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Abstract. We consider the governing equations for the motion of compressible fluid

on an evolving surface from both energetic and thermodynamic points of view. We

employ our energetic variational approaches to derive the momentum equation of our

compressible fluid systems on the evolving surface. Applying the first law of thermody-

namics and the Gibbs equation, we investigate the internal energy, enthalpy, entropy, and

free energy of the fluid on the evolving surface. We also study conservative forms and

conservation laws of our compressible fluid systems on the evolving surface. Moreover,

we derive the generalized heat and diffusion systems on an evolving surface from an ener-

getic point of view. This paper gives a mathematical validity of the surface stress tensor

determined by the Boussinesq-Scriven law. Using a flow map on an evolving surface and

applying the Riemannian metric induced by the flow map are key ideas to analyze fluid

flow on the evolving surface.

1. Introduction.

1.1. The purposes and key ideas of this paper. Interface flow and surface flow play an

important role in fluid dynamics such as soap bubbles in air, the atmosphere and ocean

on the earth, and phase transition in complex fluids. One can consider surface flow as

fluid flow on an evolving surface. An evolving surface means that the surface is moving

or that the shape of the surface is changing with time. In this paper we consider the

thickness of evolving surfaces as zero.

The aim of this paper is to derive several governing equations for the motion of com-

pressible fluid on an evolving surface from both energetic and thermodynamic points of

view. We apply both our energetic variational approach and the first law of thermo-

dynamics to derive several compressible fluid systems on the evolving surface, and we

investigate the entropy and free energy of the fluid on the evolving surface by making

Received July 19, 2017.
2010 Mathematics Subject Classification. Primary 37E35, 49S05, 37D35.
This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI
Grant Numbers JP25887048 and JP15K17580.
E-mail address: iti@sigmath.es.osaka-u.ac.jp

c©2017 Brown University

303

http://www.ams.org/qam/
http://dx.doi.org/10.1090/qam/1491


304 HAJIME KOBA

Fig. 1. Fluid flows on an evolving surface

use of the second law of thermodynamics. This paper derives the surface stress tensor

determined by the Boussinesq-Scriven law (Boussinesq [6], Scriven [19]) from both the

energy dissipation due to the viscosities and the work done by the pressure of the fluid

on an evolving surface to give a mathematical validity of the Boussinesq-Scriven law. Of

course, this paper provides one possibility of the dominant equations for the motion of

compressible fluid on an evolving surface. However, employing a similar technique of this

paper, we can derive several compressible Navier-Stokes systems in domains and make a

mathematical model of two-phase flow with surface flow and surface tension.

We first introduce fundamental notation. Let t ≥ 0 be the time variable,

x(= t(x1, x2, x3)), ξ(=
t(ξ1, ξ2, ξ3)) ∈ R

3 the spatial variables, and X(= t(X1, X2)) ∈ R
2

the spatial variables. Let T ∈ (0,∞] and Γ(t)(= {Γ(t)}0≤t<T ) be a smoothly evolving

2-dimensional surface in R
3 depending on time t. The notation u = u(x, t) = t(u1, u2, u3)

and w = w(x, t) = t(w1, w2, w3) represent the relative fluid velocity of a fluid particle at

a point x = t(x1, x2, x3) of the evolving surface Γ(t) and the motion velocity at a point

x of Γ(t) which determines the motion of the evolving surface Γ(t), respectively. We

often call u a surface flow (surface velocity) on the evolving surface and w the speed of

the evolving surface (see Fig. 1). Assume that u is a tangential vector on Γ(t). Recall

that w is not a necessary tangential vector on Γ(t). We notice that by introducing the

surface flow u and the motion velocity w, then there is no exchange of particles between

the surface and the environment. The velocity

v = v(x, t) = t(v1, v2, v3) := u+ w

is defined as the total velocity of a fluid particle at a point x of Γ(t). In this paper we

focus on the total velocity v.

The notation ρ = ρ(x, t), σ = σ(x, t), e = e(x, t), θ = θ(x, t), eA = eA(x, t), h =

h(x, t), s = s(x, t), and eF = eF (x, t) represent the density, the (total) pressure, the

internal energy, the temperature, the total energy, the enthalpy, the entropy, and the

(Helmholtz) free energy of the fluid on the evolving surface Γ(t), respectively. Note that

the total pressure σ includes surface tension and surface pressure in general. The symbol

C = C(x, t) denotes a concentration of a substance in the fluid on the evolving surface.

Assume that u,w, v, ρ, σ, e, θ, eA, h, s, eF , C are smooth functions.



ON COMPRESSIBLE FLUID FLOWS ON AN EVOLVING SURFACE 305

The symbols μ = μ(x, t), λ = λ(x, t) are two viscosity coefficients of the fluid, κ =

κ(x, t) is the thermal conductivity of the fluid, ν = ν(x, t) is the diffusion coefficient of

the concentration C, F = F (x, t) = t(F1, F2, F3) is the external force or gravity vector,

Qθ = Qθ(x, t) is the heat source, and QC = QC(x, t) is the source on the concentration

C. We often call μ the surface share viscosity and μ+λ the surface dilatational viscosity.

Suppose that μ, λ, κ, ν, F,Qθ, QC are smooth functions.

This paper has six purposes. The first one is to derive and study the following full

compressible fluid system on the evolving surface Γ(t):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dtρ+ (divΓv)ρ = 0 on ST ,

ρDtv = divΓSΓ(v, σ, μ, λ) + ρF on ST ,

ρDte+ (divΓv)σ = divΓqθ + ρQθ + ẽD on ST ,

DtC + (divΓv)C = divΓqC +QC on ST ,

(1.1)

where

ST =

{
(x, t) ∈ R

4; (x, t) ∈
⋃

0<t<T

{Γ(t)× {t}}
}
,

Dt is the material derivative defined by Dtf = ∂tf + (v,∇)f , qθ = κgradΓθ, ẽD =

2μ|DΓ(v)|2 + λ|divΓv|2, and qC = νgradΓC. Here DΓ(v) = PΓD(v)PΓ, |DΓ(v)|2 =

DΓ(v) : DΓ(v), ∂t = ∂/∂t, ∂i = ∂/∂xi, ∇ = t(∂1, ∂2, ∂3), (v,∇)f = v1∂1f+v2∂2f+v3∂3f ,

D(v) = {(∇v) + t(∇v)}/2, and PΓ = I3×3 − n⊗ n, where ⊗ denotes the tensor product

and n = n(x, t) = t(n1, n2, n3) is the unit outer normal vector at x ∈ Γ(t). The symbols

qθ, ẽD, and qC are often called a heat flux on the evolving surface, the density for the

energy dissipation due to the viscosities μ, λ, and a surface flux on the evolving surface,

respectively. We call DΓ(v), D(v), and PΓ, the surface strain rate tensor, the strain

rate tensor, and an orthogonal projection to a tangent space, respectively. The notation

divΓ denotes surface divergence, gradΓ denotes surface divergence, and SΓ(v, σ, μ, λ) is

the surface stress tensor defined by

SΓ(v, σ, μ, λ) = 2μDΓ(v) + λPΓ(divΓv)− PΓσ.

The surface stress tensor SΓ(v, σ, μ, λ) was introduced by Scriven [19]. See Section 2 for

the definitions of divΓ and gradΓ.

We can write the system (1.1) as the following conservative form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DN
t ρ+ divΓ(ρv) = 0 on ST ,

DN
t (ρv) + divΓ(ρv ⊗ v − SΓ(v, σ, μ, λ)) = ρF on ST ,

DN
t eA + divΓ(eAv − qθ − SΓ(v, σ, μ, λ)v) = ρQθ + ρF · v on ST ,

DN
t C + divΓ(Cv − qC) = QC on ST .

(1.2)

Here eA is the total energy defined by eA = ρ|v|2/2 + ρe and DN
t is the time derivative

with the normal derivative defined by

DN
t f = ∂tf + (v · n)(n,∇)f.
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Note that DN
t f = ∂tf if w = 0 since u · n = 0. Note also that

ẽD − (divΓv)σ =divΓ(SΓ(v, σ, μ, λ)v)− divΓ(SΓ(v, σ, μ, λ)) · v,
DΓ(v) : DΓ(v) =DΓ(v) : DΓ(v),

where DΓ(v) = {(∇Γv) +
t(∇Γv)}/2. We often call DΓ(v) a projected strain rate and

DΓ(v) a tangential strain rate. See Section 2 for the notation ∇Γ.

Now we consider conservation laws of the system (1.1). Assume that Γ(t) is flowed

by the velocity v and that F ≡ 0, Qθ ≡ 0, QC ≡ 0. Then we observe that (1.1) satisfies

that for 0 < t1 < t2 < T ,∫
Γ(t2)

ρ(x, t2) dH2
x =

∫
Γ(t1)

ρ(x, t1) dH2
x, (1.3)

∫
Γ(t2)

ρ(x, t2)v(x, t2) dH2
x =

∫
Γ(t1)

ρ(x, t1)v(x, t1) dH2
x, (1.4)

∫
Γ(t2)

eA(x, t2) dH2
x =

∫
Γ(t1)

eA(x, t1) dH2
x, (1.5)

∫
Γ(t2)

C(x, t2) dH2
x =

∫
Γ(t1)

C(x, t1) dH2
x, (1.6)

∫
Γ(t2)

x× (ρv) dH2
x =

∫
Γ(t1)

x× (ρv) dH2
x. (1.7)

Here dH2
x denotes the 2-dimensional Hausdorff measure. We often call (1.3), (1.4), (1.5),

and (1.7), the law of conservation of mass, the law of conservation of momentum, the law

of conservation of the total energy, and the law of conservation of angular momentum,

respectively. See Theorem 1.8 for details.

The second one is to investigate the enthalpy, entropy, and free energy of the fluid on

the evolving surface Γ(t). We now assume that μ, λ, κ, ρ, θ are positive functions. We set

the enthalpy h = h(x, t) = e+ σ/ρ. Then

ρDth = divΓqθ + ρQθ + ẽD +Dtσ on ST . (1.8)

This is equivalent to

DN
t (ρh) + divΓ(ρhv − qθ)− ρQθ = ẽD +Dtσ on ST .

Suppose that the following Gibbs equation holds:

Dte = θDts− σDt

(
1

ρ

)
on ST .

Then we check that the entropy s = s(x, t) fulfills

ρDts =
1

θ
{divΓqθ + ρQθ + ẽD} on ST . (1.9)

Moreover, we obtain the Clausius-Duhem inequality :

DN
t (ρs) + divΓ

(
ρsv − qθ

θ

)
− ρQθ

θ
=

ẽD
θ

+
qθ · gradΓθ

θ2
≥ 0 on ST .

We also observe that

ρDteF + ρsDtθ − SΓ(v, σ, μ, λ) : DΓ(v) = −ẽD ≤ 0 on ST . (1.10)
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Here eF is the free energy defined by eF = e − θs. Recall that ẽD = 2μ|DΓ(v)|2 +

λ|divΓv|2 ≥ 0 and that qθ · gradΓθ = κ|gradΓθ|2 ≥ 0.

The third one is to derive compressible fluid systems on an evolving surface from a

variational point of view. We easily have the momentum equation of the system (1.1) if

we assume

ρDtv = divΓSΓ(v, σ, μ, λ) + ρF.

However, applying our variational methods, we can derive other types of systems of

compressible fluid flow on the evolving surface. For example, we use our methods to

derive the following tangential compressible and non-canonical compressible fluid systems

on an evolving surface:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dtρ+ (divΓv)ρ = 0 on ST ,

PΓρDtv = PΓdivΓSΓ(v, σ, μ, λ) + PΓρF on ST ,

v · n = 0 on ST ,

ρDte+ (divΓv)σ = divΓqθ + ρQθ + ẽD on ST ,

DtC + (divΓv)C = divΓqC +QC on ST ,

(1.11)

and {
Dtρ+ (divΓv)ρ = 0 on ST ,

ρDtv + gradΓσ + σHΓn = PΓdivΓSΓ(u, 0, μ, λ) + ρF on ST .
(1.12)

Here HΓ = HΓ(x, t) denotes the mean curvature of Γ(t) in the direction of the unit

normal outer vector n. See Section 5 for our energetic variational approaches for the two

systems (1.11) and (1.12).

The fourth one is to give a mathematical validity of the surface stress tensor deter-

mined by the Boussinesq-Scriven law (Boussinesq [6], Scriven [19]):

SΓ(v, σ, μ, λ) = 2μDΓ(v) + λPΓ(divΓv)− PΓσ.

This paper derives the surface stress tensor from both the energy dissipation due to the

viscosities μ, λ and the work done by the pressure σ of the fluid on an evolving surface.

More precisely, from Theorem 1.5, Proposition 3.12, and [15, Theorem 2.1], we see a

mathematical validity of the Boussinesq-Scriven law.

The fifth one is to derive the following two barotropic compressible fluid systems on

an evolving surface: ⎧⎪⎪⎨
⎪⎪⎩
Dtρ+ (divΓv)ρ = 0 on ST ,

ρDtv + gradΓp+ pHΓn = 0 on ST ,

p = p(ρ) = ρp′(ρ)− p(ρ),

(1.13)

and ⎧⎪⎪⎨
⎪⎪⎩
Dtρ+ (divΓv)ρ = 0 on ST ,

PΓρDtv + gradΓp = 0 on ST ,

p = p(ρ) = ρp′(ρ)− p(ρ),

(1.14)

where p(·) is a smooth function. We often call p(ρ) the chemical potential. See Theorem

1.9 for details.
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The sixth one is to derive the following generalized heat and diffusion systems on an

evolving surface: {
Dtρ+ (divΓv)ρ = 0 on ST ,

ρDt(Cθθ) = divΓqJ1
+ ρQθ + F1 on ST ,

(1.15)

and

DtC + (divΓv)C = divΓqJ2
+QC + F2 on ST . (1.16)

Here qJ1
is the generalized heat flux defined by qJ1

= e′J1
(|gradΓθ|2)gradΓθ, qJ2

is the

generalized surface flux defined by qJ2
= e′J2

(|gradΓC|2)gradΓC, where eJ1
and eJ2

are

C1-functions, F1 = F1(x, t),F2 = F2(x, t) are two smooth functions depending on the

situation and environment, and Cθ = Cθ(x, t) is a smooth function which is called the

specific heat of the fluid. See Section 5 for our derivation of the two systems (1.15) and

(1.16).

Remark 1.1. (i) We do not use the assumption that σ = σ(ρ, e) when we derive the

systems (1.1) and (1.11) by applying our methods, while we assume the Gibbs equation

Dte = θDts − σDt (1/ρ) when we study the entropy and free energy of the fluid on an

evolving surface.

(ii) If we assume that σ = σ(ρ, e) and e = e(ρ, θ), then in general the system (1.1) is an

overdetermined system for its initial value problem when the motion of Γ(t) is given and

we consider (ρ, v, θ, C) as unknown functions, while the system (1.11) is not an overde-

termined system for its initial value problem when the motion of Γ(t) is given because

the second expression of the system (1.1) has six equations including the tangential and

normal parts of the total velocity. For the same reason, the system (1.13) is an overde-

termined system for its initial value problem when the motion of Γ(t) is given, and the

system (1.14) is not an overdetermined system for its initial value problem when the

motion of Γ(t) is given.

(iii) When we consider (ρ, θ) as unknown functions, the system (1.15) is not an overde-

termined system for its initial value problem when the motion of Γ(t), surface flow u,

and specific heat Cθ are prescribed. The system (1.16) is not an overdetermined system

for its initial valued problem when the motion of Γ(t) and surface flow u are prescribed

and we consider C as an unknown function. It is easy to check that

divΓ{κgradΓθ} = κΔΓθ and divΓ{νgradΓC} = νΔΓC

if κ, ν are constants, where ΔΓ is the Laplace-Beltrami operator.

(iv) There exists at least three mathematical methods for deriving the pressure of the

fluid on an evolving surface. This paper provides two of them. Koba-Liu-Giga [14] gave

the last one. The paper [14] studied incompressible fluid flow on an evolving surface from

an energetic point of view. They applied the Helmholtz-Weyl decomposition on surfaces

to derive the pressure of incompressible fluid on the evolving surface, while this paper

derives the pressure of compressible fluid on an evolving surface from the power density

for the work done by the pressure or a chemical potential.
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Let us explain four key ideas of deriving the compressible fluid systems (1.1) and

(1.11). The first point is to focus our attention on the following energy densities for

compressible fluid on an evolving surface:

Assumption 1.2 (Energy densities for compressible fluid).

eK =
1

2
ρ|v|2, eD =

1

2
{2μ|DΓ(v)|2 + λ|divΓv|2}, eW = (divΓv)σ + ρF · v,

eA =
1

2
ρ|v|2 + ρe, eTD =

1

2
κ|gradΓθ|2, eSD =

1

2
ν|gradΓC|2.

We call eK the kinetic energy, eD, the energy density for the energy dissipation due to

the viscosities μ, λ, eW the power density for the work done by both the pressure σ and

exterior force F , eA the total energy, eTD the energy density for the energy dissipation

due to thermal diffusion, and eSD the energy density for the energy dissipation due to

surface diffusion, of compressible fluid on an evolving surface. Recall that eD 	= ẽD in

general, where ẽD is the density for the energy dissipation due to the viscosities μ, λ. See

subsection 5.1 and [15] for the reason.

Combining Propositions 3.11, 3.12 and [15, Theorem 2.1 and Section 3] gives a math-

ematical validity of our energy densities for compressible fluid on the evolving surface.

Making use of these energy densities, we derive our compressible fluid systems on an

evolving surface. Note that, from the system (1.1), we have the following energy equal-

ity:∫
Γ(t2)

{
1

2
ρ|v|2

}
(x, t2) dH2

x +

∫ t2

t1

∫
Γ(τ)

{2μ|DΓ(v)|2 + λ|divΓv|2}(x, τ ) dH2
xdτ

=

∫
Γ(t1)

{
1

2
ρ|v|2

}
(x, t1) dH2

x +

∫ t2

t1

∫
Γ(τ)

{(divΓv)σ + ρF · v}(x, τ ) dH2
xdτ.

Note also that we set the total energy eB of the barotropic compressible fluid on the

evolving surface as follows:

eB =
1

2
ρ|v|2 − p(ρ).

See Theorem 1.9 for the barotropic compressible fluid systems on the evolving surface.

The second point is to apply an energetic variational approach. In order to derive our

compressible fluid systems, this paper uses forces derived from variations of the action

integral determined by the kinetic energy, dissipation energies determined by our energy

densities, and work for compressible fluid on an evolving surface. For example, we obtain

forces from the following variations:

d

dε

∫ T

0

∫
Γε(t)

1

2
ρε|vε|2 dH2

xdt,
d

dε

∫
Γ(t)

1

2
(2μ|DΓ(ṽ

ε)|2 + λ|divΓṽε|2)dH2
x,

and
d

dε

∫
Γ(t)

{(divΓṽε)σ + ρF · ṽε}dH2
x,

where Γε(t), ρε, vε, and ṽε are variations. See Sections 2-4 for details.

The third point is to make use of the first and second laws of thermodynamics. To

derive the dominant equations for the internal energy, entropy, and free energy of the
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fluid on an evolving surface, we assume the first law of thermodynamics : for Ω(t) ⊂ Γ(t)

d

dt

∫
Ω(t)

{ρe}(x, t) dH2
x =

∫
Ω(t)

{divΓqθ + ρQθ + ẽD − (divΓv)σ}(x, t) dH2
x,

and the Gibbs equation:

Dte = θDts− σDt

(
1

ρ

)
on ST .

The fourth point is to apply a flow map on an evolving surface and the Riemannian

metric induced by the flow map. Using the flow map and the Riemannian metric, we

analyze the fluid on the evolving surface in this paper the next subsection describes the

flow maps in detail. See Section 3 for the Riemannian metric induced by a flow map.

Finally we refer the reader to some references for basic notation and terminologies

for fluid dynamics and thermodynamics in this paper. The basic notation and technical

terms for physics in this paper are based on Serrin [20] and Gurtin-Fried-Anand [12].

