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Abstract. We consider the governing equations for the motion of compressible fluid
on an evolving surface from both energetic and thermodynamic points of view. We
employ our energetic variational approaches to derive the momentum equation of our
compressible fluid systems on the evolving surface. Applying the first law of thermody-
namics and the Gibbs equation, we investigate the internal energy, enthalpy, entropy, and
free energy of the fluid on the evolving surface. We also study conservative forms and
conservation laws of our compressible fluid systems on the evolving surface. Moreover,
we derive the generalized heat and diffusion systems on an evolving surface from an ener-
getic point of view. This paper gives a mathematical validity of the surface stress tensor
determined by the Boussinesg-Scriven law. Using a flow map on an evolving surface and
applying the Riemannian metric induced by the flow map are key ideas to analyze fluid
flow on the evolving surface.

1. Introduction.

1.1. The purposes and key ideas of this paper. Interface flow and surface flow play an
important role in fluid dynamics such as soap bubbles in air, the atmosphere and ocean
on the earth, and phase transition in complex fluids. One can consider surface flow as
fluid flow on an evolving surface. An evolving surface means that the surface is moving
or that the shape of the surface is changing with time. In this paper we consider the
thickness of evolving surfaces as zero.

The aim of this paper is to derive several governing equations for the motion of com-
pressible fluid on an evolving surface from both energetic and thermodynamic points of
view. We apply both our energetic variational approach and the first law of thermo-
dynamics to derive several compressible fluid systems on the evolving surface, and we
investigate the entropy and free energy of the fluid on the evolving surface by making
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Fic. 1. Fluid flows on an evolving surface

use of the second law of thermodynamics. This paper derives the surface stress tensor
determined by the Boussinesq-Scriven law (Boussinesq [6], Scriven [19]) from both the
energy dissipation due to the viscosities and the work done by the pressure of the fluid
on an evolving surface to give a mathematical validity of the Boussinesqg-Scriven law. Of
course, this paper provides one possibility of the dominant equations for the motion of
compressible fluid on an evolving surface. However, employing a similar technique of this
paper, we can derive several compressible Navier-Stokes systems in domains and make a
mathematical model of two-phase flow with surface flow and surface tension.

We first introduce fundamental notation. TLet ¢ > 0 be the time variable,
z(=1(z1,m2,23)), (= (&1, &2,€3)) € R3 the spatial variables, and X (= (X1, X2)) € R?
the spatial variables. Let T € (0, 00] and I'(¢)(= {I'(¢) }o<t<7) be a smoothly evolving
2-dimensional surface in R? depending on time ¢. The notation u = u(x,t) = *(u1, uz, usz)
and w = w(z,t) = *(wy,ws, w3) represent the relative fluid velocity of a fluid particle at
a point x = (x1, 2, x3) of the evolving surface I'(t) and the motion velocity at a point
x of T'(t) which determines the motion of the evolving surface I'(¢), respectively. We
often call u a surface flow (surface velocity) on the evolving surface and w the speed of
the evolving surface (see Fig. 1). Assume that u is a tangential vector on I'(¢). Recall
that w is not a necessary tangential vector on I'(t). We notice that by introducing the
surface flow v and the motion velocity w, then there is no exchange of particles between
the surface and the environment. The velocity

v=uv(z,t) = "(v1,v2,v3) ;== u+w

is defined as the total velocity of a fluid particle at a point = of T'(¢). In this paper we
focus on the total velocity v.

The notation p = p(x,t), o = o(z,t), e = e(x,t), 6 = 0(x,t), ea = ea(z,t), h =
h(z,t), s = s(x,t), and ep = ep(x,t) represent the density, the (total) pressure, the
internal energy, the temperature, the total energy, the enthalpy, the entropy, and the
(Helmholtz) free energy of the fluid on the evolving surface I'(t), respectively. Note that
the total pressure o includes surface tension and surface pressure in general. The symbol
C = C(x,t) denotes a concentration of a substance in the fluid on the evolving surface.
Assume that u,w,v,p,0,¢,0,e4,h,s,ep,C are smooth functions.



ON COMPRESSIBLE FLUID FLOWS ON AN EVOLVING SURFACE 305

The symbols p = p(z,t),\ = Az, t) are two viscosity coefficients of the fluid, k =
k(z,t) is the thermal conductivity of the fluid, v = v(x,t) is the diffusion coefficient of
the concentration C, F = F(x,t) = '(Fy, Fy, F3) is the external force or gravity vector,
Qo = Qo(x, 1) is the heat source, and Q¢ = Q¢ (x,t) is the source on the concentration
C. We often call u the surface share viscosity and p+ A the surface dilatational viscosity.
Suppose that p, A\, k, v, F, Qg, Q¢ are smooth functions.

This paper has six purposes. The first one is to derive and study the following full
compressible fluid system on the evolving surface T'(t):

D;p + (divrv)p =0 on S,
pDv = divpSr(v, o, pi, A) + pF on S, (11)
pDie + (divpv)o = divrgg + pQe + ép  on Sr,
D,C + (divrv)C = divrge + Q¢ on S,

where

Sr = {(:E,t) eRY (v,t)e |J {T(®) x {t}}},
0<t<T

Dy, is the material derivative defined by Dif = Oif + (v,V)f, g9 = rgradp, ép =
2u|Dr(v)|? + Aldivro|?, and qc = vgradpC. Here Dr(v) = PrD(v)Pr, |Dr(v)]*> =
Dr(v) : Dr(v), 0y = 9/0t, 0y = 0/0x;, V = *(01,02,03), (v, V) f = 0101 f+v202 f+v305 f,
D(v) = {(Vv) + Y(Vv)}/2, and Pr = I3x3 — n ® n, where ® denotes the tensor product
and n = n(z,t) = *(n1,n2,n3) is the unit outer normal vector at x € I'(t). The symbols
qo, €p, and g¢ are often called a heat flur on the evolving surface, the density for the
enerqy dissipation due to the viscosities u, A, and a surface flux on the evolving surface,
respectively. We call Dr(v), D(v), and Pr, the surface strain rate tensor, the strain
rate tensor, and an orthogonal projection to a tangent space, respectively. The notation
divr denotes surface divergence, gradr denotes surface divergence, and Sr(v,o, u, \) is
the surface stress tensor defined by

Sr(v, o, u, \) = 2uDr (v) + APp(divro) — Pro.

