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Abstract. We consider the incompressible Euler and Navier-Stokes equations in a

three-dimensional moving thin domain. Under the assumption that the moving thin

domain degenerates into a two-dimensional moving closed surface as the width of the

thin domain goes to zero, we give a heuristic derivation of singular limit equations on

the degenerate moving surface of the Euler and Navier-Stokes equations in the moving

thin domain and investigate relations between their energy structures. We also compare

the limit equations with the Euler and Navier-Stokes equations on a stationary manifold,

which are described in terms of the Levi-Civita connection.

1. Introduction. Fluid flows in a thin domain appear in many problems of natural

sciences, e.g., ocean dynamics, geophysical fluid dynamics, and fluid flows in cell mem-

branes. In the study of the incompressible Navier-Stokes equations in a three-dimensional

thin domain mathematical researchers are mainly interested in global existence of a strong

solution for large data since a three-dimensional thin domain with sufficiently small width

can be considered “almost two-dimensional”. It is also important to investigate the be-

havior of a solution as the width of a thin domain goes to zero. We may naturally

ask whether we can derive limit equations as a thin domain degenerates into a two-

dimensional set and compare properties of solutions to the original three-dimensional

equations and the corresponding two-dimensional limit equations. There are several

works studying such problems with a three-dimensional flat thin domain [15, 16, 29, 33]

of the form

Ωε = {x = (x′, x3) ∈ R
3 | x′ ∈ ω, εg0(x

′) < x3 < εg1(x
′)}

for small ε > 0, where ω is a two-dimensional domain and g0 and g1 are functions on

ω, and a three-dimensional thin spherical domain [34] which is a region between two

concentric spheres of near radii. (We also refer to [28] for the strategy of analysis of the

Euler equations in a flat and spherical thin domain and its limit equations.) However,

Received March 28, 2017.
2010 Mathematics Subject Classification. Primary 35Q35, 35R01, 76M45; Secondary 76A20.
Email address: thmiura@ms.u-tokyo.ac.jp

c©2017 Brown University
215

http://www.ams.org/qam/
http://dx.doi.org/10.1090/qam/1495


216 TATSU-HIKO MIURA

mathematical studies of an incompressible fluid in a thin domain have not been done in

the case where a thin domain and its degenerate set have more complicated geometric

structures. (See [27] for the mathematical analysis of a reaction-diffusion equation in a

thin domain degenerating into a lower dimensional manifold.)

In this paper we are concerned with the incompressible Euler and Navier-Stokes equa-

tions in a three-dimensional thin domain that moves in time. The purpose of this paper

is to give a heuristic derivation of singular limits of these equations as a moving thin

domain degenerates into a two-dimensional moving closed surface. We also investigate

relations between the energy structures of the incompressible fluid systems in a moving

thin domain and the corresponding limit systems on a moving closed surface.

Here let us explain our results on limit equations and strategy to derive them. Let Γ(t)

be an evolving closed surface in R
3 and V N

Γ (·, t) and ν(·, t) its (scalar) outward normal

velocity and unit outward normal vector field, respectively. We assume that Γ(t) does

not change its topology. Also, let Ωε(t) be a tubular neighborhood of Γ(t) of radius ε in

R
3 with sufficiently small ε > 0. We consider the Euler equations

∂tu+ (u · ∇)u+∇p = 0 in Ωε(t), t ∈ (0, T ), (1.1)

div u = 0 in Ωε(t), t ∈ (0, T ), (1.2)

u · νε = V N
ε on ∂Ωε(t), t ∈ (0, T ) (1.3)

and the Navier-Stokes equations with (perfect slip) Navier boundary condition

∂tu+ (u · ∇)u+∇p = μ0Δu in Ωε(t), t ∈ (0, T ), (1.4)

div u = 0 in Ωε(t), t ∈ (0, T ), (1.5)

u · νε = V N
ε on ∂Ωε(t), t ∈ (0, T ), (1.6)

[D(u)νε]tan = 0 on ∂Ωε(t), t ∈ (0, T ). (1.7)

Here νε and V N
ε denote the unit outward normal vector field and the (scaler) out-

ward normal velocity of ∂Ωε(t). Also, μ0 > 0 is the viscosity coefficient and D(u) :=

{∇u+ (∇u)T }/2 is the strain rate tensor with (∇u)T the transpose of the gradient ma-

trix ∇u. We suppose that Ωε(t) admits the normal coordinate system x = π(x, t) +

d(x, t)ν(π(x, t), t) for x ∈ Ωε(t), where π(·, t) is the closest point mapping onto Γ(t) and

d(·, t) is the signed distance from Γ(t) increasing in the direction of ν(·, t). Based on the

normal coordinates, we expand the velocity field u(x, t) on Ωε(t) in powers of the signed

distance d(x, t) as

u(x, t) = v(π(x, t), t) + d(x, t)v1(π(x, t), t) + · · · , x ∈ Ωε(t) (1.8)

and the pressure p(x, t) similarly. We substitute them for the equations in Ωε(t) and

determine equations on Γ(t) that the zeroth order term v in (1.8) satisfies. Then we

obtain limit equations of the Euler equations (1.1)–(1.3):

∂•
vv +∇Γq + q1ν = 0 on Γ(t), t ∈ (0, T ), (1.9)

divΓv = 0 on Γ(t), t ∈ (0, T ), (1.10)

v · ν = V N
Γ on Γ(t), t ∈ (0, T ). (1.11)
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Here ∂•
v = ∂t + v · ∇ is the material derivative along the velocity field v and ∇Γ and

divΓ denote the tangential gradient and the surface divergence on Γ(t), respectively (see

Section 2 for their definitions). Similarly, we get limit equations of the Navier-Stokes

equations (1.4)–(1.7):

∂•
vv +∇Γq + q1ν = 2μ0divΓ(PΓD

tan(v)PΓ) on Γ(t), t ∈ (0, T ), (1.12)

divΓv = 0 on Γ(t), t ∈ (0, T ), (1.13)

v · ν = V N
Γ on Γ(t), t ∈ (0, T ). (1.14)

Here Dtan(v) := {∇Γv+(∇Γv)
T }/2 and PΓ is the orthogonal projection onto the tangent

plane of Γ(t). Note that if we take the average of (1.8) in the normal direction of Γ(t),

then

1

2ε

∫ ε

−ε

u(y + ρν(y, t), t) dρ = v(y, t) + (higher order terms in ε), y ∈ Γ(t).

Therefore, formally speaking, our limit equations are equations satisfied by the limit of

the average in the thin direction of a solution to the original Euler or Navier-Stokes

equations in Ωε(t) as ε goes to zero. (The above method is also applied in [23] to derive

a limit equation of a nonlinear diffusion equation in a moving thin domain.)

In the equations (1.9) and (1.12) the scalar function q1, which comes from the normal

derivative of the bulk pressure p (see the expansion (3.5) of p and (3.17) in the proof of

Theorem 3.1), is determined by the normal component of (1.9) and (1.12). Therefore,

the limit Euler system (1.9)–(1.11) is intrinsically equivalent to

PΓ∂
•
vv +∇Γq = 0, divΓv = 0, v · ν = V N

Γ (1.15)

and the limit Navier-Stokes system (1.12)–(1.14) is equivalent to

PΓ∂
•
vv +∇Γq = 2μ0PΓdivΓ(PΓD

tan(v)PΓ), divΓv = 0, v · ν = V N
Γ . (1.16)

We note that these tangential surface fluid systems were also derived in [17,18] recently.

The derivation of the Navier-Stokes equations on a moving surface in [17] is based on

local conservation laws of mass and linear momentum for a surface fluid. On the other

hand, the authors of [18] applied a global energetic variational approach to derive several

kinds of equations for an incompressible fluid on an evolving surface.

The viscous term 2μ0divΓ(PΓD
tan(v)PΓ) in the momentum equation (1.12) of the

limit Navier-Stokes system appears in the Boussinesq-Scriven surface fluid model which

was first described by Boussinesq [7] and generalized by Scriven [30] to an arbitrary

curved moving surface (see also [1, Chapter 10] for derivation of the Boussinesq-Scriven

surface fluid model). In [4] the Boussinesq-Scriven surface fluid model was considered

to formulate a continuum model for fluid membranes in a bulk fluid, which contains

equations for a viscous fluid on a curved moving surface, and study the effect of membrane

viscosity in the dynamics of fluid membranes. It was also studied in the context of two-

phase flows [5,6,25] in which equations for a surface fluid are considered as the boundary

condition on a fluid interface.

Since we consider an incompressible fluid on a moving surface or in its tubular neigh-

borhood, some constraints on the motion of the surface are necessary. For the existence

of a surface incompressible fluid it is required that the area of the moving surface is
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preserved in time. To consider a bulk incompressible fluid in the ε-tubular neighborhood

of the moving surface for all ε > 0 sufficiently small, we need another constraint on

the moving surface besides the area preserving condition. However, it is automatically

satisfied by the Gauss-Bonnet theorem and the assumption that the moving surface does

not change its topology. See Remark 3.3 for details.

When the surface does not move in time, our tangential limit system (1.15) of the Eu-

ler equations is the same as the Euler system on a fixed manifold derived by Arnol′d [2,3],

who applied the Lie group of diffeomorphisms of a manifold (see also Ebin and Mars-

den [12]). Also, for a stationary surface our tangential limit system (1.16) of the Navier-

Stokes equations is the same as the Navier-Stokes system on a manifold derived by

Taylor [31], although the authors of [18] claim that (1.16) is different from Taylor’s sys-

tem (see Remark 4.3). For detailed comparison of our limit systems and the systems

derived in previous works see Remarks 3.2 and 4.2. We further note that the function

q1 in the limit momentum equations (1.9) and (1.12), which is determined by the nor-

mal component of these equations, does not vanish even if the surface is stationary. See

Remarks 3.2 and 4.2 for details.

Finally we note that our results are based on formal calculations and thus mathemat-

ical justification is required. There are a few works that present rigorous derivation of

limit equations in the case where a degenerate set is a hypersurface or a manifold. Temam

and Ziane [34] derived limit equations for the Navier-Stokes equations in a thin spherical

domain by characterizing the thin width limit of a solution to the original equations as

a solution to the limit equations. In [27], Prizzi, Rinaldi, and Rybakowski compared

the dynamics of a reaction-diffusion equation in a thin domain and that of a limit equa-

tion when a thin domain degenerates into a lower dimensional manifold. Recently, the

present author derived a limit equation of the heat equation in a moving thin domain

shrinking to a moving closed hypersurface by characterization of the thin width limit of

a solution [22]. Although there are several tools and methods introduced in the above

papers, it seems that mathematical justification of our results is difficult because of the

nonlinearity of the equations and the evolution of the shape of the degenerate surface,

and that we need some new techniques.

This paper is organized as follows. In Section 2 we give notation and formulas on

quantities related to a moving surface and a moving thin domain. In Sections 3 and 4

we derive the limit equations of the Euler and Navier-Stokes equations in a moving

thin domain, respectively. In Section 5 we derive the energy identities of the Euler and

Navier-Stokes equations and the corresponding limit equations and investigate relations

between them. In Appendices A and B we give proofs of lemmas in Section 2 involving

the differential geometry of a surface embedded in the Euclidean space.

2. Preliminaries. We fix notation on various quantities of a moving surface and give

formulas on them. All functions appearing in this section are assumed to be sufficiently

smooth.

Lemmas in this section are proved by straightforward calculations. To avoid making

this section too long we give proofs of them in Appendix A, except for the proofs of

Lemmas 2.4 and 2.5. Also, a proof of the formula (2.15) in Lemma 2.4 is given in
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Appendix B. Although we are concerned with a two-dimensional surface in this paper,

all notation and formulas in this section apply to hypersurfaces of any dimension with

easy modifications.