Serrin [20] studied mathematical derivations of fluid systems. They applied variational

principles and thermodynamics to derive compressible and incompressible fluid systems

in a domain. Gurtin-Fried-Anand [12] is a textbook for students and graduate students in

physics and mathematics. The book [12] showed the fundamental rules of the mechanics

and thermodynamics of continua. For fluid interfaces and interface models, we refer the

reader to Gatignol-Prud’homme [10] and Slattery-Sagis-Oh [22].

The outline of this paper is as follows: In subsection 1.2, we first introduce a flow

map on an evolving surface, the velocity determined by the flow map, and variations

of both the flow map and the evolving surface. Then we state the main results of

this paper. In Section 2 we prepare useful tools to analyze fluid flow on an evolving

surface. We give the definitions of evolving surfaces and differential operators on an

evolving surface, and we study basic properties of surface divergence, surface gradient,

an orthogonal projection to a tangent space, and surface strain rate tensor. In Section

3 we introduce the Riemannian metric induced by a flow map. Using the Riemannian

metric, we investigate the representation of the kinetic energy, the dissipation energies,

and the work for the fluid on an evolving surface to provide a mathematical validity of

these energies. In Section 4 we calculate variations of the action integral determined by

the kinetic energy, the dissipation energies, and the work for the fluid on an evolving

surface by using a flow map on the evolving surface and the Riemannian metric induced

by the flow map. In Section 5 we derive various compressible fluid systems on an evolving

surface by applying our energetic variational approaches and the thermodynamic theory.

Moreover, we derive the generalized heat and diffusion systems on an evolving surface.

1.2. Main results. Let us first introduce a flow map on an evolving surface and the

velocity determined by the flow map. Next we describe variations of both the flow map

and the evolving surface. Then we state the main results of this paper.

Let T ∈ (0,∞], and let Γ(t)(= {Γ(t)}0≤t<T ) be a smoothly evolving surface in R
3

depending on time t. Assume that Γ(t) is a closed Riemannian 2-dimensional manifold

for each t ∈ [0, T ).

We say that Ω(t) ⊂ Γ(t) is flowed by the velocity field V = V (x, t) = t(V1(x, t), V2(x, t),

V3(x, t)) if there exists a smooth function x̂ = x̂(ξ, t) = t(x̂1(ξ, t), x̂2(ξ, t), x̂3(ξ, t)) such
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that for every ξ ∈ Γ(0), {
dx̂
dt (ξ, t) = V (x̂(ξ, t), t), t ∈ (0, T ),

x̂(ξ, 0) = ξ,

and Ω(t) is expressed by

Ω(t) = {x = t(x1, x2, x3) ∈ R
3; x = x̂(ξ, t), ξ ∈ Ω0, Ω0 ⊂ Γ(0)}.

The mapping ξ �→ x̂(ξ, t) is called a flow map on Γ(t), the mapping t �→ x̂(ξ, t) is called an

orbit starting from ξ, and V = V (x, t) is called the velocity determined by the flow map

x̂(ξ, t). For simplicity we call x̂(ξ, t) a flow map. We assume that x̂(·, t) : Γ(0) → Γ(t) is

bijective for each 0 < t < T and that V is the total velocity v.

Next we introduce a variation x̂ε(ξ, t) of a flow map x̂(ξ, t) and the velocity vε deter-

mined by the flow map x̂ε. Let x̂(ξ, t) be a flow map on Γ(t), and let v be the velocity

determined by the flow map x̂(ξ, t) on Γ(t), i.e., for ξ ∈ Γ(0) and 0 < t < T ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v = v(x, t) = t(v1(x, t), v2(x, t), v3(x, t)),

x̂ = x̂(ξ, t) = t(x̂1(ξ, t), x̂2(ξ, t), x̂3(ξ, t)),
dx̂
dt (ξ, t) = v(x̂(ξ, t), t),

x̂(ξ, 0) = ξ.

Write

Γ(t) := {x = t(x1, x2, x3) ∈ R
3; x = x̂(ξ, t), ξ ∈ Γ(0)},

ST :=

{
(x, t) ∈ R

4; (x, t) ∈
⋃

0<t<T

{Γ(t)× {t}}
}
.

For −1 < ε < 1 let Γε(t)(= {Γε(t)}0≤t<T ) be a smoothly evolving 2-dimensional surface

in R
3 depending on time t. We say that Γε(t) is a variation of Γ(t) if Γε(0) = Γ(0) and

Γε(t)|ε=0 = Γ(t). Set

Sε
T :=

{
(x, t) ∈ R

4; (x, t) ∈
⋃

0<t<T

{Γε(t)× {t}}
}
.

Let x̂ε(ξ, t) be a flow map on Γε(t), and vε be the velocity determined by the flow map

x̂ε, i.e., for ξ ∈ Γ(0) and 0 < t < T ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vε = vε(x, t) = t(vε1(x, t), v
ε
2(x, t), v

ε
3(x, t)),

x̂ε = x̂ε(ξ, t) = t(x̂ε
1(ξ, t), x̂

ε
2(ξ, t), x̂

ε
3(ξ, t)),

dx̂ε

dt (ξ, t) = vε(x̂ε(ξ, t), t),

x̂ε(ξ, 0) = ξ.

We say that (x̂ε(ξ, t),Sε
T ) is a variation of (x̂(ξ, t),ST ) if x̂

ε(ξ, t) is smooth as a function of

(ε, ξ, t) ∈ (−1, 1)×Γ(0)× [0, T ) and x̂ε(ξ, t)|ε=0 = x̂(ξ, t). Assume that Γε(t) is expressed

by

Γε(t) = {x = t(x1, x2, x3) ∈ R
3; x = x̂ε(ξ, t), ξ ∈ Γ(0)}.

For smooth functions f = f(x, t), Dtf := ∂tf + (v,∇)f and Dε
t f := ∂tf + (vε,∇)f .
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To consider compressible fluid flow on an evolving surface, we first study the density of

the fluid on the evolving surface. To this end, we need the continuity equation of the fluid

on the evolving surface. We also need the continuity equation of the fluid on a variation

of the evolving surface. For −1 < ε < 1, assume that ρ = ρ(x, t) and ρε = ρε(x, t) are

smooth functions.

Proposition 1.3 (Continuity equation of fluid on evolving surfaces).

(i) For each 0 < t < T and Ω(t) ⊂ Γ(t) flowed by the velocity v, assume that

d

dt

∫
Ω(t)

ρ(x, t) dH2
x = 0.

Then ρ satisfies

Dtρ+ (divΓv)ρ = 0 on ST .

(ii) For each 0 < t < T and Ωε(t) ⊂ Γε(t) flowed by the velocity vε, assume that

d

dt

∫
Ωε(t)

ρε(x, t) dH2
x = 0.

Then ρε satisfies

Dε
t ρ

ε + (divΓεvε)ρε = 0 on Sε
T .

We often call Proposition 1.3 the surface transport theorem. The proof of Proposition

1.3 can be found in [4], [11], [8] and [14] (see also [22]). For our purposes, we give the proof

of Proposition 1.3 in Section 3. See Section 2 for the definitions of surface divergences

divΓ and divΓε .

Next we study variations of the flow map to the action integral determined by the

kinetic energy. Let ρ0 = ρ0(x) be a smooth function. We call ρ the density of the fluid

on Γ(t) if ρ satisfies {
Dtρ+ (divΓv)ρ = 0 on ST ,

ρ|t=0 = ρ0 on Γ(0).

We call ρε the density of the fluid on Γε(t) if ρε satisfies

{
Dε

t ρ
ε + (divΓεvε)ρε = 0 on Sε

T ,

ρε|t=0 = ρ0 on Γ(0).

For each variation x̂ε we define the action integral as

A[x̂ε] = −
∫ T

0

∫
Γε(t)

1

2
ρε(x, t)|vε(x, t)|2 dH2

xdt,

where ρε is the density of the fluid on Γε(t) and vε is the velocity determined by the flow

map x̂ε = x̂ε(ξ, t). Note that x̂ε(ξ, t) is a flow map on Γε(t).
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We now assume that there are ŷ ∈ [C∞(R3 × [0, T ))]3 and z ∈ [C∞(ST )]
3 such that

for ξ ∈ Γ(0) and 0 ≤ t < T ,

x̂ε(ξ, t)

∣∣∣∣
ε=0

= x̂(ξ, t),

vε(x̂ε(ξ, t), t)

∣∣∣∣
ε=0

= v(x̂(ξ, t), t),

d

dε

∣∣∣∣
ε=0

x̂ε(ξ, t) = ŷ(ξ, t),

z(x̂(ξ, t), t) = ŷ(ξ, t).

Here z is the variation vector field. See Section 2 for function spaces on an evolving

surface. We also assume that for every ξ ∈ Γ(0) and 0 ≤ t < T ,

ρε(x̂ε(ξ, t), t)

∣∣∣∣
ε=0

= ρ(x̂(ξ, t), t).

Theorem 1.4 (Variation of the flow map to the action integral).

Assume that (x̂ε(ξ, t),Sε
T ) is a variation of (x̂(ξ, t),ST ) with Γε(0) = Γ(0). Suppose

that ρ is the density of the fluid on ST and that ρε is the density of the fluid on Sε
T .

Then
d

dε

∣∣∣∣
ε=0

A[x̂ε] =

∫ T

0

∫
Γ(t)

{ρDtv}(x, t) · z(x, t) dH2
xdt,

where Dtv = ∂tv + (v,∇)v. Moreover, assume in addition that z · n = 0. Then

d

dε

∣∣∣∣
ε=0

A[x̂ε] =

∫ T

0

∫
Γ(t)

{PΓρDtv}(x, t) · z(x, t) dH2
xdt.

Remark. In the former part of Theorem 1.4 we consider variations with respect to the

flow map, including the motion of Γ(t), while we consider variations with respect to the

tangential part of the flow map on Γ(t) in the latter part.

We now study variations of the dissipation energy ED[V ] and the work EW [V ] for

the velocity field V = t(V1(x, t), V2(x, t), V3(x, t)) at each fixed time t. Let μ = μ(x, t),

λ = λ(x, t), σ = σ(x, t), and F = F (t, x) = t(F1, F2, F3) be smooth functions. For each

smooth function V = V (x, t) = t(V1, V2, V3), let

ED[V ](t) :=−
∫
Γ(t)

{
1

2

(
2μ|DΓ(V )|2 + λ|divΓV |2

)}
(x, t) dH2

x,

EW1
[V ](t) :=

∫
Γ(t)

{(divΓV )σ}(x, t) dH2
x,

EW2
[V ](t) :=

∫
Γ(t)

{ρF · V }(x, t) dH2
x.

Here DΓ(V ) = PΓD(V )PΓ, where PΓ is the orthogonal projection to a tangent space

defined by (2.2) in Section 2 and D(V ) = {(∇V ) + t(∇V )}/2. We often call ED, EW1
,

and EW2
the dissipation energy determined by the energy density eD, the work done by
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the pressure σ, and the work done by the exterior force F , of the fluid on an evolving

surface, respectively. Moreover, we set

ED+W [V ] = ED[V ] + EW1
[V ] + EW2

[V ].

We shall study their variations.

Theorem 1.5 (Variation of the velocity to dissipation energy/work).

Fix t ∈ (0, T ). Then for every vector field ϕ ∈ [C∞
0 (Γ(t))]3,

d

dε

∣∣∣∣
ε=0

ED+W [v + εϕ](t)

=

∫
Γ(t)

{
divΓ

(
2μDΓ(v) + λPΓ(divΓv)− PΓσ

)
+ ρF

}
(x, t) · ϕ(x) dH2

x.

Moreover, if ϕ · n = 0, then

d

dε

∣∣∣∣
ε=0

ED+W [v + εϕ](t)

=

∫
Γ(t)

{
PΓdivΓ

(
2μDΓ(v) + λPΓ(divΓv)− PΓσ

)
+ PΓρF

}
· ϕ(x) dH2

x.

Remark. In the former part of Theorem 1.5 we consider variations with respect to

the total velocity, including the motion of Γ(t), while we consider variations with respect

to the tangential part of the total velocity on Γ(t) in the latter part.

Combining Theorem 1.5, Proposition 3.12, and [15, Theorem 2.1 and Section 3] gives

a mathematical validity of the Boussinesq-Scriven law. Indeed, we obtain the surface

stress tensor determined by the Boussinesq-Scriven law from Theorem 1.5 when F ≡ 0.

In the next step, we study Fourier’s and Fick’s laws of surface diffusion. Let κ = κ(x, t),

ν = ν(x, t), θ = θ(x, t), and C = C(x, t) be four smooth functions. Fix t. For each smooth

function f = f(x, t), let

ETD[f ](t) :=−
∫
Γ(t)

1

2
κ(x, t)|gradΓf(x, t)|2 dH2

x,

ESD[f ](t) :=−
∫
Γ(t)

1

2
ν(x, t)|gradΓf(x, t)|2 dH2

x.

We often call ETD and ESD the dissipation energies determined by eTD and eSD, re-

spectively. See Proposition 3.12 for the representation of these energies.

Theorem 1.6 (Fourier’s laws and Fick’s laws of surface diffusion).

(i) Fix t ∈ (0, T ). Then for every ϕ ∈ C∞
0 (Γ(t)),

d

dε

∣∣∣∣
ε=0

ETD[θ + εϕ](t) =

∫
Γ(t)

divΓ

(
κ(x, t)gradΓθ(x, t)

)
ϕ(x) dH2

x,

d

dε

∣∣∣∣
ε=0

ESD[C + εϕ](t) =

∫
Γ(t)

divΓ

(
ν(x, t)gradΓC(x, t)

)
ϕ(x) dH2

x.
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(ii) Fix t ∈ (0, T ) and x ∈ Γ(t). For each ϑ1, ϑ2, ϑ3 ∈ R,

ETD[ϑ1, ϑ2, ϑ3] := −κ(x, t)

2
(ϑ2

1 + ϑ2
2 + ϑ2

3),

ESD[ϑ1, ϑ2, ϑ3] := −ν(x, t)

2
(ϑ2

1 + ϑ2
2 + ϑ2

3).

Then

t
(

∂ETD

∂ϑ1
, ∂ETD

∂ϑ2
, ∂ETD

∂ϑ3

) ∣∣∣∣∣
(ϑ1,ϑ2,ϑ3)=(∂Γ

1 θ,∂Γ
2 θ,∂Γ

3 θ)

= −κgradΓθ,

t
(

∂ESD

∂ϑ1
, ∂ESD

∂ϑ2
, ∂ESD

∂ϑ3

) ∣∣∣∣∣
(ϑ1,ϑ2,ϑ3)=(∂Γ

1 C,∂Γ
2 C,∂Γ

3 C)

= −νgradΓC.

Next we give the generalized surface flux on the evolving surface Γ(t).

Theorem 1.7 (Variation of dissipation energy/Fluxes on surfaces).

Let eJ ∈ C1([0,∞)) or eJ ∈ C1((0,∞)). Suppose that eJ is a non-negative function.

Then the following two assertions hold:

(i) Fix t. For each smooth function f = f(x, t),

EGD[f ](t) := −
∫
Γ(t)

1

2
eJ (|gradΓf |2) dH2

x.

Then for every f ∈ C2,0(ST ) with |gradΓf | 	= 0 and ϕ ∈ C∞
0 (Γ(t)),

d

dε

∣∣∣∣
ε=0

EGD[f + εϕ](t) =

∫
Γ(t)

{divΓ(e′J (|gradΓf |2)gradΓf)}(x, t)ϕ(x) dH2
x.

(ii) Let f = f(x, t) be a smooth function with |gradΓf | 	= 0. Fix 0 < t < T and x ∈ Γ(t).

For each ϑ1, ϑ2, ϑ3 ∈ R,

EGD := −1

2
eJ (ϑ2

1 + ϑ2
2 + ϑ2

3).

Then

t
(

∂EGD

∂ϑ1
, ∂EGD

∂ϑ2
, ∂EGD

∂ϑ3

) ∣∣∣∣
(ϑ1=∂Γ

1 f,ϑ2=∂Γ
2 f,ϑ3=∂Γ

3 f)

= −e′J (|gradΓf |2)gradΓf.

Proposition 3.13 and [15, Theorem 2.1] give a mathematical validity of the repre-

sentation of the energy density eJ (|gradΓf |2) for the energy dissipation due to general

diffusion.

Applying Proposition 1.3, Theorems 1.4-1.7, an energetic variational approach (Least

Action Principle and Maximum/Minimum Dissipation Principle), the first law of ther-

modynamics, we can derive our compressible fluid systems (1.1) and (1.11). Under some

conditions, we can obtain the enthalpy (1.8), the entropy (1.9), and the free energy (1.10).

We easily check that the system (1.1) satisfies the conservative form (1.2). See Section 5

for more detailed derivation of our compressible fluid systems.

Let us investigate conservation laws of the compressible fluid system (1.1).
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Theorem 1.8 (Conservation laws).

Assume that Γ(t) is flowed by the total velocity v. Then the system (1.1) satisfies

that for 0 < t1 < t2 < T ,∫
Γ(t2)

ρ(x, t2) dH2
x =

∫
Γ(t1)

ρ(x, t1) dH2
x, (1.17)

∫
Γ(t2)

ρv dH2
x =

∫
Γ(t1)

ρv dH2
x +

∫ t2

t1

∫
Γ(τ)

ρF dH2
xdτ, (1.18)

∫
Γ(t2)

eA dH2
x =

∫
Γ(t1)

eA dH2
x +

∫ t2

t1

∫
Γ(τ)

{ρF · v + ρQθ} dH2
xdτ, (1.19)

∫
Γ(t2)

C(x, t2) dH2
x =

∫
Γ(t1)

C(x, t1) dH2
x +

∫ t2

t1

∫
Γ(τ)

QC dH2
xdτ, (1.20)

and∫
Γ(t2)

{x× (ρv)}(x, t) dH2
x

=

∫
Γ(t1)

{x× (ρv)}(x, t) dH2
x +

∫ t2

t1

∫
Γ(τ)

{x× (ρF )}(x, τ ) dH2
xdτ. (1.21)

Finally, we state barotropic compressible fluid systems. Using a chemical potential,

we derive the pressure of barotropic compressible fluid on an evolving surface.

Theorem 1.9 (Barotropic compressible fluid).

Let p ∈ C1((0,∞)). Under the hypotheses of Theorem 1.4, for each variation x̂ε,

AB[x̂
ε] := −

∫ T

0

∫
Γε(t)

{
1

2
ρε(x, t)|vε(x, t)|2 − p(ρε(x, t))

}
dHx

2dt.

Then

d

dε

∣∣∣∣
ε=0

AB[x̂
ε] =

∫ T

0

∫
Γ(t)

{ρDtv + gradΓp+ pHΓn} (x, t) · z(x, t) dHx
2dt,

where p = p(ρ) = ρp′(ρ)− p(ρ). Moreover, the two assertions hold:

(i) For every z ∈ [C∞
0 (ST )]

3, assume that∫ T

0

∫
Γ(t)

{ρDtv + gradΓp+ pHΓn} (x, t) · z(x, t) dH2
xdt = 0.

Then (ρ, v, p) fulfill

ρDtv + gradΓp+ pHΓn = 0 on ST .

(ii) For every z ∈ [C∞
0 (ST )]

3 satisfying z · n = 0, assume that∫ T

0

∫
Γ(t)

{ρDtv + gradΓp+ pHΓn} (x, t) · z(x, t) dH2
xdt = 0.

Then (ρ, v, p) fulfill

PΓρDtv + gradΓp = 0 on ST .
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Remark. We prove Theorems 1.4 and 1.9 in Section 3, Theorems 1.5-1.7 in Section 4,

and Theorem 1.8 in subsection 5.3.

Let us state three difficulties in the derivation of our compressible fluid systems on an

evolving surface and the ideas to overcome these difficulties. The first difficultly is to drive

the pressure of compressible fluid on an evolving surface. In order to derive the pressure

term of our compressible fluid systems, we focus our attention on the power density for

the work done by the pressure of the fluid and a chemical potential. The second difficulty

is to derive viscous term of our compressible fluid systems on an evolving surface. To

overcome the difficult point, we calculate variations of both the energy dissipation due

to the viscosities and the work done by both the pressure and exterior force. The third

difficulty is to investigate the internal energy, enthalpy, entropy, and free energy of the

fluid on an evolving surface. To solve the problem, we introduce the notation DN
t and

apply the first and second laws of thermodynamics, where DN
t f = ∂tf + (v · n)(n,∇)f .

