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Abstract. We are concerned with the fast-reaction asymptotics λ → ∞ for a semi-

linear coupled diffusion-limited reaction system in contact with infinite reservoirs of reac-

tants. We derive the system of limit equations and prove the uniqueness of its solutions

for equal diffusion coefficients. Additionally, we emphasize the structure of the limit free

boundary problem. The key tools of our analysis include (uniform with respect to λ)

L1-estimates for both fluxes and products of reaction and a balanced formulation, where

combinations of the original components which balance the fast reaction are used.

1. Introduction. We consider a chemical reaction-diffusion system of the form

ut −∇ · a∇u = −ϕ(λ, u, v)− ψ(u,w) u |t=0= u0,

vt −∇ · b∇v = −ϕ(λ, u, v) v |t=0= v0,

wt −∇ · c∇w = +ϕ(λ, u, v)− ψ(u,w) w |t=0= w0,

(1.1)

on Q = (0, T )× Ω corresponding to the reaction path

A+B
ϕ−→ C A+ C

ψ−→ P = (product), (1.2)

where A,B,C are chemical components (reactants) with the concentrations u, v, w. T >

0 is a time of physical interest. Here ϕ gives the rate at which A,B are consumed and

C produced by the first reaction, which we will take as very fast, while ψ gives the rate

at which A,C are consumed by the second, slower, reaction. A paradigmatic model (the

usual mass action kinetics) has

ϕ(λ, u, v) = λuv, zx ψ(u,w) = μuw (1.3)

for which we scale t so μ = 1.
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The boundary conditions we will impose for the more general problem (1.1) are in the

same spirit as for (2.3):

u = α on ΓA, v = β on ΓB,

no-flux conditions for u, v, w elsewhere on Γ = ∂Ω,
(1.4)

where ΓA,ΓB are nonempty disjoint relatively closed subsets of Γ and α, β are adequately

regular functions with 0 ≤ α, β ≤ B̄ and, when needed, extended by zero to the whole of

Ω.

Most of our effort in this paper is to justify such an analysis in a somewhat different

context in which, rather than considering the fast reaction A + B → C in isolation, we

also consider the evolution of its reaction product C, and permit this to affect A,B. As

a model system we specifically couple the fast reaction with another, slower, reaction ψ,

adjoining w as the concentration of the intermediate product1 C and imposing boundary

conditions which admit an unbounded supply of reactants.

What is novel for the full (three component) problem we consider here is that one

must also track the concentration w of the resultant C of the fast reaction for boundary

conditions (1.4) which admit a potentially infinite supply of the fast reactants A,B and

which permit the evolution of A,B also to depend on the fast reaction product C. The

first part of the analysis, bounding q, is somewhat similar to the two component analysis,

but the equation for y still involves w so further analysis is needed, both for compactness

and also for the uniqueness. We have here been able to obtain uniqueness also for the

more general model by introducing another auxiliary function albeit under the somewhat

restrictive assumption that the diffusion coefficients are the same for each component.

By imposing the choice of boundary conditions (2.3), we are considering a nonisolated

system. The original motivating example (see [12] and the references cited therein)

considered the reaction as taking place in a thin film (hydrodynamic boundary layer

for a single bubble in a bubble reactor) so one supply condition came from the oxygen

concentration inside the bubble (taken here as essentially constant on the relevant time

scale) and the other came from the concentration of the other fast reactant in the bulk

fluid of the reactor (outside the film). This scenario is also related to chemical reactions

within a permeable membrane with the concentrations maintained on the two sides; see

for instance the setup behind the modified film model reported in [9].

For finite λ everything is very smooth (the problem is well-posed, the solution is

smooth and λ-bounded), but in the limit λ → ∞ the regularity lowers and freely moving

interfaces separating the reactants are allowed to occur.

It has long been understood that the two component form — i.e., (1.1), (1.3) with ψ ≡
0 so we ignore C and the w-equation — becomes a free boundary problem in the limit:

what one sees is a partition of Ω into A-regions (u > 0) and B-regions (v > 0) within

which the fast reaction cannot occur, although the diffusive flux then carries the reactants

to an interface where the (infinitely fast) reaction can occur.

1Note that we are not tracking the subsequent product P , which we assume has no further interaction,
direct or indirect, with A,B,C.
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This analysis of the simple situation with only the single fast reaction goes back at

least a century (cf. [19] and note [7]) and has continued2 in, e.g., [8]. A principal tool

of these analyses is the introduction of y = u − v (easiest to work with if a ≡ b) since

the rapid reaction term ϕ then drops out yet one can recover u = y+ = max{y, 0} and

v = −y− = −min{y, 0}. The argument for existence of a limit is then by compactness,

once one has obtained a λ-independent bound on

q(t, s) = ϕ(λ, u(t, s), v(t, s)). (1.5)

A nice analysis of this two component problem with d = 1 was given by Evans [8],

treating the uniqueness and regularity of the free boundary s = s̄(t). More recently,

several papers, cf. for instance [5, 10, 11, 16], and [18], have considered problems of this

nature under various structural assumptions on the system.

