substances under con-

sideration, e.g., on concentrations, on partial pressures, or on the temperature. There

is some literature available on how to determine such rates; see for instance [2, Chap-

ter 21] or [22]. Nevertheless, the computations are complicated and one needs to know
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reaction constants, specific activation energies, etc. This is beyond the scope of this

paper. Therefore for simplicity we choose different constant rates in our numerical ex-

amples.

For an example, we first consider a mixture of a water vapor and liquid water. The

material parameters are chosen as in [23]; see Table 1. The exchange of mass between the

phases correlates to a phase transition, where condensation is assumed to be the forward

reaction

1(H2O)vapor � 1(H2O)liquid . (4.5)

Accordingly we have νvapor = −1 and νliquid = 1. The initial state is chosen at rest

with pvapor = 2 · 105 Pa, pliquid = 105 Pa and T = 298 K. Because phase transition is

a slow process we use a small forward reaction rate Rf = 102. We solve system (4.1)

numerically using a fourth order Runge-Kutta scheme and obtain the results presented

in Figure 1.

It can be observed that the density of liquid water increases whereas the density

of water vapor decreases, i.e., vapor condensates, resulting in a temperature increase.

The pressures of the fluids show a similar behavior as the densities. From a numerical

point of view it is important to note that the stiffness of the relaxation system increases

moderately by a factor of about 5 until the equilibrium state is reached.

Fig. 1. Relaxation process 1 - Liquid-vapor phase transition

As a second example we consider a mixture of three components. The material pa-

rameters chosen are related to liquid water, oxygen, and hydrogen; see Table 1. The

corresponding chemical reaction is the so-called oxyhydrogen reaction

2H2 + 1O2 � 2(H2O)liquid . (4.6)
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We observe that νH2
= −2, νO2

= −1, and νH2O = 2. As before we choose an initial state

at rest with pH2
= 2 · 105 Pa, pO2

= 105 Pa, pH2O = 104 Pa and T = 298 K. Since the

process is a very fast chemical reaction, a large forward reaction rate Rf = 105 is used.

The results are shown in Figure 2.

Fig. 2. Relaxation process 2 - Oxyhydrogen reaction

We observe that the density of liquid water increases whereas the density of oxygen and

hydrogen decrease due to the recombination reaction resulting in a slight temperature

increase. Again, the pressures of the fluids show a similar behavior as the densities.

Obviously, the stiffness of the relaxation system increases significantly by a factor of

about 500 until the equilibrium state is reached.

Both, the condensation process as well as the chemical reaction relax into an equilib-

rium state. Obviously the equilibrium state is achieved much faster for the oxyhydrogen

reaction. This effect is mostly induced by the higher reaction rate Rf . As a consequence

the Jacobian of (4.2) for this reaction exhibits a significantly larger spectral radius. This

introduces a severe stiffness into the system and can lead to an additional time step

restriction of the coupled system besides the CFL constraint.
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5. Numerical results. In order to solve model (2.1) we apply a third order Runge-

Kutta discontinuous Galerkin (RK-DG) method [5] to the inviscid system

∂tu+

d∑
k=1

∂xk
F k(u) = Q(u) (5.1)

with conserved quantities u, fluxes F k and source Q

u = ((ρ1, ρ1v
T
1 ), . . . , (ρN , ρNvT

N ), ρetot)
T ,

F k = (F T
k,1, . . . ,F

T
k,N , Fρetot)

T , k = 1, . . . , d,

Q = (QT
1 , . . . ,Q

T
N , 0)T ,

and partial fluxes and sources

F k,i = (ρivk,i, ρivk,iv
T
i + pie

T
k )

T , i = 1, . . . , N,

Fρetot =
N∑
i=1

ρivi,k(ei + pi/ρi + 0.5v2
i ),

Qi = (ri,f
T
i )

T , i = 1, . . . , N.

We use polynomial elements of order p = 3 and a third order SSP-Runge-Kutta method

with three stages for the time discretization. For the numerical flux and the limiter, we

choose the local Lax-Friedrichs flux and the minmod limiter from [5], respectively. The

time stepping is controlled by the CFL number. The performance of this RK-DG solver

is enhanced by local multi-resolution based grid adaptation; see [16]. Details on the

adaptive solver can be found in [13, 14].