The surface stress tensor Sr(v, o, i, ) was introduced by Scriven [19]. See Section [ for
the definitions of divr and grady.
We can write the system (II]) as the following conservative form:

DN p + divp(pv) =0 on Sr,
DX (pv) + divr(pv @ v — Sp(v, 0, 1, \)) = pF on Sr, (12)
DNea + divr(eav — go — Sr(v, 0, 1, \)v) = pQg + pF - v on S,
DNC + divp(Cv — q¢) = Q¢ on Srt.

Here ey is the total energy defined by ea = p|v|?/2 + pe and DY is the time derivative
with the normal derivative defined by

DY f=0if + (v-n)(n,V)f.
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Note that DY f = 9, f if w = 0 since u - n = 0. Note also that
ép — (divrv)e =divp (St (v, o, p, A)v) — divp(Sr(v, o, i, A)) - v,
DF(’U) : DF(U) :DF(’U) : DF(’U),
where Dr(v) = {(Vrv) + *(Vrv)}/2. We often call Dr(v) a projected strain rate and
Dr(v) a tangential strain rate. See Section [2] for the notation Vp.
Now we consider conservation laws of the system (). Assume that I'(¢) is flowed

by the velocity v and that ' =0, Qp =0, Q¢ = 0. Then we observe that (L)) satisfies
that for 0 < t; <ty < T,

[ sty arz= [ plan) an (1.3)
T(t2) I'(t1)
/ p(z, t2)v(z, ta) dH?2 :/ plz,t)v(z, t1) dH2, (1.4)
[(t2) D(t1)
/ ealwts) M2 = [ ea(e,tr) dH2, (1.5)
I'(t2) L(t1)
C(x,tz) dH2 = C(x,t) dH2, (1.6)
D(t2) I(t1)
/ x x (pv) dH? :/ x x (pv) dH2. (1.7)
[(t2) I'(t1)

Here dH2 denotes the 2-dimensional Hausdorff measure. We often call (L3)), (T4), (LH),
and (7)), the law of conservation of mass, the law of conservation of momentum, the law
of conservation of the total energy, and the law of conservation of angular momentum,
respectively. See Theorem [[.§] for details.

The second one is to investigate the enthalpy, entropy, and free energy of the fluid on
the evolving surface I'(t). We now assume that u, A, &, p, @ are positive functions. We set
the enthalpy h = h(x,t) = e+ o/p. Then

pDih = divrge + pQp + €p + Dio on Sr. (1.8)
This is equivalent to

DY (ph) + divr(phv — q9) — pQp = ép + Dyo on St
Suppose that the following Gibbs equation holds:

1
Die =0D;s — oDy <—> on St.
p
Then we check that the entropy s = s(x,t) fulfills

1. .. -
pDys = é{dNFqg +pQo +ép} on St. (1.9)
Moreover, we obtain the Clausius-Duhem inequality:

e . d-0
DY (ps) + divr (psv — &) _ P9 _ep  go-gradpt

9 ) = 9 92 ZOODST.

We also observe that

pDiep + psDi0 — Sr(v,0,u,A\) : Dr(v) = —ép < 0 on Sy. (1.10)
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Here ep is the free energy defined by er = e — 0s. Recall that ép = 2u|Dr(v)]? +
Aldivro|? > 0 and that g - gradp6 = k|gradp0|? > 0.

The third one is to derive compressible fluid systems on an evolving surface from a
variational point of view. We easily have the momentum equation of the system (LIJ) if
we assume

pDiv = divpSr(v, o, pu, A) + pF.
However, applying our variational methods, we can derive other types of systems of
compressible fluid flow on the evolving surface. For example, we use our methods to
derive the following tangential compressible and non-canonical compressible fluid systems
on an evolving surface:

Dyp+ (divpo)p =0 on Sr,
PrpDiv = PrdivpSr(v, 0, u, A) + PrpF on Sr,
v.n=0 on Sr, (1.11)
pDie + (divpv)o = divrgg + pQe + é€p  on St
D,C + (divpv)C = divrge + Q¢ on S,
and
{Dtp + (divrv)p =0 on Sr, (1.12)
pDiv + gradpo + o Hrn = PrdiveSr(u, 0, 4, A) + pF on St.

Here Hr = Hr(z,t) denotes the mean curvature of T'(¢) in the direction of the unit
normal outer vector n. See Section [f] for our energetic variational approaches for the two
systems (LTI and (T12).

The fourth one is to give a mathematical validity of the surface stress tensor deter-
mined by the Boussinesq-Scriven law (Boussinesq [6], Scriven [19]):

Sr(v, o, u, \) = 2uDr (v) + APp(divrv) — Pro.

This paper derives the surface stress tensor from both the energy dissipation due to the
viscosities u, A and the work done by the pressure o of the fluid on an evolving surface.
More precisely, from Theorem [[5 Proposition B2 and [I5, Theorem 2.1], we see a
mathematical validity of the Boussinesqg-Scriven law.

The fifth one is to derive the following two barotropic compressible fluid systems on
an evolving surface:

Dyp+ (divpo)p =0 on Sr,
pDyv + gradpp + pHrn =0  on Sy, (1.13)
p=p(p) = prp'(p) — p(p),
and
Dyp + (divro)p =0 on S,
PrpDyv + gradpp =0 on Sr, (1.14)

p=p(p) = pp'(p) = p(p),
where p(-) is a smooth function. We often call p(p) the chemical potential. See Theorem
[L9 for details.
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The sixth one is to derive the following generalized heat and diffusion systems on an
evolving surface:

Dyp + (divro)p =0 on St, (1.15)
pDi(Ce0) = divrqy, +pQs + F1 on St, .
and
D,C+ (diVFU)C =divrgy, + Qc + F2 on Sr. (1.16)

Here qg, is the generalized heat fluz defined by q7, = €/; (|gradp6|?)gradr6, qz, is the
generalized surface flur defined by qz, = €/, (|gradpC|*)gradr-C, where ez, and ey, are
Cl-functions, F; = Fy(z,t),Fa = Fa(x,t) are two smooth functions depending on the
situation and environment, and Cy = Cy(z,t) is a smooth function which is called the
specific heat of the fluid. See Section [ for our derivation of the two systems (I3 and
(LI6).