We collect the assumptions behind our results and give the concept of the weak for-

mulation in Section 2. In Section 3 we note some preliminary results and conjectures

and then in Section 4 we obtain λ-independent estimates in the general context of (1.1)

with boundary conditions (1.4). These estimates give suitable compactness to ensure

the existence of subsequential limits, whose behavior we then discuss in Sections 5, 6.

Those become true limits once one shows uniqueness of solutions to the limit problem in

Section 7.

2. Assumptions. Concept of weak formulation. We rely on the following set of

assumptions:

(H1) Concerning the choice of the geometry, we may, for example, think of such possi-

bilities as taking Ω to be an annulus in R
2. With somewhat greater concern for

regularity, one might take Ω to be a cylinder with bases ΓA,ΓB or a more general

region with ΓA,ΓB somewhat more arbitrary boundary patches or, modifying the

setting a bit, a smooth manifold with disconnected boundary. Essentially, we take

Ω a C0,1-domain and assume that both ΓA and ΓB have nonzero measure with

ΓA ∩ ΓB = ∅.
(H2) The diffusion coefficients satisfy a, b, c ∈ L∞(Ω) and there exist constants A,B,C

∈ (0,∞) such that a > A, b > B, and c > C.

(H3) We consider

ϕ = 0 if either u = 0 or v = 0,

ϕ(λ, u, v) ↗ ∞ as λ → ∞ if both u, v > 0,
(2.1)

making the first reaction in (1.2) very “fast” for large λ: essentially A,B react

instantaneously if both would be simultaneously present. For ψ we assume

ψ(u, ·), ψ(·, w) are nondecreasing with ψ(0, ·) = ψ(·, 0) = 0,

|ψ(u,w)− ψ(û, ŵ)| ≤ L|u− û|(1 + |w|) + L|w − ŵ|,
(2.2)

where in the Lipschitz condition we have taken advantage of the fact that we will

have a pointwise bound 0 ≤ u ≤ B̄. Note that the stoichiometric example (1.3)

2with variations, especially noting that this two component system also models competitive popula-
tion models where the fast reaction has no associated product. More slow reactions can be included, it
is however essential that the fast reaction is irreversible to get the separation into A- and B-regions.
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satisfies both (2.1) and (2.2). Essentially, we will be working with ϕ, ψ ≥ 0 for

nonnegative concentrations (setting ϕ, ψ = 0 if these might be negative).

(H4) The Dirichlet data satisfies α ∈ L∞
+ (ΓA) and β ∈ L∞

+ (ΓB).

(H5) The initial concentrations satisfy (u0, v0, w0) ∈
[
L∞
+ (Ω)

]3
.

The assumptions (H1)–(H5) perfectly fit the reaction-diffusion scenario we have in

mind. Note however that our focus does not lie in finding the optimal regularity setting.

We are only interested in the asymptotic behaviour of the problem and its solution as λ

goes to infinity. Regarding (H2): for obtaining the uniform in λ L1-bound from Theorem

4.1 one needs some regularity on the diffusion coefficients of the reactant species if they

are nonconstant; for instance, take a, b ∈ C1(Ω̄). As (H3) is concerned, we note for

comparison that the system treated in [21] and [12] is

on (0, 1) at s = 0 at s = 1

−auss = −λuv − uw u = α us = 0

−bvss = −λuv vs = 0 v = β

−cwss = +λuv − uw ws = 0 ws = 0

(2.3)

with a, b, c, α, β positive constants modeling reaction and diffusion inside a permeable

membrane separating two reservoirs with constant reactant level.

Note that (H1)-(H5) hold throughout the manuscript. The only notable exception is

the characterization of the limit free boundary in Section 6. It is also worth noting that

the uniqueness argument from Section 7 holds for equal diffusion coefficients (a sub-case

of (H2)).

We denote the space of test functions corresponding to the unknowns u and v as

follows:

Vu := {ξ ∈ H1(Ω) such that ξ‖ΓA = 0},
Vv := {η ∈ H1(Ω) such that η‖ΓB = 0}.

We note here the weak formulation of (1.1)–(1.4).

Definition 2.1 (Weak formulation). The triplet

(u− α, v − β,w) ∈ [L2((0, T ), H1(Ω)) ∩H1((0, T );L2(Ω))]3

is called weak solution to (1.1)–(1.4) if and only if for all (ξ, η, ζ) ∈ Vu ×Vw ×H1(Ω) the

following identities hold:

〈ξ, ut〉+ 〈∇ξ, a∇u〉 = 〈ξ, uν〉∂Ω − 〈ξ, ϕ〉 − 〈ξ, ψ〉,
〈η, vt〉+ 〈∇η, b∇v〉 = 〈η, vν〉∂Ω − 〈η, ϕ〉,
〈ζ, wt〉+ 〈∇ζ, c∇w〉 = 〈ζ, ϕ〉 − 〈ζ, ψ〉,

(2.4)

where uν , vν , wν are the fluxes n · a∇u, etc., and, as usual, the dualities 〈·, ·〉 pivot on

the L2 inner products.