Let us explain two essential strategies to analyze fluid flow on an evolving surface.

The first one is to apply both a flow map on the evolving surface and the Riemannian

metric induced by the flow map. By using them, we deal with functions on the evolving

surface and give a mathematical validity of several energies of the fluid on the evolving

surface. The second one is to use both an energetic variational approach and the first

law of thermodynamics. Combining an energetic variational principle and the thermo-

dynamic theory, we derive our compressible fluid systems on the evolving surface. The

energetic variational method of this paper improves the one from Koba-Liu-Giga [14].

The paper [14] improved the energetic variational approach, which had been studied by

Strutt [24] and Onsager ([17], [18]), to derive incompressible fluid systems on an evolving

surface. Koba-Sato [15] applied their energetic variational approaches to derive their

non-Newtonian fluid systems in domains.

Let us state the history of the surface stress tensor determined by the Boussinesq-

Scriven law. Boussinesq [6] first considered the existence of surface fluid. Scriven [19]

introduced the surface stress tensor to apply it to arbitrary surfaces. Slattery [21] studied

some properties of the surface stress tensor determined by the Boussinesq-Scriven law.

After that many researchers have made models of two-phase flow system with interfacial

phenomena such as surface tension, surface flow, and phase transition. See Gatignol-

Prud’homme [10], Slattery-Sagis-Oh [22], and the references given there. Bothe and

Prüss [5] used the Boussinesq-Scriven law to make a two-phase flow system with surface

viscosity and surface tension. This paper gives a mathematical validity of the Boussinesq-

Scriven law (see Theorem 1.5, Section 3, and [15, Theorem 2.1 and Section 3]).

We next explain some mathematical derivations of incompressible fluid systems on

a manifold. Arnol’d [2], [3] applied the Lie group of diffeomorphisms to derive an in-

viscid incompressible fluid system on a manifold. See also Ebin-Marsden [9]. Taylor

[25] introduced a viscous incompressible fluid system on a manifold from their physical

sense. Mitsumatsu and Yano [16] used their energetic approach to derive a viscous in-

compressible fluid system on a manifold. Arnaudon and Cruzeiro [1] applied a stochastic

variational approach to derive a viscous incompressible fluid system on a manifold. Re-

call that Taylor [25], Mitsumatsu-Yano [16], and Arnaudon-Cruzeiro [1] used Taylor’s
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strain rate {(∇Mu) + t(∇Mu)}/2 with surface divergence-free to derive their systems,

where ∇M is the covariant derivative.

Finally we state mathematical derivations of fluid systems on an evolving surface. Dz-

iuk and Elliott [8] applied the transport theorem (Leibniz formula) on an evolving surface

and their surface flux to make several fluid systems on the evolving surface. Koba-Liu-

Giga [14] derived incompressible fluid systems on an evolving surface by their energetic

variational approach. They applied the Helmholtz-Weyl decomposition on surfaces to

derive the pressure of incompressible fluid flow on an evolving surface.

2. Preliminaries. Let us prepare useful tools to analyze fluid flow on an evolving

surface. We first describe evolving surfaces, and then we introduce function spaces and

notation such as divΓ, gradΓ, PΓ, and HΓ. Finally we investigate fundamental properties

of surface gradient, surface divergence, an orthogonal projection to a tangent space,

surface strain rate tensors, surface stress tensor, material derivatives, and integration by

parts on evolving surfaces.

2.1. Evolving surfaces. Let us recall evolving surfaces.

Definition 2.1 (2-dimensional C2-surfaces in R
3).

A set Γ0 in R
3 is called a C2-surface in R

3 if for each point x0 ∈ Γ0 there are r > 0

and φ ∈ C2(Br(x0)) such that

Γ0 ∩Br(x0) = {x = t(x1, x2, x3) ∈ Br(x0); φ(x) = 0}

and that

∇xφ = t

(
∂φ

∂x1
,
∂φ

∂x2
,
∂φ

∂x3

)
	= (0, 0, 0) on Br(x0).

Here Br(x0) := {x ∈ R
3; |x− x0| < r}. In this paper we call a 2-dimensional C2-surface

in R
3 a 2-dimensional surface in R

3.

Definition 2.2 (Evolving 2-dimensional C2,1-surfaces in R
3).

Let Γ(t){= {Γ(t)}0≤t<T } be a set in R
3 depending on time t ∈ [0, T ) for some T ∈

(0,∞]. A family {Γ(t)}0≤t<T is called an evolving 2-dimensional C2,1-surface in R
3 on

[0, T ) if the following two properties hold:

(i) Γ(0) is a 2-dimensional surface in R
3.

(ii) For each t0 ∈ (0, T ) and x0 ∈ Γ(t0), there are r1, r2 > 0 and

ψ ∈ C2,1(Br1(x0)×Br2(t0))

such that

Γ(t0) ∩Br1(x0) = {x = t(x1, x2, x3) ∈ Br1(x0); ψ(x, t0) = 0}

and that

∇xψ = t

(
∂ψ

∂x1
,
∂ψ

∂x2
,
∂ψ

∂x3

)
	= (0, 0, 0) on Br1(x0)×Br2(t0).
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Here Br1(x0) := {x ∈ R
3; |x−x0| < r1}, Br2(t0) := {t ∈ R+; |t− t0| < r2}, and

C2,1(Br1(x0)×Br2(t0)) := {f ∈ C(Br1(x0)×Br2(t0));

∂if, ∂j∂if, ∂tf, ∂i∂tf, ∂j∂i∂tf ∈ C(Br1(x0)×Br2(t0)) for i, j = 1, 2, 3}.

Throughout this paper we write Γ(t) instead of {Γ(t)}0≤t<T .

Definition 2.3 (Evolving surfaces).

Let {Γ(t)}0≤t<T be an evolving 2-dimensional C2,1-surface in R
3 on [0, T ) for some

T ∈ (0,∞]. We simply call Γ(t) an evolving 2-dimensional surface in R
3 on [0, T ) if Γ(t)

is a closed Riemannian 2-dimensional manifold for each fixed t ∈ [0, T ).

Definition 2.4 (Variations of an evolving surface).

Let {Γ(t)}0≤t<T be an evolving 2-dimensional surface in R
3 on [0, T ) for some T ∈

(0,∞]. For each −1 < ε < 1, let {Γε(t)}0≤t<T be an evolving 2-dimensional surface in

R
3 on [0, T ). We call Γε(t) a variation of Γ(t) if the following two properties hold:

(i) For each 0 ≤ t < T ,∣∣∣∣∣
∫
Γ(t)\Γε(t)

1 dH2
x

∣∣∣∣∣+
∣∣∣∣∣
∫
Γε(t)\Γ(t)

1 dH2
x

∣∣∣∣∣ ≤ |ε|.

(ii) For each 0 ≤ t < T and −1 < ε0 < 1,

lim
ε→ε0

∣∣∣∣∣
∫
Γε0 (t)\Γε(t)

1 dH2
x

∣∣∣∣∣+
∣∣∣∣∣
∫
Γε(t)\Γε0 (t)

1 dH2
x

∣∣∣∣∣ = 0.

Here dH2
x denotes the 2-dimensional Hausdorff measure, that is,

∫
Γ(t)

1 dH2
x is the surface

area of Γ(t).

Note that Γε(t)|ε=0 = Γ(t) by definition.

2.2. Function spaces and notation. We introduce functions on surfaces and evolv-

ing surfaces. Let Γ0 be a 2-dimensional surface in R
3, and let Γ(t) be an evolving

2-dimensional C2,1-surface in R
3 on [0, T ) for some T ∈ (0,∞]. Set

ST ≡ ST,Γ(t) :=

{
(x, t) = t(x1, x2, x3, t) ∈ R

4; (x, t) ∈
⋃

0<t<T

{Γ(t)× {t}}
}
.

For each m ∈ N ∪ {0,∞} we define

Cm(Γ0) :={f : Γ0 → R; g|Γ0
= f for some g ∈ Cm(R3)},

Cm
0 (Γ0) :={f ∈ Cm(Γ0); suppf does not intersect the boundary of Γ0},
C(ST ) :={f : ST → R; g|ST

= f for some g ∈ C(R3 × R)},
C0(ST ) :={f ∈ C(ST ); suppf includes ST and

suppf(·, t) does not intersect the geometric boundary of Γ(t)},

where C0(R3) := C(R3). Moreover, we write

C1,0(ST ) := {f ∈ C(ST ); ∂if ∈ C(ST ) for each i = 1, 2, 3},
C2,1(ST ) := {f ∈ C1,0(ST ); ∂j∂if, ∂tf, ∂i∂tf, ∂j∂i∂tf ∈ C(ST ), i, j = 1, 2, 3},
C2,1

0 (ST ) := C2,1(ST ) ∩ C0(ST ).
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Similarly, we define Cm,n(ST ), C
m,n
0 (ST ), and C∞

0 (ST ) := C∞(ST ) ∩ C0(ST ), where

C∞(ST ) := {f : ST → R; g|ST
= f for some g ∈ C∞(R3 × R)}.

For −1 < ε < 1, let Γε(t) be a variation of Γ(t). Set

Sε
T ≡ ST,Γε(t) :=

{
(x, t) = t(x1, x2, x3, t) ∈ R

4; (x, t) ∈
⋃

0<t<T

{Γε(t)× {t}}
}
.

Let us explain some conventions used in this paper. We use italic characters i, j, k, �, i′j′

as 1, 2, 3, and use Greek characters α, β, ζ, η, α′, β′ as 1, 2. Moreover, we often use the

following Einstein summation convention:

aijbj =

3∑
j=1

aijbj , aijbij� =

3∑
i,j=1

aijbij�, aijbiαcαβ =

3∑
i=1

2∑
α=1

aijbiαcαβ .

Let X be a set. The symbol Mp×q(X ) denotes the set of all p × q matrices whose

component belonging to X , that is, M ∈ Mp×q(X ) if and only if

M =

⎛
⎜⎜⎜⎝
[M ]11 [M ]12 · · · [M ]1q
[M ]21 [M ]22 · · · [M ]2q

...
...

...

[M ]p1 [M ]p2 · · · [M ]pq

⎞
⎟⎟⎟⎠

and [M ]ij ∈ X (i = 1, 2, . . . , p, j = 1, 2, . . . , q), where [M ]ij denotes the (i, j)-th component

of the matrix M . Recall that we can write M = ([M ]ij)p×q.

Next we introduce important notation. By n = n(x, t) = t(n1, n2, n3) we mean the

unit outer normal vector of Γ(t) at x ∈ Γ(t) for each fixed t ∈ [0, T ). In this paper, we

use the following notation:

∂Γ
i := (δij − ninj)∂j

⎛
⎝=

3∑
j=1

(δij − ninj)∂j

⎞
⎠ ,

∇Γ := t(∂Γ
1 , ∂

Γ
2 , ∂

Γ
3 ),

ΔΓ := (∂Γ
1 )

2 + (∂Γ
2 )

2 + (∂Γ
3 )

2.

Here δij is Kronecker’s delta. Moreover, for f = t(f1, f2, f3) ∈ [C1(Γ(t))]3 and fij , g ∈
C1(Γ(t)),

divΓf := ∂Γ
1 f1 + ∂Γ

2 f2 + ∂Γ
3 f3,

divΓ(fij)3×3 := t(∂Γ
j f1j , ∂

Γ
j f2j , ∂

Γ
j f3j),

gradΓg := ∇Γg = t(∂Γ
1 g, ∂

Γ
2 g, ∂

Γ
3 g).

Let HΓ and PΓ be the mean curvature of Γ(t) and the orthogonal projection to a tangent

space of Γ(t) defined by

HΓ = HΓ(x, t) := −divΓn, (2.1)

[PΓ]ij = [PΓ(x, t)]ij := δij − ninj (i, j = 1, 2, 3), (2.2)
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respectively. By definition, we easily check that PΓn = t(0, 0, 0) and P 2
Γ = PΓ. Note that

PΓ = I3×3 − n ⊗ n and that n2
1 + n2

2 + n2
3 = 1. Note also that PΓ(∇g) = ∇Γg and that

f = PΓf + (f · n)n.
For −1 < ε < 1, let Γε(t) be a variation of Γ(t). By nε = nε(x, t) = t(nε

1, n
ε
2, n

ε
3) we

mean the unit outer normal vector of Γε(t) at x ∈ Γε(t) for each fixed t ∈ [0, T ). By

definition, we see that for g ∈ C1(Γε(t)),

∂Γε

i g = (δij − nε
in

ε
j)∂jg

⎛
⎝=

3∑
j=1

(δij − nε
in

ε
j)∂jg

⎞
⎠ .

Moreover, for f = t(f1, f2, f3) ∈ [C1(Γε(t))]3 and fij , g ∈ C1(Γε(t)),

divΓεf =∂Γε

1 f1 + ∂Γε

2 f2 + ∂Γε

3 f3,

divΓε(fij)3×3 =t(∂Γε

j f1j , ∂
Γε

j f2j , ∂
Γε

j f3j),

gradΓεg =∇Γεg = t(∂Γε

1 g, ∂Γε

2 g, ∂Γε

3 g).

Let HΓε and PΓε be the mean curvature of Γε(t) and the orthogonal projection to a

tangent space of Γε(t) defined by

HΓε = HΓε(x, t) := −divΓεnε, (2.3)

[PΓε ]ij = [PΓε(x, t)]ij := δij − nε
in

ε
j (i, j = 1, 2, 3). (2.4)

Let us introduce three strain rate tensors and one surface stress tensor. For every

f = t(f1, f2, f3) ∈ [C1(Γ(t))]3 and g, μ, λ ∈ C(Γ(t)),

D(f) :=
1

2
{(∇f) + t(∇f)},

DΓ(f) :=
1

2
{(∇Γf) +

t(∇Γf)},

DΓ(f) :=
1

2
PΓ{(∇f) + t(∇f)}PΓ,

SΓ(f, g, μ, λ) := 2μDΓ(f) + λPΓ(divΓf)− PΓg.

We call D(f) a strain rate tensor, DΓ(f) a surface strain rate tensor, and SΓ(f, g, μ, λ) a

surface stress tensor. We also call DΓ(f) a tangential strain rate and DΓ(f) a projected

strain rate. By the definition of PΓ and ∇Γ, we find that

DΓ(f) =
1

2
{(PΓ(∇Γf)) +

t(PΓ(∇Γf))}.

See Slattery-Sagis-Oh [22] and Lemma 2.6.

2.3. Properties of operators for evolving surfaces. Let us now study several operators

such as divΓ, gradΓ, and PΓ, and the strain rate tensors D(f), DΓ(f), DΓ(f), and the

surface stress tensor SΓ. Let Γ(t) be an evolving 2-dimensional C2,1-surface in R
3 on

[0, T ) for some T ∈ (0,∞], and let Γε(t) be a variation of Γ(t).
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Lemma 2.5 (Properties of surface gradient and divergence).

(i) For every f ∈ C1(Γ(t)) and v = t(v1, v2, v3) ∈ [C1(Γ(t))]3,

PΓgradΓf = gradΓf,

n · gradΓf = 0,

divΓ(PΓf) = gradΓf + fHΓn, (2.5)

PΓdivΓ(PΓf) = gradΓf,

divΓ((PΓf)v) = (gradΓf) · v + fHΓ(n · v) + f(divΓv), (2.6)

(v,∇)f = (v,∇Γ)f + (v · n)(n,∇)f. (2.7)

(ii) For every f ∈ C1(Γε(t)) and v = t(v1, v2, v3) ∈ [C1(Γε(t))]3,

PΓεgradΓεf = gradΓεf,

nε · gradΓεf = 0,

divΓε(PΓεf) = gradΓεf + fHΓεnε,

PΓεdivΓε(PΓεf) = gradΓεf,

divΓε((PΓεf)v) = (gradΓεf) · v + fHΓε(nε · v) + f(divΓεv),

(v,∇)f = (v,∇Γε)f + (v · nε)(nε,∇)f.

Since the proof of Lemma 2.5 is not difficult, the proof is left to the reader.

The following lemma is useful to study the fluid flow on an evolving surface.

Lemma 2.6 (Properties of strain and stress tensors).

(i) For all v = t(v1, v2, v3), ϕ = t(ϕ1, ϕ2, ϕ3) ∈ [C1(Γ(t))]3,

PΓD(v)PΓ =PΓDΓ(v)PΓ, (2.8)

DΓ(v) : DΓ(ϕ) =DΓ(v) : DΓ(ϕ). (2.9)

(ii) For all v = t(v1, v2, v3) ∈ [C2(Γ(t))]3 and g, μ, λ ∈ C1(Γ(t)),

divΓ{μDΓ(v)v} =divΓ{μDΓ(v)} · v + μDΓ(v) : DΓ(v), (2.10)

divΓ{λPΓ(divΓv)v} =divΓ{λPΓ(divΓv)} · v + λ|divΓv|2, (2.11)

divΓ{SΓ(v, g, μ, λ)v} − divΓ{SΓ(v, g, μ, λ)} · v
=2μDΓ(v) : DΓ(v) + λ|divΓv|2 − g(divΓv). (2.12)

(iii) For all v = t(v1, v2, v3) ∈ [C1(Γ(t))]3 and g, μ, λ ∈ C(Γ(t)),

SΓ(v, g, μ, λ) : DΓ(v) = 2μDΓ(v) : DΓ(v) + λ|divΓv|2 − g(divΓv). (2.13)

Proof of Lemma 2.6. We first prove (i). Fix v = t(v1, v2, v3), ϕ = t(ϕ1, ϕ2, ϕ3) ∈
[C1(Γ(t))]3. By definition, we check that for each i, j = 1, 2, 3,

[2PΓD(v)]ij = ∂Γ
i vj + ∂jvi − ni(n · ∂jv),

[2PΓDΓ(v)]ij = ∂Γ
i vj + ∂Γ

j vi − ni(n · ∂Γ
j v),

[2PΓD(v)PΓ]ij = ∂Γ
i vj + ∂Γ

j vi − ni(n · ∂Γ
j v)− nj(n · ∂Γ

i v),

[2PΓDΓ(v)PΓ]ij = ∂Γ
i vj + ∂Γ

j vi − ni(n · ∂Γ
j v)− nj(n · ∂Γ

i v).
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This shows (2.8). Next we shall show that

DΓ(v) : {DΓ(ϕ)− DΓ(ϕ)} = 0. (2.14)

We now use the Einstein summation convention. From

2[DΓ(v)]ij =∂Γ
i vj + ∂Γ

j vi − ni(n · ∂Γ
j v)− nj(n · ∂Γ

i v),

2[DΓ(ϕ)]ij =∂Γ
i ϕj + ∂Γ

j ϕi − ni(n · ∂Γ
j ϕ)− nj(n · ∂Γ

i ϕ),

2[DΓ(ϕ)]ij =∂Γ
j ϕi + ∂Γ

i ϕj = ∂Γ
i ϕj + ∂Γ

j ϕi,

we find that

4DΓ(v) : {DΓ(ϕ)− DΓ(ϕ)}
= {∂Γ

i vj + ∂Γ
j vi − ni(n · ∂Γ

j v)− nj(n · ∂Γ
i v)}{−ni(n · ∂Γ

j ϕ)− nj(n · ∂Γ
i ϕ)}

= −(∂Γ
i vj + ∂Γ

j vi){ni(n · ∂Γ
j ϕ) + nj(n · ∂Γ

i ϕ)}
+ {ni(n · ∂Γ

j v) + nj(n · ∂Γ
i v)}{ni(n · ∂Γ

j ϕ) + nj(n · ∂Γ
i ϕ)}

=: −A1 +A2. (2.15)

A direct calculation gives

A1 = (∂Γ
i vj + ∂Γ

j vi){ni(n · ∂Γ
j ϕ) + nj(n · ∂Γ

i ϕ)}
= ∂Γ

i vj{ni(n · ∂Γ
j ϕ)}+ ∂Γ

j vi{nj(n · ∂Γ
i ϕ)}+ ∂Γ

i vj{nj(n · ∂Γ
i ϕ)}+ ∂Γ

j vi{ni(n · ∂Γ
j ϕ)}.