REMARK 1.1. (i) We do not use the assumption that o = o(p, e) when we derive the
systems ([T and (III) by applying our methods, while we assume the Gibbs equation
Die = §Dys — oD, (1/p) when we study the entropy and free energy of the fluid on an
evolving surface.

(ii) If we assume that o = o(p,e) and e = e(p, #), then in general the system (1)) is an
overdetermined system for its initial value problem when the motion of I'(¢) is given and
we consider (p,v,0,C) as unknown functions, while the system ([LTI)) is not an overde-
termined system for its initial value problem when the motion of I'(¢) is given because
the second expression of the system ([LI) has six equations including the tangential and
normal parts of the total velocity. For the same reason, the system (LI3]) is an overde-
termined system for its initial value problem when the motion of I'(¢) is given, and the
system (LI4) is not an overdetermined system for its initial value problem when the
motion of I'(¢) is given.

(iii) When we consider (p, ) as unknown functions, the system (LIT) is not an overde-
termined system for its initial value problem when the motion of I'(¢), surface flow w,
and specific heat Cy are prescribed. The system (LLI0) is not an overdetermined system
for its initial valued problem when the motion of I'(t) and surface flow u are prescribed
and we consider C' as an unknown function. It is easy to check that

divp{xgradpf} = kArf and divp{rgrad,C} = vArC

if k,v are constants, where Ar is the Laplace-Beltrami operator.

(iv) There exists at least three mathematical methods for deriving the pressure of the
fluid on an evolving surface. This paper provides two of them. Koba-Liu-Giga [14] gave
the last one. The paper [14] studied incompressible fluid flow on an evolving surface from
an energetic point of view. They applied the Helmholtz-Weyl decomposition on surfaces
to derive the pressure of incompressible fluid on the evolving surface, while this paper
derives the pressure of compressible fluid on an evolving surface from the power density
for the work done by the pressure or a chemical potential.
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Let us explain four key ideas of deriving the compressible fluid systems (LI)) and
(LII). The first point is to focus our attention on the following energy densities for
compressible fluid on an evolving surface:

AssUMPTION 1.2 (Energy densities for compressible fluid).

1 1
€K = §P|U|2, ep = 5{2N\DF(U)|2 + A|divro|?}, ew = (divrv)o + pF - v,

1 1 1
€A = §P|’U|2 +pe, erp = §/<;|gradF0|2, €sD = §y|gradFC\2.

We call ek the kinetic energy, ep, the energy density for the energy dissipation due to
the viscosities u, \, ey the power density for the work done by both the pressure o and
exterior force F, e4 the total energy, erp the energy density for the energy dissipation
due to thermal diffusion, and egp the energy density for the energy dissipation due to
surface diffusion, of compressible fluid on an evolving surface. Recall that ep # €p in
general, where ép is the density for the energy dissipation due to the viscosities u, A. See
subsection [5.1] and [I5] for the reason.

Combining Propositions [3.1T], and [I5, Theorem 2.1 and Section 3] gives a math-
ematical validity of our energy densities for compressible fluid on the evolving surface.
Making use of these energy densities, we derive our compressible fluid systems on an
evolving surface. Note that, from the system (II]), we have the following energy equal-

ity:
1 t2
/ {—p|v|2}(x,t2)dﬂg+// (20 Dr (02 + Aldiveo2} (z, 7) dH2dr
I(t2) L2 t, JT(r)

1 t2
= / {—p|’u|2} (z,t1) dH? +/ {(divrv)o + pF - v}(x, ) dH2dr.
r(t;) 2 t Jren

Note also that we set the total energy ep of the barotropic compressible fluid on the
evolving surface as follows:

1
en = 5plvl* = p(p).

See Theorem [LL9] for the barotropic compressible fluid systems on the evolving surface.

The second point is to apply an energetic variational approach. In order to derive our
compressible fluid systems, this paper uses forces derived from variations of the action
integral determined by the kinetic energy, dissipation energies determined by our energy
densities, and work for compressible fluid on an evolving surface. For example, we obtain
forces from the following variations:

i/T/ Lot anzat i/ L ouIDr ()P + Adived|?) a2
de 0 < (t) 2 ® de I'(t) 2 v

d - ~
and — {(divro®)o + pF - 9 }dH2,
dS F(t)
where I'°(t), p®, v, and ©° are variations. See Sections for details.
The third point is to make use of the first and second laws of thermodynamics. To
derive the dominant equations for the internal energy, entropy, and free energy of the
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fluid on an evolving surface, we assume the first law of thermodynamics: for Q(t) C I'(t)

d
— {pe}(x,t) dH2 = {divrgs + pQo + ép — (divrv)o}(x,t) dH2,
dt Q(t) Q(t)

and the Gibbs equation:
1
Die =0D;s — oDy (—) on St.
P

The fourth point is to apply a flow map on an evolving surface and the Riemannian
metric induced by the flow map. Using the flow map and the Riemannian metric, we
analyze the fluid on the evolving surface in this paper the next subsection describes the
flow maps in detail. See Section Bl for the Riemannian metric induced by a flow map.