2.1. Moving surfaces and moving thin domains. Let Γ(t), t ∈ [0, T ] be a two-dimen-

sional closed (i.e., compact and without boundary), connected, and oriented moving

surface in R
3. The unit outward normal vector and the (scalar) outward normal velocity

of Γ(t) are denoted by ν(·, t) and V N
Γ (·, t), respectively. Also, let ST :=

⋃
t∈(0,T ) Γ(t)×{t}

be a space-time hypersurface associated with Γ(t). We assume that Γ(t) is smooth at

each t ∈ [0, T ] and moves smoothly in time. In particular, Γ(t) does not change its

topology. By the smoothness assumption on Γ(t), the (outward) principal curvatures

κ1(·, t) and κ2(·, t) of Γ(t) are bounded uniformly with respect to t. Hence there is a

tubular neighborhood

N(t) := {x ∈ R
3 | dist(x,Γ(t)) < δ}

of radius δ > 0 independent of t that admits the normal coordinate system

x = π(x, t) + d(x, t)ν(π(x, t), t), x ∈ N(t), (2.1)

where π(·, t) is the closest point mapping onto Γ(t) and d(·, t) is the signed distance

function from Γ(t) (see, e.g., [11, Lemma 2.8]). Moreover, the mapping π and the signed

distance d are smooth in the closure (in R
4) of a space-time noncylindrical domain

NT :=
⋃

t∈(0,T ) N(t) × {t}. We assume that d(·, t) increases in the direction of ν(·, t).
Therefore,

∇d(x, t) = ν(π(x, t), t), (x, t) ∈ NT , (2.2)

∂td(y, t) = −V N
Γ (y, t), (y, t) ∈ ST . (2.3)

Moreover, differentiating both sides of

d(x, t) = {x− π(x, t)} · ∇d(x, t), d(π(x, t), t) = 0

with respect to t and using (2.2) and (2.3) we easily get

∂td(x, t) = ∂td(π(x, t), t) = −V N
Γ (π(x, t), t), (x, t) ∈ NT . (2.4)

For a sufficiently small ε > 0 we define a moving thin domain Ωε(t) in R
3 as

Ωε(t) := {x ∈ R
3 | dist(x,Γ(t)) < ε}

and a space-time noncylindrical domain Qε,T and its lateral boundary ∂�Qε,T as

Qε,T :=
⋃

t∈(0,T )

Ωε(t)× {t}, ∂�Qε,T :=
⋃

t∈(0,T )

∂Ωε(t)× {t}.

Since Ωε(t) is a tubular neighborhood of Γ(t), the unit outward normal vector νε(·, t)
and the outward normal velocity V N

ε (·, t) of its boundary are given by

νε(x, t) =

{
ν(π(x, t), t) if d(x, t) = ε,

−ν(π(x, t), t) if d(x, t) = −ε,
(2.5)

V N
ε (x, t) =

{
V N
Γ (π(x, t), t) if d(x, t) = ε,

−V N
Γ (π(x, t), t) if d(x, t) = −ε.

(2.6)



220 TATSU-HIKO MIURA

2.2. Notation and formulas for quantities on fixed surfaces. In this subsection we fix

and suppress the time t ∈ [0, T ]. Hence Γ denotes a two-dimensional closed, connected,

oriented, and smooth surface in R
3. Let us give notation and formulas for several quan-

tities on the fixed surface Γ. (In what follows we use the same notation given in this

subsection for the moving surface Γ(t).) Let PΓ be the orthogonal projection onto the

tangent plane of Γ at each point on Γ given by

PΓ(y) := I3 − ν(y)⊗ ν(y), y ∈ Γ,

where I3 is the identity matrix of three dimension and a ⊗ b for a, b ∈ R
3 denotes the

tensor product of a and b given by

a⊗ b :=

⎛⎝a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎞⎠ , a = (a1, a2, a3), b = (b1, b2, b3).

For a function f on Γ we define its tangential gradient ∇Γf as

∇Γf(y) := PΓ(y)∇f̃(y), y ∈ Γ.

Here f̃ is an extension of f to N satisfying f̃ |Γ = f . Note that the tangential gradient

of f is independent of the choice of its extension (see, e.g., [11, Lemma 2.4]). Also, it is

easy to see that ∇Γf · ν = 0 and PΓ∇Γf = ∇Γf hold on Γ. The tangential derivative

operators are given by

∂tan
i f(y) :=

3∑
j=1

{δij − νi(y)νj(y)}∂j f̃(y), i = 1, 2, 3

so that ∇Γ = (∂tan
1 , ∂tan

2 , ∂tan
3 ), which are again independent of the choice of an extension

f̃ of f . For example, we may take the constant extension in the normal direction of Γ

given by f̄(x) := f(π(x)) for x ∈ N .

For vector fields F = (F1, F2, F3) on N and G = (G1, G2, G3) on Γ, we define the

gradient matrix and the divergence of F as

∇F :=

⎛⎝∂1F1 ∂1F2 ∂1F3

∂2F1 ∂2F2 ∂2F3

∂3F1 ∂3F2 ∂3F3

⎞⎠ , divF :=
3∑

i=1

∂iFi

and the tangential gradient matrix and the surface divergence of G as

∇ΓG :=

⎛⎝∂tan
1 G1 ∂tan

1 G2 ∂tan
1 G3

∂tan
2 G1 ∂tan

2 G2 ∂tan
2 G3

∂tan
3 G1 ∂tan

3 G2 ∂tan
3 G3

⎞⎠ , divΓG :=
3∑

i=1

∂tan
i Gi.

The notation is consistent with the formula ∇ΓG = PΓ∇G̃ on Γ, where G̃ is an arbitrary

extension of G to N with G̃|Γ = G. For a function f on Γ we denote by ∇2
Γf the

tangential Hessian matrix of f whose (i, j)-entry is given by ∂tan
i ∂tan

j f (i, j = 1, 2, 3).

Let M be a 3× 3 matrix-valued function defined on N or on Γ of the form

M = (Mij)i,j =

⎛⎝M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞⎠ .
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We define the divergence divM on N or the surface divergence divΓM on Γ as a vector

field whose jth component is given by

[divM ]j :=
3∑

i=1

∂iMij or [divΓM ]j :=
3∑

i=1

∂tan
i Mij , j = 1, 2, 3.

Finally we set

A := −∇Γν = (−∂tan
i νj)i,j , ΔΓ := divΓ∇Γ =

3∑
i=1

(∂tan
i )2,

H := −divΓν = tr[A], K := κ1κ2

and call them the Weingarten map of Γ, the Laplace-Beltrami operator on Γ, (twice) the

mean curvature of Γ, and the Gaussian curvature of Γ, respectively. The usual Laplacian

Δ and the Laplace-Beltrami operator ΔΓ acting on vector fields are understood to be

componentwise operators.

Lemma 2.1. For all y ∈ Γ we have

A(y)ν(y) = 0, (2.7)

A(y)PΓ(y) = PΓ(y)A(y) = A(y), (2.8)

A(y) = −∇2d(y). (2.9)

By (2.7) we see that A has the eigenvalue 0. Note that the other eigenvalues of A are

κ1 and κ2 (see, e.g., [19, Section VII.5]) and thus

H(y) = κ1(y) + κ2(y), y ∈ Γ. (2.10)

Also, A is symmetric (i.e., ∂tan
i νj = ∂tan

j νi) and H = −Δd holds on Γ by (2.9).

The tangential derivatives ∂tan
i (i = 1, 2, 3) are noncommutative in general. An ex-

change formula for them includes the unit outward normal of the surface.

Lemma 2.2. Let f be a function on Γ. For each i, j = 1, 2, 3 we have

∂tan
i ∂tan

j f − ∂tan
j ∂tan

i f = [A∇Γf ]iνj − [A∇Γf ]jνi. (2.11)

Here [A∇Γf ]i denotes the ith component of the vector field A∇Γf .

The next formula is a consequence of (2.11), which we use in Section 4 to express a

viscous term of limit equations of the Navier-Stokes equations in terms of the Laplace-

Beltrami operator. For a vector field v on Γ we set

Dtan(v) :=
∇Γv + (∇Γv)

T

2
. (2.12)

The matricesDtan(v) and PΓD
tan(v)PΓ are called a tangential strain rate and a projected

strain rate in [18], respectively.

Lemma 2.3. Let v be a (not necessarily tangential) vector field on Γ. Then

2divΓ(PΓD
tan(v)PΓ) = 2tr[A∇Γv]ν + PΓ(ΔΓv) +∇Γ(divΓv) +H(∇Γv)ν (2.13)

holds on Γ (note that (∇Γv)ν = PΓ(∇Γv)ν on the right-hand side is tangential).
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To compare our limit systems with the incompressible fluid systems on a fixed manifold

derived by Arnol′d [2,3] and Taylor [31] we need formulas on the Levi-Civita connection.

Let ∇ be the Levi-Civita connection on Γ with respect to the metric on Γ induced by

the Euclidean metric of R3 (see, e.g., [9, Section 2.3] and [24, Sections 3.3.1 and 4.1.2]

for the definition of the Levi-Civita connection). Hence for tangential vector fields X

and Y on Γ the covariant derivative of X along Y is denoted by ∇Y X, which is again a

tangential vector field on Γ. The Levi-Civita connection is considered as a mapping

∇ : C∞(TΓ) → C∞(T ∗Γ⊗ TΓ), X �→ ∇X,

where TΓ and T ∗Γ are the tangent and cotangent bundle of Γ, respectively, and for

a vector bundle E over Γ we denote by C∞(E) the set of all smooth sections of E.

(Hence C∞(TΓ) denotes the set of all smooth tangential vector fields on Γ. We refer

to [20, Chapter 10] for the definitions of a vector bundle and a section.) Also, for a

tangential vector field X on Γ the notation ∇X stands for a mapping Y �→ ∇Y X from

C∞(TΓ) into itself. Then we write ∇∗
: C∞(T ∗Γ ⊗ TΓ) → C∞(TΓ) for the formal

adjoint operator of ∇ (see [24, Section 10.1.3]) and set ΔB := −∇∗∇. The operator

ΔB : C∞(TΓ) → C∞(TΓ) is called the Bochner Laplacian (note that there is another

definition of the Bochner Laplacian where the sign is taken opposite).

Lemma 2.4. Let X and Y be tangential vector fields on Γ. Then

(Y · ∇)X̃ = ∇Y X + (AX · Y )ν, (2.14)

ΔBX = PΓ(ΔΓX) +A2X (2.15)

hold on Γ. Here X̃ is an extension of X to N with X̃|Γ = X and (Y · ∇)X̃ denotes the

directional derivative of X̃ along Y in R
3, i.e.,

(Y · ∇)X̃ =

(
3∑

i=1

Yi∂iX̃1,

3∑
i=1

Yi∂iX̃2,

3∑
i=1

Yi∂iX̃3

)
.

Also, the left-hand side of (2.14) is independent of the choice of the extension X̃.

The formula (2.14) is well known as the Gauss formula (see, e.g., [9, Section 4.2]

and [19, Section VII.3]) and we omit its proof. Note that (Y · ∇)X̃ = (Y · ∇Γ)X on Γ

since Y is tangential. Hence the Gauss formula (2.14) is also expressed as

(Y · ∇Γ)X = ∇Y X + (AX · Y )ν on Γ (2.16)

for tangential vector fields X and Y on Γ. We also call (2.16) the Gauss formula.

A proof of the formula (2.15) is given in Appendix B. Note that (2.15) is useful by

itself since it gives a global expression under the fixed Cartesian coordinate system of

the Bochner Laplacian acting on tangential vector fields on Γ, which is originally defined

intrinsically and represented under only local coordinate systems.

Combining Lemmas 2.3 and 2.4 we get the following formula on the surface divergence

of the projected strain rate, which is crucial for comparison of our limit Navier-Stokes

system and the incompressible viscous fluid system on a manifold derived by Taylor [31]

(see Remark 4.2).
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Lemma 2.5. For a tangential vector field v on Γ satisfying divΓv = 0 we have

2PΓdivΓ(PΓD
tan(v)PΓ) = ΔBv +Kv on Γ. (2.17)

Proof. Let v be a tangential vector field on Γ satisfying divΓv = 0. Then

(∇Γv)ν = ∇Γ(v · ν)− (∇Γν)v = Av

by v · ν = 0 and −∇Γν = A. Applying this and

PΓ(tr[A∇Γv]ν) = tr[A∇Γv]PΓν = 0, divΓv = 0

to the formula (2.13), and observing that (∇Γv)ν = Av is tangential, we have

2PΓdivΓ(PΓD
tan(v)PΓ) = PΓ(ΔΓv) +HAv. (2.18)

Moreover, since A is symmetric and has the eigenvalues 0, κ1, and κ2, where the eigenvec-

tor corresponding to the eigenvalue 0 is ν (see Lemma 2.1), for each y ∈ Γ we can take an

orthonormal basis {e1, e2} of the tangent plane of Γ at y such that Aei = κiei, i = 1, 2.

(The vectors e1 and e2 are called the principal directions at y. See, e.g., [19, Section

VII.5] for details.) Expressing the tangential vector v as a linear combination of e1 and

e2 and using H = κ1 + κ2 and K = κ1κ2 we easily obtain HAv = Kv + A2v. Applying

this and (2.15) to (2.18) we obtain (2.17). �
Besides derivation of limit equations, we are also interested in thin width limits of

energy identities for the Euler and Navier-Stokes equations. To derive limit energy

identities we give change of variables formulas for integrals over level-set surfaces and

tubular neighborhoods of Γ. For y ∈ Γ and ρ ∈ [−ε, ε] we set

J(y, ρ) := {1− ρκ1(y)}{1− ρκ2(y)} = 1− ρH(y) + ρ2K(y). (2.19)

Here the second equality follows from the definition of the Gaussian curvature and (2.10).