Since nj∂
Γ
j = n · gradΓ = 0, we see that

∂Γ
i vj{ni(n · ∂Γ

j ϕ)}+ ∂Γ
j vi{nj(n · ∂Γ

i ϕ)} = ni∂
Γ
i vj(n · ∂Γ

j ϕ) + nj∂
Γ
j vi(n · ∂Γ

i ϕ) = 0.

It is easy to check that

∂Γ
i vj{nj(n · ∂Γ

i ϕ)}+ ∂Γ
j vi{ni(n · ∂Γ

j ϕ)}
= 2{(n · ∂Γ

1 v)(n · ∂Γ
1 ϕ) + (n · ∂Γ

2 v)(n · ∂Γ
2 ϕ) + (n · ∂Γ

3 v)(n · ∂Γ
3 ϕ)}.

Consequently, we have

A1 = 2(n · ∂Γ
j v)(n · ∂Γ

j ϕ). (2.16)

Next we consider

A2 = {ni(n · ∂Γ
j v) + nj(n · ∂Γ

i v)}{ni(n · ∂Γ
j ϕ) + nj(n · ∂Γ

i ϕ)}
= ninj(n · ∂Γ

j v)(n · ∂Γ
i ϕ) + ninj(n · ∂Γ

i v)(n · ∂Γ
j ϕ)

+ nini(n · ∂Γ
j v)(n · ∂Γ

j ϕ) + njnj(n · ∂Γ
i v)(n · ∂Γ

i ϕ).

Since nj∂
Γ
j = 0, we check that

ninj(n · ∂Γ
j v)(n · ∂Γ

i ϕ) = ni(n · nj∂
Γ
j v)(n · ∂Γ

i ϕ) = 0.

This shows that

ninj(n · ∂Γ
j v)(n · ∂Γ

i ϕ) + ninj(n · ∂Γ
i v)(n · ∂Γ

j ϕ) = 0.

By n2
1 + n2

2 + n2
3 = 1, we have

nini(n · ∂Γ
j v)(n · ∂Γ

j ϕ) = (n · ∂Γ
j v)(n · ∂Γ

j ϕ).
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As a result, we obtain

A2 = 2(n · ∂Γ
j v)(n · ∂Γ

j ϕ). (2.17)

From (2.15), (2.16), and (2.17), we see (2.14). Therefore we have (2.9).

Next we show the assertion (ii). Fix v = t(v1, v2, v3) ∈ [C2(Γ(t))]3 and g, μ, λ ∈
C1(Γ(t)). Now we derive (2.10). Since

divΓ{μDΓ(v)v} = divΓ

⎛
⎝μ[DΓ(v)]11v1 + μ[DΓ(v)]12v2 + μ[DΓ(v)]13v3
μ[DΓ(v)]21v1 + μ[DΓ(v)]22v2 + μ[DΓ(v)]23v3
μ[DΓ(v)]31v1 + μ[DΓ(v)]32v2 + μ[DΓ(v)]33v3

⎞
⎠

and

divΓ{μDΓ(v)} · v = divΓ

⎛
⎝μ[DΓ(v)]11 μ[DΓ(v)]12 μ[DΓ(v)]13
μ[DΓ(v)]21 μ[DΓ(v)]22 μ[DΓ(v)]23
μ[DΓ(v)]31 μ[DΓ(v)]32 μ[DΓ(v)]33

⎞
⎠ ·

⎛
⎝v1
v2
v3

⎞
⎠

=

⎛
⎝∂Γ

1 (μ[DΓ(v)]11) + ∂Γ
2 (μ[DΓ(v)]12) + ∂Γ

3 (μ[DΓ(v)]13)

∂Γ
1 (μ[DΓ(v)]21) + ∂Γ

2 (μ[DΓ(v)]22) + ∂Γ
3 (μ[DΓ(v)]23)

∂Γ
1 (μ[DΓ(v)]31) + ∂Γ

2 (μ[DΓ(v)]32) + ∂Γ
3 (μ[DΓ(v)]33)

⎞
⎠ ·

⎛
⎝v1
v2
v3

⎞
⎠ ,

we find that

divΓ{μDΓ(v)v} − divΓ{μDΓ(v)} · v = μDΓ(v) : DΓ(v).

Note that [DΓ(v)]ji = [DΓ(v)]ij and [DΓ(v)]ij = (∂Γ
j vi + ∂Γ

i vj)/2. Using (2.9), we have

(2.10).

We now attack (2.11) and (2.12). Set M = λPΓ(divΓv). It is clear that

(divΓM) · v = (∂Γ
1 [M ]11 + ∂Γ

2 [M ]12 + ∂Γ
3 [M ]13)v1

+ (∂Γ
1 [M ]21 + ∂Γ

2 [M ]22 + ∂Γ
3 [M ]23)v2 + (∂Γ

1 [M ]31 + ∂Γ
2 [M ]32 + ∂Γ

3 [M ]33)v3.

Since [M ]ij = [λPΓ(divΓv)]ij = λ(divΓv)(δij − ninj) = [M ]ji and nj∂
Γ
j = 0, we observe

that

divΓ{Mv} = divΓ

⎛
⎝[M ]11v1 + [M ]12v2 + [M ]13v3
[M ]21v1 + [M ]22v2 + [M ]23v3
[M ]31v1 + [M ]32v2 + [M ]33v3

⎞
⎠

= (divΓM) · v + λ(divΓv)(∂
Γ
1 v1 + ∂Γ

2 v2 + ∂Γ
3 v).

Therefore we have (2.11). Note that [M ]ij∂
Γ
j vi = λ(divΓv)δij∂

Γ
i vi for each fixed i. From

(2.5) and (2.6), we have

divΓ{(PΓg)v} − divΓ{PΓg} · v = g(divΓv). (2.18)

Using (2.10), (2.11), and (2.18), we derive (2.12).

Finally, we show (iii). Fix v = t(v1, v2, v3) ∈ [C1(Γ(t))]3 and g, μ, λ ∈ C(Γ(t)). Since

nj∂
Γ
j = 0, we see that

λPΓ(divΓv) : DΓ(v)

= λ(divΓv)(δij − ninj){∂Γ
i vj + ∂Γ

j vi − ni(n · ∂Γ
j v)− nj(n · ∂Γ

i v)}/2
= λ(divΓv)δij{∂Γ

i vj + ∂Γ
j vi − ni(n · ∂Γ

j v)− nj(n · ∂Γ
i v)}/2 = λ|divΓv|2
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and that

− PΓg : DΓ(v) = −g(δij − ninj){∂Γ
i vj + ∂Γ

j vi − ni(n · ∂Γ
j v)− nj(n · ∂Γ

i v)}/2
= −g(divΓv).

Therefore we find that

SΓ(v, g, μ, λ) : DΓ(v) =(2μDΓ(v) + λPΓ(divΓv)− PΓg) : DΓ(v)

=2μDΓ(v) : DΓ(v) + λ|divΓv|2 − g(divΓv).

Therefore the lemma follows. �
Next we study material derivatives on an evolving surface.

Lemma 2.7 (Material derivatives on evolving surface).

Let v = t(v1, v2, v3) ∈ [C1,1(ST )]
3. For every f ∈ C1,1(ST ),

Dtf := ∂tf + (v,∇)f,

DN
t f := ∂tf + (v · n)(n,∇)f,

DΓ
t f := ∂tf + (v,∇Γ)f.

Then for every f ∈ C1,1(ST ),

DN
t f + divΓ(fv) = Dtf + (divΓv)f, (2.19)

DN
t (fv) + divΓ(fv ⊗ v) = {Dtf + (divΓv)f}v + fDtv. (2.20)

Proof of Lemma 2.7. From (2.7), we see that

DN
t f + divΓ(fv) ={∂tf + (v,∇−∇Γ)f}+ {(v,∇Γ)f + (divΓv)f}

=Dtf + (divΓv)f

and that

DN
t (fv)+divΓ(fv⊗v) = {(DN

t f)v+f(DN
t v)}+({(v,∇Γ)f}v+f(v,∇Γ)v+f(divΓv)v)

= {DN
t f + (v,∇Γ)f + (divΓv)f}v + f{DN

t v + (v,∇Γ)v}
= {Dtf + (divΓv)f}v + fDtv.

Therefore the lemma follows. Note that [fv ⊗ v]ij = fvivj . �
Finally we state integration by parts on surfaces.

Lemma 2.8 (Integration by parts on surfaces).

Let Γ0 be a 2-dimensional surface in R
3. Then two assertions hold;

(i) For each f ∈ C1(Γ0), g ∈ C1
0 (Γ0), ϕ ∈ [C1

0 (Γ0)]
3, and m ∈ {1, 2, 3},∫

Γ0

{(∂Γ0
m f)g}(x) dH2

x = −
∫
Γ0

{f(∂Γ0
m g)}(x) dH2

x −
∫
Γ0

{HΓ0
nmfg}(x) dH2

x,∫
Γ0

{f(divΓ0
ϕ)}(x) dH2

x = −
∫
Γ0

{gradΓ0
f + fHΓ0

n}(x) · ϕ(x) dH2
x.
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(ii) Assume that Γ0 is a closed surface. Then for each f, g ∈ C1(Γ0), ϕ ∈ [C1(Γ0)]
3, and

m ∈ {1, 2, 3},∫
Γ0

{(∂Γ0
m f)g}(x) dH2

x = −
∫
Γ0

{f(∂Γ0
m g)}(x) dH2

x −
∫
Γ0

{HΓ0
nmfg}(x) dH2

x,∫
Γ0

{f(divΓ0
ϕ)}(x) dH2

x = −
∫
Γ0

{gradΓ0
f + fHΓ0

n}(x) · ϕ(x) dH2
x.

Here n = n(x) = t(n1, n2, n3) denotes the unit outer normal vector at x ∈ Γ0, and HΓ0

is the mean curvature defined by HΓ0
= −divΓ0

n.

The proof of Lemma 2.8 is found in [23, Chapter 2] and [14].

3. Flow maps and Riemannian metrics. This section has two purposes. The first

one is to derive the continuity equation for the fluid on an evolving surface. The second

one is to investigate a mathematical validity of our energy densities for compressible fluid

on the evolving surface. To achieve these purposes, we make use of a flow map on the

evolving surface and the Riemannian metric induced by the flow map.

In subsection 3.1 we introduce a flow map on an evolving surface and the Riemannian

metric defined by the flow map. In subsection 3.2, by using a flow map and the Riemann-

ian metric, we investigate the orthogonal projection PΓ and surface divergence divΓ. In

subsection 3.3 we derive the continuity equation for the fluid on an evolving surface to

prove Proposition 1.3. In subsection 3.4 we study the representation of the kinetic energy,

dissipation energies, and work for compressible fluid on an evolving surface.

3.1. Flow maps and Riemannian metrics on evolving surfaces. We first introduce a

flow map on an evolving surface and the Riemannian metric defined by the flow map.

Then we study surface area integral by applying the flow map and the Riemannian metric.

We also consider a flow map on a variation of the evolving surface and the Riemannian

metric induced by the flow map.

Definition 3.1 (Flow map on an evolving surface).

Let Γ(t) be an evolving 2-dimensional surface in R
3 on [0, T ) for some T ∈ (0,∞].

Let x = t(x1, x2, x3) ∈ [C∞(R4)]3. We call x = x̂(ξ, t) a flow map on Γ(t) if the three

properties hold:

(i) for every ξ ∈ Γ(0)

x̂(ξ, 0) = ξ,

(ii) for all ξ ∈ Γ(0) and 0 ≤ t < T

x̂(ξ, t) ∈ Γ(t),

(iii) for each 0 ≤ t < T

x̂(·, t) : Γ(0) → Γ(t) is bijective.

The mapping ξ �→ x̂(ξ, t) is called a flow map on Γ(t), while the mapping t �→ x̂(ξ, t) is

called an orbit starting from ξ.
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Definition 3.2 (Velocity determined by a flow map).

Let Γ(t) be an evolving 2-dimensional surface in R
3 on [0, T ) for some T ∈ (0,∞]. Let

x̂ = x̂(ξ, t) be a flow map on Γ(t). Suppose that there is a smooth function v = v(x, t) =
t(v1, v2, v3) such that for ξ ∈ Γ(0) and 0 < t < T ,

dx̂

dt
= x̂t(ξ, t) = v(x̂(ξ, t), t).

We call the vector-valued function v the velocity determined by the flow map x̂(ξ, t).

Let us now study fundamental properties of a flow map on an evolving surface and

the velocity determined by the flow map. Let Γ(t) be a given evolving 2-dimensional

surface in R
3 on [0, T ) for some T ∈ (0,∞]. Let x̂ = x̂(ξ, t) be a flow map on Γ(t), and

let v = v(x, t) be the velocity determined by the flow map x̂, i.e., for every ξ ∈ Γ(0) and

0 < t < T , {
dx̂
dt (ξ, t) = v(x̂(ξ, t), t),

x̂(ξ, 0) = ξ.

We assume that v is the total velocity. From now on we write Γ0 = Γ(0). By the bijection

of the flow map, we see that Γ(t) is expressed as follows:

Γ(t) = {x = t(x1, x2, x3) ∈ R
3; x = x̂(ξ, t), ξ ∈ Γ0}.

Since Γ0(= Γ(0)) is a closed Riemannian 2-dimensional manifold, there are Γm ⊂ Γ0,

Φm ∈ C∞(R2), Um ⊂ R
2, Ψm ∈ C∞(R3), (m = 1, 2, · · · , N) such that

N⋃
m=1

Γm = Γ0,

Γm = Φm(Um),

suppΨm ⊂ Γm,

‖Ψm‖L∞ = 1,

N∑
m=1

Ψm = 1 on Γ0.

This is a partition of unity. Fix ξ ∈ Γ0. Assume that ξ ∈ Γm for some m ∈ {1, 2, · · · , N}.
Since we can write ξ = Φm(X) for some X = t(X1, X2) ∈ Um ⊂ R

2, we set

x̃ = x̃(X, t) = x̂(Φm(X), t)(= x̂(ξ, t)).

Then {
dx̃
dt = x̃t(X, t) = v(x̃(X, t), t),

x̃|t=0 = Φm(X)(= ξ).

Now we write

Φ := Φm if ξ ∈ Γm.

Then for each ξ ∈ Γ0 and 0 < t < T ,{
dx̃
dt = x̃t(X, t) = v(x̃(X, t), t),

x̃|t=0 = Φ(X)(= ξ).
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We also call x̃(X, t) a flow map on Γ(t). For the map x̃ = x̃(X, t), we define

J = J(X, t) = det{t(∇X x̃)(∇X x̃)},

where

∇X x̃ =

⎛
⎜⎝

∂x̃1

∂X1

∂x̃1

∂X2
∂x̃2

∂X1

∂x̃2

∂X2
∂x̃3

∂X1

∂x̃3

∂X2

⎞
⎟⎠ .

We assume that J > 0. Indeed, we can choose a coordinate such that J > 0 from the

definition of evolving surfaces (see Definitions 2.1-2.3).

Next we study surface area integral by applying the flow maps x̂(ξ, t) and x̃(X, t) on

Γ(t). For each f(·, ·) ∈ C(R3 × R), we find that∫
Γ(t)

f(x, t) dH2
x =

∫
U

Ψ̃(X)f(x̃(X, t), t)
√
J(X, t) dX. (3.1)

Here∫
U

Ψ̃(X)f(x̃(X, t), t)
√
J(X, t) dX :=

N∑
m=1

∫
Um

Ψm(Φm(X))f(x̃(X, t), t)
√
J(X, t) dX.

Since

Γ(t) = {x ∈ R
3; x = x̂(ξ, t), ξ ∈ Γ0},

we use the change of variables and usual surface area integral to check that for 0 < t < T∫
Γ(t)

f(x, t) dH2
x =

∫
Γ0

f(x̂(ξ, t), t) det(∇ξx̂) dH2
ξ

=
N∑

m=1

∫
Γm

Ψm(ξ)f(x̂(ξ, t), t) det(∇ξx̂) dH2
ξ

=

N∑
m=1

∫
Um

Ψm(Φm(X))f(x(Φm(X), t), t) det(∇ξx̂)
√
det(t∇XΦm∇XΦm) dX

=

N∑
m=1

∫
Um

Ψm(Φm(X))f(x̃(X, t), t)
√
J(X, t) dX.

Here we used the fact that∣∣∣∣∣∣∣
⎛
⎜⎝

∂x̃1

∂X1
∂x̃2

∂X1
∂x̃3

∂X1

⎞
⎟⎠×

⎛
⎜⎝

∂x̃1

∂X2
∂x̃2

∂X2
∂x̃3

∂X2

⎞
⎟⎠
∣∣∣∣∣∣∣ =

√
det{t(∇X x̃)(∇X x̃)}.

Note that ⎛
⎜⎝

∂x̃1

∂X1
∂x̃2

∂X1
∂x̃3

∂X1

⎞
⎟⎠×

⎛
⎜⎝

∂x̃1

∂X2
∂x̃2

∂X2
∂x̃3

∂X2

⎞
⎟⎠ =

⎛
⎜⎝

∂x̃2

∂X1

∂x̃3

∂X2
− ∂x̃2

∂X2

∂x̃3

∂X1
∂x̃3

∂X1

∂x̃1

∂X2
− ∂x̃3

∂X2

∂x̃1

∂X1
∂x̃1

∂X1

∂x̃2

∂X2
− ∂x̃1

∂X2

∂x̃2

∂X1

⎞
⎟⎠
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and that

t(∇X x̃)(∇X x̃) =

(
∂x̃1

∂X1

∂x̃1

∂X1
+ ∂x̃2

∂X1

∂x̃2

∂X1
+ ∂x̃3

∂X1

∂x̃3

∂X1

∂x̃1

∂X1

∂x̃1

∂X2
+ ∂x̃2

∂X1

∂x̃2

∂X2
+ ∂x̃3

∂X1

∂x̃3

∂X2
∂x̃1

∂X2

∂x̃1

∂X1
+ ∂x̃2

∂X2

∂x̃2

∂X1
+ ∂x̃3

∂X2

∂x̃3

∂X1

∂x̃1

∂X2

∂x̃1

∂X2
+ ∂x̃2

∂X2

∂x̃2

∂X2
+ ∂x̃3

∂X2

∂x̃3

∂X2

)
.

Thus, we have (3.1). Recall that Um, Ψm, Φm, J are independent of f .

Next we introduce the Riemannian metric induced by the flow map x̃(X, t). For the

flow map x̃ = x̃(X, t) on Γ(t),

gα = gα(X, t) := t

(
∂x̃1

∂Xα
,
∂x̃2

∂Xα
,
∂x̃3

∂Xα

)
.

Write

gαβ = gαβ(X, t) := gα · gβ =
∂x̃i

∂Xα

∂x̃i

∂Xβ
=

3∑
i=1

∂x̃i

∂Xα

∂x̃i

∂Xβ
.

Set

(gαβ)2×2 := ((gαβ)2×2)
−1, that is,

(
g11 g12

g21 g22

)
:=

(
g11 g12
g21 g22

)−1

,

gα := gαβgβ = gα1g1 + gα2g2,

ǵα :=
d

dt
gα =

∂v

∂Xα
= t

(
∂v1
∂Xα

,
∂v2
∂Xα

,
∂v3
∂Xα

)
.