The limiter is applied to the local characteristic variables. For this purpose we need

to compute the left and right eigenvectors of the Jacobian of the projected flux F n =∑d
k=1 F knk in direction n ∈ R

d, |n| = 1. Since the eigenvalues are not explicitly known

we proceed as follows:

(1) Determine the eigenvalues of the symmetric matrix B̌n = DB̃nD
−1 defined in

(3.12) with appropriate coefficients αi and βi by means of a numerical eigenvalue

solver. Because of similarity transformations these coincide with the eigenvalues

of the matrices Bn and B̃n defined by (3.4) and (3.5), respectively. Note that

in the multi-dimensional case (d > 1) the matrix M decouples, i.e., there exists

a permutation matrix P such that

PB̌nP
−1 =

⎛
⎜⎜⎜⎝
B̌R

v1nId−1

. . .

vNnId−1

⎞
⎟⎟⎟⎠ .
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Thus it suffices to determine the eigenvalues of the reduced matrix B̌R coinciding

with the roots of the characteristic polynomial (3.8). The reduced matrix can be

determined from B̌n by deleting the ((i− 1)(d+ 1) + 2 + j)-th column and row

for j = 1, . . . , d− 1 and i = 1, . . . , N .

(2) Check whether the eigenvalues of B̌R are all simple roots and the non-resonance

condition (3.18) holds. Then the left and right eigenvectors l and r of the matrix

Bn can be computed according to (3.15), (3.25), and (3.35). Otherwise an

iterative solver has to be applied to B̌R to compute the eigenvectors numerically.

(3) Since by the variable transformation u = u(w),

An ≡ ∂ F n(u)

∂ u
=

∂ u

∂w
B(u(w))

(
∂ u

∂w

)−1

the left and right eigenvectors of the matrix An are determined as
(
∂u
∂w

)−T
l

and ∂u
∂wr, respectively.

For the computations we consider different Riemann problems for two- and three-compo-

nent flows with and without phase transition or chemical reaction. The discontinuity in

the initial data is located in the middle of the domain. The computational domain is

given by Ω = [−1, 1] discretized by 10 cells on the coarsest level and using L = 10

levels of refinement. For the time discretization we choose a fixed CFL number of 0.1.

Since we cannot construct explicitly the solution of the Riemann problem, we choose the

discretization fine enough to ensure grid converged solutions.

5.1. Example 1: Two-phase flow with phase transition. First we consider a Riemann

problem for a mixture of a water vapor and liquid water. The material parameters are

chosen as in [23]; see Table 1. The exchange of mass between the phases correlates to a

phase transition, where condensation is assumed to be the forward reaction (4.5). Since

phase transition is a slow process we use a small value for the forward reaction rate:

Rf = 100. The initial data are given in Table 2.

Table 2. Initial for data Example 1

pL [Pa] vL [m/s] TL [K] pR [Pa] vR [m/s] TR [K]

vapor 5× 103 2 293 104 3 298

liquid 105 3 − 105 2 −

In Figure 3 we show the results for both computations with and without relaxation.

We can distinguish five different waves: four waves move at approximately sound speed

and one with flow velocity, probably corresponding to four acoustic waves and one contact

wave as in case of a B-N model. The acoustic waves split in two pairs where the slow

moving pair and the fast moving pair are only visible in the vapor phase and the liquid

phase, respectively.

Taking into account phase transition does not change the wave structure but due to

the reaction the states of the mixture are affected. Due to vaporization the density and

the pressure in the vapor phase increase significantly whereas the respective quantities
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in the liquid decrease slightly. Note that a change in the density of the liquid is hardly

visible because it is about 4–5 orders of magnitude larger than the density of the vapor,

i.e., a small amount of vaporizing liquid increases the amount of vapor significantly.

Correspondingly, the vapor velocity decreases when the acoustic wave has passed whereas

the liquid velocity is hardly affected.

(a) Density vapor (b) Density liquid

(c) Velocity vapor (d) Velocity liquid

(e) Pressure vapor (f) Pressure liquid

(g) Temperature (h) Pressure

Fig. 3. Example 1 - two-phase flow with (black, solid) and without
(red, dash-dot) phase transition, t = 6× 10−4s.
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These results meet the expectations due to the fact that water is a liquid at atmo-

spheric pressure in the present temperature regime.