The function J is the Jacobian appearing in the following change of variables formulas

(see [13, Section 14.6] or Appendix A).

Lemma 2.6. For a function f on Ωε we have∫
Ωε

f(x) dx =

∫
Γ

∫ ε

−ε

f(y + ρν(y))J(y, ρ) dρ dH2(y) (2.20)

and∫
∂Ωε

f(x) dH2(x) =

∫
Γ

f(y + εν(y))J(y, ε) dH2(y)

+

∫
Γ

f(y − εν(y))J(y,−ε) dH2(y). (2.21)

Here H2 denotes the two-dimensional Hausdorff measure.

When we use Lemma 2.6 with the moving surface Γ(t) we write J(y, t, ρ) for the

Jacobian given by (2.19).
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2.3. Material derivatives and differentiation of composite functions with the closest

point mapping. Now let us return to the moving surface Γ(t). We first give a material

time derivative of a function on ST . Let v be a vector field on ST with v·ν = V N
Γ . Suppose

that there exists the flow map Φv of v, i.e., Φv(·, t) : Γ(0) → R
3 is a diffeomorphism onto

its range for each t ∈ [0, T ] and

Φv(Y, 0) = Y,
dΦv

dt
(Y, t) = v(Φv(Y, t), t) for (Y, t) ∈ Γ(0)× (0, T ).

Note that Φv(·, t) is a diffeomorphism from Γ(0) onto Φv(Γ(0), t) = Γ(t) for each t ∈ [0, T ]

since the normal component of v is equal to the outward normal velocity V N
Γ of the moving

surface Γ(t), which completely determines the change of the shape of Γ(t). We define the

material derivative of a function f on ST along the velocity field v as

∂•
vf(Φv(Y, t), t) :=

d

dt

(
f(Φv(Y, t), t)

)
, (Y, t) ∈ Γ(0)× (0, T ).

By the chain rule of differentiation it is also represented as

∂•
vf(y, t) = ∂tf̃(y, t) + v(y, t) · ∇f̃(y, t), (y, t) ∈ ST , (2.22)

where f̃ is an arbitrary extension of f to NT satisfying f̃ |ST
= f . We write ∂◦ for ∂•

v with

v = V N
Γ ν and call it the normal time derivative. Note that the normal time derivative

of a function f on ST is equal to the time derivative of its constant extension f̄ in the

normal direction, i.e.,

∂◦f(y, t) = ∂tf̄(y, t) =
d

dt

(
f(π(y, t), t)

)
, (y, t) ∈ ST .

Also, for a tangential vector field vT on ST the material derivative of f along the velocity

field of the form v = V N
Γ ν + vT is expressed as

∂•
vf = ∂◦f + vT · ∇Γf on ST (2.23)

by (2.22) and vT · ∇f̃ = vT · ∇Γf on ST since vT is tangential. See also [8, Section 3]

for the time derivative of functions on a moving surface.

In the following sections we frequently differentiate the composition of a function on

Γ(t) and the closest point mapping π(·, t). To avoid repetition of the same calculations

we give several formulas on derivatives of composite functions with π.

Let f(x, t) be a function on Qε,T . Based on the normal coordinate system x =

π(x, t) + d(x, t)ν(π(x, t), t) for x ∈ Ωε(t), we expand f(x, t) in powers of the signed

distance d(x, t):

f(x, t) = g(π(x, t), t) + d(x, t)g1(π(x, t), t) + · · · .

Here g, g1, and the coefficients of higher order terms in d(x, t) are considered as functions

on ST . Also, for k ∈ N we write R(d(x, t)k) for the terms of order higher than k− 1 with

respect to small d(x, t), i.e.,

f(x, t) = g(π(x, t), t) + · · ·+ d(x, t)k−1gk−1(π(x, t), t) +R(d(x, t)k),

R(d(x, t)k) = d(x, t)kgk(π(x, t), t) + d(x, t)k+1gk+1(π(x, t), t) + · · · .
(2.24)

In what follows, we also use Landau’s symbol O(εk) (as ε → 0) for a nonnegative integer

k, i.e., O(εk) is a quantity satisfying |O(εk)| ≤ Cεk for small ε > 0 with a constant C > 0
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independent of ε. Note that, contrary to O(εk), we may differentiate R(d(x, t)k) with

respect to x and t since it just stands for the higher order terms in the expansion (2.24)

with respect to small d(x, t), and the lth order derivative of R(d(x, t)k) is R(d(x, t)k−l)

for l ≤ k. Also, R(d(x, t)k) = O(εk) for (x, t) ∈ Qε,T and k ∈ N by |d(x, t)| < ε on Qε,T .

We use the same notation on the expansion (2.24) for functions on Ωε(t) with each fixed

t ∈ [0, T ].

Lemma 2.7. Let f be a scalar- or vector-valued function on ST . The derivatives of the

composite function f(π(x, t), t) with respect to x and t are of the form

∇
(
f(π, t)

)
= ∇Γf(π, t) + d(x, t)[A∇Γf ](π, t) +R(d(x, t)2), (2.25)

∂t
(
f(π, t)

)
= ∂◦f(π, t) + d(x, t)[(∇ΓV

N
Γ · ∇Γ)f ](π, t) +R(d(x, t)2) (2.26)

for (x, t) ∈ Qε,T . Here we abbreviate π(x, t) to π.

We also give an expansion formula for the divergence of a matrix-valued function

which we need to derive limit equations of the Navier-Stokes equations.

Lemma 2.8. Let S and S1 be 3 × 3 matrix-valued functions on Γ(t) with each fixed

t ∈ (0, T ). For x ∈ Ωε(t) we set

D(x) = S(π(x, t)) + d(x, t)S1(π(x, t)) +R(d(x, t)2).

Then we have

divD(x) = divΓS(π(x, t)) +
(
S1(π(x, t))

)T
ν(π, t) +R(d(x, t)) (2.27)

for x ∈ Ωε(t). Here (S1)T denotes the transpose of the matrix S1.

3. Limit equations of the Euler equations. We consider the incompressible Euler

equations in Ωε(t):

∂tu+ (u · ∇)u+∇p = 0 in Qε,T , (3.1)

div u = 0 in Qε,T , (3.2)

u · νε = V N
ε on ∂�Qε,T . (3.3)

Here u = (u1, u2, u3) is the velocity of a bulk fluid and p is the pressure. The goal of this

section is to derive limit equations of the Euler equations as ε goes to zero. According

to the normal coordinate system (2.1), we expand u and p with respect to the signed

distance d(x, t) as

u(x, t) = v(π(x, t), t) + d(x, t)v1(π(x, t), t) +R(d(x, t)2), (3.4)

p(x, t) = q(π(x, t), t) + d(x, t)q1(π(x, t), t) +R(d(x, t)2). (3.5)

Here we used the notation (2.24). The limit equations are given as the principal term in

the expansion with respect to d(x, t) of the Euler equations in Ωε(t).

Theorem 3.1. Let u and p satisfy the Euler equations (3.1)–(3.3) in the moving thin

domain Ωε(t). Then the normal component of the zeroth order term v in the expansion

(3.4) is equal to the outward normal velocity of the moving surface Γ(t), i.e., v · ν = V N
Γ .
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Moreover, v and the zeroth order term q and the first order term q1 in the expansion

(3.5) satisfy

∂•
vv +∇Γq + q1ν = 0 on ST , (3.6)

divΓv = 0 on ST . (3.7)

Before starting to prove Theorem 3.1 we give remarks on the limit equations (3.6)–

(3.7) and necessary conditions on the motion of Γ(t) for the existence of incompressible

fluids in Γ(t) and Ωε(t) for all ε > 0.

Remark 3.2. Let us explain how the limit equations (3.6) and (3.7) determine v, q,

and q1. As stated in Theorem 3.1, the normal component of v is equal to the outward

normal velocity of the moving surface. The tangential component of v and the scalar

function q are determined by the equations

PΓ∂
•
vv +∇Γq = 0, divΓv = 0 on ST . (3.8)

Finally the scalar function q1 is given just by the inner product of (3.6) and ν:

q1 = −∂•
vv · ν on ST . (3.9)

Note that q1 comes from the normal derivative of the pressure p of the bulk fluid in the

moving thin domain (see (3.17) below).

The system (3.8) is the same as the incompressible Euler system (II) in [18] with

the constant density. When the surface Γ(t) = Γ is stationary, the limit velocity v

is tangential (v · ν = V N
Γ = 0) and PΓ{(v · ∇)v} = ∇vv holds on Γ by the Gauss

formula (2.14), where ∇vv is the covariant derivative. From this and the fact that PΓ is

independent of the time it follows that

PΓ∂
•
vv = PΓ∂tv + PΓ{(v · ∇)v} = ∂tv +∇vv on Γ. (3.10)

Hence the tangential limit system (3.8) becomes

∂tv +∇vv +∇Γq = 0, divΓv = 0 on Γ× (0, T ),

which is the same as the Euler system on a manifold derived by Arnol′d [2, 3] (see also

Ebin and Marsden [12]). Also, applying v·ν = 0, (2.14), and the fact that ν is independent

of time to (3.9) we obtain

q1 = −∂•
vv · ν = −∂t(v · ν)− {(v · ∇)v} · ν = −Av · v, (3.11)

which does not vanish in general even if the surface is stationary.

Remark 3.3. For the existence of a surface incompressible fluid obeying (3.7) it is

required that the area of the moving surface Γ(t) is preserved in time. Indeed, by the

Leibniz formula (see [10, Lemma 2.2]) with a velocity field v on ST satisfying v · ν = V N
Γ

and (3.7) we have

d

dt
|Γ(t)| = d

dt

∫
Γ(t)

1 dH2 =

∫
Γ(t)

divΓv dH2 = 0, (3.12)

where |Γ(t)| is the area of Γ(t). Similarly, when the moving thin domain Ωε(t) is filled

with an incompressible fluid satisfying (3.2) and the impermeable boundary condition
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(3.3), its volume |Ωε(t)| must remain constant by the Reynolds transport theorem (see,

e.g., [14]):

d

dt
|Ωε(t)| =

d

dt

∫
Ωε(t)

1 dx =

∫
∂Ωε(t)

V N
ε dH2

=

∫
∂Ωε(t)

u · νε dH2 =

∫
Ωε(t)

div u dx = 0.

By the change of variables formula (2.20) the volume of Ωε(t) is expressed as

|Ωε(t)| =
∫
Ωε(t)

1 dx =

∫
Γ(t)

∫ ε

−ε

J(y, t, ρ) dρ dH2

= 2ε|Γ(t)|+ 2

3
ε3

∫
Γ(t)

K dH2.

Hence we need to assume

d

dt
|Γ(t)| = 0,

d

dt

∫
Γ(t)

K dH2 = 0

for the existence of an incompressible fluid in the ε-tubular neighborhood Ωε(t) of Γ(t)

for all ε > 0. However, by the Gauss-Bonnet theorem we have∫
Γ(t)

K dH2 = 2πχ(Γ(t)),

where χ(Γ(t)) is the Euler characteristic of Γ(t) (see, e.g., [32, Section C.5]). Since

the Euler characteristic is a topological invariant and the moving surface Γ(t) does not

change its topology, the integral of the Gaussian curvatureK over Γ(t) is constant in time.

Therefore, only the area preserving condition (3.12) on Γ(t) is necessary for the existence

of incompressible fluids on Γ(t) and in Ωε(t) for all ε > 0. Note that this assertion is

valid only for a moving surface in R
3 or a moving hypersurface in R

4. Indeed, when Γ(t)

is a moving hypersurface in R
n with n > 4, the Jacobian J(y, t, ρ) is a polynomial in ρ

of degree greater than three (see, e.g., [13, Section 14.6] and [22, Section 5.1]) and thus

we need more constraints on the motion of Γ(t).

Proof of Theorem 3.1. For the sake of simplicity, we use the abbreviations

f(π, t) = f(π(x, t), t), R(dk) = R(d(x, t)k) (3.13)

for a function f on ST and k ∈ N. Since νε and V N
ε are given by (2.5) and (2.6), the

boundary condition (3.3) reads

u(x, t) · ν(π, t) = V N
Γ (π, t), x ∈ ∂Ωε(t).