3. Preliminary results.

Remark 3.1. Our intuitive picture of the consequence of the first reaction in (1.2)

being very fast is that we should expect a resulting partition into A- and B-regions, i.e.,

regions with u > 0, v ≡ 0 or with u ≡ 0, v > 0.
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Later we will show quite generally that

u, v ≥ 0 but nowhere are both u > 0 and v > 0. (3.1)

However it is informative to see this in the context of (1.3) since in that case we can

employ a standard formal singular perturbation analysis to observe the resulting transient

when (3.1) would not hold at the initial time t0. Setting ε = 1/λ → 0 and τ = λ(t− t0),

the first equations of (2.3) become
[
du
dτ − εauss = −uv − εuw, dv

dτ − εbvss = −uv
]
and

formally setting3 ε = 0 in this we then get the reduced system

du

dτ
= −uv =

dv

dτ
so

du

dτ
= −uv = −u(u− c) with c = c(s) = u(s, t0)− v(s, t0)

which can be solved explicitly. Within a layer of duration O(1/λ), we have a rapid

transient for which, as τ → ∞, one has

u → [u0 − v0], v → 0 (A-region) if u0 > v0 ≥ 0,

v → [v0 − u0], u → 0 (B-region) if v0 > u0 ≥ 0,

u, v → 0 if u0 = v0 ≥ 0,

(3.2)

with an exponential decay rate when u0 �= v0 and 1/τ when u0 = v0 > 0. Thus, at

each s we obtain ‘adjusted’ initial data u, v |t=t0+; τ=∞ such that (3.1) holds. In view of

this, our subsequent analysis will always take the ‘initial data’ as subsequent to any such

transient so satisfying (3.1) as well as 0 ≤ u0, v0 ≤ B̄.

Remark 3.2. Clearly, we must have u, v, w ≥ 0 for these to represent concentrations

and we will complement that by showing that upper bounds on u, v can also be obtained

by quite similar arguments.

Lemma 3.1. Let u, v, w satisfy (2.4) with (1.4). Assume a, b, c, α, β and the initial data

are nonnegative and that ϕ, ψ = 0 where any argument is negative. Then u, v, w are

nonnegative on Q = (0, T )× Ω.

Proof. First we take ξ = u− = min{u, 0} ≤ 0 in (2.4) and note (cf., e.g., [24]) that:

where ξ �= 0 one has ϕ, ψ = 0 and (a.e.) ξt = ut so ξut = ( 12ξ
2)t,

where ∇ξ �= 0 one has (a.e.) ∇ξ = ∇u so 〈∇ξ, a∇u〉 ≥ 0,

on ΓA one has u = α ≥ 0 so ξ = 0; on ∂Ω\ΓA one has uν = 0.

Using this in (2.4) and integrating, one gets 1
2‖ξ(t)‖2 ≤ 1

2‖ξ(0)‖2 = 0 as one has ξ = 0

at t = 0. Thus, ξ ≡ 0 so u ≥ 0. Showing v, w ≥ 0 uses essentially the same argument.

�

Lemma 3.2. Let (u, v, w)λ satisfy (2.4), (1.4). Assume the boundary data α, β and the

initial data are also bounded above independently of λ, i.e., α, β ≤ B̄ on ΓA,ΓB and

u0, v0 ≤ B̄ at t = 0. Then uλ, vλ ≤ B̄ on Q.

Proof. We now take ξ = (u − B̄)+ = max{u − B̄, 0} ≥ 0 and, as in the proof of

Lemma 3.1, note that ξut = ξ ξt and ∇ξ · ∇u = |∇ξ|2 with ξϕ and ξψ nonnegative.

3This neglects the diffusive transport and the second reaction as negligible on this fast time scale;
for diffusive transport this just requires enough regularity to ensure that uss, vss = o(λ). Note that
omitting spatial transport decouples the PDEs so we have independent ODEs at each s.
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Further, the boundary term vanishes and ξ = 0 at t = 0. We then have ξ ≡ 0 so

u− B̄ ≤ 0 on Q. The argument for v ≤ B̄ is essentially the same. �

4. Compactness and convergence. Our primary goal in this section is to obtain

Lemma 4.2, showing that uλ, vλ, wλ all lie in a compact subset of L1(Q) so we have

subsequential convergence as λ → ∞. We then characterize such limit solutions to some

extent, but defer to Section 7 a proof of uniqueness to make this true convergence.

4.1. λ-independent estimates. To this end, however, our major task is to get a λ-

independent estimate for q = ϕ(λ, u, v) as in (1.5). Somewhat counterintuitively, this

estimate is entirely independent of the specifications of the functions ϕ, ψ although the

argument is tailored to the form of the boundary conditions (1.4).

Theorem 4.1. Assume (u, v, w)λ satisfies (1.1), (1.4) with data as in Lemmas 3.1, 3.2.

Then there is a uniform L1(Q) bound B′, independent of λ, for q, i.e.,

‖q‖1 =

∫
Q
q ≤ B′ for 0 ≤ q = qλ = ϕ(λ, uλ, vλ).