It is easy to check that gβα = gαβ , g
βα = gαβ , gαβ = gα · gβ , gα · gβ = δαβ ,

gα = gαβg
β = gα1g

1 + gα2g
2,

ǵαβ = ǵα · gβ + gα · ǵβ,

ǵα =
∂v

∂Xα
=

∂x̃i

∂Xα

∂v

∂x̃i
=

3∑
i=1

∂x̃i

∂Xα

∂v

∂x̃i
,

ǵα · gβ =
∂x̃i

∂Xα

∂vj
∂x̃i

∂x̃j

∂Xβ
=

3∑
i,j=1

∂x̃i

∂Xα

∂vj
∂x̃i

∂x̃j

∂Xβ
,

ǵαβ =
∂x̃i

∂Xα

(
∂vj
∂x̃i

+
∂vi
∂x̃j

)
∂x̃j

∂Xβ
= 2

3∑
i,j=1

∂x̃i

∂Xα
[D(v)]ij

∂x̃j

∂Xβ
,

where δαβ is Kronecker’s delta. Indeed, we see at once that

ǵα · gβ = t

(
∂v1
∂Xα

,
∂v2
∂Xα

,
∂v3
∂Xα

)
· t

(
∂x̃1

∂Xβ
,
∂x̃2

∂Xβ
,
∂x̃3

∂Xβ

)

= t

(
3∑

i=1

∂x̃i

∂Xα

∂v1
∂x̃i

,

3∑
i=1

∂x̃i

∂Xα

∂v2
∂x̃i

,

3∑
i=1

∂x̃i

∂Xα

∂v3
∂x̃i

)
· t

(
∂x̃1

∂Xβ
,
∂x̃2

∂Xβ
,
∂x̃3

∂Xβ

)

=

3∑
i,j=1

∂x̃i

∂Xα

∂vj
∂x̃i

∂x̃j

∂Xβ
=

∂x̃i

∂Xα

∂vj
∂x̃i

∂x̃j

∂Xβ
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and that gα · gβ = (gα1g1 + gα2g2) · gβ = gα1g1β + gα2g2β = δαβ. Recall that

(R.H.S.) of (3.1) =

∫
U

Ψ̃(X)f(x̃(X, t), t)

√
det

(
g11 g12
g21 g22

)
dX.

See [7] and [13] for differential geometry and the Riemannian manifold.

Next we introduce a flow map on a variation of the evolving surface Γ(t).

Definition 3.3 (Flow map on a variation of an evolving surface).

Let Γ(t) be an evolving 2-dimensional surface in R
3 on [0, T ) for some T ∈ (0,∞]. For

−1 < ε < 1, let Γε(t) be a variation of Γ(t). Let x̂ε = t(xε
1, x

ε
2, x

ε
3) ∈ [C∞(R4)]3. We call

x̂ε = x̂ε(ξ, t) a flow map on Γε(t) if the three properties hold:

(i) for every ξ ∈ Γ0(= Γ(0))

x̂ε(ξ, 0) = ξ,

(ii) for all ξ ∈ Γ0 and 0 ≤ t < T

x̂ε(ξ, t) ∈ Γε(t),

(iii) for each 0 ≤ t < T

x̂ε(·, t) : Γ0 → Γε(t) is bijective.

Note that from the property (iii) we can write

Γε(t) = {x ∈ R
3; x = x̂ε(ξ, t), ξ ∈ Γ0}.

Definition 3.4 (Velocity determined by a flow map on Γε(t)).

Let Γ(t) be a given evolving 2-dimensional surface in R
3 on [0, T ) for some T ∈ (0,∞].

For −1 < ε < 1, let Γε(t) be a variation of Γ(t). Let x̂ε = x̂ε(ξ, t) be a flow map on

Γε(t). Suppose that there is a smooth function vε = vε(x, t) = t(vε1, v
ε
2, v

ε
3) such that for

ξ ∈ Γ(0) and 0 < t < T ,
dx̂ε

dt
= x̂ε

t (ξ, t) = vε(x̂ε(ξ, t), t).

We call the vector-valued function vε the velocity determined by the flow map x̂ε(ξ, t).

For −1 < ε < 1, let Γε(t) be a variation of Γ(t). Let x̂ε = x̂ε(ξ, t) be a flow map

on Γε(t), and let vε = vε(x, t) be the velocity determined by the flow map x̂ε, i.e., for

ξ ∈ Γ(0) and 0 < t < T , {
dx̂ε

dt (ξ, t) = vε(x̂ε(ξ, t), t),

x̂ε(ξ, 0) = ξ.

By the same way as in the previous argument, we write

x̃ε(X, t) := x̂ε(Φm(X), t).

We also call x̃ε(X, t) a flow map on Γε(t). Set

Jε = Jε(X, t) = det{t(∇X x̃ε)(∇X x̃ε)},

where

∇X x̃ε =

⎛
⎜⎝

∂x̃ε
1

∂X1

∂x̃ε
1

∂X2
∂x̃ε

2

∂X1

∂x̃ε
2

∂X2
∂x̃ε

3

∂X1

∂x̃ε
3

∂X2

⎞
⎟⎠ .
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We assume that Jε > 0. We see at once that for f ∈ C(R4)∫
Γε(t)

f(x, t) dH2
x =

∫
U

Ψ̃(X)f(x̃ε(X, t), t)
√
Jε(X, t) dX. (3.2)

Here∫
U

Ψ̃(X)f(x̃ε(X, t), t)
√
Jε(X, t) dX

:=
N∑

m=1

∫
Um

Ψm(Φm(X))f(x̃ε(X, t), t)
√
Jε(X, t) dX.

For each flow map x̃ε = x̃ε(X, t) on Γε(t),

gεα := t

(
∂x̃ε

1

∂Xα
,
∂x̃ε

2

∂Xα
,
∂x̃ε

3

∂Xα

)
.

Write

gεαβ := gεα · gεβ =
∂x̃ε

i

∂Xα

∂x̃ε
i

∂Xβ
=

3∑
i=1

∂x̃ε
i

∂Xα

∂x̃ε
i

∂Xβ
.

Set

(gαβε )2×2 := ((gεαβ)2×2)
−1, that is,

(
g11ε g12ε
g21ε g22ε

)
:=

(
gε11 gε12
gε21 gε22

)−1

,

gαε := gαβε gεβ = gα1ε gε1 + gα2ε gε2,

ǵεα :=
d

dt
gεα =

∂vε

∂Xα
= t

(
∂vε1
∂Xα

,
∂vε2
∂Xα

,
∂vε3
∂Xα

)
.

It is clear that gεβα = gεαβ , g
βα
ε = gαβε , gαβε = gαε · gβε , gαε · gεβ = δαβ,

gεα = gεαβg
β
ε = gεα1g

1
ε + gεα2g

2
ε ,

ǵεαβ = ǵεα · gεβ + gεα · ǵεβ,

ǵεα =
∂vε

∂Xα
=

∂x̃ε
i

∂Xα

∂vε

∂x̃ε
i

=

3∑
i=1

∂x̃ε
i

∂Xα

∂vε

∂x̃ε
i

,

ǵεα · gεβ =
∂x̃ε

i

∂Xα

∂vεj
∂x̃ε

i

∂x̃ε
j

∂Xβ
=

3∑
i,j=1

∂x̃ε
i

∂Xα

∂vεj
∂x̃ε

i

∂x̃ε
j

∂Xβ
,

ǵεαβ =
∂x̃ε

i

∂Xα

(
∂vεj
∂x̃ε

i

+
∂vεi
∂x̃ε

j

)
∂x̃ε

j

∂Xβ
= 2

3∑
i,j=1

∂x̃ε
i

∂Xα
[D(vε)]ij

∂x̃ε
j

∂Xβ
,

where δαβ is Kronecker’s delta. Recall that

(R.H.S.) of (3.2) =

∫
U

Ψ̃(X)f(x̃ε(X, t), t)

√
det

(
gε11 gε12
gε21 gε22

)
dX.
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Throughout Section 3 we follow the convention:

Convention 3.5. Let Γ(t) be a given evolving 2-dimensional surface in R
3 on [0, T )

for some T ∈ (0,∞]. Let x̂ = x̂(ξ, t) be a flow map on Γ(t), and let v = v(x, t) be the

velocity determined by the flow map x̂(ξ, t). For −1 < ε < 1, let Γε(t) be a variation

of Γ(t). Let x̂ε = x̂ε(ξ, t) be a flow map on Γε(t), and let vε = vε(x, t) be the velocity

determined by the flow map x̂ε(ξ, t). The symbols gα, gα, g
αβ , gαβ and gαε , g

ε
α, g

αβ
ε , gεαβ

are the components of the Riemannian metrics determined by the flow maps x̂(ξ, t) and

x̂ε(ξ, t), respectively. The symbols U , Um, Ψ̃, Ψm, Φm, J , Jε represent the notation

appearing in the argument in subsection 3.1.

3.2. Orthogonal projection and surface divergence. Let us study an orthogonal projec-

tion and surface divergence by using the Riemannian metrics determined by flow maps.

By definition, we see that

(
g11ε g12ε
g21ε g22ε

)
=

1

gε11g
ε
22 − gε12g

ε
21

(
gε22 −gε12
−gε21 gε11

)
, (3.3)

gε11 =
∂x̃ε

1

∂X1

∂x̃ε
1

∂X1
+

∂x̃ε
2

∂X1

∂x̃ε
2

∂X1
+

∂x̃ε
3

∂X1

∂x̃ε
3

∂X1
, (3.4)

gε12 = gε21 =
∂x̃ε

1

∂X1

∂x̃ε
1

∂X2
+

∂x̃ε
2

∂X1

∂x̃ε
2

∂X2
+

∂x̃ε
3

∂X1

∂x̃ε
3

∂X2
, (3.5)

gε22 =
∂x̃ε

1

∂X2

∂x̃ε
1

∂X2
+

∂x̃ε
2

∂X2

∂x̃ε
2

∂X2
+

∂x̃ε
3

∂X2

∂x̃ε
3

∂X2
. (3.6)

The above equalities are still valid without ε. We also see that for each i, j = 1, 2, 3,

∂x̃ε
i

∂Xα

∂x̃ε
j

∂Xβ
gαβε =

∂x̃ε
i

∂X1

∂x̃ε
j

∂X1
g11ε +

∂x̃ε
i

∂X1

∂x̃ε
j

∂X2
g12ε +

∂x̃ε
i

∂X2

∂x̃ε
j

∂X1
g21ε +

∂x̃ε
i

∂X2

∂x̃ε
j

∂X2
g22ε . (3.7)

Let us now study the projections PΓ and PΓε . Let us first recall that [PΓ]ij = δij−ninj

and [PΓε ]ij = δij − nε
in

ε
j .

Lemma 3.6 (Representation of PΓ and PΓε).

For each i, j = 1, 2, 3,

∫
Γ(t)

{δij − ninj}(x, t) dH2
x =

∫
U

Ψ̃(X)

{
∂x̃i

∂Xα

∂x̃j

∂Xβ
gαβ

}
(X, t)

√
J(X, t)dX,

∫
Γε(t)

{δij − nε
in

ε
j}(x, t) dH2

x =

∫
U

Ψ̃(X)

{
∂x̃ε

i

∂Xα

∂x̃ε
j

∂Xβ
gαβε

}
(X, t)

√
Jε(X, t)dX.

Here

∫
U

Ψ̃(X)f(X, t) dX =

N∑
m=1

∫
Um

Ψm(Φm(X))f(X, t) dX.
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Proof of Lemma 3.6. Since nε is the unit outer normal vector of Γε(t), we see that

nε =

⎛
⎝nε

1

nε
2

nε
3

⎞
⎠ =± gε1 × gε2

|gε1 × gε2|

=± 1√
gε11g

ε
22 − gε12g

ε
21

⎛
⎜⎝

∂x̃ε
2

∂X1

∂x̃ε
3

∂X2
− ∂x̃ε

2

∂X2

∂x̃ε
3

∂X1
∂x̃ε

3

∂X1

∂x̃ε
1

∂X2
− ∂x̃ε

3

∂X2

∂x̃ε
1

∂X1
∂x̃ε

1

∂X1

∂x̃ε
2

∂X2
− ∂x̃ε

1

∂X2

∂x̃ε
2

∂X1

⎞
⎟⎠ . (3.8)

Note that ∫
Γ(t)

nε(x, t) dH2
x =

∫
U

Ψ̃(X)

{
± gε1 × gε2
|gε1 × gε2|

}
(X, t)

√
J(X, t)dX.

Here we only show that

1− nε
1n

ε
1 =

∂x̃ε
1

∂Xα

∂x̃ε
1

∂Xβ
gαβε , (3.9)

−nε
1n

ε
2 =

∂x̃ε
1

∂Xα

∂x̃ε
2

∂Xβ
gαβε . (3.10)

We first attack (3.9). From (3.8), we have

nε
1n

ε
1 =

1

gε11g
ε
22 − gε12g

ε
21

(
∂x̃ε

2

∂X1

∂x̃ε
3

∂X2
− ∂x̃ε

2

∂X2

∂x̃ε
3

∂X1

)2

. (3.11)

Combining (3.7) and (3.3), we find that

∂x̃ε
1

∂Xα

∂x̃ε
1

∂Xβ
gαβε =

∂x̃ε
1

∂X1

∂x̃ε
1

∂X1
g11ε + 2

∂x̃ε
1

∂X1

∂x̃ε
1

∂X2
g12ε +

∂x̃ε
1

∂X2

∂x̃ε
1

∂X2
g22ε

=
1

gε11g
ε
22 − gε12g

ε
21

(
∂x̃ε

1

∂X1

∂x̃ε
1

∂X1
gε22 − 2

∂x̃ε
1

∂X1

∂x̃ε
1

∂X2
gε12 +

∂x̃ε
1

∂X2

∂x̃ε
1

∂X2
gε11

)
. (3.12)

Adding (3.11) and (3.12), then using (3.4), (3.5), and (3.6), we see that

nε
1n

ε
1 +

∂x̃ε
1

∂Xα

∂x̃ε
1

∂Xβ
gαβε =

gε11g
ε
22 − gε12g

ε
21

gε11g
ε
22 − gε12g

ε
21

= 1.

Next we show (3.10). From (3.8), we have

nε
1n

ε
2 =

1

gε11g
ε
22 − gε12g

ε
21

(
∂x̃ε

2

∂X1

∂x̃ε
3

∂X2
− ∂x̃ε

2

∂X2

∂x̃ε
3

∂X1

)(
∂x̃ε

3

∂X1

∂x̃ε
1

∂X2
− ∂x̃ε

3

∂X2

∂x̃ε
1

∂X1

)
.

By (3.7), (3.3), and the fact that gεji = gεij , we check that

∂x̃ε
1

∂Xα

∂x̃ε
2

∂Xβ
gαβε =

∂x̃ε
1

∂X1

∂x̃ε
2

∂X1
g11ε +

∂x̃ε
1

∂X1

∂x̃ε
2

∂X2
g12ε +

∂x̃ε
1

∂X2

∂x̃ε
2

∂X1
g21ε +

∂x̃ε
1

∂X2

∂x̃ε
2

∂X2
g22ε

=
1

gε11g
ε
22 − gε12g

ε
21

(
∂x̃ε

1

∂X1

∂x̃ε
2

∂X1
gε22 −

∂x̃ε
1

∂X1

∂x̃ε
2

∂X2
gε12

− ∂x̃ε
1

∂X2

∂x̃ε
2

∂X1
gε12 +

∂x̃ε
1

∂X2

∂x̃ε
2

∂X2
gε11

)
.
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A direct calculation with (3.4), (3.5), and (3.6) shows that

nε
1n

ε
2 +

∂x̃ε
1

∂Xα

∂x̃ε
2

∂Xβ
gαβε = 0.

In the same manner, we see that for each i, j = 1, 2, 3,

nε
in

ε
j +

∂x̃ε
i

∂Xα

∂x̃ε
j

∂Xβ
gαβε = δij ,

ninj +
∂x̃i

∂Xα

∂x̃j

∂Xβ
gαβ = δij .

Therefore the lemma follows. �
See [14] for another proof of Lemma 3.6.

Using flow maps and the Riemannian metrics, we study surface divergence.

Lemma 3.7. For each fixed Ω0 ⊂ Γ0 and 0 < t < T

Ω(t) :={x ∈ R
3; x = x̂(ξ, t), ξ ∈ Ω0},

Ωε(t) :={x ∈ R
3; x = x̂ε(ξ, t), ξ ∈ Ω0},

where x(ξ, t) and x̂ε(ξ, t) are two flow maps on Γ(t) and Γε(t), respectively. Then the

following two assertions hold:

(i) For every f = t(f1, f2, f3) ∈ C1(R3 × R),∫
Ω(t)

{divΓf}(x, t) dH2
x =

∫
U

1Ω0
(Φ(X))Ψ̃(X)

{
gα · ∂f

∂Xα

√
J

}
(X, t) dX, (3.13)

∫
Ωε(t)

{divΓεf}(x, t) dH2
x =

∫
U

1Ω0
(Φ(X))Ψ̃(X)

{
gαε · ∂f

∂Xα

√
Jε

}
(X, t) dX. (3.14)

(ii) For all f ∈ C(R3 × R),

∫
Ω(t)

{f(divΓv)}(x, t) dH2
x

=

∫
U

1Ω0
(Φ(X))Ψ̃(X)f(x̃(X, t), t)

(
∂

∂t

√
J(X, t)

)
dX, (3.15)

∫
Ωε(t)

{f(divΓεvε)}(x, t) dH2
x

=

∫
U

1Ω0
(Φ(X))Ψ̃(X)f(x̃ε(X, t), t)

(
∂

∂t

√
Jε(X, t)

)
dX. (3.16)

Here

1Ω0
(ξ) :=

{
1, ξ ∈ Ω0,

0, ξ ∈ R
3 \ Ω0.
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Proof of Lemma 3.7. We first show (3.14). Fix Ω0 ⊂ Γ0 and 0 < t < T . By change of

variables, we check that∫
Ωε(t)

{divΓεf}(x, t) dH2
x =

∫
Ω0

divΓεf(x̂ε(ξ, t), t) det(∇ξx̂
ε) dH2

ξ

=

∫
Γ0

1Ω0
(ξ)divΓεf(x̂ε(ξ, t), t) det(∇ξx̂

ε) dH2
ξ

=

∫
U

1Ω0
(Φ(X))Ψ̃(X)divΓεf(x̃ε(X, t), t)

√
Jε(X, t) dX.

A direct calculation shows that

gαε · ∂f

∂Xα
= gαβε gεβ · ∂f

∂Xα
= g1βε gεβ · ∂f

∂X1
+ g2βε gεβ · ∂f

∂X2

=

(
g11ε gε1 ·

∂f

∂X1
+ g12ε gε2 ·

∂f

∂X1

)
+

(
g21ε gε1 ·

∂f

∂X2
+ g22ε gε2 ·

∂f

∂X2

)

=

(
g11ε

∂x̃ε
1

∂X1

∂f1
∂X1

+ g12ε
∂x̃ε

1

∂X2

∂f1
∂X1

+ g21ε
∂x̃ε

1

∂X1

∂f1
∂X2

+ g22ε
∂x̃ε

1

∂X2

∂f1
∂X2

)

+

(
g11ε

∂x̃ε
2

∂X1

∂f2
∂X1

+ g12ε
∂x̃ε

2

∂X2

∂f2
∂X1

+ g21ε
∂x̃ε

2

∂X1

∂f2
∂X2

+ g22ε
∂x̃ε

2

∂X2

∂f2
∂X2

)

+

(
g11ε

∂x̃ε
3

∂X1

∂f3
∂X1

+ g12ε
∂x̃ε

3

∂X2

∂f3
∂X1

+ g21ε
∂x̃ε

3

∂X1

∂f3
∂X2

+ g22ε
∂x̃ε

3

∂X2

∂f3
∂X2

)
=: Iε1 + Iε2 + Iε3 .

Since

∂fj
∂Xα

=
∂

∂Xα
fj(x̃

ε(X, t), t) =

3∑
i=1

∂x̃ε
i

∂Xα

∂fj
∂x̃ε

i

,

we observe that

Iε1 =

(
g11ε

∂x̃ε
1

∂X1

∂x̃ε
1

∂X1
+ g12ε

∂x̃ε
1

∂X1

∂x̃ε
1

∂X2
+ g21ε

∂x̃ε
1

∂X1

∂x̃ε
1

∂X2
+ g22ε

∂x̃ε
1

∂X2

∂x̃ε
1

∂X2

)
∂f1
∂x̃ε

1

+

(
g11ε

∂x̃ε
1

∂X1

∂x̃ε
2

∂X1
+ g12ε

∂x̃ε
1

∂X1

∂x̃ε
2

∂X2
+ g21ε

∂x̃ε
1

∂X1

∂x̃ε
2

∂X2
+ g22ε

∂x̃ε
1

∂X2

∂x̃ε
2

∂X2

)
∂f1
∂x̃ε

2

+

(
g11ε

∂x̃ε
1

∂X1

∂x̃ε
3

∂X1
+ g12ε

∂x̃ε
1

∂X1

∂x̃ε
3

∂X2
+ g21ε

∂x̃ε
1

∂X1

∂x̃ε
3

∂X2
+ g22ε

∂x̃ε
1

∂X2

∂x̃ε
3

∂X2

)
∂f1
∂x̃ε

3

=

(
∂x̃ε

1

∂Xα

∂x̃ε
1

∂Xβ
gαβε

∂

∂x̃ε
1

+
∂x̃ε

1

∂Xα

∂x̃ε
2

∂Xβ
gαβε

∂

∂x̃ε
2

+
∂x̃ε

1

∂Xα

∂x̃ε
3

∂Xβ
gαβε

∂

∂x̃ε
3

)
f1.