5.2. Example 2: Three-phase flow with chemical reaction. Next we consider a mix-

ture of three components. The material parameters chosen are related to liquid water,

oxygen and hydrogen; see Table 1. The corresponding chemical reaction is the so-called

(a) Density hydrogen (b) Density water (c) Density oxygen

(d) Velocity hydrogen (e) Velocity water (f) Velocity oxygen

(g) Pressure hydrogen (h) Pressure water (i) Pressure oxygen

(j) Temperature (k) Pressure (l) Total energy

Fig. 4. Example 2 - three-component flow with (black, solid) and
without (red, dash-dot) chemical reaction, t = 4.5× 10−4s.
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oxyhydrogen reaction (4.6). Since this is a very fast chemical reaction, we choose a large

reaction rate: Rf = 105. The Riemann initial data are summarized in Table 3.

Table 3. Initial data for Example 2

pL [Pa] vL [m/s] TL [K] pR [Pa] vR [m/s] TR [K]

oxygen 1.5× 105 0 298 3× 105 −10 298

hydrogen 3× 105 10 − 6× 105 0 −

water 1.5× 107 −5 − 107 5 −

In Figure 4 we show the results for both computations with and without relaxation.

We can distinguish seven different waves, see the total energy of the mixture: six waves

move at approximately sound speed and one with flow velocity, probably corresponding

to six acoustic waves and one contact wave as in case of a B-N model. Again, not all

waves are present in each component.

Taking into account phase transition does not change the wave structure but due to

the fast reaction the states of the mixture are strongly affected. Due to the forward

reaction the density and the pressure for oxygen and hydrogen decrease whereas the

density of water increases. On the other hand, the oxygen and hydrogen are significantly

accelerated when the fastest of the acoustic waves has passed whereas the water velocity

is hardly affected.

6. Conclusion. We investigated the class-II-type recently introduced by Bothe and

Dreyer in [4]. Here we confine ourselves to simple mixtures. This model has several

advantages in comparison to classical Baer-Nunziato type models: (i) Each component

can undergo a phase transition or a chemical reaction. In the Bothe-Dreyer approach

phase transitions are modeled as a chemical reaction, where the exchange terms are

modeled by stoichiometric relations. (ii) Due to the algebraic nature of the exchange

terms for simple mixtures the system can be rewritten in divergence form and it is

conservative. Thus, there exists an entropy-entropy flux pair and the system can be

symmetrized according to Godlewski and Raviart [15]. (iii) Volume fractions or artificial

interfacial quantities have not yet been introduced. (iv) The modeling of source terms

starts from thermodynamics. Thus, it is ensured by construction that the model is

thermodynamically consistent, i.e., the second law of thermodynamics is satisfied. All

closure conditions can be derived from the entropy principle of thermodynamics; cf. [4].

(v) The extension of the model to more constituents or the allowance of further reactions

is an easy task. This is a notable difference to B-N type models; cf. [21]. In particular,

the system is also well defined for vanishing constituents.

In the focus of the present work has been the investigation of hyperbolicity of the

model. Although we cannot give explicitly the eigenvalues of the flux Jacobian, we

constructed an eigenvector basis where the eigenvalues enter as parameters provided the

non-resonance condition holds. The eigenvalues can be computed numerically for a given
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state. This is very useful in numerical schemes to locally decouple the system and is

used for instance, to perform flux vector splitting, limiting, reconstruction, etc. Thus, a

classical DG discretization could be applied to our model and computations for two- and

three-component flows with and without phase transition have been performed.

Since we do not explicitly know the eigenvalues nor the corresponding right eigenvec-

tors, we cannot investigate the characteristic fields. We only can characterize the fields

to a given state once the eigenvalue has been computed either by numerical tools or is

known. Thus, we cannot conclude that there exists a unique solution of the Riemann

problem. Also classical results known for single component fluids could not be confirmed

for multi-component fluids: (i) For a single component fluid it is known that the pressure

is a Riemann invariant across a contact discontinuity. In our model, it turned out that

in general neither the mixture pressure nor the partial pressures are invariants. (ii) The

same holds true for the mixture velocity and the partial velocities. (iii) Similarly, one

can verify that neither the partial entropy nor the mixture entropy are invariants. Note

that in the single component case the entropy is an invariant across a rarefaction wave.

(iv) For multiple eigenvalues we could prove that the mixture temperature is a Riemann

invariant across the corresponding fields in our model.

Our current results open several interesting perspectives for future investigations:

• Since our class-II-model exhibits severe problems in the calculation of the eigen-

values and eigenvectors, we want to consider also the reduced class-I-model com-

posed of balance laws for partial densities, mixture momentum, and mixture

energy. Here we hope to find the eigenvalues and eigenvectors explicitly because

for a two-component model the characteristic polynomial is of degree 4.