Proof. It is convenient to introduce a function ϑ ∈ C2(Ω) (independent of λ) such

that

0 ≤ ϑ ≤ 1 with

{
ϑ ≡ 0 in a neighborhood of ΓA,

ϑ ≡ 1 in a neighborhood of ΓB.
(4.1)

This is always possible for disjoint closed sets ΓA, ΓB . We begin by using ξ = ϑ in (2.4)

to get ∫
Ω

ϑq = −
(∫

Ω

ϑu

)
t

−
∫
Ω

∇ϑ · a∇u−
∫
Ω

ϑψ +

∫
∂Ω

ϑuν

≤ −
(∫

Ω

ϑu

)
t

+

∫
Ω

(∇ · a∇ϑ)u−
∫
∂Ω

ϑνu

on noting that ϑψ ≥ 0 and that ϑuν ≡ 0 on ∂Ω since ϑ vanishes on ΓA and elsewhere

uν = 0. Now we note that our assumptions that a is smooth and ϑ ∈ C2 imply a bound

on ∇ · a∇ϑ on Ω and on ϑν = n · a∇ϑ on ∂Ω whence, as u ≤ B̄ by Lemma 3.2, the last

two terms are bounded. Integrating over (0, T ) gives an integral over Q, and we have

bounded
∫
Q ϑq with an estimate independent of λ.

Next we use η = (1 − ϑ) for the v-equation in (2.4) in an essentially similar fashion,

e.g., now noting that (1 − ϑ)vν ≡ 0 on ∂Ω since 1 − ϑ vanishes near ΓB and elsewhere

vν = 0. The argument bounding
∫
Q(1− ϑ)q is then much the same. Adding these gives

the desired L1(Q) estimate for q = qλ. �
We may remark that the reaction product C is irrelevant to this estimation, even if we

were to permit ϕ and so qλ to depend on w, except to be able to assert the nonnegativity

of ψ or, at least, to bound −ψ from above. On the other hand, the argument here is very

much dependent on the nature of the boundary conditions (1.4) under consideration.

4.2. Compactness. A first compactness result is an immediate corollary of Theo-

rem 4.1, noting that the space L1(Q) is isometrically embedded in the dual space M, so

Alaoglu’s Theorem applies to the norm-bounded set Sq = {qλ : λ > 0}.
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Corollary 4.2. For every sequence (λk) there is a subsequence (λk(j)) for which

qλk(j)
∗
⇀ q̄ (weak-* convergence in M = [C(Q)]∗). �

We continue here by introducing three linear operators

LA, LB, LC : L1(Q) −→ L1(Q) : f �→ ω

defined, respectively, by{
ωt −∇ · a∇ω = f

with ω = 0 at t = 0
and

{
ω = 0 on ΓA

ων = 0 elsewhere on ∂Ω,{
ωt −∇ · b∇ω = f

with ω = 0 at t = 0
and

{
ω = 0 on ΓB

ων = 0 elsewhere on ∂Ω,{
ωt −∇ · c∇ω = f

with ω = 0 at t = 0
and ων = 0 on ∂Ω.

(4.2)

Lemma 4.1. Assume Ω,ΓA,ΓB are as above and a, b, c are sufficiently smooth. Then

each of LA, LB, LC is a compact linear operator on L1(Ω).

Proof. We refer the reader to [3, 4] for the proof; see also [2, 22]. �

For the solutions (u, v, w)λ of (1.1) with the specified boundary conditions (1.4) we

define the sets

Su = {uλ}, Sv = {vλ}, Sw = {wλ}, and

Sq = {qλ = ϕ(λ, uλ, vλ)}, Sψ = {ψλ = ψ(uλ, wλ)}.

We will also, slightly extending the definitions used above for the initial data, now let

u0, v0, w0 be the solutions on Q of

ut −∇ · a∇u = 0, u |t=0= u0,

vt −∇ · b∇v = 0, v |t=0= v0,

wt −∇ · c∇w = 0, w |t=0= w0,

(4.3)

with (1.4) so we have

uλ = u0 + LAfA, fA = fλ
A = −qλ − ψλ,

vλ = v0 + LBfB , fB = fλ
B = −qλ,

wλ = w0 + LCfC , fC = fλ
C = +qλ − ψλ.

Note that Lemma 3.2 and Theorem 4.1 show that the sets Su, Sv, Sq are each bounded

in L1(Q); we will show as part of the proof of Lemma 4.2 below that the sets Sw, Sψ are

also bounded.

Lemma 4.2. The sets Su, Sv, Sw are precompact in L1(Q). Thus, for any sequence

λk → ∞ there is a subsequence λ = λk(j) for which uλ → ū, vλ → v̄, wλ → w̄ in L1(Q)

and pointwise a.e. while qλ
∗
⇀ q̄.

Proof. Let ŵ = ŵλ be the solution of ŵt −∇ · c∇ŵ = q, noting that Sq is bounded by

Theorem 4.1. Since fC = q − ψ ≤ q, one then has 0 ≤ wλ = w0 + LfC ≤ ŵ = w0 + LCq

(using an argument much like those in Lemmas 3.1 and 3.2). Thus,

‖wλ‖1 ≤ ‖ŵ‖1 ≤ ‖w0‖1 + ‖LC‖ ‖qλ‖1
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which bounds Sw and, with (2.2), bounds Sψ. This then bounds {fλ
A} ⊂ (−Sq − Sψ) so

Su, now viewed as ({u0} + LA{fλ
A}), is precompact in L1(Q) by Lemma 4.1. Similarly,

Sv ⊂ {v0} + LB (−Sq) and Sw ⊂ ({w0} + LC{fλ
C}) are precompact in L1(Q). The

subsequential weak convergence is then immediate by Alaoglu’s Theorem. �

5. The limit problem.

Theorem 5.1. The subsequential limits given by Lemma 4.2 satisfy, in an appropriate

sense, the limit problem

ūt −∇ · a∇ū = −q̄ − ψ(ū, w̄), ū |t=0= u0,

v̄t −∇ · b∇v̄ = −q̄, v |t=0= v0,

w̄t −∇ · c∇w̄ = +q̄ − ψ(ū, w̄), w̄ |t=0= w0,

(5.1)

with (1.4).