We substitute (3.4) for u in the above equality. Then

v(π, t) · ν(π, t)± εv1(π, t) · ν(π, t) +O(ε2) = V N
Γ (π, t)

when d(x, t) = ±ε (double-sign corresponds). Since v(π, t), v1(π, t), ν(π, t), and V N
Γ (π, t)

are independent of ε, it follows from the above equation that

v(π, t) · ν(π, t) = V N
Γ (π, t), (3.14)

v1(π, t) · ν(π, t) = 0. (3.15)
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The first statement of the theorem follows from the equality (3.14). Let us write v =

V N
Γ ν + vT with a tangential velocity field vT on Γ(t) and derive the equations (3.6) and

(3.7). By (2.2) and (2.25) we have

∇u(x, t) = ∇
(
v(π, t)

)
+∇d(x, t)⊗ v1(π, t) +R(d) (3.16)

= ∇Γv(π, t) + ν(π, t)⊗ v1(π, t) +R(d)

and

∇p(x, t) = ∇Γq(π, t) + q1(π, t)ν(π, t) +R(d). (3.17)

Also, by (2.4) and (2.26),

∂tu(x, t) = ∂t
(
v(π, t)

)
+ ∂td(x, t)v

1(π, t) +R(d) (3.18)

= ∂◦v(π, t)− V N
Γ (π, t)v1(π, t) +R(d).

From (3.16) the gradient of the jth component of u is

∇uj(x, t) = ∇Γvj(π, t) + v1j (π, t)ν(π, t) +R(d).

We take the inner product of this equation and (3.4), and then apply (3.14) and v·∇Γvj =

vT · ∇Γvj to get the jth component of the inertia term

u(x, t) · ∇uj(x, t) = vT (π, t) · ∇Γvj(π, t) + V N
Γ (π, t)v1j (π, t) +R(d).

Hence the inertia term (u · ∇)u is of the form

[(u · ∇)u](x, t) = [(vT · ∇Γ)v](π, t) + V N
Γ (π, t)v1(π, t) +R(d). (3.19)

Substituting (3.17), (3.18), and (3.19) for (3.1) and applying (2.23) we obtain

∂•
vv(π, t) +∇Γq(π, t) + q1(π, t)ν(π, t) = R(d).

In this equation, each term on the left-hand side is independent of d. Therefore, the

equation (3.6) should be satisfied.

Finally, by (3.15) and (3.16) we have

div u(x, t) = tr[∇u(x, t)] = divΓv(π, t) + ν(π, t) · v1(π, t) +R(d)

= divΓv(π, t) +R(d)

and thus the equation (3.2) reads divΓv(π, t) = R(d). Since the left-hand side is inde-

pendent of d, we conclude that v satisfies the equation (3.7). �

4. Limit equations of the Navier-Stokes equations. In this section, we consider

the incompressible Navier-Stokes equations in Ωε(t):

∂tu+ (u · ∇)u+∇p = μ0Δu in Qε,T , (4.1)

div u = 0 in Qε,T . (4.2)
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Here u = (u1, u2, u3) is the velocity of a bulk fluid, p is the pressure, and μ0 > 0 is the

viscosity coefficient. On these equations we impose the (perfect slip) Navier boundary

condition of the form

u · νε = V N
ε on ∂�Qε,T , (4.3)

[D(u)νε]tan = 0 on ∂�Qε,T . (4.4)

Here [a]tan denotes the tangential component to ∂Ωε(t) of a vector a ∈ R
3 and D(u) is

the strain rate tensor given by

D(u) :=
∇u+ (∇u)T

2
,

where (∇u)T is the transposed matrix of ∇u.

In order to derive limit equations of the Navier-Stokes equations (4.1)–(4.4) we expand

the velocity field u with respect to the signed distance d(x, t) as

u(x, t) = v(π(x, t), t) + d(x, t)v1(π(x, t), t) + d(x, t)2v2(π(x, t), t) + R(d(x, t)3) (4.5)

and the pressure p as (3.5). We need to expand u up to the second order term in d(x, t)

since the momentum equation (4.1) has the second order derivatives of u.

Theorem 4.1. Let u and p satisfy the Navier-Stokes equations (4.1)–(4.4) in the moving

thin domain Ωε(t). Then the normal component of the zeroth order term v in the

expansion (4.5) is equal to the outward normal velocity of the moving surface Γ(t), i.e.,

v · ν = V N
Γ . Moreover, the velocity field v and the zeroth and first order terms q and q1

in the expansion (3.5) satisfy

∂•
vv +∇Γq + q1ν = 2μ0divΓ(PΓD

tan(v)PΓ) on ST , (4.6)

divΓv = 0 on ST . (4.7)

Here Dtan(v) is the tangential strain rate given by (2.12).

Remark 4.2. As in Remark 3.2, the normal component of v is equal to V N
Γ , the

tangential component of v and the scalar function q are determined by

PΓ∂
•
vv +∇Γq = 2μ0PΓdivΓ(PΓD

tan(v)PΓ), divΓv = 0 on ST , (4.8)

and the scalar function q1 is given by the normal component of (4.6). The tangential

system (4.8) is the same as the tangential incompressible Navier-Stokes-Scriven-Koba

(NSSK) system in [18] with constant density (see (4.4) in [18]).

When Γ(t) = Γ is fixed in time, the tangential system (4.8) is the same as the incom-

pressible Navier-Stokes system on a fixed manifold derived by Taylor [31]

∂tv +∇vv +∇Γq = μ0(ΔBv +Kv), divΓv = 0 on Γ× (0, T ) (4.9)

for a tangential velocity field v on Γ, although the authors of [18] claim that the system

(4.8) on the stationary surface Γ is different from Taylor’s model (4.9) (see Remark 4.3

below). Indeed, when the surface Γ is stationary, i.e., V N
Γ = 0, the velocity field v in

the system (4.8) is tangential and by applying (3.10) to the left-hand side of the first

equation in (4.8) we obtain

∂tv +∇vv +∇Γq = 2μ0PΓdivΓ(PΓD
tan(v)PΓ), divΓv = 0 on Γ× (0, T ).
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Moreover, since v is tangential and satisfies divΓv = 0, the right-hand side of the first

equation in the above system is the same as that in Taylor’s system (4.9) by (2.17).

Hence the tangential incompressible Navier-Stokes system (4.8) on the stationary surface

Γ agrees with the system (4.9) given by Taylor.

As in the case of the Euler equations (see Remark 3.2), when the surface is stationary

the function q1 in (4.6) is given by

q1 = {−∂•
vv + 2μ0divΓ(PΓD

tan(v)PΓ)} · ν = −Av · v + 2μ0tr[A∇Γv],

where the second equality follows from (2.13) and (3.11). From this formula we observe

that q1 does not vanish in general even if the surface is stationary.

Remark 4.3. The authors of [18] argue that the tangential incompressible Navier-

Stokes system (4.8) on a stationary surface Γ is different from the Navier-Stokes system

(4.9) on a manifold given by Taylor [31], which is inconsistent with our argument in

Remark 4.2. Unfortunately, there seems to be a flaw in derivation of Taylor’s system

(4.9) in [18, Section 5]. The authors of [18] applied an energetic variational approach with

the dissipation energy given by the tangential strain rateDtan(v) = {∇Γv+(∇Γv)
T }/2 to

obtain (4.9). In their derivation of (4.9) they claim that PΓdivΓ
(
PΓD

tan(v)
)
= ΔBv+Kv

holds on Γ when Γ is stationary and v is tangential and satisfies divΓv = 0 (see the

argument after [18, Theorem 5.1]). However, we have

2PΓdivΓ
(
PΓD

tan(v)
)
= ΔBv +Kv −A2v

for any tangential vector field v on Γ satisfying divΓv = 0, since the sum of the first two

terms on the right-hand side is equal to 2PΓdivΓ(PΓD
tan(v)PΓ) by (2.17) and

2PΓdivΓ
(
PΓD

tan(v)
)
− 2PΓdivΓ(PΓD

tan(v)PΓ)

= 2PΓdivΓ
(
PΓD

tan(v)(ν ⊗ ν)
)
= −A2v

holds by the same calculations as in the proof of Lemma 2.3 (see Appendix A).

It seems that their choice of the dissipation energy for derivation of (4.9) comes from

a subtle misunderstanding of the strain rate tensor in Taylor’s model, which is called

the deformation tensor in [21,31]. Taylor [31] defined the deformation tensor Def v for a

tangential vector field v on Γ as a symmetric tensor field of type (0, 2) on the manifold

Γ (see, e.g., [20, Chapter 12] for tensor fields) satisfying

(Def v)(X,Y ) =
1

2

(
∇Xv · Y +X · ∇Y v

)
, X, Y ∈ C∞(TΓ), (4.10)

where C∞(TΓ) is the set of all smooth tangential vector fields on Γ. (See also (2.3)

in [21]. Note that (2.3) in [21] is a formula for one-forms on Γ and here we identify

tangential vector fields on Γ with one-forms on Γ via raising and lowering indices.) Let

us show that the right-hand side of (4.10) is equal to {Dtan(v)X} · Y . By the Gauss

formula (2.16) and the fact that the covariant derivative ∇Xv is tangential,

∇Xv = PΓ{(X · ∇Γ)v} = PΓ(∇Γv)
TX on Γ,

where the second equality just follows from our notation on the tangential gradient

matrix (see Section 2). From this formula and the facts that PΓ is symmetric and that
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Y is tangential it follows that

∇Xv · Y = {PΓ(∇Γv)
TX} · Y = {(∇Γv)

TX} · (PΓY ) = {(∇Γv)
TX} · Y.

Similarly we have X · ∇Y v = X · {(∇Γv)
TY } = {(∇Γv)X} · Y and thus

1

2

(
∇Xv · Y +X · ∇Y v

)
=

1

2

(
{∇Γv + (∇Γv)

T }X
)
· Y = {Dtan(v)X} · Y.

Therefore, for any X, Y ∈ C∞(TΓ) the equality

(Def v)(X,Y ) = {Dtan(v)X} · Y (4.11)

holds. Therefore, the deformation tensor Def v can be identified with the restriction on

C∞(TΓ)× C∞(TΓ) of the symmetric bilinear map

TDtan(v) : C
∞(Γ)3 × C∞(Γ)3 → C∞(Γ), (F,G) �→ {Dtan(v)F} ·G.

Here C∞(Γ) denotes the set of all smooth functions on Γ and C∞(Γ)3 is the set of all

smooth three-dimensional vector fields on Γ not necessarily tangential. However, it does

not mean that Def v can be identified with the matrix Dtan(v). Since Def v is a tensor

field of type (0, 2) on the manifold Γ, for any X ∈ C∞(TΓ) the mapping

(Def v)(X, ·) : C∞(TΓ) → C∞(Γ), Y �→ (Def v)(X,Y )

is a linear map from C∞(TΓ) into C∞(Γ), i.e., a one-form on Γ. By identifying one-forms

on Γ with tangential vector fields on Γ via raising and lowering indices, we may consider

(Def v)(X, ·) = (Def v)X as a tangential vector field on Γ. On the other hand, for a

tangential vector field X on Γ the vector field Dtan(v)X is not tangential in general,

even if v is tangential to Γ. Indeed, since (∇Γv)
T ν = (∇Γv)

TPΓν = 0 and (∇Γv)ν =

−(∇Γν)v = Av, where the second relation follows from the fact that v is tangential, we

have

Dtan(v)ν =
1

2
{(∇Γv)ν + (∇Γv)

T ν} =
1

2
Av.

From this equality and the symmetry of the matrix Dtan(v) it follows that

Dtan(v)X · ν = X ·Dtan(v)ν =
1

2
X ·Av

for any tangential vector field X on Γ. The last term does not vanish and thus the vector

field Dtan(v)X is not tangential on Γ in general.

To give a proper interpretation of the deformation tensor as a matrix, we observe that

in (4.11) the vector fields X and Y are tangential to Γ and thus

{Dtan(v)X} · Y = {Dtan(v)PΓX} · (PΓY ) = {PΓD
tan(v)PΓX} · Y

by the symmetry of the orthogonal projection PΓ. Then (4.11) becomes

(Def v)(X,Y ) = {PΓD
tan(v)PΓX} · Y

for all tangential vector fields X and Y on Γ. Moreover, the matrix PΓD
tan(v)PΓ is

symmetric and for any X ∈ C∞(TΓ) the vector field PΓD
tan(v)PΓX is tangential to Γ.
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Therefore, we may identify the deformation tensor

Def v = TDtan(v)|C∞(TΓ)×C∞(TΓ) : C
∞(TΓ)× C∞(TΓ) → C∞(Γ)

with the symmetric matrix PΓD
tan(v)PΓ.