Finally we refer the reader to some references for basic notation and terminologies
for fluid dynamics and thermodynamics in this paper. The basic notation and technical
terms for physics in this paper are based on Serrin [20] and Gurtin-Fried-Anand [12].
Serrin [20] studied mathematical derivations of fluid systems. They applied variational
principles and thermodynamics to derive compressible and incompressible fluid systems
in a domain. Gurtin-Fried-Anand [12] is a textbook for students and graduate students in
physics and mathematics. The book [12] showed the fundamental rules of the mechanics
and thermodynamics of continua. For fluid interfaces and interface models, we refer the
reader to Gatignol-Prud’homme [10] and Slattery-Sagis-Oh [22].

The outline of this paper is as follows: In subsection [[L2] we first introduce a flow
map on an evolving surface, the velocity determined by the flow map, and variations
of both the flow map and the evolving surface. Then we state the main results of
this paper. In Section 2] we prepare useful tools to analyze fluid flow on an evolving
surface. We give the definitions of evolving surfaces and differential operators on an
evolving surface, and we study basic properties of surface divergence, surface gradient,
an orthogonal projection to a tangent space, and surface strain rate tensor. In Section
we introduce the Riemannian metric induced by a flow map. Using the Riemannian
metric, we investigate the representation of the kinetic energy, the dissipation energies,
and the work for the fluid on an evolving surface to provide a mathematical validity of
these energies. In Section ] we calculate variations of the action integral determined by
the kinetic energy, the dissipation energies, and the work for the fluid on an evolving
surface by using a flow map on the evolving surface and the Riemannian metric induced
by the flow map. In Section[Blwe derive various compressible fluid systems on an evolving
surface by applying our energetic variational approaches and the thermodynamic theory.
Moreover, we derive the generalized heat and diffusion systems on an evolving surface.

1.2. Main results. Let us first introduce a flow map on an evolving surface and the
velocity determined by the flow map. Next we describe variations of both the flow map
and the evolving surface. Then we state the main results of this paper.

Let T € (0,00], and let T'(t)(= {['(t)}o<i<r) be a smoothly evolving surface in R3
depending on time ¢t. Assume that I'(¢) is a closed Riemannian 2-dimensional manifold
for each t € [0,T).

We say that Q(t) C I'(t) is flowed by the velocity field V- =V (z,t) = (Vi (x, t), Va(z,t),
V3(z,t)) if there exists a smooth function & = #(&,t) = “(21(&,t), 22(€, 1), 23(&,t)) such
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that for every £ € I'(0),

and Q(t) is expressed by
Qt) = {z = "(21,22,23) € R 7 = 2(&,1), £ € Qo, Qo CT(0)}.

The mapping & — &(&, ) is called a flow map on I'(t), the mapping t — (&, t) is called an
orbit starting from &, and V = V(x,t) is called the velocity determined by the flow map
Z(&,t). For simplicity we call Z(£,¢) a flow map. We assume that &(-,¢) : IT'(0) — I'(¢) is
bijective for each 0 < ¢ < T and that V is the total velocity v.

Next we introduce a variation 2°(&,t) of a flow map (&, t) and the velocity v¢ deter-
mined by the flow map Z°. Let Z(§,t) be a flow map on I'(¢), and let v be the velocity
determined by the flow map &(§,t) on I'(¢), i.e., for £ € T'(0) and 0 < t < T,

v=uv(z,t) =Y v1(z,t),va(x, 1), v3(z, 1)),
& =2(8,t) = "(21(&,1), 22(&, 1), 23(6, 1)),
926, 0) = v(@(6,1), 1),

£(&,0)=¢

Write
(1) :={x = (z1,20,23) € R?; 2 =3(&, 1), £ €T(0)},

e U roximy.

St = {(x,t) eRY; (z,t)
0<t<T

For —1 < e < 1let I'(t)(= {I'°(¢) }o<i<7) be a smoothly evolving 2-dimensional surface
in R? depending on time t. We say that '*(¢) is a variation of I'(¢) if I'*(0) = I'(0) and
é(t)|e=o = I'(t). Set

S5 = {(x,t)eR4; @ty e |J {r<m x{t}}}.

o<t<T

Let #°(&,t) be a flow map on I'®(¢), and v® be the velocity determined by the flow map
i, ie, for £ €T(0) and 0 < t < T,

) if (€, t) is smooth as a function of

We say that (2°(€,t), S5) is a variation of (£(¢, ) T
= Z(&,t). Assume that I'®(¢) is expressed

(e,&,t) € (=1,1) xT'(0) x [0,T) and 2°(&, t)|e=
by

Te(t) = {x = (21,20, 23) € R3; 2 = 3°(€,1), £ €T(0)}.
For smooth functions f = f(z,t), Dif := 0 f + (v, V) f and DS f := 0. f + (v, V) f.
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To consider compressible fluid flow on an evolving surface, we first study the density of
the fluid on the evolving surface. To this end, we need the continuity equation of the fluid
on the evolving surface. We also need the continuity equation of the fluid on a variation
of the evolving surface. For —1 < ¢ < 1, assume that p = p(z,¢) and p° = p°(x,t) are
smooth functions.

PROPOSITION 1.3 (Continuity equation of fluid on evolving surfaces).
(i) For each 0 < t < T and Q(t) C I'(¢) flowed by the velocity v, assume that

S oty an? =
Then p satisfies
Dyp + (divrv)p = 0 on Sr.
(i) For each 0 <t < T and Q°(¢t) C I'°(¢) flowed by the velocity v°, assume that

d € 2
— p°(x,t) dHZ =
dt Qe (t)
Then p® satisfies
D; p® + (divpev®)p® =0 on S7.

We often call Proposition [[.3] the surface transport theorem. The proof of Proposition
[[3lcan be found in [], [11], [8] and [14] (see also [22]). For our purposes, we give the proof
of Proposition [[3] in Section Bl See Section [2 for the definitions of surface divergences
divr and divpe.

Next we study variations of the flow map to the action integral determined by the
kinetic energy. Let pg = po(x) be a smooth function. We call p the density of the fluid
on I'(¢) if p satisfies

D:p + (divrv)p=0 on S,
pli=o = po on I'(0).

We call p® the density of the fluid on T'¢(¢) if p° satisfies
D5 pf + (divp=v®)p® =0 on S5,
P°li=0 = po on I'(0).