Proof. Since the initial and boundary conditions are independent of λ, we focus at-

tention on the equations in the interior of Q. To this end, we consider C∞ test functions

ξ, η, ζ with support in the interior. Then we have no boundary terms on integrating the

time derivatives by parts and applying the Divergence Theorem twice in (1.1) so we get,

somewhat as in (2.4),

−〈ξt, u〉 − 〈∇ · a∇ξ, u〉 = −〈ξ, q〉 − 〈ξ, ψ〉,
−〈ηt, v〉 − 〈∇ · b∇η, v〉 = −〈η, q〉,
−〈ζt, w〉 − 〈∇ · c∇ζ, w〉 = +〈ζ, q〉 − 〈ζ, ψ〉,

(5.2)

with u = uλ, etc. Of course 〈ξ, q〉 → 〈ξ, q̄〉 by the definition of q
∗
⇀ q̄ and similarly

for 〈η, q〉 and 〈ζ, q〉. We then note that Krasnosel’sk̆ıi’s Theorem on the continuity of

Nemytsky operators (see e.g. [13]) ensures that ψλ = ψ(uλ, wλ) → ψ(ū, w̄) as (u, v)λ →
(ū, v̄). Since the functions ξt, ηt, ζt and∇·a∇ξ, ∇·b∇η, ∇·c∇ζ are smooth by hypothesis,

it is easy to see that each term here converges and, at least in this weak sense, the limits

satisfy (5.1). �
As anticipated, one consequence of this is the partition of Q into A-regions (ū > 0)

and B-regions (v̄ > 0) with an interfacial set where ū = v̄ = 0.

Theorem 5.2. Any subsequential limit solution (ū, v̄) as in Lemma 4.2 must satisfy

(3.1), i.e., pointwise a.e. on Q one has ū = 0 or v̄ = 0.

Proof. If the conclusion were false, we would have existence of some set E ⊂ Q of

positive measure with ū, v̄ ≥ 2ε > 0 on E. Since we have convergence uλ → ū, vλ → v̄

pointwise a.e., we would have existence of some λ∗ and some set E′ ⊂ E of positive

measure with uλ, vλ ≥ ε on E′ for all λ ≥ λ∗ so, by (2.1),∫
Q
qλ ≥

∫
E′

ϕ(λ, uλ, vλ) ≥
∫
E′

ϕ(λ, ε, ε) → ∞

as λ → ∞, which would contradict Theorem 4.1. �
We next introduce y = ū− v̄; this trick goes back at least a century [19]; see also [7].

From (3.1) we immediately see that y = ū (with v̄ = 0) when y > 0 and that y = −v̄
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(with ū = 0) when y < 0 so we recover ū = y+ and v̄ = −y−. This auxiliary function y

satisfies the equation4

yt −∇ ·D(y)∇y = −ψ(y+, w̄), D(y) =

{
a if y > 0,

b if y < 0,
(5.3)

together with the boundary condition that

y = α on ΓA, y = −β on ΓB,

yν = n ·D(y)∇y = 0 elsewhere on ∂Ω.
(5.4)

It will then be convenient to define the ‘y-flux’ as

F = −D(y)∇y =

{
−a∇y = −a∇u where y > 0,

−b∇y = b∇v where y < 0,
(5.5)

so yt = ∇F − ψ. Note that F in (5.5) is the diffusive flux of the reactant A when

0 < y = u and is the (reversed) diffusive flux of B when 0 > y = −v. There is no jump

in F across a separating interface since the fast reaction consumes equal amounts of A

and B and ψ is a function.

6. The 1-dimensional case. In the 1-dimensional case it is possible to provide a

description in greater detail. Within this section, then, we will assume Ω = (0, 1) with

ΓA = {0}, ΓB = {1}.

Theorem 6.1. The solution y = ū − v̄ of (5.3) is locally Hölder continuous in Q. The

A- and B-regions of Theorem 5.2 must be open subsets of Q and on these q̄ ≡ 0 and the

flux F is locally Hölder continuous.

Proof. We begin with an estimate for w̄. From (5.1) we have w̄ = w0+LC(q̄−ψ) and,

since ψ ≥ 0 so a Weak Maximum Principle argument shows LC(q̄ − ψ) ≤ Lq̄ = ω, we

have w̄ ∈ L1([0, T ] → L∞(Ω)) if ω ∈ L1([0, T ] → L∞(Ω)). Letting S(t) be the semigroup

corresponding to LC , we have ω(t) =
∫ t

0
S(t− s)q̄(s, ·) ds. From,5 e.g., [1, Theorem 4.4],

we have ‖S(t)‖1→∞ ≤ Ct−1/2 where ‖ · ‖1→∞ denotes the operator norm from L1(Ω) to

L∞(Ω). Thus,

ρ(t) = ‖w0‖∞ + ‖ω(t)‖∞ ≤ C +

∫ t

0

C(t− s)−1/2‖q̄(s)‖1 ds.