The matrix PΓD
tan(v)PΓ is called a projected strain rate in [18] and employed to

define the dissipation energy in their energetic variational method for derivation of the

incompressible NSSK system on the moving surface (see [18, Lemma 3.4 and Section 4]).

Therefore, the strain rate tensor in Taylor’s system (4.9) is the same as that in the

tangential incompressible Navier-Stokes system (4.8).

Proof of Theorem 4.1. As in the proof of Theorem 3.1 we use the abbreviations (3.13).

Due to the first boundary condition (4.3) we have

v(π, t) · ν(π, t) = V N
Γ (π, t), (4.12)

v1(π, t) · ν(π, t) = 0, (4.13)

v2(π, t) · ν(π, t) = 0 (4.14)

and the surface divergence-free condition (4.7) for v by the same argument as in the proof

of Theorem 3.1. Moreover, we already calculated the expansion of the left-hand side of

(4.1) in the proof of Theorem 3.1:

∂tu(x, t) + [(u · ∇)u](x, t) +∇p(x, t)

= ∂•
vv(π, t) +∇Γq(π, t) + q1(π, t)ν(π, t) +R(d). (4.15)

Let us show that the expansion of the viscous term Δu is of the form

Δu(x, t) = 2[divΓ(PΓD
tan(v)PΓ)](π, t) +R(d). (4.16)

Since Δu = 2divD(u) holds by the divergence-free condition (4.2), we consider the

expansion in powers of d of the strain rate tensor D(u). We differentiate both sides of

(4.5) with respect to x and apply (2.2) and (2.25) to get

∇u(x, t) = ∇Γv(π, t) + [ν ⊗ v1](π, t)

+ d(x, t){[A∇Γv](π, t) +∇Γv
1(π, t) + 2[ν ⊗ v2](π, t)}+R(d2). (4.17)

Hence the strain rate tensor of u is expressed as

D(u)(x, t) = S(π, t) + d(x, t)S1(π, t) +R(d2), (4.18)

where

S := Dtan(v) +
ν ⊗ v1 + v1 ⊗ ν

2
, (4.19)

S1 :=
A∇Γv + (A∇Γv)

T

2
+Dtan(v1) + ν ⊗ v2 + v2 ⊗ ν. (4.20)

Let us write the second boundary condition (4.4) in terms of S and S1. By (2.5) and

(2.6) the boundary condition (4.4) reads

PΓ(π, t)D(u)(x, t)ν(π, t) = 0, x ∈ ∂Ωε(t).
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We substitute (4.18) for the above D(u)(x, t) to obtain

PΓ(π, t)S(π, t)ν(π, t)± εPΓ(π, t)S
1(π, t)ν(π, t) +O(ε2) = 0

according to d(x, t) = ±ε (double-sign corresponds). Since the matrices S(π, t), S1(π, t),

PΓ(π, t), and the vector ν(π, t) are independent of ε, we have

PΓ(π, t)S(π, t)ν(π, t) = 0, (4.21)

PΓ(π, t)S
1(π, t)ν(π, t) = 0. (4.22)

Substituting (4.19) for S in (4.21) and observing

(ν ⊗ v1)ν = (v1 · ν)ν = 0, (v1 ⊗ ν)ν = (ν · ν)v1 = v1, PΓv
1 = v1

by (4.13) we get

v1(π, t) = −2PΓ(π, t)D
tan(v)(π, t)ν(π, t). (4.23)

Moreover, we multiply ν by S1 given by (4.20) and apply

(A∇Γv)
T ν = (∇Γv)

TAν = 0, (∇Γv
1)T ν = (∇Γv

1)TPΓν = 0

by the symmetry of A and PΓ, ∇Γ = PΓ∇Γ, and (2.7), and then use (ν ⊗ v2)ν = 0 and

(v2 ⊗ ν)ν = v2 by (4.14) to obtain

S1ν =
1

2
(A∇Γv +∇Γv

1)ν + v2. (4.24)

It is tangential to Γ(t) by ∇Γ = PΓ∇, (2.7) and (4.14). Hence (4.22) yields

S1(π, t)ν(π, t) = 0. (4.25)

Now we apply the formula (2.27) to the expansion (4.18). Then by the symmetry of S1

(see (4.20)) and the equality (4.25) we get

divD(u)(x, t) = divΓS(π, t) +R(d). (4.26)

Let us write S in terms of v. Substituting (4.23) for (4.19), using the formulas

(Ma)⊗ b = M(a⊗ b), a⊗ (Mb) = (a⊗ b)MT

for a square matrixM of order three and three-dimensional vectors a and b, and observing(
PΓD

tan(v)
)T

= Dtan(v)PΓ by the symmetry of PΓ and Dtan(v), we have

S = Dtan(v)− (ν ⊗ ν)Dtan(v)PΓ − PΓD
tan(v)(ν ⊗ ν)

= PΓD
tan(v)PΓ + (ν ⊗ ν)Dtan(v)(ν ⊗ ν).

Here the second term on the last line vanishes by (ν ⊗ ν)∇Γv = (∇Γv)
T (ν ⊗ ν) = 0.

Hence it follows that

S(π, t) = PΓ(π, t)D
tan(v)(π, t)PΓ(π, t) (4.27)

and we obtain (4.16) by applying (4.26) and (4.27) to Δu = 2divD(u). Finally, we

substitute (4.15) and (4.16) for the momentum equation (4.1) to get

∂•
vv(π, t) +∇Γq(π, t) + q1(π, t)ν(π, t) +R(d) = 2μ0[divΓ(PΓD

tan(v)PΓ)](π, t) +R(d).

Since all terms except for R(d) are independent of d, we conclude that the equation (4.6)

should be satisfied. �
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Remark 4.4. We may replace the perfect slip condition (4.4) by the partial slip

condition

[D(u)νε]tan + k(uT − vTΩ) = 0 on ∂�Qε,T ,

where uT = (I3−νε⊗νε)u, k > 0 is a constant, and vTΩ(·, t) is a given tangential velocity

field on ∂Ωε(t). However, it makes the limit velocity overdetermined. Indeed, suppose

that vTΩ is given by

vTΩ(x, t) =

{
vouter(π(x, t), t) if d(x, t) = ε,

vinner(π(x, t), t) if d(x, t) = −ε,

where vouter(·, t) and vinner(·, t) are given tangential velocity fields on Γ(t). Then the

same calculations as in the proof of Theorem 4.1 yield

v = V N
Γ ν +

vouter + vinner
2

.

Hence the limit velocity v is completely determined by given velocities while it should

satisfy similar equations to (4.6) and (4.7).

Remark 4.5. In the proof of Theorem 4.1 we obtained the expansion (4.16) of the

viscous term Δu by using the expansion of the strain rate tensor D(u). Here let us

expand Δu by direct calculations. In what follows, we abbreviate π(x, t) and R(d(x, t))

to π and R(d) for x ∈ Ωε(t) and suppress the argument t. By (4.17) the gradient of the

jth component of u (j = 1, 2, 3) is

∇uj(x) = ∇Γvj(π) + v1j (π)ν(π) + d(x)Fj(π) +R(d2), (4.28)

where Fj = A∇Γvj +∇Γv
1
j + 2v2j ν. We differentiate both sides of (4.28) with respect to

x and apply (2.2), (2.25), and ∇Γν = −A to get

∇2uj(x) = ∇2
Γvj(π) + [∇Γv

1
j ⊗ ν](π)− v1j (π)A(π) + [ν ⊗ Fj ](π) +R(d).

Taking the trace of both sides and observing A∇Γvj · ν = ∇Γv
1
j · ν = 0 we obtain

Δuj(x) = ΔΓvj(π)− v1j (π)H(π) + 2v2j (π) +R(d)

for each j = 1, 2, 3 and thus

Δuj(x) = ΔΓv(π)−H(π)v1(π) + 2v2(π) +R(d).

Let us express v1 and v2 in terms of v. The first order term v1 is given by (4.23),

∇Γ = PΓ∇Γ, and (∇Γv)
T ν = (∇Γv)

TPΓν = 0:

v1 = −2PΓD
tan(v)ν = −(∇Γv)ν.

By (4.24) and (4.25) we can represent v2 in terms of v and v1 as

v2 = −1

2
(A∇Γv +∇Γv

1)ν.

From this it follows that v2 = 0 since v1 = −(∇Γv)ν is tangential and thus

(∇Γv
1)ν = ∇Γ(v

1 · ν)− (∇Γν)v
1 = Av1 = −A(∇Γv)ν.

Hence we obtain another expansion formula of the viscous term

Δu(x) = ΔΓv(π) + [H(∇Γv)ν](π) +R(d). (4.29)
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Comparing the expansions (4.16) and (4.29) we expect that the equality

2divΓ(PΓD
tan(v)PΓ) = ΔΓv +H(∇Γv)ν (4.30)

holds for the limit velocity v. Let us prove this equality. By the formula (2.13) for the

left-hand side, the proof of (4.30) reduces to showing

∇Γ(divΓv) = 0, 2tr[A∇Γv] = (ΔΓv) · ν. (4.31)

The first equality follows from the surface divergence-free condition (4.7) for the limit

velocity v. To obtain the second equality we need to observe the expansion of the

divergence-free condition (4.2) in powers of the signed distance d up to the first order

term. Taking the trace of (4.17) and using v1 · ν = 0 and v2 = 0 we have

div u(x) = divΓv(π) + d(x){tr[A∇Γv](π) + divΓv
1(π)}+R(d2).

Since the left-hand side vanishes for all x ∈ Ωε(t) by (4.2), observing the first order term

in d(x) on the right-hand side we obtain

tr[A∇Γv] + divΓv
1 = 0. (4.32)

To the second term on the left-hand side we apply v1 = −(∇Γv)ν. Then since

divΓ[(∇Γv)ν] = (divΓ∇Γv) · ν + tr[(∇Γν)
T∇Γv]

= (ΔΓv) · ν − tr[AT∇Γv]

and the Weingarten map A is symmetric, the equality (4.32) becomes

2tr[A∇Γv]− (ΔΓv) · ν = 0.

Hence the second equality in (4.31) holds and (4.30) follows.

5. Energy identities. The purpose of this section is to find a relation between

energy identities of the Euler and Navier-Stokes equations in the moving thin domains

and those of the limit equations on the moving surface. We first derive the energy

identities from the equations and then show that the energy identities of the limit surface

equations are also derived as thin width limits of those of the original bulk equations.

5.1. Euler equations.

Lemma 5.1. Let u and p satisfy the Euler equations (3.1)–(3.3) in the moving thin

domain Ωε(t). Then we have

d

dt

∫
Ωε(t)

|u|2
2

dx = −
∫
∂Ωε(t)

pV N
ε dH2. (5.1)

The identity (5.1) means that the rate of change of the kinetic energy of the incom-

pressible perfect fluid in a moving domain is equal to the rate of work done by the

pressure caused by the motion of the boundary.
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Proof. By the Reynolds transport theorem (see [14]) and (3.1),

d

dt

∫
Ωε(t)

|u|2
2

dx =

∫
Ωε(t)

u · ∂tu dx+

∫
∂Ωε(t)

|u|2
2

V N
ε dH2 (5.2)

=

∫
Ωε(t)

u · {−(u · ∇)u−∇p} dx+

∫
∂Ωε(t)

|u|2
2

V N
ε dH2.

By integration by parts and the equations (3.2) and (3.3) we have∫
Ωε(t)

u · (u · ∇)u dx =

∫
∂Ωε(t)

|u|2(u · νε) dH2 −
∫
Ωε(t)

{u · (u · ∇)u+ |u|2div u} dx

=

∫
∂Ωε(t)

|u|2V N
ε dH2 −

∫
Ωε(t)

u · (u · ∇)u dx.

Therefore, ∫
Ωε(t)

u · (u · ∇)u dx =

∫
∂Ωε(t)

|u|2
2

V N
ε dH2. (5.3)

On the other hand, by integration by parts∫
Ωε(t)

u · ∇p dx =

∫
∂Ωε(t)

(u · νε)p dH2 −
∫
Ωε(t)

(div u)p dx

and we apply (3.2) and (3.3) to the right-hand side to get∫
Ωε(t)

u · ∇p dx =

∫
∂Ωε(t)

pV N
ε dH2. (5.4)

Substituting (5.3) and (5.4) for (5.2) we obtain the energy identity (5.1). �

Lemma 5.2. Let v, q, and q1 satisfy the limit equations (3.6) and (3.7) of the Euler

equations. Suppose that the normal component of v is equal to the outward normal

velocity of Γ(t), i.e., v · ν = V N
Γ . Then we have

d

dt

∫
Γ(t)

|v|2
2

dH2 =

∫
Γ(t)

(qH − q1)V N
Γ dH2. (5.5)

The right-hand side of (5.5) represents the rate of work done by the moving surface to

the fluid. Note that it contains the scalar function q1, which corresponds to the normal

derivative of the surface pressure.