• In the literature numerous models are available to model two-phase or multi-

component flows. However, a thorough comparison of different model classes is

missing. Therefore we would like to compare our class-II-model with a reduced

B-N model composed of balance laws for volume fractions, partial densities,

partial momenta, and a total mixture energy.

• Our model has been embedded in a parallel, adaptive, multi-dimensional DG

solver. This allows us to investigate more complex applications also in several

space dimensions.

• In contrast to B-N type models where relaxation times are typically assumed to be

infinite, the choice of the relaxation time is a free parameter in our model related

to the forward reaction rates. For our computations we used constant rates.

Further investigations are needed to derive realistic reaction rates depending on

the state.
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discretization with multiwavelet-based grid adaptation for compressible flows, J. Sci. Comput. 62
(2015), no. 1, 25–52. MR3295028

[14] N. Gerhard and S. Müller, Adaptive multiresolution discontinuous Galerkin schemes for conserva-
tion laws: multi-dimensional case, Comput. Appl. Math. 35 (2016), no. 2, 321–349. MR3514813

[15] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation
laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. MR1410987
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[17] K. Hutter and K. Jöhnk, Continuum methods of physical modeling, Springer-Verlag, Berlin, 2004.
Continuum mechanics, dimensional analysis, turbulence. MR2060165

[18] A. Kapila, R. Menikoff, J. Bdzil, S. Son, and D. Stewart, Two-phase modelling of DDT in granular

materials: Reduced equations, Phys. Fluid 13 (2001), 3002–3024.
[19] L. D. Landau and E. M. Lifshitz, Statistical physics, Course of Theoretical Physics. Vol. 5. Translated

from the Russian by E. Peierls and R. F. Peierls, Pergamon Press Ltd., London-Paris; Addison-
Wesley Publishing Company, Inc., Reading, Mass., 1958. MR0136378

[20] R. Menikoff and B. J. Plohr, The Riemann problem for fluid flow of real materials, Rev. Modern
Phys. 61 (1989), no. 1, 75–130. MR977944

[21] S. Müller, M. Hantke, and P. Richter, Closure conditions for non-equilibrium multi-component
models, Contin. Mech. Thermodyn. 28 (2016), no. 4, 1157–1189. MR3513192

[22] M. J. Pilling and P. W. Seakins, Reaction Kinetics. Oxford Science Publications, 1999.
[23] A. Zein, Numerical methods for multiphase mixture conservation laws with phase transition, Ph.D.

thesis, Otto-von-Guericke University, Magdeburg, 2010.
[24] A. Zein, M. Hantke, and G. Warnecke, Modeling phase transition for compressible two-phase flows

applied to metastable liquids, J. Comput. Phys. 229 (2010), no. 8, 2964–2998. MR2595804

http://www.ams.org/mathscinet-getitem?mr=1619652
http://www.ams.org/mathscinet-getitem?mr=1365258
http://www.ams.org/mathscinet-getitem?mr=1197354
http://www.ams.org/mathscinet-getitem?mr=1654261
http://www.ams.org/mathscinet-getitem?mr=2044568
http://www.ams.org/mathscinet-getitem?mr=2992847
http://www.ams.org/mathscinet-getitem?mr=3295028
http://www.ams.org/mathscinet-getitem?mr=3514813
http://www.ams.org/mathscinet-getitem?mr=1410987
http://www.ams.org/mathscinet-getitem?mr=3120584
http://www.ams.org/mathscinet-getitem?mr=2060165
http://www.ams.org/mathscinet-getitem?mr=0136378
http://www.ams.org/mathscinet-getitem?mr=977944
http://www.ams.org/mathscinet-getitem?mr=3513192
http://www.ams.org/mathscinet-getitem?mr=2595804

	1. Introduction
	2. Model
	2.1. Balance equations for reacting fluid mixtures
	2.2. Equation of state
	2.3. Reaction rates
	2.4. Entropy principle

	3. Hyperbolicity
	3.1. Primitive variables
	3.2. Existence of real eigenvalues
	3.3. Eigenvectors
	3.4. Existence of an eigenvector basis
	3.5. Characteristic fields
	3.6. Velocity equilibrium

	4. Stiffness of chemical relaxation model
	5. Numerical results
	5.1. Example 1: Two-phase flow with phase transition
	5.2. Example 2: Three-phase flow with chemical reaction

	6. Conclusion
	References