We recognize this integral as convolution of the functions t−1/2 and ‖q̄(t)‖1 so, as t−1/2 ∈
Lp for 1 ≤ p < 2, we have a bound6 on ω in Lp([0, T ] → L∞(Ω)) and so the desired

bound on w̄.

From Lemma 3.2 and (2.2) it follows that the forcing term −ψ in (5.3) will also be in

Lp([0, T ] → L∞(Ω)) so, by the Nash-Moser estimates (see, e.g., [14, Theorem III:10.1])

4Note that the diffusion coefficient D will be discontinuous at the zero set of y where we cross
between A- and B-regions. This is the interfacial region where the reaction is concentrated and the
diffusion coefficient has not been defined here. However, we have ∇y = 0 a.e. on the interfacial set where
y is constant (y ≡ 0) so the value of D(0) is irrelevant.

5We could also get the result from the Gaussian estimate for the fundamental solution, which is
O(t−1/2) for d = 1.

6The function ρ will, in general, depend on ω, i.e., on q̄ ∈ L1(Q). However, the norm of ρ ∈ Lp(0, T )
is bounded with dependence only on the L1(Q)-bound we have obtained for q̄.



208 THOMAS I. SEIDMAN AND ADRIAN MUNTEAN

we have Hölder continuity of y. At any point where ū > 0 we have y > 0 so also

y = ū > 0 in a neighborhood whence A-regions are open. Similarly, the B-regions are

also open in Q.

On an A-region where ū > 0 we have v̄ ≡ 0 and so v̄t = 0 and (bv̄s)s = 0. Thus,

comparing with the v̄-equation of (5.1) on this region, we must have q̄ ≡ 0. Similarly, on

a B-region we have ū ≡ 0 so ūt = 0, (aūs)s = 0, and ψ(ū, w̄) = 0 whence again q̄ ≡ 0.

Applying [14, Theorem III:11.1] locally (restricted to the region, noting that the diffusion

coefficient is smooth there) gives the asserted local Hölder continuity of ys and so of the

A-flux f = −aūs or of the B flux f = bv̄s as appropriate. �
Suppose we set A(t) = {s : y(t, s) > 0}, B(t) = {s : y(t, s) < 0}. These form

a set of open intervals which represent (except near the endpoints s = 0, 1 where the

reactants A,B are supplied) isolated pockets of reactants, separated by interfacial points7

at which the reaction can occur (delta functions for the Borel measure q̄). If ū > 0

on (s1, s2) and v̄ > 0 on (s2, s3), necessarily with ū = 0 = v̄ at the intermediate point s2
by the continuity of y

At such an interface, separating an A-region from a B-region the normal n = ±1

crossing outward from the A-region must have y decreasing so n · F = |F | > 0, i.e.,

a positive outward A-flux; similarly (now with n reversed) one has a positive outward

B-flux from the B-region. Thus, both the isolated A-pocket (s1, s2) and also the B-

pocket (s2, s3) are continually depleted and the same would be true if the interface

would have the B-pocket to the left. We expect – and see computationally – that with no

compensating source term such an isolated pocket must eventually vanish by coalescence

of the endpoints. This provides a third time scale for the problem: one has the fast

initial time scale as in Remark 3.1, the asymptotically long time scale of approach to

steady state,8 and this intermediate scale on which all but one of the separating reaction

points9 disappear in pairs by coalescence.

We note a computational example10 showing in Figure 1 the evolution of the interfaces

y = 0. For this example, the initial data was consistent (uv ≡ 0) with a pair of isolated

pockets of A,B so initially three interfaces. In Figure 1 we then see the left- and rightmost

interfaces moving toward the center as these pockets shrink with the pocket of B here

7The location of these interfacial points depends on t, of course, but we do not treat here the regularity
of this dependence, referring the reader to [8] and [20] for some comparable discussion. Here we will
simply assume adequate regularity for our purposes.

8We note that this has not yet been proved, even for the particular example of (2.3) for which
existence of a unique steady state was shown in [21] but convergence to it as t → ∞ has been observed
computationally.

9Note that we would expect very small pockets to disappear rapidly so, after the initial O(1/λ)
transient period (somewhat extended from (3.2) to permit the relevance of diffusion, but still negligible
for large λ), there should be at t = 0+ only a finite number, necessarily odd, of isolated reaction points,
each constituting a free boundary.

10This computation, taken from [23], was done with λ = 109, but the picture is essentially independent
of λ, even for fairly moderate values. If one were to look at qλ, the simulations for this and other large
values of λ show profiles (for fixed t) spatially of the same form as given theoretically by the singular

perturbation analysis of [12] for steady state: scaling as λ1/3 in height and as λ−1/3 in width, so
converging in [C(0, 1)]∗ to a delta function as λ → ∞. This description applies only to isolated interfaces
and, of course, cannot apply to the behaviour near the moment t∗ when the pocket of B vanishes with
its left and right boundaries coming together.
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Fig. 1. Evolution in t of the interface.

consumed first, after which the single remaining interfacial point moves more slowly

towards its steady state value.