Proof. By the assumption we can write v = V N
Γ ν + vT with a tangential velocity field

vT on Γ(t). We apply the Leibniz formula (see [10, Lemma 2.2]) with v = V N
Γ ν + vT to

the integral of |v|2/2 over Γ(t). (Note that the tangential velocity vT does not affect the

change of the shape of Γ(t).) Then we have

d

dt

∫
Γ(t)

|v|2
2

dH2 =

∫
Γ(t)

{
∂•
v

(
|v|2
2

)
+

|v|2
2

divΓv

}
dH2

=

∫
Γ(t)

v · ∂•
vv dH2 +

∫
Γ(t)

|v|2
2

divΓv dH2.
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To the last line we apply the equations (3.6) and (3.7). Then

d

dt

∫
Γ(t)

|v|2
2

dH2 = −
∫
Γ(t)

v · (∇Γq + q1ν) dH2. (5.6)

For the first term on the right-hand side,

v · ∇Γq = divΓ(qv) + q divΓv = −qHV N
Γ + divΓ(qv

T )

by v = V N
Γ ν + vT , ∇Γ(qV

N
Γ ) · ν = 0, divΓν = −H, and (3.7). Moreover, the integral

of the surface divergence of the tangential vector field qvT over Γ(t) vanishes by Stokes’

theorem since Γ(t) is closed. Hence we have∫
Γ(t)

v · ∇Γq dH2 = −
∫
Γ(t)

qHV N
Γ dH2. (5.7)

For the second term we have∫
Γ(t)

v · (q1ν) dH2 =

∫
Γ(t)

q1V N
Γ dH2 (5.8)

by v · ν = V N
Γ . The energy identity (5.5) follows from (5.6), (5.7), and (5.8). �

Let us show that the energy identity (5.5) on the moving surface can be derived as a

thin width limit of that in the moving thin domain (5.1). As in Section 3 we expand the

velocity u and the pressure p in powers of the signed distance d as (3.4) and (3.5) and

determine the zeroth order term in ε of the energy identity (5.1).

Theorem 5.3. Let u and p satisfy the energy identity (5.1). Then the zeroth order term

v in the expansion (3.4) and the zeroth and first order terms q and q1 in the expansion

(3.5) satisfy the energy identity (5.5).

Proof. From the expansion (3.4) we have

|u(x, t)|2
2

=
|v(π(x, t), t)|2

2
+ d(x, t)V (π(x, t), t) +R(d(x, t)2)

for x ∈ Ωε(t), where V := v · v1. Using this expansion we write∫
Ωε(t)

|u(x, t)|2
2

dx = I1 + I2 + I3,

where

I1 :=

∫
Ωε(t)

|v(π(x, t), t)|2
2

dx,

I2 :=

∫
Ωε(t)

d(x, t)V (π(x, t), t) dx,

I3 :=

∫
Ωε(t)

R(d(x, t)2) dx.
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To I1 and I2 we apply the change of variables formula (2.20) to get

I1 =

∫
Γ(t)

∫ ε

−ε

|v(y, t)|2
2

J(y, t, ρ) dρ dH2(y)

= 2ε

∫
Γ(t)

|v(y, t)|2
2

dH2(y) + ε2f1(ε, t),

I2 =

∫
Γ(t)

∫ ε

−ε

ρV (y, t)J(y, t, ρ) dρ dH2(y) = ε2f2(ε, t),

where f1 and f2 are polynomials in ε with time-dependent coefficients. (Note that the

Jacobian J(y, t, ρ) given by (2.19) is a polynomial in ρ and the principal curvatures of

Γ(t).) Hence

dI1
dt

= 2ε
d

dt

∫
Γ(t)

|v(y, t)|2
2

dH2(y) +O(ε2),
dI2
dt

= O(ε2). (5.9)

For I3, using the Reynolds transport theorem and observing that the first order time

derivative of R(d(x, t)2) is R(d(x, t)) we have

dI3
dt

=

∫
Ωε(t)

R(d(x, t)) dx+

∫
∂Ωε(t)

R(d(x, t)2)V N
ε (x, t) dH2(x).

We apply the change of variables formula (2.20) to the first term on the right-hand side

of the above equality. Then by R(d(x, t)) = R(ρ) = O(ε) and J(y, t, ρ) = O(1) for

d(x, t) = ρ ∈ (−ε, ε) with x ∈ Ωε(t) to get∫
Ωε(t)

R(d(x, t)) dx =

∫
Γ(t)

∫ ε

−ε

R(ρ)J(y, t, ρ) dρ dH2(y) = O(ε2).

Moreover, by R(d(x, t)2) = O(ε2) for x ∈ ∂Ωε(t) and

|V N
ε (x, t)| = |V N

Γ (π(x, t), t)| = O(1), x ∈ ∂Ωε(t),

which follows from (2.6) and the fact that V N
Γ is independent of ε, and the change of

variables formula (2.21) and J(y, t,±ε) = O(1), we have∫
∂Ωε(t)

R(d(x, t)2)V N
ε (x, t) dH2(x) =

∑
ρ=±ε

∫
Γ(t)

O(ε2)J(y, t, ρ) dH2(y) = O(ε2).

Hence dI3/dt = O(ε2). From this estimate and (5.9) it follows that

d

dt

∫
Ωε(t)

|u(x, t)|2
2

dx =
d

dt
(I1 + I2 + I3) (5.10)

= 2ε
d

dt

∫
Γ(t)

|v(y, t)|2
2

dH2(y) +O(ε2).

Let us expand the right-hand side of the energy identity (5.1) in ε. By the expansion

(3.5) of the pressure p, the relation (2.6), and the formula (2.21),∫
∂Ωε(t)

p(x, t)V N
ε (x, t) dH2(x) = J1 + εJ2 +O(ε2), (5.11)
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where

J1 :=

∫
Γ(t)

q(y, t)V N
Γ (y, t){J(y, t, ε)− J(y, t,−ε)} dH2(y),

J2 :=

∫
Γ(t)

q1(y, t)V N
Γ (y, t){J(y, t, ε) + J(y, t,−ε)} dH2(y).

From (2.19) we have

J(y, t, ε)− J(y, t,−ε) = −2εH(y, t) +O(ε2),

J(y, t, ε) + J(y, t,−ε) = 2 + O(ε2).

Hence

J1 = −2ε

∫
Γ(t)

q(y, t)H(y, t)V N
Γ (y, t) dH2(y),

J2 = 2

∫
Γ(t)

q1(y, t)V N
Γ (y, t) dH2(y)

and applying them to the right-hand side of (5.11) we get∫
∂Ωε(t)

p(x, t)V N
ε (x, t) dH2(x)

= −2ε

∫
Γ(t)

{q(y, t)H(y, t)− q1(y, t)}V N
Γ (y, t) dH2(y) +O(ε2). (5.12)

Finally, we substitute (5.10) and (5.12) for (5.1) and divide both sides by 2ε to obtain

d

dt

∫
Γ(t)

|v(y, t)|2
2

dH2(y) =

∫
Γ(t)

{q(y, t)H(y, t)− q1(y, t)}V N
Γ (y, t) dH2(y) +O(ε).

Since the left-hand side and the first term on the right-hand side are independent of ε,

we conclude that the identity (5.5) should be satisfied. �
5.2. Navier-Stokes equations.

Lemma 5.4. Let u and p satisfy the Navier-Stokes equations (4.1)–(4.4) in the moving

thin domain Ωε(t). Then we have

d

dt

∫
Ωε(t)

|u|2
2

dx = −2μ0

∫
Ωε(t)

|D(u)|2 dx+

∫
∂Ωε(t)

(σνε · νε)V N
ε dH2. (5.13)

Here σ := 2μ0D(u)− pI3 denotes the Cauchy stress tensor.

The first term on the right-hand side of (5.13) represents the energy dissipation by

viscosity and the second term stands for the rate of work done by the normal component

of the stress vector σνε on the moving boundary.

Proof. By the Reynolds transport theorem (see [14]) and the equation (4.1),

d

dt

∫
Ωε(t)

|u|2
2

dx =

∫
Ωε(t)

u · ∂tu dx+

∫
∂Ωε(t)

|u|2
2

V N
ε dH2

=

∫
Ωε(t)

u · {−(u · ∇)u−∇p+ μ0Δu} dx+

∫
∂Ωε(t)

|u|2
2

V N
ε dH2. (5.14)
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We already computed the integrals of u · (u · ∇)u and u · ∇p over Ωε(t) in the proof of

Lemma 5.1; see (5.3) and (5.4). Let us calculate the integral of u · Δu. Since Δu =

2divD(u) by the divergence-free condition (4.2),∫
Ωε(t)

u ·Δu dx = 2

∫
Ωε(t)

u · divD(u) dx

= 2

∫
∂Ωε(t)

u ·D(u)T νε dH2 − 2

∫
Ωε(t)

∇u : D(u) dx,

where F : G := tr[FTG] for square matrices F and G of order three. In the last line we

use the symmetry of the strain rate tensor D(u) and the boundary conditions (4.3) and

(4.4) to get

u ·D(u)T νε = (u · νε)(D(u)νε · νε) = V N
ε (D(u)νε · νε)

on ∂Ωε(t). Also, we easily observe that

∇u : D(u) = (∇u)T : D(u) = |D(u)|2
⎛⎝=

3∑
i,j=1

[D(u)]2ij

⎞⎠ .

Here [D(u)]ij is the (i, j)-entry of D(u), i.e., [D(u)]ij = (∂iuj + ∂jui)/2. Hence∫
Ωε(t)

u ·Δu dx = 2

∫
∂Ωε(t)

(D(u)νε · νε)V N
ε dH2 − 2

∫
Ωε(t)

|D(u)|2 dx. (5.15)

Finally we substitute (5.3), (5.4), and (5.15) for (5.14) to obtain (5.13). �

Lemma 5.5. Let v, q, and q1 satisfy the limit equations (4.6) and (4.7) of the Navier-

Stokes equations. Suppose that the normal component of v is equal to the outward

normal velocity of Γ(t), i.e., v · ν = V N
Γ . Then we have

d

dt

∫
Γ(t)

|v|2
2

dH2 = −2μ0

∫
Γ(t)

|PΓD
tan(v)PΓ|2 dH2 +

∫
Γ(t)

(qH − q1)V N
Γ dH2. (5.16)

The first and second terms on the right-hand side of (5.16) correspond to the energy

dissipation of the surface fluid by viscosity and the rate of work done by the moving

surface, respectively.

Proof. As in the proof of Lemma 5.2 we use the Leibniz formula [10, Lemma 2.2] with

velocity field v and the equations (4.6) and (4.7):

d

dt

∫
Γ(t)

|v|2
2

dH2 =

∫
Γ(t)

v · ∂•
vv dH2 +

∫
Γ(t)

|v|2
2

divΓv dH2 (5.17)

=

∫
Γ(t)

v · {−∇Γq − q1ν + 2μ0divΓ(PΓD
tan(v)PΓ)} dH2.

The first two terms in the last line were calculated in the proof of Lemma 5.2; see (5.7)

and (5.8). For the viscous term,

v · divΓ(PΓD
tan(v)PΓ) = divΓ(PΓD

tan(v)PΓv)−∇Γv : PΓD
tan(v)PΓ.
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The integral of the first term on the right-hand side over Γ(t) vanishes by Stokes’ theorem

since Γ(t) is closed and PΓD
tan(v)PΓv is a tangential vector field on Γ(t). Also, since

the matrix PΓD
tan(v)PΓ is symmetric,

∇Γv : PΓD
tan(v)PΓ = (∇Γv)

T : PΓD
tan(v)PΓ = Dtan(v) : PΓD

tan(v)PΓ.

Moreover, by the formulas P 2
Γ = PT

Γ = PΓ and E : FG = FTE : G = EGT : F for square

matrices E, F , and G of order three we obtain

∇Γv : PΓD
tan(v)PΓ = Dtan(v) : PΓD

tan(v)PΓ = |PΓD
tan(v)PΓ|2.

Hence the integral of the inner product of v and divΓ(PΓD
tan(v)PΓ) is∫

Γ(t)

v · divΓ(PΓD
tan(v)PΓ) dH2 = −

∫
Γ(t)

|PΓD
tan(v)PΓ|2 dH2. (5.18)

Applying (5.7), (5.8), and (5.18) to (5.17) we obtain (5.16). �
As in the case of the Euler equations, the energy identity (5.16) on the moving surface

can be derived as a thin width limit of that in the moving thin domain (5.13). Let us

expand u and p in powers of d as (4.5) and (3.5) and determine the zeroth order term in

ε of the energy identity (5.13).