For each variation z° we define the action integral as

/ / —p x,t)|v° (z,t)|? dH2dt,
E(t) 2

where p° is the density of the fluid on I'®(¢) and v® is the velocity determined by the flow
map &€ = 2°(£,t). Note that 2°(,t) is a flow map on I'*(¢).
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We now assume that there are § € [C(R3 x [0,7))]® and 2 € [C*°(Sr)]® such that
for £ €eT(0) and 0 <t < T,

(&) =261,
e=0
Us(i‘s(fvt)vt) 70 = ’U(.’i‘(f,t),t),
d| ...
% EZO:E (f,t) - y(gat)v

2(2(&, t)v t) = Q(ﬁ, t).
Here z is the variation vector field. See Section ] for function spaces on an evolving
surface. We also assume that for every £ € T'(0) and 0 < ¢ < T,

pg(i‘s(fvt)vt) = p(.’i‘(f,t),t).

e=0

THEOREM 1.4 (Variation of the flow map to the action integral).

Assume that (2°(§,t),S5) is a variation of (£(€,t), Sr) with I'*(0) = I'(0). Suppose
that p is the density of the fluid on Sy and that p° is the density of the fluid on S7.
Then

d
de

T
Alzf] = / {pDyv}(x,t) - 2(x,t) dH2dt,
e=0 0 F(t)

where Dyv = 9yv + (v, V)v. Moreover, assume in addition that z-n = 0. Then

a
de

T
tf| = vHx,t) - z(x 2dt.
A= [ f | PP} @t) =(o, ) drt

e=0

Remark. In the former part of Theorem [[.4] we consider variations with respect to the
flow map, including the motion of I'(¢), while we consider variations with respect to the
tangential part of the flow map on I'(¢) in the latter part.

We now study variations of the dissipation energy Ep[V] and the work Ew [V] for
the velocity field V' = *(Vy(z,t), Va(x,t), Va(z,t)) at each fixed time ¢. Let u = p(z,t),
A= Mux,t), 0 = o(x,t), and F = F(t,2) = !(Fy, Fa, F3) be smooth functions. For each
smooth function V =V (z,t) = “(Vq, Va, V3), let

Ep[V](t) = — /m) {% (2uDr (V)P + AldiveV]?) }(x,t) dH2,

Ew, [V](t) :== F(t){(divFV)a}(x,t) dH2,

Ew V()= [ {oF V(o) diL.
T(t)
Here Dr(V) = PrD(V)Pr, where Pr is the orthogonal projection to a tangent space

defined by (2.2)) in Section P and D(V) = {(VV) + {(VV)}/2. We often call Ep, Ew,,
and Eyy, the dissipation energy determined by the energy density ep, the work done by
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the pressure o, and the work done by the exterior force F, of the fluid on an evolving
surface, respectively. Moreover, we set

Epiw|V] = Ep[V]+ Ew,[V] + Ew,[V].
We shall study their variations.

THEOREM 1.5 (Variation of the velocity to dissipation energy/work).
Fix t € (0,T). Then for every vector field ¢ € [C§°(T'(¢))]3,

Epywlv+epl(t)

4
de|._,

= /F " {divF (2/1DF(U) + APp(divpw) — Ppa) - pF}(ar, t) - p(x) dH;.

Moreover, if ¢ - n =0, then

Epiwlv +ep](t)

4
de|._o

= / {dein <2,qu(v) + APr(divrov) — Ppa) + PppF} () d?-li.
r'(t)

REMARK. In the former part of Theorem we consider variations with respect to
the total velocity, including the motion of T'(¢), while we consider variations with respect
to the tangential part of the total velocity on I'(¢) in the latter part.

Combining Theorem [[5, Proposition 312 and [15, Theorem 2.1 and Section 3] gives
a mathematical validity of the Boussinesq-Scriven law. Indeed, we obtain the surface
stress tensor determined by the Boussinesq-Scriven law from Theorem when F = 0.

In the next step, we study Fourier’s and Fick’s laws of surface diffusion. Let k = k(z,t),
v=v(x,t),0 =0(x,t),and C = C(x,t) be four smooth functions. Fix ¢. For each smooth
function f = f(x,t), let

Erolfli0) == [ gete Olgrade .0 2

Bsolf0) =~ [ gvtelerade S 0 a2

We often call Erp and Egp the dissipation energies determined by erp and egp, re-
spectively. See Proposition [3.12] for the representation of these energies.

THEOREM 1.6 (Fourier’s laws and Fick’s laws of surface diffusion).
(i) Fix t € (0,T). Then for every ¢ € C5°(I'(t)),

d

de

Erpl6 +eg)(t) = /

divp </<;(:c, t)gradpf(z, t)> o(x) dH2,
I(t)

0

ESD[C-i-SgO](t) = /

r(t)

d
de

divr (V(:c, t)gradpC(x, t)) o(x) dH2.

e=
e=0
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(ii) Fix t € (0,T) and = € I'(¢). For each 91, 93,93 € R,

K(x,t
gTD[19171925 193] = _%(’0% + 19% =+ 19%),
v(z,t
Esp[Uh,92,03] == —%(ﬂ% + 93 + 93).
Then
*(%pe. g, oo = —rgradp,
(91,92,93)=(8} 0,05 6,05 6)
' (85:191]3’ 83555’ 85619:) = —vgradpC.
(91,92,93)=(81 C,05 C,05 C)

Next we give the generalized surface flux on the evolving surface I'(t).

THEOREM 1.7 (Variation of dissipation energy/Fluxes on surfaces).

Let ez € C1(]0,00)) or e € C*((0,00)). Suppose that ez is a non-negative function.
Then the following two assertions hold:
(i) Fix t. For each smooth function f = f(z,1),

— 1 2 2
Boplf)) == [ geqlaradef®) an
Then for every f € C?°(Sr) with |gradpf| # 0 and ¢ € C5°(T'(t)),
d
72| Poplf +esl(t) :/ {divr(es (lgradp f|*)grady f)} (2, t)p(x) dH3.
e=0 L'(2)

(ii) Let f = f(x,t) be a smooth function with |gradpf| # 0. Fix 0 < ¢t < T and = € I'(¢).
For each 91,945,793 € R,

1
Eap = —Eej(ﬁf + 95 + 93).

Then

— — ¢y (|grady f)erady f.