For simplicity of exposition we now restrict our description to the situation with only

a single interface at s = s̄(t), noting that interior interfaces behave in the same way. We

assume we already know that s̄(·) is fairly smooth. We exploit now the localization of

the infinitely fast reaction on the free boundary (similar calculations have been done e.g.

in [11, 17]).

Theorem 6.2. Under the given assumptions, the measure-valued function

q̄ = κ(t)δ(s− s̄(t)) with κ(t) = |F (t, s̄(t))| (6.1)

is bounded in the space of Radon measures M on [0, T ]. Further, w̄ ∈ C(Q).

Proof. Under the assumption of a single interface at s = s̄(t) one has no isolated

pockets so y = u > 0 for 0 ≤ s < s̄(t) and −y = v > 0 for s̄(t) < s ≤ 1. We have

already noted that the outward A,B-fluxes at s̄(t) each have magnitude |F | and provide

the source for the point reaction κδ(s− s̄), giving (6.1).

Now consider the B-region QB = {s > s̄(t), 0 < t < T}. This is disjoint from

the support of q̄ so we have the smooth equation vt = (bvs)s on this region with the

Dirichlet boundary conditions v ≡ 0 at s = s̄ on the left and v ≡ β at s = 1 on the

right. Although QB is not of the usual cylindrical form (0, T ) × Ω, we may appeal to

[15, Theorem 12.10] to see that the gradient vs — and so the y-flux F — is Hölder

continuous on QB, including continuity up to the boundary s̄.

In particular, this means that t �→ F (t, s̄(t)) is continuous, hence bounded on the

compact interval [0, T ] so κ = |F | and q̄ are pointwise well-defined, continuous and

bounded. With ‖q̄‖1 bounded, the same estimate for ρ(t) = ‖w̄(t, ·)‖∞ obtained in the

proof of Theorem 6.1 now bounds11 w̄ in L∞(Q). We then have w̄ ∈ C(Q) either by

using again the Nash-Moser estimates or by noting that w̄ is a uniform limit of continuous

functions wλ. The continuity of w̄ extends up to the boundary of Q. �

11With this uniform bound on w̄, the Lipschitz condition (2.2) simplifies to

|ψ(u,w)− ψ(û, ŵ)| ≤ L(|u− û|+ |w − ŵ|). (6.2)
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7. Uniqueness of the limit. Returning to the general setting, we note that true

convergence

ū = lim
λ→∞

uλ, v̄ = lim
λ→∞

vλ, w̄ = lim
λ→∞

wλ in L1(Q),

has not yet been proved since Lemma 4.2 only gives convergent subsequences. To provide

it we must complement that by an argument showing that (5.1) has a unique solution,

fixing q̄, ū, v̄, w̄. We will do this here when the diffusion coefficients are equal (a = b = c)

and the dimension d < 6. We further assume that ∂Ω is sufficiently regular that we may

take the function ϑ of (4.1) to satisfy

ϑν = n · a∇ϑ ≡ 0 on ∂Ω (7.1)

and that the data α, β are sufficiently regular, meaning here that ‖∇y0‖Q < ∞ (as well

as ‖y0‖∞ ≤ B̄) where y0 is the solution of yt −∇ · a∇y ≡ 0 with (5.4).

We consider y = ū− v̄ as above and, to handle the reaction product w̄, will reformulate

the system (1.1) by introducing another auxiliary function12

z = w̄ + ϑū+ (1− ϑ)v̄ = w̄ + v̄ + ϑy. (7.2)

Using the product rule to evaluate ∇·a∇(ϑū) and ∇·a∇((1−ϑ)v̄), we obtain the system

yt −∇ · a∇y = −ψ,

zt −∇ · a∇z = Υy − (1 + ϑ)ψ,
(7.3)

where13

Υ : H1(Ω) → L2(Ω) : y �→ (2a∇ϑ) · ∇y + (∇ · a∇ϑ)y. (7.4)

Supplementing (5.4), a bit of manipulation in each part of ∂Ω shows that we have the

boundary condition zν ≡ 0 for the z-equation of (7.3).

As noted earlier, we can recover ū = y+ and v̄ = −y− from y and now can also recover

w̄ = (z + y− − ϑy) from y, z. Thus, if we show y, z are uniquely determined, then we

have shown uniqueness for ū, v̄, w̄ and so also for q̄.

Our first step is to estimate z.

Lemma 7.1. Under the assumptions above,
∫ T

0
‖z(t, ·)‖∞ is bounded.

Proof. We use η = y − y0 as test function in the weak form of the difference between

the y-equation in (7.3) and the y0-equation, noting that the initial and boundary terms

vanish. Then

‖η(t)‖2 + 2a‖∇η‖2Q(t) ≤ −〈η, ψ〉Q(t) ≤ C
(
1 + ‖z‖Q(t)

)
where we have used (2.2) and the bound |η| ≤ B̄ to bound ψ in terms of w̄ and so of z.