Applying Lemma 3.6, we see that∫
Ωε(t)

{∂Γε

1 f1}(x, t) dH2
x =

∫
U

1Ω0
(Φ(X))Ψ̃(X)Iε1(X, t)

√
Jε(X, t) dX.

Similarly, we check that∫
Ωε(t)

{divΓεf}(x, t) dH2
x =

∫
U

1Ω0
(Φ(X))Ψ̃(X){(Iε1 + Iε2 + Iε3)

√
Jε}(X, t) dX.

Therefore we have (3.14). Similarly, we obtain (3.13).
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Next we derive (3.16). Since Jε = det{t(∇X x̃ε)(∇X x̃ε)}, we find that

Jε = det

(
∂x̃ε

1

∂X1

∂x̃ε
1

∂X1
+

∂x̃ε
2

∂X1

∂x̃ε
2

∂X1
+

∂x̃ε
3

∂X1

∂x̃ε
3

∂X1

∂x̃ε
1

∂X1

∂x̃ε
1

∂X2
+

∂x̃ε
2

∂X1

∂x̃ε
2

∂X2
+

∂x̃ε
3

∂X1

∂x̃ε
3

∂X2
∂x̃ε

1

∂X2

∂x̃ε
1

∂X1
+

∂x̃ε
2

∂X2

∂x̃ε
2

∂X1
+

∂x̃ε
3

∂X2

∂x̃ε
3

∂X1

∂x̃ε
1

∂X2

∂x̃ε
1

∂X2
+

∂x̃ε
2

∂X2

∂x̃ε
2

∂X2
+

∂x̃ε
3

∂X2

∂x̃ε
3

∂X2

)

= det

(
gε1 · gε1 gε1 · gε2
gε2 · gε1 gε2 · gε2

)
= det

(
gε11 gε12
gε21 gε22

)
= (gε1 · gε1)(gε2 · gε2)− (gε1 · gε2)(gε2 · gε1) = gε11g

ε
22 − gε12g

ε
21.

From the fact that
∂

∂t
(gεα · gεβ) = gεβ · ∂vε

∂Xα
+ gεα · ∂vε

∂Xβ
,

we check that

∂

∂t
Jε = 2gε22

(
gε1 ·

∂vε

∂X1

)
+ 2gε11

(
gε2 ·

∂vε

∂X2

)
− 2gε12

(
gε2 ·

∂vε

∂X1

)
− 2gε21

(
gε1 ·

∂vε

∂X2

)
.

Dividing both sides of the above equality by Jε = gε11g
ε
22 − gε12g

ε
21, and then using (3.3),

we have

1

Jε

∂

∂t
Jε = 2g11ε

(
gε1 ·

∂vε

∂X1

)
+2g22ε

(
gε2 ·

∂vε

∂X2

)
+2g12ε

(
gε2 ·

∂vε

∂X1

)
+2g21ε

(
gε1 ·

∂vε

∂X2

)

= 2

(
(g11ε gε1 + g12ε gε2) ·

∂vε

∂X1

)
+ 2

(
(g21ε gε1 + g22ε gε2) ·

∂vε

∂X2

)

= 2g1ε ·
∂vε

∂X1
+ 2g2ε ·

∂vε

∂X2
.

As a result, we have

∂

∂t
Jε = 2

(
gαε · ∂vε

∂Xα

)
Jε.

Therefore we find that

∂

∂t

√
Jε(X, t) =

1

2
√
Jε

∂

∂t
Jε

=gαε · ∂vε

∂Xα

√
Jε.

Applying (3.14), we see (3.16). Similarly, we see (3.15). Therefore the lemma follows. �
3.3. Continuity equation on an evolving surface. In this subsection we study the con-

tinuity equation on an evolving surface and a variation of the evolving surface. We first

prepare two lemmas, and then we prove Proposition 1.3.

Lemma 3.8. For every f ∈ C1,1(Sε
T ),

Dε
t f := ∂tf + (vε,∇)f,

DNε

t f := ∂tf + (vε · nε)(nε,∇)f,

DΓε

t f := ∂tf + (vε,∇Γε)f.
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Then for every f ∈ C1,1(Sε
T ),

DNε

t f + divΓε(fvε) = Dtf + (divΓεvε)f,

DNε

t (fvε) + divΓε(fvε ⊗ vε) = {Dε
t f + (divΓεvε)f}vε + fDε

t v
ε.

Since we can prove Lemma 3.8 by using the same argument in the proof of Lemma

2.7, the proof of Lemma 3.8 is left to the reader.

Lemma 3.9. For each fixed Ω0 ⊂ Γ0 and 0 < t < T ,

Ω(t) :={x ∈ R
3; x = x̂(ξ, t), ξ ∈ Ω0},

Ωε(t) :={x ∈ R
3; x = x̂ε(ξ, t), ξ ∈ Ω0},

where x̂ and x̂ε are two flow maps on Γ(t) and Γε(t), respectively. Then for each Ω0 ⊂ Γ0,

0 < t < T , and f ∈ C(R3 × R),

d

dt

∫
Ω(t)

f(x, t) dH2
x =

∫
Ω(t)

{Dtf + (divΓv)f}(x, t) dH2
x, (3.17)

d

dt

∫
Ωε(t)

f(x, t) dH2
x =

∫
Ωε(t)

{Dε
t f + (divΓεvε)f} dH2

x. (3.18)

Proof of Lemma 3.9. We first derive (3.18). Fix Ω0 ⊂ Γ0, 0 < t < T and f ∈
C(R3 × R). By definition, we observe that∫

Ωε(t)

f(x, t) dH2
x =

∫
Ω0

f(x̂ε(ξ, t), t) det(∇ξx̂
ε) dH2

ξ

=

∫
Γ0

1Ω0
(ξ)f(x̂ε(ξ, t), t) det(∇ξx̂

ε) dH2
ξ

=

∫
U

1Ω0
(Φ(X))Ψ̃(X)f(x̃ε(X, t), t)

√
Jε(X, t) dX.

Here

1Ω0
(ξ) =

{
1, ξ ∈ Ω0,

0, ξ ∈ R
3 \ Ω0.

Using the assertion (ii) of Lemma 3.7, we check that

d

dt

∫
Ωε(t)

f(x, t) dH2
x =

∫
U

1Ω0
(Φ(X))Ψ̃(X)

(
d

dt
f(x̃ε(X, t), t)

)√
Jε(X, t) dX

+

∫
U

1Ω0
(Φ(X))Ψ̃(X)f(x̃ε(X, t), t)

(
∂

∂t

√
Jε(X, t)

)
dX

=

∫
Ωε(t)

{Dε
t f + (divΓεvε)f}(x, t) dH2

x.

Therefore we have (3.18). Similarly, we see (3.17). �
Lemma 3.9 attacks Proposition 1.3.

Proof of Proposition 1.3. We only prove the assertion (ii) of Proposition 1.3. Fix

t ∈ (0, T ) and Ωε(t) ⊂ Γε(t). Since the flow map x̂ε(ξ, t) is bijective, there is Ω0 ⊂ Γ0

such that

Ωε(t) = {x ∈ R
3; x = x̂ε(ξ, t), ξ ∈ Ω0}.
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From Lemma 3.9, we see that

d

dt

∫
Ωε(t)

ρε(x, t) dH2
x =

∫
Ωε(t)

{Dε
t ρ

ε + (divΓεvε)ρε}(x, t) dH2
x.

Since Ωε(t) is arbitrary, we conclude that

Dε
t ρ

ε + (divΓεvε)ρε = 0 on Sε
T .

Therefore we have the continuity equation for the fluid on Γε(t). Similarly, we can prove

Proposition 1.3. �
See also [4], [11], [8], [14], and [22] for the proof of Proposition 1.3.

3.4. Representation of density, kinetic energy, dissipation energies, work for the fluid

on an evolving surface. In this subsection we study the representation of the kinetic

energy, dissipation energies, and work for the fluid on an evolving surface by applying

the Riemannian metric induced by a flow map. From now we follow the convention:

Convention 3.10. Assume that ρ = ρ(x, t), ρε = ρε(x, t), ρ0 = ρ0(x), σ = σ(x, t),

e = e(x, t), θ = θ(x, t), h = h(x, t), s = s(x, t), eF = eF (x, t), F = F (x, t) = t(F1, F2, F3),

μ = μ(x, t), λ = λ(x, t), κ = κ(x, t), ν = ν(x, t), C = C(x, t), Cθ = Cθ(x, t), Qθ =

Qθ(x, t), QC = QC(x, t), F1 = F1(x, t), F2 = F2(x, t) are smooth functions. Moreover,

p ∈ C1((0,∞)) or p ∈ C1([0,∞)).

Based on Proposition 1.3, we assume that ρ and ρε satisfies{
Dtρ+ (divΓv)ρ = 0 on ST ,

ρ|t=0 = ρ0 on Γ(0),

{
Dε

t ρ
ε + (divΓεvε)ρε = 0 on Sε

T ,

ρε|t=0 = ρ0 on Γ(0).

The aim of this subsection is to prove the following three propositions.

Proposition 3.11 (Representation of energy densities (I)).

Set

ρ̃0(X) =ρ0(x̃(X, 0))
√
J(X, 0),

K(eK) =
1

2

ρ̃0(X)√
J(X, t)

x̃t(X, t) · x̃t(X, t),

K(eA) =
ρ̃0(X)√
J(X, t)

{
1

2
x̃t(X, t) · x̃t(X, t) + e(x̃(X, t), t)

}
,

K(eB) =
1

2

ρ̃0(X)√
J(X, t)

{x̃t(X, t) · x̃t(X, t)} − p

(
ρ̃0(X)√
J(X, t)

)
,

K(eW2
) =

ρ̃0(X)√
J(X, t)

x̃t(X, t) · F (x̃(X, t), t).
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Then ∫
Γ(t)

{
1

2
ρ|v|2

}
(x, t) dH2

x =

∫
U

Ψ̃(X)K(eK)
√
J(X, t) dX,

∫
Γ(t)

{
1

2
ρ|v|2 + ρe

}
(x, t) dH2

x =

∫
U

Ψ̃(X)K(eA)
√
J(X, t) dX,

∫
Γ(t)

{
1

2
ρ|v|2 − p(ρ)

}
(x, t) dH2

x =

∫
U

Ψ̃(X)K(eB)
√
J(X, t) dX,

∫
Γ(t)

{ρF · v}(x, t) dH2
x =

∫
U

Ψ̃(X)K(eW2
)
√
J(X, t) dX.

Here ∫
U

Ψ̃(X)f(X, t) dX =

N∑
m=1

∫
Um

Ψm(Φm(X))f(X, t) dX.

Proposition 3.12 (Representation of energy densities (II)).

Set

K(eW1
) =

1

2
σ(x̃(X, t), t)(ǵαβg

αβ)(X, t),

K(eD) =
1

2

{
1

2
μ(x̃(X, t), t)(ǵαβǵζηg

αζgβη) +
1

4
λ(x̃(X, t), t)(ǵαβǵζηg

αβgζη)

}
,

K(eTD) =
1

2
κ(x̃(X, t), t)

{
gαβ

∂θ

∂Xα

∂θ

∂Xβ

}
(X, t),

K(eSD) =
1

2
ν(x̃(X, t), t)

{
gαβ

∂C

∂Xα

∂C

∂Xβ

}
(X, t).

Then ∫
Γ(t)

{σ(divΓv)}(x, t) dH2
x =

∫
U

Ψ̃(X)K(eW1
)
√
J(X, t) dX,

∫
Γ(t)

1

2
{2μ|PΓD(v)PΓ|2 + λ|divΓv|2} dH2

x =

∫
U

Ψ̃(X)K(eD)
√
J(X, t) dX,

∫
Γ(t)

{
1

2
κ|gradΓθ|2

}
(x, t) dH2

x =

∫
U

Ψ̃(X)K(eTD)
√
J(X, t) dX,

∫
Γ(t)

{
1

2
ν|gradΓC|2

}
(x, t) dH2

x =

∫
U

Ψ̃(X)K(eSD)
√
J(X, t) dX.

Proposition 3.13 (Representation of energy density (III)).

Assume that eJ ∈ C1((0,∞)) or eJ ∈ C1([0,∞)). Set

K(eJ ) =
1

2
eJ

({
gαβ

∂f

∂Xα

∂f

∂Xβ

}
(X, t)

)
.

Then ∫
Γ(t)

1

2
eJ (|gradΓf(x, t)|2) dH2

x =

∫
U

Ψ̃(X)K(eJ )
√
J(X, t)dX.

In order to prove the three propositions, we prepare several lemmas. Let us first study

the representation of the density of the fluid on an evolving surface.
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Lemma 3.14 (Representation of density).

Let f0 = f0(x), f = f(x, t) and F = F(x, t) be three smooth functions. Then two

assertions hold:

(i) Suppose that {
Dtf + (divΓv)f = F on ST ,

f |t=0 = f0.

Then for each X and t,

f(x̃(X, t), t) =
f0(x̃(X, 0))

√
J(X, 0)√

J(X, t)
+

1√
J(X, t)

∫ t

0

F(x̃(X, τ ), τ )
√
J(X, τ ) dτ.

(ii) Suppose that {
Dε

t f + (divΓεvε)f = F on Sε
T ,

f |t=0 = f0.

Then for each X and t,

f(x̃ε(X, t), t) =
f0(x̃(X, 0))

√
J(X, 0)√

Jε(X, t)

+
1√

Jε(X, t)

∫ t

0

F(x̃ε(X, τ ), τ )
√
Jε(X, τ ) dτ. (3.19)

Proof of Lemma 3.14. We only prove (ii). Fix X. Set

Gε(X, t) = f(x̃ε(X, t), t)
√
Jε(X, t).

Applying Lemma 3.7 and the assumption, we check that

dGε

dt
=

{(
dx̃ε

dt
,∇x̃ε

)
f + ∂tf

}√
Jε + f

d

dt

√
Jε

={Dε
t f + (divΓεvε)f}

√
Jε = F

√
Jε.

Integrating with respect to time, we have

Gε(t) = Gε(0) +

∫ t

0

F(x̃ε(X, τ ), τ )
√
Jε(X, τ ) dτ.

This implies that

f(x̃ε(X, t), t)
√
Jε(X, t) = f0(x̃

ε(X, 0))
√
Jε(X, 0) +

∫ t

0

F(x̃ε(X, τ ), τ )
√
Jε(X, τ ) dτ.

Since x̃ε(X, 0) = x̃(X, 0) = Φ(X) = ξ, we have (3.19). Similarly, we see (i). Therefore

the lemma follows. �
Let us now study the representation of several energies for the fluid on an evolving

surface.
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Lemma 3.15 (Representation of energies (I)).

(i) ∫
Γ(t)

ρ(x, t)|v(x, t)|2 dH2
x =

∫
U

Ψ̃(X)ρ̃0(X)|x̃t(X, t)|2 dX, (3.20)

∫
Γ(t)

ρ(x, t)e(x, t) dH2
x =

∫
U

Ψ̃(X)ρ̃0(X)e(x̃(X, t), t) dX, (3.21)

∫
Γ(t)

ρ(x, t)F (x, t) · v(x, t) dH2
x =

∫
U

Ψ̃(X)ρ̃0(X)F (x̃(X, t), t) · x̃t(X, t) dX, (3.22)

∫
Γ(t)

p(ρ(x, t)) dH2
x =

∫
U

Ψ̃(X)p

(
ρ̃0(X)√
J(X, t)

)√
J(X, t) dX. (3.23)

(ii) ∫
Γε(t)

ρε(x, t)|vε(x, t)|2 dH2
x =

∫
U

Ψ̃(X)ρ̃0(X)|x̃ε
t (X, t)|2 dX, (3.24)

∫
Γε(t)

p(ρε(x, t)) dH2
x =

∫
U

Ψ̃(X)p

(
ρ̃0(X)√
Jε(X, t)

)√
Jε(X, t) dX. (3.25)

Here

ρ̃0(X) = ρ0(x̃(X, 0))
√
J(X, 0).

Proof of Lemma 3.15. We first show (3.24). From Lemma 3.14, we check that∫
Γε(t)

ρε(x, t)|vε(x, t)|2 dH2
x =

∫
Γ(0)

ρε(x̂ε(ξ, t), t)|vε(x̂ε(ξ, t), t)|2det(∇ξx̂
ε) dH2

ξ

=

∫
U

Ψ̃(X)ρε(x̃ε(X, t), t)x̃ε
t(X, t) · x̃ε

t (X, t)
√
Jε(X, t) dX

=

∫
U

Ψ̃(X)ρ̃0(X) {x̃ε
t (X, t) · x̃ε

t (X, t)} dX.

Therefore we have (3.24). Similarly, we see (3.20)-(3.25). �

Lemma 3.16 (Representation of energies (II)).

Let f = f(x, t) ∈ C1,0(ST ). Then∫
Γ(t)

{σ(divΓv)}(x, t) dH2
x

=

∫
U

Ψ̃(X)σ(x̃(X, t), t)

{
1

2
ǵαβg

αβ

}
(X, t)

√
J(X, t) dX, (3.26)

∫
Γ(t)

{λ|divΓv|2}(x, t) dH2
x

=

∫
U

Ψ̃(X)λ(x̃(X, t), t)

{
1

4
ǵαβ ǵζηg

αβgζη
}
(X, t)

√
J(X, t) dX, (3.27)
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Γ(t)

{μ|PΓD(v)PΓ|2}(x, t) dH2
x

=

∫
U

Ψ̃(X)μ(x̃(X, t), t)

{
1

4
ǵαβ ǵζηg

αζgβη
}
(X, t)

√
J(X, t) dX, (3.28)

∫
Γ(t)

{|gradΓf |2}(x, t) dH2
x =

∫
U

Ψ̃(X)

{
gαβ

∂f

∂Xα

∂f

∂Xβ

}
(X, t)

√
J(X, t) dX. (3.29)

Proof of Lemma 3.16. A direct calculation shows that

ǵαβg
αβ =(ǵα · gβ + ǵβ · gα)gαβ

=ǵα · gα + ǵβ · gβ

=
∂v

∂Xα
· gα +

∂v

∂Xβ
· gβ(= 2divΓv).

From Lemma 3.7, we see that∫
U

Ψ̃(X)σ(x̃(X, t), t)

(
1

2
ǵαβg

αβ

)√
J(X, t) dX =

∫
Γ(t)

{σ(divΓv)}(x, t) dH2
x

and that∫
U

Ψ̃(X)λ(x̃(X, t), t)

(
1

2
ǵαβg

αβ

)(
1

2
ǵζηg

ζη

)√
J(X, t) dX

=

∫
Γ(t)

{λ|divΓv|2}(x, t) dH2
x.

Thus, we have (3.26) and (3.27). Since

1

2
ǵαβ =

∂x̃i

∂Xα
[D(v)]ij

∂x̃j

∂Xβ
and [PΓ]ij =

∂x̃i

∂Xα

∂x̃j

∂Xβ
gαβ ,

we observe that

1

4
ǵαβ ǵζηg

αζgβη =
∂x̃i

∂Xα
[D(v)]ij

∂x̃j

∂Xβ
gαζgβη

∂x̃k

∂Xζ
[D(v)]k�

∂x̃�

∂Xη

= [D(v)]ij
∂x̃i

∂Xα

∂x̃k

∂Xζ
gαζ [D(v)]k�

∂x̃j

∂Xβ

∂x̃�

∂Xη
gβη

= [D(v)]ij [PΓ]ik[D(v)]k�[PΓ]j� = Tr{D(v)PΓD(v)PΓ}.