¢ (aEGD 96cp OEgp )
(91=01 f,9,=08L f,93=0% f)

0¥ 7 0Y2 7 0Us

Proposition and [I5l Theorem 2.1] give a mathematical validity of the repre-
sentation of the energy density ez (|grady f|?) for the energy dissipation due to general
diffusion.

Applying Proposition [[33] Theorems [[AHL7] an energetic variational approach (Least
Action Principle and Maximum/Minimum Dissipation Principle), the first law of ther-
modynamics, we can derive our compressible fluid systems (L)) and (LII)). Under some
conditions, we can obtain the enthalpy (L.8]), the entropy (L3]), and the free energy (L.I0).
We easily check that the system (L)) satisfies the conservative form ([L2]). See Section
for more detailed derivation of our compressible fluid systems.

Let us investigate conservation laws of the compressible fluid system (L]).
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THEOREM 1.8 (Conservation laws).
Assume that I'(t) is flowed by the total velocity v. Then the system (L) satisfies
that for 0 < t; <ty < T,

/ plx,ty) dH2 = / p(x,ty) dH2, (1.17)
T (t2) T(t1)
to

/ pv dH: = / pv dH2 + / / pF dH3dr, (1.18)

F(tz tl)
/ ea dH? :/ ea dH2 + / {pF - v+ pQy} dH3dr, (1.19)

L(t2) I'(t1) t1 JI(7)

2
C(x,ty) dH2 = C(x,ty) dH2 +/ Qc dHidr, (1.20)
L (t2) I'(t1) t1 JI'(7)

and

/ (o % (pv)} (z, 1) dH2
T'(t2)

_ /F(tl){x x (pv)}(z,t) dH2 + /: /m){x x (pF)}(w,7) dH2dr. (1.21)

Finally, we state barotropic compressible fluid systems. Using a chemical potential,
we derive the pressure of barotropic compressible fluid on an evolving surface.

THEOREM 1.9 (Barotropic compressible fluid).
Let p € C'((0,0)). Under the hypotheses of Theorem [[4] for each variation #°,

/ /E(t){ () |v* (@, )| p(pa(w,t))} dHEdt.

T
Ap[3f] = / {pDsv + gradpp + pHrn} (x,t) - z(z,t) dH5dt,
e=0 I'(t)

Then
d

de

where p = p(p) = pp’(p) — p(p). Moreover, the two assertions hold:
(i) For every z € [C§°(Sr)]?, assume that

T
/ {pDyv + gradpp + pHrn} (2,t) - 2(x,t) dH2dt = 0.
o Jre

Then (p, v, p) fulfill
pDyv + gradpp + pHrn =0 on Sr.
(ii) For every z € [C5°(Sr)]? satisfying z - n = 0, assume that

T
/ {pDyv + gradpp + pHrn} (2,t) - 2(x,t) dH2dt = 0.
o Jre

Then (p, v,p) fulfill
PrpDyv + gradpp =0 on Sr.
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Remark. We prove Theorems [[L4] and [[L9 in Section Bl Theorems in Section [4]
and Theorem [ in subsection (.3l

Let us state three difficulties in the derivation of our compressible fluid systems on an
evolving surface and the ideas to overcome these difficulties. The first difficultly is to drive
the pressure of compressible fluid on an evolving surface. In order to derive the pressure
term of our compressible fluid systems, we focus our attention on the power density for
the work done by the pressure of the fluid and a chemical potential. The second difficulty
is to derive viscous term of our compressible fluid systems on an evolving surface. To
overcome the difficult point, we calculate variations of both the energy dissipation due
to the viscosities and the work done by both the pressure and exterior force. The third
difficulty is to investigate the internal energy, enthalpy, entropy, and free energy of the
fluid on an evolving surface. To solve the problem, we introduce the notation D} and
apply the first and second laws of thermodynamics, where D f = 9, f + (v-n)(n,V)f.

Let us explain two essential strategies to analyze fluid flow on an evolving surface.
The first one is to apply both a flow map on the evolving surface and the Riemannian
metric induced by the flow map. By using them, we deal with functions on the evolving
surface and give a mathematical validity of several energies of the fluid on the evolving
surface. The second one is to use both an energetic variational approach and the first
law of thermodynamics. Combining an energetic variational principle and the thermo-
dynamic theory, we derive our compressible fluid systems on the evolving surface. The
energetic variational method of this paper improves the one from Koba-Liu-Giga [I4].
The paper [I4] improved the energetic variational approach, which had been studied by
Strutt [24] and Onsager ([I7], [I8]), to derive incompressible fluid systems on an evolving
surface. Koba-Sato [15] applied their energetic variational approaches to derive their
non-Newtonian fluid systems in domains.

Let us state the history of the surface stress tensor determined by the Boussinesq-
Scriven law. Boussinesq [6] first considered the existence of surface fluid. Scriven [19]
introduced the surface stress tensor to apply it to arbitrary surfaces. Slattery [21] studied
some properties of the surface stress tensor determined by the Boussinesqg-Scriven law.
After that many researchers have made models of two-phase flow system with interfacial
phenomena such as surface tension, surface flow, and phase transition. See Gatignol-
Prud’homme [I0], Slattery-Sagis-Oh [22], and the references given there. Bothe and
Priiss [5] used the Boussinesg-Scriven law to make a two-phase flow system with surface
viscosity and surface tension. This paper gives a mathematical validity of the Boussinesq-
Scriven law (see Theorem [[LHl Section B and [I5, Theorem 2.1 and Section 3]).