Theorem 5.6. Let u and p satisfy the energy identity (5.13). Suppose that the velocity

field u satisfies the boundary conditions (4.3) and (4.4). Then the zeroth order term v in

the expansion (4.5) and the zeroth and first order terms q and q1 in the expansion (3.5)

satisfy the energy identity (5.16).

Proof. The remaining part of the proof is to show that∫
Ωε(t)

|D(u)(x, t)|2 dx = 2ε

∫
Γ(t)

|(PΓD
tan(v)PΓ)(y, t)|2 dH2(y) +O(ε2) (5.19)

and ∫
∂Ωε(t)

[(D(u)νε · νε)V N
ε ](x, t) dH2(x) = O(ε2) (5.20)

since we already computed other terms in the proof of Theorem 5.3; see (5.10) and (5.12).

By (4.18) and (4.27) in the proof of Theorem 4.1 we have

D(u)(x, t) = (PΓD
tan(v)PΓ)(π(x, t), t) + d(x, t)S1(π(x, t), t) +R(d(x, t)2)

for x ∈ Ωε(t) (Note that to get (4.27) we only need the boundary conditions (4.3)

and (4.4) for the Navier-Stokes equations. See the proof of Theorem 4.1.) Using this

expansion and the change of variable formula (2.20) we obtain (5.19) as∫
Ωε(t)

|D(u)(x, t)|2 dx =

∫
Ωε(t)

{|(PΓD
tan(v)PΓ)(π(x, t), t)|2 +R(d(x, t))} dx

=

∫
Γ(t)

∫ ε

−ε

{|(PΓD
tan(v)PΓ)(y, t)|2 +R(ρ)}J(y, t, ρ) dρ dH2(y)

= 2ε

∫
Γ(t)

|(PΓD
tan(v)PΓ)(y, t)|2 dH2(y) +O(ε2).
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Let us show (5.20). By (2.5) we have

(D(u)νε)(x, t) = ±(PΓD
tan(v)PΓν)(π(x, t), t) + ε(S1ν)(π(x, t), t) +O(ε2)

for x ∈ ∂Ωε(t) according to d(x, t) = ±ε (double-sign corresponds). Moreover, the first

two terms on the right-hand side vanish since PΓν = 0 and S1ν = 0 on Γ(t) by (4.25).

(Note that, similarly to the proof of (4.27), only the boundary conditions (4.3) and (4.4)

are necessary to show (4.25). See the proof of Theorem 4.1.) Hence D(u)νε = O(ε2) on

∂Ωε(t). Applying this estimate and

|νε(x, t)| = 1, |V N
ε (x, t)| = |V N

Γ (π(x, t), t)| = O(1), x ∈ ∂Ωε(t),

where the second relation follows from (2.6) and the fact that V N
Γ is independent of ε,

to the left-hand side of (5.20), and then using the change of variables formula (2.21) and

J(y, t,±ε) = O(1), we obtain (5.20) as∫
∂Ωε(t)

[(D(u)νε · νε)V N
ε ](x, t) dH2(x) =

∑
ρ=±ε

∫
Γ(t)

O(ε2)J(y, t, ρ) dH2(y) = O(ε2).

Now we substitute (5.10), (5.12), (5.19), and (5.20) for the energy identity (5.13) and

divide both sides by 2ε to obtain

d

dt

∫
Γ(t)

|v(y, t)|2
2

dH2(y) = −2μ0

∫
Γ(t)

|(PΓD
tan(v)PΓ)(y, t)|2 dH2(y)

+

∫
Γ(t)

(qH − q1)(y, t)V N
Γ (y, t) dH2(y) +O(ε).

Since all terms except for O(ε) are independent of ε, we conclude that the energy identity

(5.16) must be satisfied. �
Remark 5.7. The assumption in Theorem 5.6 that the boundary conditions (4.3) and

(4.4) are satisfied is necessary to deal with integrals including the strain rate tensor D(u).

Note that, contrary to the case of the Navier-Stokes equations (Theorem 5.6), we do not

need even the impermeable boundary condition (3.3) to derive the thin width limit of

the energy identity of the Euler equations in the moving thin domain; see Theorem 5.3.

A. Elementary calculations of various quantities on surfaces. In this appen-

dix we prove elementary facts on various quantities and differential operators on a surface

given in Section 2. Until the end of the proof of Lemma 2.6 we fix and suppress t ∈ [0, T ].

Proof of Lemma 2.1. Since |ν|2 = 1 on Γ, we have

0 = ∇Γ|ν|2 = 2(∇Γν)ν = −2Aν on Γ,

which implies (2.7). The formula (2.8) is an immediate consequence of (2.7). Now let us

prove (2.9). Let ν̃ be an extension of ν to N . By (2.2) and ν̃|Γ = ν we have

∇2d(x) = ∇π(x)(∇ν̃)(π(x)), x ∈ N. (A.1)

Moreover, we differentiate both sides of (2.1) and apply (2.2) to get

∇π(x) = PΓ(π(x))− d(x)∇π(x)(∇ν̃)(π(x)), x ∈ N.



SINGULAR LIMITS FOR INCOMPRESSIBLE FLUIDS IN MOVING THIN DOMAINS 243

In particular, if x = y ∈ Γ, then d(x) = 0, π(x) = y and thus

∇π(y) = PΓ(y), y ∈ Γ.

Applying this formula to (A.1) with x = y ∈ Γ we obtain (2.9). �
Proof of Lemma 2.2. Let f be a function on Γ and f̃ its extension to N satisfying

f̃ |Γ = f . For j = 1, 2, 3, by (2.2) and the definition of the tangential derivative operators

we have

∂tan
j f(y) =

3∑
l=1

{δjl − ∂jd(y)∂ld(y)}∂lf̃(y), y ∈ Γ.

From now on we suppress the argument y. By the above formula we have

∂tan
i ∂tan

j f =

3∑
k,l=1

{δik − (∂id)(∂kd)}∂k
[
{δjl − (∂jd)(∂ld)}∂lf̃

]
= α1 + α2 + α3

for i, j = 1, 2, 3, where

α1 :=

3∑
k,l=1

{δik − (∂id)(∂kd)}{δjl − (∂jd)(∂ld)}∂k∂lf̃ ,

α2 := −
3∑

k,l=1

{δik − (∂id)(∂kd)}(∂k∂jd)(∂ld)∂lf̃ ,

α3 := −
3∑

k,l=1

{δik − (∂id)(∂kd)}(∂jd)(∂k∂ld)∂lf̃ .

Similarly, we have ∂tan
j ∂tan

i f = β1 + β2 + β3, where

β1 :=
3∑

k,l=1

{δjl − (∂jd)(∂ld)}{δik − (∂id)(∂kd)}∂l∂kf̃ ,

β2 := −
3∑

k,l=1

{δjl − (∂jd)(∂ld)}(∂l∂id)(∂kd)∂kf̃ ,

β3 := −
3∑

k,l=1

{δjl − (∂jd)(∂ld)}(∂id)(∂l∂kd)∂kf̃ .

From ∂k∂lf̃ = ∂l∂kf̃ it immediately follows that α1 = β1. Since ∂k∂jd = ∂j∂kd,

α2 = −(∇d · ∇f̃)

{
∂i∂jd− (∂id)

3∑
k=1

(∂kd)(∂j∂kd)

}

= −(∇d · ∇f̃)

{
∂i∂jd− (∂id)∂j

(
|∇d|2
2

)}
= −(∇d · ∇f̃)∂i∂jd.
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Here the last equality follows from |∇d|2 = 1 on N . By the same calculation we have

β2 = −(∇d · ∇f̃)∂j∂id. Hence α2 = β2 by ∂i∂jd = ∂j∂id. For α3 and β3,

α3 = −
[
PΓ(∇2d)∇f̃

]
i
∂jd = [A∇Γf ]iνj ,

β3 = −
[
PΓ(∇2d)∇f̃

]
j
∂id = [A∇Γf ]jνi

by (2.2), (2.8), (2.9), and the definition of the tangential gradient operator. (Note that

we calculate values of functions at y ∈ Γ.) Therefore, we obtain

∂tan
i ∂tan

j f − ∂tan
j ∂tan

i f = (α1 + α2 + α3)− (β1 + β2 + β3)

= [A∇Γf ]iνj − [A∇Γf ]jνi,

that is, the formula (2.11) holds. �
Proof of Lemma 2.3. Let v be a general vector field on Γ which may have a nonzero

normal component. Since PΓ∇Γv = ∇Γv and (∇Γv)
TPΓ = (∇Γv)

T we have

2divΓ(PΓD
tan(v)PΓ) = divΓ

(
(∇Γv)PΓ

)
+ divΓ

(
PΓ(∇Γv)

T
)
. (A.2)

Let us calculate each term on the right-hand side. For i, j = 1, 2, 3 the (i, j)-entry of

(∇Γv)PΓ is of the form

[
(∇Γv)PΓ

]
ij
=

3∑
k=1

(∂tan
i vk)(δjk − νjνk).

Thus the jth component of divΓ
(
(∇Γv)PΓ

)
is[

divΓ
(
(∇Γv)PΓ

)]
j
=

3∑
i=1

∂tan
i

[
(∇Γv)PΓ

]
ij
= α1 + α2 + α3,

where

α1 :=
3∑

i,k=1

{(∂tan
i )2vk}(δjk − νjνk),

α2 := −
3∑

i,k=1

(∂tan
i vk)(∂

tan
i νj)νk =

3∑
i,k=1

(∂tan
i vk)Aijνk,

α3 := −
3∑

i,k=1

(∂tan
i vk)νj(∂

tan
i νk) =

3∑
i,k=1

(∂tan
i vk)νjAik.

Here Aij is the (i, j)-entry of the Weingarten map A = −∇Γν. By the definitions of ΔΓ

and PΓ we have α1 =
[
PΓ(ΔΓv)

]
j
, where ΔΓ applies each component of the vector field

v. Also, since A is symmetric,

α2 =

3∑
i,k=1

Aji(∂
tan
i vk)νk =

[
A(∇Γv)ν

]
j
.

Similarly, we have α3 = tr[A∇Γv]νj . Therefore, the equality[
divΓ

(
(∇Γv)PΓ

)]
j
=

[
PΓ(ΔΓv)

]
j
+
[
A(∇Γv)ν

]
j
+ tr[A∇Γv]νj
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holds for each j = 1, 2, 3, which means that

divΓ
(
(∇Γv)PΓ

)
= PΓ(ΔΓv) +A(∇Γv)ν + tr[A∇Γv]ν. (A.3)

Calculations of the second term divΓ
(
PΓ(∇Γv)

T
)
are more complicated. Since[

PΓ(∇Γv)
T
]
ij
=

3∑
k=1

(δik − νiνk)∂
tan
j vk,

we have
[
divΓ

(
PΓ(∇Γv)

T
)]

j
= β1 + β2 + β3, where

β1 := −
3∑

i,k=1

(∂tan
i νi)νk∂

tan
j vk =

3∑
i,k=1

Aiiνk∂
tan
j vk,

β2 := −
3∑

i,k=1

νi(∂
tan
i νk)∂

tan
j vk =

3∑
i,k=1

νiAik∂
tan
j vk,

β3 :=

3∑
i,k=1

(δik − νiνk)∂
tan
i ∂tan

j vk.

By the definition of the mean curvature,

β1 = tr[A]

3∑
k=1

(∂tan
j vk)νk = H

[
(∇Γv)ν

]
j
.

Since Aik = Aki and Aν = 0,

β2 =

3∑
i,k=1

(∂tan
j vk)Akiνi = −

[
(∇Γv)Aν

]
j
= 0.

For β3 we have

β3 =
3∑

i=1

∂tan
i ∂tan

j vi −
3∑

k=1

νk{ν · ∇Γ(∂
tan
j vk)}.

The second term on the right-hand side vanishes since ν · ∇Γ(∂
tan
j vk) = 0 for each j and

k. We apply (2.11) to the first term to get

β3 =
3∑

i=1

∂tan
j ∂tan

i vi +
3∑

i=1

[A∇Γvi]iνj −
3∑

i=1

[A∇Γvi]jνi

= ∂tan
j (divΓv) + tr[A∇Γv]νj −

[
A(∇Γv)ν

]
j
.