From the fact that [PΓD(v)PΓ]ij = {∂Γ
i vj + ∂Γ

j vi − ni(n · ∂Γ
j v) − nj(n · ∂Γ

i v)}/2, we

find that PΓD(v)PΓ is a symmetric matrix. Since PΓD(v)PΓ is a symmetric matrix and

PΓPΓ = PΓ, we check that

(PΓD(v)PΓ) : (PΓD(v)PΓ) =Tr{(PΓD(v)PΓ)(PΓD(v)PΓ)}
=Tr{PΓD(v)PΓD(v)PΓ}
=Tr{D(v)PΓD(v)PΓ}.
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Thus, we see (3.28). Since

∂

∂Xβ
f(x̃(X, t), t) =

∂x̃j

∂Xβ

∂f

∂x̃j
,

we apply Lemma 3.6 to see that for each i = 1, 2, 3,

∂Γ
i f =

∂x̃i

∂Xα

∂x̃j

∂Xβ
gαβ

∂f

∂x̃j

= gαβ
∂x̃i

∂Xα

∂f

∂Xβ
.

By definition, we observe that

|gradΓf |2 = (∂Γ
i f)(∂

Γ
i f) =

(
gαβ

∂x̃i

∂Xα

∂f

∂Xβ

)(
gζη

∂x̃i

∂Xζ

∂f

∂Xη

)

= gαβ(gζ · gη)(gα · gζ)
∂f

∂Xβ

∂f

∂Xη

= gαβ(gη · gα)
∂f

∂Xβ

∂f

∂Xη
.

Moreover, we see that

gαβ(gη · gα)
∂f

∂Xβ

∂f

∂Xη
= gαβ

∂f

∂Xβ
δηα

∂x̃j

∂Xη

∂f

∂x̃j

= gαβ
∂f

∂Xβ

∂x̃j

∂Xα

∂f

∂x̃j
= gαβ

∂f

∂Xβ

∂f

∂Xα
.

Here δηα is Kronecker’s delta. Therefore we have (3.29). �
Proof of Propositions 3.11-3.13. From Lemmas 3.15 and 3.16, we have Propositions

3.11-3.13. �

4. Variations of the kinetic, dissipation energies, and work. In this section

we study variations of several energies for compressible fluid on an evolving surface.

Throughout Section 4 we follow Conventions 3.5 and 3.10.

In subsection 4.1 we consider variation of the flow map to the action integral to prove

Theorems 1.4 and 1.9. In subsection 4.2 we calculate variation of the velocity to the

dissipation energies and work for the fluid on the evolving surface to prove Theorems

1.5, 1.6, and 1.7.

4.1. Variation of the flow maps to action integral. Let us study variation of the flow

map to the action integral. We call ρ = ρ(x, t) and ρε = ρε(x, t) the two densities of the

fluid on Γ(t) and Γε(t), respectively, if ρ and ρε satisfy

{
Dtρ+ (divΓv)ρ = 0 on ST ,

ρ|t=0 = ρ0 on Γ(0),

{
Dε

t ρ
ε + (divΓεvε)ρε = 0 on Sε

T ,

ρε|t=0 = ρ0 on Γ(0).
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Suppose there are ŷ ∈ [C∞(R3 × R)]3 and z ∈ [C∞(ST )]
3 such that for every ξ ∈

Γ0(= Γ(0)) and 0 ≤ t < T ,

x̂ε(ξ, t)

∣∣∣∣
ε=0

= x̂(ξ, t),

vε(x̂ε(ξ, t), t)

∣∣∣∣
ε=0

= v(x̂(ξ, t), t),

d

dε

∣∣∣∣
ε=0

x̂ε(ξ, t) = ŷ(ξ, t),

z(x̂(ξ, t), t) = ŷ(ξ, t).

For each variation x̂ε = x̂ε(ξ, t) of the flow map x = x̂(ξ, t), we define the action integral

AB[x̂
ε] by

AB[x̂
ε] = −

∫ T

0

∫
Γε(t)

(
1

2
ρε(x, t)|vε(x, t)|2 − p(ρε(x, t))

)
dH2

xdt,

where ρε is the density of the fluid on Γε(t) and vε is determined by the flow map x̂ε(ξ, t).

Note that

Γε(t) = {x ∈ R
3; x = x̂ε(ξ, t), ξ ∈ Γ0}.

We begin by discussing some properties of ŷ = ŷ(ξ, t).

Lemma 4.1. Set

ỹ(X, t) = ŷ(Φ(X), t) = ŷ(ξ, t)

for ξ ∈ Γ0 and 0 ≤ t < T . Then

ỹ(X, 0) = ŷ(ξ, 0) = 0, (4.1)

1

J

d

dε

∣∣∣∣
ε=0

Jε = 2gα · ∂ỹ

∂Xα
. (4.2)

Proof of Lemma 4.1. We first show (4.1). Since

x̂ε(ξ, 0)− x̂(ξ, 0) = ξ − ξ = 0,

we find that

d

dε

∣∣∣∣
ε=0

x̂ε(ξ, 0) = 0 = ŷ(ξ, 0) = ỹ(X, 0).

Next we prove (4.2). From Jε = gε11g
ε
22 − gε12g

ε
21 and gεαβ = gεα · gεβ , we have

d

dε

∣∣∣∣
ε=0

Jε = 2

(
g1 ·

∂ỹ

∂X1

)
g22 + 2

(
g2 ·

∂ỹ

∂X2

)
g11

− 2

(
g1 ·

∂ỹ

∂X2

)
g21 − 2

(
g2 ·

∂ỹ

∂X1

)
g12.



ON COMPRESSIBLE FLUID FLOWS ON AN EVOLVING SURFACE 345

Since (gαβ)2×2 = (gαβ)
−1
2×2 and gβα = gαβ , we see that

1

J

d

dε

∣∣∣∣
ε=0

Jε = 2

(
(g1g

11 + g2g
12) · ∂ỹ

∂X1

)
+ 2

(
(g1g

21 + g2g
22) · ∂ỹ

∂X2

)

= 2

(
g1 · ∂ỹ

∂X1

)
+ 2

(
g2 · ∂ỹ

∂X2

)
.

Thus, we have (4.2). �
Let us attack variation of the flow map to the action integral.

Proposition 4.2. Assume for every ξ ∈ Γ0 and 0 ≤ t < T ,

ρε(x̂ε(ξ, t), t)|ε=0 = ρ(x(ξ, t), t).

Then

d

dε

∣∣∣∣
ε=0

AB[x̂
ε] =

∫ T

0

∫
Γ(t)

{ρDtv + gradΓp+ pHΓn}(x, t) · z(x, t) dH2
xdt (4.3)

where p = ρp′(ρ)− p(ρ).

Proof of Proposition 4.2. Set ρ̃0(X) = ρ0(x̃(X, 0))
√
J(X, 0). From Lemma 3.15, we

find that∫
Γε(t)

{
1

2
ρε(x, t)|v(x, t)|2 − p(ρε(x, t))

}
dH2

x

=

∫
U

Ψ̃(X)
1

2
ρ̃0(X)|x̃ε

t(X, t)|2dX −
∫
U

Ψ̃(X)p

(
ρ̃0(X)√
Jε(X, t)

)√
Jε(X, t)dX.

A direct calculation yields

d

dε

∣∣∣∣
ε=0

∫ T

0

∫
U

Ψ̃(X)
1

2
ρ̃0(X)|x̃ε

t (X, t)|2dXdt

=

∫ T

0

∫
U

Ψ̃(X)ρ̃0(X)ỹt(X, t) · x̃t(X, t)dXdt = (R.H.S.).

Integrating by parts with (4.1) and using Proposition 3.11, we observe that

(R.H.S.) =

∫ T

0

∫
U

Ψ̃(X)ρ̃0(X)ỹt(X, t) · v(x̃(X, t), t)dXdt

= −
∫ T

0

∫
U

Ψ̃(X)ρ̃0(X)ỹ(X, t) · d

dt
[v(x̃(X, t), t)]dXdt

= −
∫ T

0

∫
U

Ψ̃(X)
ρ̃0(X)√
J(X, t)

[{Dtv}(x̃(X, t), t)] · ỹ(X, t)
√
J(X, t)dXdt

= −
∫ T

0

∫
Γ(t)

ρ(x, t)Dtv(x, t) · z(x, t) dH2
xdt.

Therefore we see that

d

dε

∣∣∣∣
ε=0

∫ T

0

∫
Γε(t)

{
1

2
ρε|vε|2

}
(x, t) dH2

xdt = −
∫ T

0

∫
Γ(t)

{ρDtv · z}(x, t) dH2
xdt.
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On the other hand, a direct calculation shows that

d

dε

∫
U

Ψ̃(X)p

(
ρ̃0(X)√
Jε(X, t)

)√
Jε(X, t)dX

=

∫
U

Ψ̃(X)p′

(
ρ̃0(X)√
Jε(X, t)

)(
d

dε

ρ̃0(X)√
Jε(X, t)

)√
Jε(X, t)dX

+

∫
U

Ψ̃(X)p

(
ρ̃0(X)√
Jε(X, t)

)(
d

dε

√
Jε(X, t)

)
dX

= −1

2

∫
U

Ψ̃(X)p′

(
ρ̃0(X)√
Jε(X, t)

)(
ρ̃0(X)√
Jε(X, t)

)(
1

Jε

d

dε
Jε

)√
Jε(X, t)dX

+
1

2

∫
U

Ψ̃(X)p

(
ρ̃0(X)√
Jε(X, t)

)(
1

Jε

d

dε
Jε

)√
Jε(X, t)dX.

Applying Lemma 3.7 and (4.2), we see that

d

dε

∣∣∣∣
ε=0

∫
U

Ψ̃(X)p

(
ρ̃0(X)√
Jε(X, t)

)√
Jε(X, t)dX

= −
∫
U

Ψ̃(X)p′

(
ρ̃0(X)√
J(X, t)

)(
ρ̃0(X)√
J(X, t)

)(
gα · ∂ỹ

∂Xα

)√
J(X, t)dX

+

∫
U

Ψ̃(X)p

(
ρ̃0(X)√
J(X, t)

)(
gα · ∂ỹ

∂Xα

)√
J(X, t)dX

=

∫
Γ(t)

{−p′(ρ)ρ+ p(ρ)}(x, t){divΓz}(x, t) dH2
x.

Note that z(x̂(ξ, t), t) = ŷ(ξ, t). Since Γ(t) is a closed surface, we use integration by parts

(Lemma 2.8) to check that

∫
Γ(t)

{(−p′(ρ)ρ+ p)divΓz}(x, t) dH2
x =

∫
Γ(t)

{(gradΓp+ pHΓn) · z}(x, t) dH2
x,

where p = ρp′(ρ)− p(ρ). Thus, we see that

d

dε

∣∣∣∣
ε=0

∫ T

0

∫
Γε(t)

−p(ρε(x, t)) dH2
xdt

= −
∫ T

0

∫
Γ(t)

{gradΓp+ pHΓn}(x, t) · z(x, t) dH2
xdt.

Therefore Proposition 4.2 is proved. �
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Let us complete the proof of Theorems 1.4 and 1.9.

Proof of Theorems 1.4 and 1.9. Since the former part of Theorems 1.4 and 1.9 has

been already proved by Proposition 4.2, we give the proof of the assertion (ii) of Theorem

1.9. Assume that for each z ∈ [C∞
0 (ST )]

3 satisfying z · n = 0,∫ T

0

∫
Γ(t)

{ρDtv + gradΓp+ pHΓn}(x, t) · z(x, t) dH2
xdt = 0.

From the fact that for f = f(x, t) = t(f1, f2, f3),∫ T

0

∫
Γ(t)

f(x, t) · z(x, t) dH2
xdt =

∫ T

0

∫
Γ(t)

f(x, t) · {PΓz}(x, t) dH2
xdt

=

∫ T

0

∫
Γ(t)

{PΓf}(x, t) · z(x, t) dH2
xdt,

we conclude that

PΓρDtv + gradΓp = 0.

Note that PΓ(pHΓn) =
t(0, 0, 0). Therefore Theorems 1.4 and 1.9 are proved. �

4.2. Variation of the velocity to dissipation energies and work. In this subsection we

consider variation of the velocity to the dissipation energies and work for the fluid on the

evolving surface Γ(t) to prove Theorems 1.5, 1.6, and 1.7. We first attack the following

lemma.

Lemma 4.3. For each t ∈ (0, T ) and V = V (x, t) = t(V1, V2, V3) ∈ [C∞(ST )]
3,

E1[V ](t) :=

∫
Γ(t)

{(divΓV )σ}(x, t) dH2
x,

E2[V ](t) :=

∫
Γ(t)

{ρF · V }(x, t) dH2
x,

E3[V ](t) :=

∫
Γ(t)

{
1

2
λ|divΓV |2

}
(x, t) dH2

x,

E4[V ](t) :=

∫
Γ(t)

{
1

2
μ|DΓ(V )|2

}
(x, t) dH2

x.

Then for all 0 < t < T and ϕ = t(ϕ1, ϕ2, ϕ3) ∈ [C∞
0 (Γ(t))]3

d

dε

∣∣∣∣
ε=0

E1[v + εϕ](t) =−
∫
Γ(t)

{divΓ(PΓσ)}(x, t) · ϕ(x) dH2
x, (4.4)

d

dε

∣∣∣∣
ε=0

E2[v + εϕ](t) =

∫
Γ(t)

{ρF}(x, t) · ϕ(x) dH2
x, (4.5)

d

dε

∣∣∣∣
ε=0

E3[v + εϕ](t) =−
∫
Γ(t)

{divΓ(λPΓ(divΓv))}(x, t) · ϕ(x) dH2
x, (4.6)

d

dε

∣∣∣∣
ε=0

E4[v + εϕ](t) =−
∫
Γ(t)

{divΓ(μDΓ(v))}(x, t) · ϕ(x) dH2
x. (4.7)

Here DΓ(V ) = PΓD(V )PΓ and D(V ) = {(∇V ) + t(∇V )}/2.
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Proof of Lemma 4.3. Fix t ∈ (0, T ) and ϕ = t(ϕ1, ϕ2, ϕ3) ∈ [C∞
0 (Γ(t))]3. We first

show (4.4) and (4.5). Using integration by parts (Lemma 2.8) and Lemma 2.5, we see

that

d

dε

∣∣∣∣
ε=0

E1[v + εϕ](t) =

∫
Γ(t)

σ(x, t)divΓϕ(x) dH2
x

=−
∫
Γ(t)

{gradΓσ + σHΓn}(x, t) · ϕ(x) dH2
x

=−
∫
Γ(t)

{divΓ(PΓσ)}(x, t) · ϕ(x) dH2
x.

Thus, we have (4.4). A direct calculation gives

d

dε

∣∣∣∣
ε=0

E2[v + εϕ](t) =

∫
Γ(t)

ρ(x, t)F (x, t) · ϕ(x) dH2
x,

which is (4.5).

Next we prove (4.6). Using integration by parts and (2.5), we check that

d

dε

∣∣∣∣
ε=0

E3[v + εϕ](t) =

∫
Γ(t)

{λ(divΓv)(divΓϕ)}(x, t) dH2
x

= −
∫
Γ(t)

(λdivΓv)HΓn · ϕ dH2
x −

∫
Γ(t)

gradΓ(λdivΓv) · ϕ dH2
x

= −
∫
Γ(t)

{divΓ(λPΓ(divΓv))}(x, t) · ϕ(x) dH2
x.

Therefore we see (4.6).

Finally we prove (4.7). It is clear that

d

dε

∣∣∣∣
ε=0

E4[v + εϕ](t) =

∫
Γ(t)

μDΓ(v) : DΓ(ϕ) dH2
x.

Since

divΓ{μDΓ(v)} · ϕ = (∂Γ
1 {μ[DΓ(v)]i1}+ ∂2

Γ{μ[DΓ(v)]i2}+ ∂Γ
3 {μ[DΓ(v)]i3})ϕi,

we apply Lemma 2.8 to see that∫
Γ(t)

divΓ{μDΓ(v)} · ϕ dH2
x = −

∫
Γ(t)

μDΓ(v) : DΓ(ϕ) dH2
x

−
∫
Γ(t)

(HΓn1[μDΓ(v)]i1 +HΓn2[μDΓ(v)]i2 +HΓn3[μDΓ(v)]i3)ϕi dH2
x.

By definition, we observe that

nj [DΓ(v)]ij = n1{∂Γ
i v1 + ∂Γ

1 vi − ni(n · ∂Γ
1 v)− n1(n · ∂Γ

i v)}
+ n2{∂Γ

i v2 + ∂Γ
2 vi − ni(n · ∂Γ

2 v)− n2(n · ∂Γ
i v)}

+ n3{∂Γ
i v3 + ∂Γ

3 vi − ni(n · ∂Γ
3 v)− n3(n · ∂Γ

i v)}
= (n · ∂Γ

i v)− (n2
1 + n2

2 + n2
3)(n · ∂Γ

i v) = 0.
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Since DΓ(v) : DΓ(v) = DΓ(v) : DΓ(ϕ) by Lemma 2.6, we have∫
Γ(t)

divΓ{μDΓ(v)} · ϕ dH2
x = −

∫
Γ(t)

μDΓ(v) : DΓ(ϕ) dH2
x.

Therefore we see (4.7). �
Proof of Theorem 1.5. Applying Lemma 4.3, we have Theorem 1.5. Recall that if

ϕ · n = 0, then PΓϕ = ϕ. �
Finally, we prove Theorems 1.6 and 1.7. Since we can prove Theorem 1.6 by applying

Theorem 1.7, we only prove Theorem 1.7.

Proof of Theorem 1.7. Let eJ ∈ C1([0,∞)) or eJ ∈ C1((0,∞)). Fix f ∈ C2,0(ST )

with |gradΓf | 	= 0. Suppose that eJ is a non-negative function. Since

EGD[f + εϕ](t) = −
∫
Γ(t)

1

2
eJ (|gradΓ(f + εϕ)|2) dH2

x,

we use integration by parts to see that

d

dε

∣∣∣∣
ε=0

EGD[f + εϕ](t) = −
∫
Γ(t)

e′J (|gradΓf |2)gradΓf · gradΓϕ dH2
x

=

∫
Γ(t)

divΓ{e′J (|gradΓf |2)gradΓf}ϕ dH2
x.

Since

t
(

∂EGD

∂ϑ1
, ∂EGD

∂ϑ2
, ∂EGD

∂ϑ3

)
= −e′J (ϑ2

1 + ϑ2
2 + ϑ2

3)
t(ϑ1, ϑ2, ϑ3),

we find that

t
(

∂EGD

∂ϑ1
, ∂EGD

∂ϑ2
, ∂EGD

∂ϑ3

) ∣∣∣∣
(ϑ1=∂Γ

1 f,ϑ2=∂Γ
2 f,ϑ3=∂Γ

3 f)

= −e′J (|gradΓf |2)gradΓf.

Therefore Theorem 1.7 is proved. �

5. Energetic variational approaches for compressible fluid systems. In

this section we apply our energetic variational approaches, the thermodynamic theory,

Proposition 1.3, and Theorems 1.4-1.9 to make mathematical models of compressible

fluid flow on an evolving surface. Moreover, we derive the two generalized heat and

diffusion systems on an evolving surface from an energetic point of view. Throughout

Section 5 we follow Conventions 3.5 and 3.10.