Applying the Gronwall Inequality then gives a bound ‖∇η‖2Q(t) ≤ C(1 + ‖z‖2Q(t)). We

note that ‖Υy‖ ≤ ‖Υη‖+‖Υy0‖ and that ‖Υη‖ ≤ C‖∇η‖ since η vanishes on ΓA∪ΓB so

‖η‖H1(Ω) ≤ C‖∇η‖. Thus, ‖Υy‖ ≤ C(1 + ‖z‖2Q(t)) in view of the assumed boundedness

12A somewhat different auxiliary function z = w + v was introduced in [20]. The resulting system
could be made self-contained, but that required an awkward coupling in the boundary conditions.

13Up to this point we could get a similar construction without the assumption of equal diffusion
coefficients. In that case, however, the operator Υ would no longer be linear and the corresponding
uniqueness argument then fails.
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of ‖Υy0‖Q. Using z as test function in the weak form of the z-equation in (7.3), noting

the homogeneous boundary condition, we get

‖z(t)‖2 + 2a‖∇z‖2Q(t) ≤ ‖z(0)‖2 + 2〈z,Υy − (1 + ϑ)ψ〉 ≤ C(1 + ‖z‖2)

and applying the Gronwall Inequality bounds supt ‖z(t)‖ on [0, T ] as desired – and then

also gives bounds on ‖∇y‖Q and on ‖∇z‖Q. In particular, we see that h = Υy− (1+ϑ)ψ

is bounded in L2(Q).

Now consider the contraction semigroup S(·) on L2(Ω) generated by G : z �→ −∇·a∇z

with homogeneous Neumann conditions so

z(t) = z0(t) +

∫ t

0

S(t− s)h(s) ds.

We then have

‖z(t)− z0(t)‖H2σ(Ω) ≤ C‖Gσ(z − z0)‖ ≤ C

∫ t

0

‖GσS(t− s)‖‖h(s)‖ ds.

Since S(·) is an analytic semigroup, ‖GσS(τ )‖ ≤ Cτ−σ which is in Lp for p < 1/σ. By

Young’s inequality the convolution with the L2 function h is in L1 provided σ+ 1
2 −1 < 1

so σ < 3/2. On the other hand, by the Sobolev Embedding Theorem, one has H2σ(Ω) ↪→
C(Ω) for 2σ > d/2, i.e., we have the desired embedding into L∞(Ω) for 2σ > d/2, which

is possible for σ < 3/2 when d = 1, . . . , 5. �
We remark that this improves the L1(Q) bound on w̄ from Lemma 4.2 since, in

this setting, it also bounds supt ‖w̄(t)‖, ‖∇w̄‖Q and, since |y| ≤ B̄, we have bounded

‖w̄‖L1([0,T ]→L∞(Ω)).

Theorem 7.1. Under the assumptions of this section (a = b = c, etc.) the solution of

(5.1) is unique so, in this context, the subsequential convergence of Lemma 4.2 is genuine

convergence as λ → ∞.

Proof. We assume (7.3) might potentially have distinct solutions (y, z) and (ŷ, ẑ) cor-

responding to distinct limit solutions as in Theorem 5.1 and then set Y = y− ŷ, Z = z− ẑ

and also

Ψ = ψ − ψ̂ = ψ(y+, z − ϑy+)− ψ(ŷ+, ẑ − ŷ+).

We now get, from (7.3), the system

Yt −∇ · a∇Y = −Ψ,

Zt −∇ · a∇Z = ΥY − (1 + ϑ)Ψ,
(7.5)

where we have used the important fact that Υ is linear. We now use (2.2) to see that,

pointwise, |Ψ| ≤ C|Y |(1 + |z − ϑy+|) + C|Z| so ‖Ψ‖ ≤ ρ(t)‖Y ‖ + ‖Z‖ with ρ bounding

C(1 + ‖z(t)‖∞ + B̄). By Lemma 7.1 we can take ρ bounded in L1(0, T ).

Much as in the proof of Lemma 7.1, we now take Y as test function for the Y -equation

in (7.5), noting that the initial and boundary data vanish since these are the same for y

and for ŷ. We get

‖Y (t)‖2 + 2a‖∇Y ‖2Q(t) ≤
∫ T

0

‖Y ‖‖Ψ‖ ≤
∫ T

0

ρ
[
‖Y ‖2 + ‖Z‖2

]
.
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Similarly, taking Z as test function for the Z-equation in (7.5) we get, noting that

‖ΥY ‖ ≤ C‖∇Y ‖ on Ω, the estimate

‖Z(t)‖2 + 2a

∫ t

0

‖∇Z‖2 ≤
∫ T

0

[
C‖∇Y ‖‖Z‖+ C‖Z‖2 + ρ‖Y ‖‖Z‖

]
.

Adding and using C‖∇Y ‖‖Z‖ ≤ a‖∇Y ‖2 + C ′‖Z‖2, so we can cancel the ‖∇Y ‖ term,

we get

‖Y ‖2 + ‖Z‖2 ≤
∫ t

0

Cρ(t)
[
‖Y ‖2 + ‖Z‖2

]
.

It follows from Gronwall’s inequality that ‖Y ‖2 + ‖Z‖2 ≤ 0 exp[
∫
Cρ ] with ρ integrable

so we have uniqueness. �
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Séminaire de Mathématiques Supérieures, No. 16 (Été, 1965), Les Presses de l’Université de
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