Therefore, it follows that[
divΓ

(
PΓ(∇Γv)

T
)]

j
= ∂tan

j (divΓv) +
[
(HI3 −A)(∇Γv)ν

]
j
+ tr[A∇Γv]νj

for each j = 1, 2, 3 and thus

divΓ
(
PΓ(∇Γv)

T
)
= ∇Γ(divΓv) + (HI3 −A)(∇Γv)ν + tr[A∇Γv]ν. (A.4)

Substituting (A.3) and (A.4) for (A.2) we obtain the formula (2.13). �
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Proof of Lemma 2.6. For ρ ∈ [−ε, ε] let Γρ := {x ∈ R
3 | d(x) = ρ} be a level-set

surface of Γ. Suppose that the change of variables formula∫
Γρ

f(z) dH2(z) =

∫
Γ

f(y + ρν(y))J(y, ρ) dH2(y) (A.5)

holds for each ρ ∈ [−ε, ε]. Then (2.20) and (2.21) follow from this formula and∫
Ωε

f(x) dx =

∫ ε

−ε

(∫
Γρ

f(z) dH2(z)

)
dρ,

which is the well-known co-area formula (see, e.g., [11, Theorem 2.9]), and∫
∂Ωε

f(x) dH2(x) =

∫
Γε

f(z) dH2(z) +

∫
Γ−ε

f(z) dH2(z).

Let us prove (A.5). Since Γ is compact, we may take finitely many open subsets Uk of

R
2 and local parametrizations μk : Uk → Γ (k = 1, . . . , N) such that {μk(Uk)}Nk=1 is an

open covering of Γ. Let {ϕk}Nk=1 be a partition of unity of Γ subordinate to the covering

{μk(Uk)}Nk=1 and for each ρ ∈ [−ε, ε] and k = 1, . . . , N set

μρ
k(s) := μk(s) + ρν(μk(s)), ϕρ

k(μ
ρ
k(s)) := ϕk(μk(s)), s ∈ Uk.

Then μρ
k : Uk → Γρ is a local parametrization of Γρ whose domain is the same as that

of μk and {μρ
k(Uk)}Nk=1 is an open covering of Γρ. Moreover, {ϕρ

k}k=1 is a partition of

unity of Γρ subordinate to the covering {μρ
k(Uk)}Nk=1. By these partitions of unity and

the definition of integrals over a surface, the proof of (A.5) reduces to showing that, for

any local parametrization μ : U → Γ with an open subset U of R2 and μρ : U → Γρ given

by μρ(s) := μ(s) + ρν(μ(s)), s ∈ U , the formula√
det θρ(s) = J(μ(s), ρ)

√
det θ(s), s ∈ U (A.6)

holds. Here θ is a square matrix of order two given by θ := ∇′μ(∇′μ)T , where

∇′μ :=

(
∂′
1μ1 ∂′

1μ2 ∂′
1μ3

∂′
2μ1 ∂′

2μ2 ∂′
2μ3

) (
∂′
i :=

∂

∂si

)
,

and θρ := ∇′μρ(∇′μρ)T . We define square matrices M and Mρ of order three as

M(s) :=

(
∇′μ(s)

[ν(μ(s))]T

)
, Mρ(s) :=

(
∇′μρ(s)

[ν(μ(s))]T

)
.

Here we see ν(μ(s)) as a three-dimensional column vector. In the following argument,

we sometimes suppress the argument s and abbreviate ν(μ(s)) to ν. For i = 1, 2 the ith

component of ∇′μ(s)ν(μ(s)) ∈ R
2 is ∂iμ(s) · ν(μ(s)) = 0 since ∂iμ(s) is tangent to Γ at

μ(s). Therefore, (∇′μ)ν = 0 and

MMT =

(
∇′μ(∇′μ)T (∇′μ)ν

[(∇′μ)ν]T |ν|2
)

=

(
θ 0

0 1

)
,

which implies det θ = det(MMT ) = (detM)2. On the other hand, since

μρ(s) = μ(s) + ρν(μ(s)) = μ(s) + ρ∇d(μ(s))
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by (2.2) and thus

∇′μρ(s) = ∇′μ(s){I3 + ρ∇2d(μ(s))} = ∇′μ(s){I3 − ρA(μ(s))}
by (2.9), we have ∇′μρ(s)ν(μ(s)) = 0 by ∇′μ(s)ν(μ(s)) = 0 and (2.7). Hence as in the

case of θ and M we have det θρ = (detMρ)2. Moreover, by (2.7) and the symmetry of

the matrix I3 − ρA,

Mρ =

(
(∇′μ)(I3 − ρA)

νT

)
=

(
∇′μ

νT

)
(I3 − ρA) = M(I3 − ρA).

Hence we get

det θρ = (detMρ)2 = {detM · det(I3 − ρA)}2 = {det(I3 − ρA)}2 det θ.
Finally we observe that the Weingarten map A has the eigenvalues 0, κ1, and κ2 and

thus

det{I3 − ρA(μ(s))} = 1 · {1− ρκ1(μ(s))} · {1− ρκ2(μ(s))}
= J(μ(s), ρ) (> 0 for sufficiently small ρ)

to obtain the formula (A.6). �
Now let us return to the moving surface Γ(t) and prove Lemmas 2.7 and 2.8.

Proof of Lemma 2.7. As in the proof of Theorem 3.1 we use the abbreviations (3.13).

Let f be a function on ST and f̃ an arbitrary extension of f to NT satisfying f̃ |ST
= f .

For (x, t) ∈ Qε,T we have f(π, t) = f̃(π, t) by π = π(x, t) ∈ Γ(t) and thus

∇
(
f(π, t)

)
= ∇π(x, t)∇f̃(π, t),

∂t
(
f(π, t)

)
= ∂tf̃(π, t) + (∂tπ(x, t) · ∇)f̃(π, t).

Hence it is sufficient for (2.25) and (2.26) to show that

∇π(x, t) = PΓ(π, t) + d(x, t)A(π, t) +R(d2), (A.7)

∂tπ(x, t) = V N
Γ (π, t)ν(π, t) + d(x, t)∇ΓV

N
Γ (π, t) +R(d), (A.8)

since

A∇f̃ = APΓ∇f̃ = A∇Γf,

∂tf̃ + (V N
Γ ν · ∇)f̃ = ∂◦f, (∇ΓV

N
Γ · ∇)f̃ = (∇ΓV

N
Γ · ∇Γ)f

on Γ(t) by the definition of the tangential gradient, (2.8), and (2.22) with v = V N
Γ ν. By

π(x, t) = x− d(x, t)∇d(x, t) and (2.2) we have

∇π(x, t) = I3 −∇d(x, t)⊗∇d(x, t)− d(x, t)∇2d(x, t)

= PΓ(π, t)− d(x, t)∇2d(x, t).

Also, we expand ∇2d in powers of d and apply (2.9) to obtain

∇2d(x, t) = ∇2d(π, t) +R(d) = −A(π, t) +R(d).

Hence (A.7) follows. Similarly, we differentiate π(x, t) = x− d(x, t)∇d(x, t) with respect

to t and apply (2.2) and (2.4) to get

∂tπ(x, t) = V N
Γ (π, t)ν(π, t)− d(x, t)∂t∇d(x, t).
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Moreover, by ∂t∇d = ∇∂td, (2.4), and (A.7),

∂t∇d(x, t) = −∇
(
V N
Γ (π, t)

)
= −∇π(x, t)∇Ṽ N

Γ (π, t) = −∇ΓV
N
Γ (π, t) +R(d),

where Ṽ N
Γ is an extension of V N

Γ to NT with Ṽ N
Γ |ST

= V N
Γ . Applying this to the above

equality for ∂tπ we obtain (A.8). �
Proof of Lemma 2.8. We use the abbreviations (3.13). For i, j = 1, 2, 3, let Mij be

the (i, j)-entry of a square matrix M of order three. We differentiate both sides of

Dij(x) = Sij(π) + d(x, t)S1
ij(π) +R(d2) with respect to xi and apply (A.7) to get

∂iDij(x) = ∂tan
i Sij(π) + S1

ij(π)∂id(x, t) +R(d).

Therefore, the jth component of divD(x) is

[divD(x)]j =

3∑
i=1

∂iDij(x) =

3∑
i=1

{∂tan
i Sij(π) + S1

ij(π)∂id(x, t)}+R(d(x, t))

= [divΓS(π)]j +
[(
S1(π)

)T∇d(x, t)
]
j
+R(d)

and (2.27) follows by (2.2). �

B. Comparison of vector Laplacians. The purpose of this appendix is to give a

proof of the formula (2.15) in Lemma 2.4. Main tools for the proof are the Gauss formula

(2.14) and

ΔBX = tr∇2
X =

2∑
i=1

(
∇i∇iX −∇∇iei

X
)

on Γ (B.1)

for any tangential vector fieldX on Γ, where {e1, e2} denotes a local orthonormal frame of

TΓ (i.e., an orthonormal basis of the tangent plane of Γ defined on a relative open subset

of Γ) and ∇i := ∇ei (for a proof of (B.1) see [26, Proposition 34] and [32, Proposition 2.1

in Appendix C]). Hereafter all calculations are carried out on the surface Γ.

We fix coordinates of R3 and write xj (j = 1, 2, 3) for the jth component of a point

x ∈ R
3 under this fixed coordinates. Let X = (X1, X2, X3) be a tangential vector field

on Γ and {e1, e2} be a local orthonormal frame of TΓ. For i = 1, 2, by the Gauss formula

(2.16) and the fact that ∇iX is tangential we have

∇iX = (ei · ∇Γ)X − (AX · ei)ν = PΓ{(ei · ∇Γ)X}.
Here the second equality follows from PΓν = 0. Hence

∇i∇iX = PΓ

[
(ei · ∇Γ){(ei · ∇Γ)X − (AX · ei)ν}

]
= PΓ

[
(ei · ∇Γ){(ei · ∇Γ)X}

]
− (AX · ei)PΓ{(ei · ∇Γ)ν},

where we used PΓν = 0 again in the second equality. By setting ei = (e1i , e
2
i , e

3
i ) the jth

component of the vector (ei · ∇Γ){(ei · ∇Γ)X} (j = 1, 2, 3) is of the form

3∑
k,l=1

eki ∂
tan
k (eli∂

tan
l Xj) =

3∑
k,l=1

{eki eli∂tan
k ∂tan

l Xj + eki (∂
tan
k eli)∂

tan
l Xj}

= tr
[
(ei ⊗ ei)∇2

ΓXj

]
+ {(ei · ∇Γ)ei} · ∇ΓXj .
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Also, by the symmetry of the Weingarten map A = −∇Γν,

[(ei · ∇Γ)ν]j =

3∑
k=1

eki ∂
tan
k νj = −

3∑
k=1

ekiAkj = −[Aei]j .

By these equalities and (2.8) the jth component of ∇i∇iX is

[
∇i∇iX

]
j
=

3∑
k=1

[PΓ]jk

(
tr
[
(ei ⊗ ei)∇2

ΓXk

]
+ {(ei · ∇Γ)ei} · ∇ΓXk

)
+ (AX · ei)[Aei]j . (B.2)

On the other hand, ∇∇iei
X is of the form

∇∇iei
X = PΓ

{(
∇iei · ∇Γ

)
X
}
= PΓ

([
{PΓ(ei · ∇Γ)ei} · ∇Γ

]
X
)

and, since {(PΓF ) ·∇Γ}G = (F ·∇Γ)G holds for (not necessarily tangential) vector fields

F and G on Γ we have[
∇∇iei

X
]
j
=

3∑
k=1

[PΓ]jk

(
{(ei · ∇Γ)ei} · ∇ΓXk

)
. (B.3)

Applying (B.2) and (B.3) to (B.1) we get

[ΔBX]j =

2∑
i=1

(
3∑

k=1

[PΓ]jktr
[
(ei ⊗ ei)∇2

ΓXk

]
+ (AX · ei)[Aei]j

)
.

Furthermore, since e1 and e2 form an orthonormal basis of the tangent plane of Γ it

follows that
∑2

i=1(ei ⊗ ei) = PΓ and thus

2∑
i=1

tr
[
(ei ⊗ ei)∇2

ΓXk

]
= tr[PΓ∇2

ΓXk] = tr[∇2
ΓXk] = ΔΓXk

for each k = 1, 2, 3 by PΓ∇Γ = ∇Γ, and

2∑
i=1

(AX · ei)Aei =

2∑
i=1

A(ei ⊗ ei)AX = APΓAX = A2X,

by (AX · ei)Aei = (Aei ⊗ ei)AX = A(ei ⊗ ei)AX and (2.8). Therefore,

[ΔBX]j =

3∑
k=1

[PΓ]jkΔΓXk + [A2X]j = [PΓΔΓX]j + [A2X]j

for each j = 1, 2, 3, which yields the formula (2.15).
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