We next explain some mathematical derivations of incompressible fluid systems on
a manifold. Arnol’d [2], [3] applied the Lie group of diffeomorphisms to derive an in-
viscid incompressible fluid system on a manifold. See also Ebin-Marsden [9]. Taylor
[25] introduced a viscous incompressible fluid system on a manifold from their physical
sense. Mitsumatsu and Yano [I6] used their energetic approach to derive a viscous in-
compressible fluid system on a manifold. Arnaudon and Cruzeiro [I] applied a stochastic
variational approach to derive a viscous incompressible fluid system on a manifold. Re-
call that Taylor [25], Mitsumatsu-Yano [16], and Arnaudon-Cruzeiro [I] used Taylor’s
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strain rate {(Vamu) + *(Vaqu)}/2 with surface divergence-free to derive their systems,
where V 5 is the covariant derivative.

Finally we state mathematical derivations of fluid systems on an evolving surface. Dz-
iuk and Elliott [§] applied the transport theorem (Leibniz formula) on an evolving surface
and their surface flux to make several fluid systems on the evolving surface. Koba-Liu-
Giga [14] derived incompressible fluid systems on an evolving surface by their energetic
variational approach. They applied the Helmholtz-Weyl decomposition on surfaces to
derive the pressure of incompressible fluid flow on an evolving surface.

2. Preliminaries. Let us prepare useful tools to analyze fluid flow on an evolving
surface. We first describe evolving surfaces, and then we introduce function spaces and
notation such as divr, gradp, Pr, and Hr. Finally we investigate fundamental properties
of surface gradient, surface divergence, an orthogonal projection to a tangent space,
surface strain rate tensors, surface stress tensor, material derivatives, and integration by
parts on evolving surfaces.

2.1. Ewvolving surfaces. Let us recall evolving surfaces.

DEFINITION 2.1 (2-dimensional C?-surfaces in R?).

A set Ty in R? is called a C?-surface in R? if for each point oy € I'g there are r > 0
and ¢ € C%(B,(xg)) such that

Lo N Br(w0) = {x = "(21,22,73) € B.(70); ¢(x) =0}

and that
Voot (20,20 50

da1’ Oxo’ Dy

) #(0,0,0) on B, (xo).

Here B,.(79) := {z € R3; |z — 20| < r}. In this paper we call a 2-dimensional C?-surface
in R? a 2-dimensional surface in R3.

DEFINITION 2.2 (Evolving 2-dimensional C?!-surfaces in R?).

Let T'(t){= {T(t)}o<t<r} be a set in R depending on time ¢ € [0,7) for some T €
(0,00]. A family {T'(t)}o<t<r is called an evolving 2-dimensional C?!-surface in R?® on
[0,T) if the following two properties hold:

(i) T'(0) is a 2-dimensional surface in R3.
(ii) For each tg € (0,T) and z¢ € I'(to), there are 1,72 > 0 and

¢ € C*Y(B,, (x0) X By, (to))
such that
L(to) N By, (x0) = {z = (21, 2, 23) € By, (0); ¥(x,t0) = 0}

and that

wa = ' (a—w 8—1/} a—w> # (0’070) on B7"1 (IO) X BT2(t0)'

81‘1 ’ 81‘2 ’ 81‘3
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Here B, (o) = {z € R3; |z —x0| <71}, By, (to) := {t € Ry; [t —to| <72}, and

C®Y(By, (20) X Bry(to)) = {f € C(By,(x0) x By, (to));
aif, 8j8if, 8tf, 8i8tf, 8J818tf € C’(BT1 (370) X BT2 (to)) for ’i,j = 1, 2, 3}

Throughout this paper we write I'(¢) instead of {I'(¢) }o<t<T-

DEFINITION 2.3 (Evolving surfaces).

Let {I'(t)}o<t<7 be an evolving 2-dimensional C?!-surface in R on [0,T) for some
T € (0,00]. We simply call I'(¢) an evolving 2-dimensional surface in R3 on [0,T) if T'()
is a closed Riemannian 2-dimensional manifold for each fixed ¢t € [0,T).

DEFINITION 2.4 (Variations of an evolving surface).

Let {I'(t)}o<t<T be an evolving 2-dimensional surface in R* on [0,T) for some T €
(0,00]. For each —1 < & < 1, let {I"°(¢) }o<t<7 be an evolving 2-dimensional surface in
R? on [0,T). We call I'*(t) a variation of I'(t) if the following two properties hold:

(i) Foreach 0 <t < T,

/ 1 dH? / 1 dH2
NONNO) L= ()\L (1)

(ii) Foreach 0 <t < T and —1 < ¢gp < 1,

/ 1 dH? / 1 dH?2
=0 (£)\T'= (¢) D= (t)\I'=0 (£)

Here dH2 denotes the 2-dimensional Hausdorff measure, that is, fr( nl dH? is the surface
area of I'(t).

Note that T'°(¢)|.=0 = I'(¢) by definition.

2.2. Function spaces and notation. We introduce functions on surfaces and evolv-
ing surfaces. Let Iy be a 2-dimensional surface in R3, and let I'(t) be an evolving
2-dimensional C%!-surface in R? on [0, T) for some T € (0, oc]. Set

+ < lel.

lim + =0.
E—EQ

St =Srrw) = {(x,t) = (xy, 20, 23,t) €RY; (2,1) € U {T'(t) x {t}}} .

0<t<T
For each m € NU {0, o0} we define
O™ (To) ={f : Ty = R: glr, = f for some g € C™(R%)},
Cit(To) :={f € C™(T); suppf does not intersect the boundary of T'y},
C(Sr) :={f:Sr = R; g|s, = f for some g € C(R® x R)},
Co(Sr) :={f € C(Sr); suppf includes Sy and
suppf(-,t) does not intersect the geometric boundary of I'(t)},
where CY(R3) := C(R?). Moreover, we write
CH0(Sy) := {f € O(Sr); 0:f € C(Sr) for each i = 1,2,3},
C*N(Sy) == {f € CYO(Sr); 9;0:f,0.f,0:0:f,0;0,0,f € C(Sr),i,j =1,2,3},
CoY(Sr) == C*(St) N Co(Sr).
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Similarly, we define C"™"(S7), Cy""(St), and C§°(Sr) := C®(Sr) N Co(Sr), where
C>®(S7) :={f:Sr = R; g|s, = f for some g € C=(R? x R)}.