The outline of this section is as follows: We apply our energetic variational approaches

to derive the full compressible fluid system (1.1), the tangential compressible fluid system

(1.11), the non-canonical compressible fluid system (1.12), the barotropic compressible

fluid systems (1.13) and (1.14), and the generalized heat and diffusion systems (1.15)

and (1.16) in subsections 5.1, 5.4, 5.5, 5.6, and 5.7, respectively. In subsection 5.2, we

study the enthalpy, entropy, free energy, and conservative form of the system (1.1). In

subsection 5.3, we study conservation laws of the system (1.1) to prove Theorem 1.8.
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5.1. Energetic variational approach for full compressible fluid system. Let us apply

our energetic variational approaches to derive the full compressible fluid system (1.1) on

the evolving surface Γ(t). We assume that Γ(t) is flowed by the total velocity v. We set

the energy densities for compressible fluid as in Assumption 1.2. Based on Proposition

1.3, we set the continuity equation on the evolving surface as follows:

Dtρ+ (divΓv)ρ = 0 on ST . (5.1)

We first derive the momentum equation of the full compressible fluid system. Applying

an energetic variational approach with Theorems 1.4 and 1.5, we have the following

momentum equation:

ρDtv = divΓSΓ(v, σ, μ, λ) + ρF on ST , (5.2)

where SΓ(v, σ, μ, λ) = 2μDΓ(v) + λPΓ(divΓv)− PΓσ. Here we consider variations on the

total velocity v. More precisely, we set the action integral A[x̂], the dissipation energy

ED[v], and the work EW [v] as follows:

A[x̂] = −
∫ T

0

∫
Γ(t)

{
1

2
ρ|v|2

}
(x, t) dH2

xdt, (5.3)

ED[v] = −
∫
Γ(t)

{
1

2
(2μ|DΓ(v)|2 + λ|divΓv|2)

}
(x, t) dH2

x, (5.4)

EW [v] =

∫
Γ(t)

{(divΓv)σ + ρF · v}(x, t) dH2
x. (5.5)

Applying Theorems 1.4 and 1.5, we consider variations d/dε|ε=0A[x̂ε] with dx̂ε/dt = vε,

d/dε|ε=0ED[v + εϕ], and d/dε|ε=0EW [v + εϕ] to have

δA

δx̂
=ρDtv, (5.6)

δED

δv
=divΓ(2μDΓ(v) + λPΓ(divΓv)), (5.7)

δEW

δv
=− divΓ(PΓσ) + ρF. (5.8)

We assume the following energetic variational principle:

δA

δx̂
=

δED+W

δv

(
=

δED

δv
+

δEW

δv

)
.

This is (5.2). Note that we may assume that δAB/δx̂ = δED+W /δv, there AB is the

action integral defined by Theorem 1.9. Secondly, we study the internal energy of com-

pressible fluid. From Theorem 1.6, we have the following forces:

δETD

δθ
= divΓ(κgradΓθ),

δESD

δC
= divΓ(νgradΓC).

Set

qθ = κgradΓθ,

qC = νgradΓC.



ON COMPRESSIBLE FLUID FLOWS ON AN EVOLVING SURFACE 351

In order to use the first law of thermodynamics, we consider the energy dissipation due

to the viscosities and the work done by the pressure. Using (5.2) and integration by

parts (Lemma 2.8), we check that

d

dt

∫
Γ(t)

{
1

2
ρ|v|2

}
(x, t) dH2

x =

∫
Γ(t)

ρDtv · v dH2
x

=

∫
Γ(t)

(divΓSΓ(v, σ, μ, λ) + ρF ) · v dH2
x

=

∫
Γ(t)

{−(2μ|DΓ(v)|2 + λ|divΓv|2) + (divΓv)σ + ρF · v}(x, t) dH2
x.

Integrating with respect to time, we find that for 0 < t1 < t2 < T ,∫
Γ(t2)

1

2
ρ|v|2 dH2

x +

∫ t2

t1

∫
Γ(τ)

{(2μ|DΓ(v)|2 + λ|divΓv|2)− (divΓv)σ} dH2
xdτ

=

∫
Γ(t1)

1

2
ρ|v|2 dH2

x +

∫ t2

t1

∫
Γ(τ)

ρF · v dH2
xdτ.

This shows that (2μ|DΓ(v)|2+λ|divΓv|2) is the density for the energy dissipation due to

the viscosities and that (divΓv)σ is the density for the work done by the pressure of our

compressible fluid system. Set

ẽD = 2μ|DΓ(v)|2 + λ|divΓv|2.

Since ρ satisfies (5.1), we use Lemma 3.9 and an argument in the proof of Proposition

1.3 to see that for Ω(t) ⊂ Γ(t) flowed by the total velocity v,

d

dt

∫
Ω(t)

{ρe}(x, t) dH2
x =

∫
Ω(t)

{Dt (ρe) + ρe(divΓv)}(x, t) dH2
x

=

∫
Ω(t)

{ρDte}(x, t) dH2
x.

Now we apply the first law of thermodynamics, that is, we assume that for arbitrary

Ω(t) ⊂ Γ(t) flowed by the total velocity v,

d

dt

∫
Ω(t)

{ρe}(x, t) dH2
x =

∫
Ω(t)

{
δETD

δθ
+ ρQθ + ẽD − (divΓv)σ

}
(x, t) dH2

x.

Then we have

ρDte = divΓqθ + ρQθ + ẽD − (divΓv)σ on ST .

This is equivalent to

ρDte+ (divΓv)σ = divΓqθ + ρQθ + ẽD on ST . (5.9)

Finally we derive the diffusion system of our compressible fluid system. We assume

that the change of rate of the concentration C equals the force derived from a variation

of the energy dissipation due to surface diffusion, that is, for arbitrary Ω(t) ⊂ Γ(t) flowed

by the velocity v,

d

dt

∫
Ω(t)

C dH2
x =

∫
Ω(t)

(
δESD

δC
+QC

)
dH2

x.
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From Proposition 1.3, we obtain

DtC + (divΓv)C = divΓqC +QC on ST . (5.10)

Combining (5.1), (5.2), (5.9), and (5.10), we have the full compressible fluid system (1.1).

5.2. On full compressible fluid system. In this section we study conservative form of

the full compressible fluid system (1.1), and investigate the enthalpy, entropy, and free

energy of the system (1.1).

We first consider the total energy. Set eA = {ρ|v|2}/2 + ρe. We apply Lemmas 2.6

and 2.7 to observe that

DN
t eA + divΓ(eAv) = DteA + (divΓv)eA

=

(
1

2
|v|2Dtρ+ ρDtv · v + eDtρ+ ρDte

)
+ (divΓv)

(
1

2
ρ|v|2 + ρe

)
= ρDtv · v + ρDte

= {divΓ{SΓ(v, σ, μ, λ)} · v + ρF · v}+ {divΓqθ + ρQθ + ẽD − (divΓv)σ}
= divΓqθ + ρQθ + ρF · v + divΓ{SΓ(v, σ, μ, λ)v}.

Therefore we have

DN
t eA + divΓ(eAv − qθ − SΓ(v, σ, μ, λ)v) = ρQθ + ρF · v.

Similarly, we see that the system (1.1) satisfies the conservative form (1.2).

Next we investigate the enthalpy, entropy, and free energy of the system (1.1). Assume

that ρ, θ, μ, λ, κ are positive functions. Suppose that

Dte = θDts− σDt

(
1

ρ

)
on ST . (5.11)

Set h = e+ σ/ρ and eF = e− θs. By the definition of h, we find that

ρDth =ρDte+ ρDt

(
σ

ρ

)
={divΓqθ + ρQθ + ẽD − (divΓv)σ}+ {(divΓv)σ +Dtσ}
=divΓqθ + ρQθ + ẽD +Dtσ.

It is easy to check that

DN
t (ρh) + divΓ(ρhv − qθ)− ρQθ = ẽD +Dtσ.

Since ρ satisfies (5.1), we see that

Dt

(
1

ρ

)
= −Dtρ

ρ2
=

divΓv

ρ
.

By (5.11), we check that

θρDts =ρDte+ σρDt

(
1

ρ

)
=(divΓqθ + ρQθ + ẽD − (divΓv)σ) + (divΓv)σ

=divΓqθ + ρQθ + ẽD.
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Therefore we have

θρDts = divΓqθ + ρQθ + ẽD.

Using Lemma 2.7, we observe that

DN
t (ρs) + divΓ(ρsv) = Dt(ρs) + (divΓv)(ρs)

= ρDts+ {Dtρ+ (divΓv)ρ}s

= ρDts =
1

θ
(divΓqθ + ρQθ + ẽD) .

A direct calculation gives

divΓ

(
−qθ

θ

)
= divΓ

(
−κgradΓθ

θ

)
= −divΓ(κgradΓθ)

θ
+

κ|gradΓθ|2
θ2

.

Consequently, we see that

DN
t (ρs) + divΓ(ρsv)− divΓ

(qθ
θ

)
− ρQθ

θ
=

ẽD
θ

+
κ|gradΓθ|2

θ2
≥ 0.

Since eF = e− θs, we check that

ρDteF + ρsDtθ =(ρDte− ρsDtθ − ρθDts) + ρsDtθ

=ρDte− ρθDts

=− (divΓv)σ.

By (2.13), we see that

ρDteF + ρsDtθ − SΓ(v, σ, μ, λ) : DΓ(v) = −ẽD ≤ 0.

Therefore we have the enthalpy, entropy, and free energy of the system (1.1).

5.3. Conservation laws of full compressible fluid system. In this section, we investigate

conservation laws of the system (1.1) to prove Theorem 1.8.

Proof of Theorem 1.8. Assume that Γ(t) is flowed by the total velocity v. We first

show (1.17). Since ρ satisfies

DN
t ρ+ divΓ(ρv) = 0,

we use Lemmas 2.7 and 3.9 to see that

d

dt

∫
Γ(t)

ρ(x, t) dH2
x = 0.

Integrating with respect to time, we see that for 0 < t1 < t2 < T ,∫
Γ(t2)

ρ(x, t2) dH2
x =

∫
Γ(t1)

ρ(x, t1) dH2
x.

Next we show (1.18). From

DN
t (ρv) + divΓ(ρv ⊗ v) = divΓSΓ(v, σ, μ, λ) + ρF,

we check that

d

dt

∫
Γ(t)

{ρv}(x, t) dH2
x =

∫
Γ(t)

{DN
t (ρv) + divΓ(ρv ⊗ v)}(x, t) dH2

x

=

∫
Γ(t)

{divΓSΓ(v, σ, μ, λ) + ρF}(x, t) dH2
x.
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Using integration by parts (Lemma 2.8), we find that

d

dt

∫
Γ(t)

{ρv}(x, t) dH2
x =

∫
Γ(t)

{ρF}(x, t) dH2
x.

Remark that Γ(t) is a closed surface and that SΓ(v, σ, μ, λ) · n = 0. Integrating with

respect to time, we see the law of conservation of momentum.

Next we derive the law of conservation of angular momentum (1.21). Since Dtx = 2v

and v × v = 0, we find that

d

dt

∫
Γ(t)

x× ({ρv}(x, t)) dH2
x =

∫
Γ(t)

x× ρDtv dH2
x

=

∫
Γ(t)

x× {divΓSΓ(v, σ, μ, λ) + ρF} dH2
x.

Set M = SΓ(v, σ, μ, λ). It is clear that

x×M =

⎛
⎝x2(∂

Γ
1 [M ]31 + ∂Γ

2 [M ]32 + ∂Γ
3 [M ]33)− x3(∂

Γ
1 [M ]21 + ∂Γ

2 [M ]22 + ∂Γ
3 [M ]23)

x3(∂
Γ
1 [M ]11 + ∂Γ

2 [M ]12 + ∂Γ
3 [M ]13)− x1(∂

Γ
1 [M ]31 + ∂Γ

2 [M ]32 + ∂Γ
3 [M ]33)

x1(∂
Γ
1 [M ]21 + ∂Γ

2 [M ]22 + ∂Γ
3 [M ]23)− x2(∂

Γ
1 [M ]11 + ∂Γ

2 [M ]12 + ∂Γ
3 [M ]13)

⎞
⎠ .

We now prove that for each i, j = 1, 2, 3,∫
Γ(t)

{xi(∂
Γ
1 [M ]j1 + ∂Γ

2 [M ]j2 + ∂Γ
3 [M ]j3)− xj(∂

Γ
1 [M ]i1 + ∂Γ

2 [M ]i2 + ∂Γ
3 [M ]i3)} dH2

x = 0.

Fix i and j. Using the integration by parts and the fact that n ·M = t(0, 0, 0), we see

that∫
Γ(t)

{xi(∂
Γ
1 [M ]j1 + ∂Γ

2 [M ]j2 + ∂Γ
3 [M ]j3) dH2

x

= −
∫
Γ(t)

{(ni +Hxi)(n1[M ]j1 + n2[M ]j2 + n3[M ]j3) + [M ]ji} dH2
x

= −
∫
Γ(t)

[M ]ji dH2
x.

Since [M ]ji = [M ]ij , we check that∫
Γ(t)

{xi(∂
Γ
1 [M ]j1 + ∂Γ

2 [M ]j2 + ∂Γ
3 [M ]j3)− xj(∂

Γ
1 [M ]i1 + ∂Γ

2 [M ]i2 + ∂Γ
3 [M ]i3)} dH2

x

= −
∫
Γ(t)

[M ]ji dH2
x +

∫
Γ(t)

[M ]ij dH2
x = 0.

Therefore we conclude that∫
Γ(t)

x× divΓSΓ(v, σ, μ, λ) dH2
x = t(0, 0, 0).

As a result, we have

d

dt

∫
Γ(t)

x× (ρv) dH2
x =

∫
Γ(t)

x× (ρF ) dH2
x.
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Integrating with respect to time, we find that∫
Γ(t2)

x× {ρv}(x, t2) dH2
x

=

∫
Γ(t1)

x× {ρv}(x, t1) dH2
x +

∫ t2

t1

∫
Γ(t1)

x× {ρF}(x, τ ) dH2
xdτ.

Finally, we prove (1.19) and (1.20). Since eA and C satisfy

DN
t eA + divΓ(eAv) = div(SΓ(v, σ, μ, λ)v) + ρQθ + ρF · v,
DN

t C + divΓ(Cv) = divΓqC +QC ,

we use the previous argument to deduce (1.19) and (1.20). Therefore Theorem 1.8 is

proved. �
5.4. Energetic variational approach for tangential compressible fluid system. Let us

apply our energetic variational approaches to derive the tangential compressible fluid

system (1.11) on the evolving surface Γ(t). We assume that Γ(t) is flowed by the total

velocity v. We set the energy densities for compressible fluid as in Assumption 1.2. Based

on Proposition 1.3, we set the continuity equation on the evolving surface as follows:

Dtρ+ (divΓv)ρ = 0 on ST . (5.12)

We first derive the momentum equation of the tangential compressible fluid system.

Applying an energetic variational principle with Theorems 1.4 and 1.5, we derive the

following momentum equation:

PΓρDtv = PΓdivΓSΓ(v, σ, μ, λ) + PΓρF on ST . (5.13)

Here we consider variations on the tangential part of the total velocity v. More precisely,

we assume the following energetic variational principle:

δA

δx̂

∣∣∣∣
z·n=0

=
δED+W

δv

∣∣∣∣
ϕ·n=0

.

That is,

PΓρDtv = PΓdivΓSΓ(v, σ, μ, λ) + PΓρF,

where A, ED, and EW are the action integral, dissipation energy, and work defined as in

subsection 5.1. Note that we may assume that δAB/δx̂|z·n=0 = δED+W /δv|ϕ·n=0, where

AB is the action integral defined by Theorem 1.9. On the basis of Propositions 3.12,

3.13, and Theorem 1.6, we set qθ = κgradΓθ and qC = νgradΓC.

Next we study the internal energy. Assume that v · n = 0. Applying (5.13) and

integration by parts (Lemma 2.8), we check that

d

dt

∫
Γ(t)

{
1

2
ρ|v|2

}
(x, t) dH2

x =

∫
Γ(t)

PΓρDtv · v dH2
x

=

∫
Γ(t)

(divΓSΓ(v, σ, μ, λ) + PΓρF ) · v dH2
x

=

∫
Γ(t)

{−(2μ|DΓ(v)|2 + λ|divΓv|2) + (divΓv)σ + PΓρF · v}(x, t) dH2
x.
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Note that PΓv = v. Integrating with respect to time, we find that for 0 < t1 < t2 < T ,

∫
Γ(t2)

1

2
ρ|v|2 dH2

x +

∫ t2

t1

∫
Γ(τ)

{(2μ|DΓ(v)|2 + λ|divΓv|2)− (divΓv)σ} dH2
xdτ

=

∫
Γ(t1)

1

2
ρ|v|2 dH2

x +

∫ t2

t1

∫
Γ(τ)

PΓρF · v dH2
xdτ.

This shows that (2μ|DΓ(v)|2+λ|divΓv|2) is the density for the energy dissipation due to

the viscosities and that (divΓv)σ is the density for the work done by the pressure of our

compressible fluid system. Set

ẽD = 2μ|DΓ(v)|2 + λ|divΓv|2.

Applying the first law of thermodynamics, we obtain

ρDte+ (divΓv)σ = divΓqθ + ρQθ + ẽD on ST . (5.14)

By an similar argument to derive the diffusion system in subsection 5.1, we have

DtC + (divΓv)C = divΓqC +QC . (5.15)

Therefore we have the tangential compressible fluid system (1.11) on the evolving surface

by combining (5.12)-(5.15).

5.5. Derivation of non-canonical compressible fluid system. Let us consider compress-

ible fluid flow on the evolving surface Γ(t) from a different point of view. Based on

Proposition 1.3 we admit (5.1). We set the action integral A[x̂] and the work EW [v]

defined by (5.3) and (5.5), respectively. We set the dissipation energy ED[u] as follows:

ED[u] = −
∫
Γ(t)

1

2
{2μ|DΓ(u)|2 + λ|divΓu|2}(x, t) dH2

x.

Using arguments similar to those in the proof of Theorems 1.4 and 1.5, we have (5.6),

(5.8), and

δED

δu
= PΓdivΓ(2μDΓ(u) + λPΓ(divΓu)) = PΓdivΓSΓ(u, 0, μ, λ).

We assume the following energetic variational principle:

δA[x̂]

δx̂
=

δED[u]

δu
+

δEW [v]

δv

to have

ρDtv = PΓdivΓSΓ(u, 0, μ, λ)− gradΓσ − σHΓn+ ρF.

Therefore we have the non-canonical compressible fluid system (1.12) on the evolving

surface.
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5.6. Derivation of barotropic compressible fluid systems. Let us consider the barotropic

compressible fluid flow on the evolving surface Γ(t). Based on Proposition 1.3, we set

the continuity equation on an evolving surface as follows:

Dtρ+ (divΓv)ρ = 0 on ST .

On the basis of Proposition 3.11, we set the total energy eB as follows:

eB =
1

2
ρ|v|2 − p(ρ).

From Theorem 1.9, we obtain the two barotropic compressible fluid systems (1.13) and

(1.14).

5.7. Derivation of generalized heat and diffusion systems. Let us derive the generalized

heat and diffusion systems on the evolving surface Γ(t). From Proposition 1.3, we set

the continuity equation on the evolving surface as follows:

Dtρ+ (divΓv)ρ = 0 on ST .

Let eJ1
, eJ2

∈ C1([0,∞)) or eJ1
, eJ2

∈ C1((0,∞)). Suppose that eJ1
, eJ2

are two

non-negative functions. Based on Proposition 3.13 we set the following energy densities:

eTD = eJ1
(|gradΓθ|2) and eSD = eJ2

(|gradΓC|2).

From Theorem 1.7, we have the following forces:

δETD

δθ
=divΓ{e′J1

(|gradΓθ|2)gradΓθ},
δESD

δC
=divΓ{e′J2

(|gradΓC|2)gradΓC}.

Let F1 = F1(x, t) and F2 = F2(x, t) be two smooth functions. Assume that for every

Ω(t) ⊂ Γ(t) flowed by the total velocity v,

d

dt

∫
Ω(t)

(ρCθθ)(x, t) dH2
x =

∫
Ω(t)

{
δETD

δθ
+ ρQθ + F1

}
dH2

x,

d

dt

∫
Ω(t)

C(x, t) dH2
x =

∫
Ω(t)

{
δESD

δC
+QC + F2

}
dH2

x.

Then we have

ρDt(Cθθ) = divΓ{e′J1
(|gradΓθ|2)gradΓθ}+ ρQθ + F1 on ST ,

DtC + (divΓv)C = divΓ{e′J2
(|gradΓC|2)gradΓC}+QC + F2 on ST .

Therefore we have the generalized heat system (1.15) and diffusion system (1.16) on an

evolving surface.
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