For —1 < e < 1, let I'*(¢) be a variation of I'(t). Set

ST =Srreq) = {(w,t) = (xy, 20,23, t) € R (2,1) € U {T=(t) x {t}}} )

o<t<T

Let us explain some conventions used in this paper. We use italic characters 4, j, k, £,4'j’
as 1,2,3, and use Greek characters «a, 3,(,n,a’, 3" as 1,2. Moreover, we often use the
following Einstein summation convention:

azjb - E a’Lj ) a2] ijl = § az] ijly Qij zacaﬁ - E E A zacaﬁ

i,j=1 =1 a=1

Let X be a set. The symbol M,x,(X) denotes the set of all p x ¢ matrices whose
component belonging to X, that is, M € Mpx,(X) if and only if

(M1 [Mhiz -+ [M]yg
I [M:]21 [M:]22 [M:bq
[M]pl [M]m [M]pq

and [M];; e X i=1,2,...,p, i =1,2,...,q), where [M];j denotes the (i,j)-th component
of the matrix M. Recall that we can write M = ([M]ij)pxq-

Next we introduce important notation. By n = n(z,t) = *(n1,n2,n3) we mean the
unit outer normal vector of I'(t) at « € I'(¢) for each fixed ¢ € [0,T"). In this paper, we
use the following notation:

3
of = (8i; —nin;)0; Z —n;n;)0; |,

=1
="(01,05,05),
Ar = (91)% + (35)* + (95)”.
Here §;; is Kronecker’s delta. Moreover, for f = !(f1, f2, f3) € [C*(T'())]® and fij,g €
cH(I(),
divpf := 01 f1 + 05 fo + 05 f,
divr (fij)axs == t(agrflﬁ rf?]’va]rffij)’
gradpg := Vrg = “(9; 9,05 9,95 9)-

Let Hr and Pr be the mean curvature of I'(¢) and the orthogonal projection to a tangent
space of I'(t) defined by

Hr = Hr(z,t) := —divpn, (2.1)
[PF]ij = [PF((E,t)]ij = 5ij — ninj (Z,j = 1, 2, 3), (22)
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respectively. By definition, we easily check that Prn = *(0,0,0) and P2 = Pr. Note that
Pr = I3x3 —n ®n and that n? + n3 + n% = 1. Note also that Pr(Vg) = Vrg and that
f=Pof+(f-n)n.

For —1 < e < 1, let I'°(¢) be a variation of I'(t). By n® = n®(z,t) = *(n§,n§,n5) we
mean the unit outer normal vector of T'°(t) at x € I'°(¢) for each fixed ¢ € [0,T). By
definition, we see that for g € C1(I'*(t)),

3
0 g = (8 —nin5)5g | =D (8 —nin5)d;g
j=1

Moreover, for f =*(fi, fo, f3) € [C"(T*(t))]* and fi;,9 € C1(T=(1)),

divpe f :5‘{5]"1 + 555102 + ayl:gffia
divre (fij)axs =05 fi. 05 f25.0% f3i),
gradrgg :Vrsg = t(afsg’ aggg’ 8559).

Let Hr- and Pr- be the mean curvature of I'“(¢) and the orthogonal projection to a
tangent space of I'*(t) defined by

HFE = HFE (.’L’,t) = _diVFEnE, (23)
[Pps]ij = [Prs (I,t)]ij = 5ij - nfnj (Z,] = 172,3)
Let us introduce three strain rate tensors and one surface stress tensor. For every
f = t(flaf%fl%) € [Cl(r(t))]g and gnu,>‘ € C(F(t)),
1
D(f) = SA(V) + (TN},
1
Dr(f) = 5{(Vrf) +4(Vr )},

Dr(f) = 3 PeA(VF) + (V) Pr,
Sr(fs 9,1, A) :=2uDr(f) + APp(dive f) — Prg.

We call D(f) a strain rate tensor, Dr(f) a surface strain rate tensor, and Sr(f, g, u, A) a
surface stress tensor. We also call Dr(f) a tangential strain rate and Dr(f) a projected
strain rate. By the definition of Pr and Vr, we find that

Dr(f) = S{(PH(Te) + (Pr(Trf)).

See Slattery-Sagis-Oh [22] and Lemma

2.3. Properties of operators for evolving surfaces. Let us now study several operators
such as divy, gradp, and Pr, and the strain rate tensors D(f), Dr(f), Dr(f), and the
surface stress tensor Sp. Let ['(t) be an evolving 2-dimensional C%!-surface in R® on
[0,T) for some T € (0, 00], and let I'®(¢) be a variation of T'(¢).



322 HAJIME KOBA

LEMMA 2.5 (Properties of surface gradient and divergence).
(i) For every f € C1(I'(¢)) and v = *(v1, v2,v3) € [CH(T(2))]3,

Prgrady f = gradr f,

n-gradpf =0,

divp(Prf) = gradpf + fHrn, (2.5)
Prdivp(Prf) = gradp f,
dive((Prf)v) = (gradpf) - v+ fHr(n-v) + f(divro), (2.6)

(v, V)f = (v, Vo) f + (v-n)(n, V) f.
(ii) For every f € CY(T°(t)) and v = (v, v2,v3) € [CH(T(¢))]3,

Pregradp. f = gradyp- f,
n® - gradp. f =0,
divpe (Pre f) = gradpe f + fHren®,

Predivre (Pre f) = gradp. f,

divre ((Pre f)v) = (gradpe f) - v + fHpe (n® - v) + f(divpev),

(v, V)f = (v,Vre)f + (v-n%)(n°, V).

Since the proof of Lemma is not difficult, the proof is left to the reader.
The following lemma is useful to study the fluid flow on an evolving surface.

LEMMA 2.6 (Properties of strain and stress tensors).
(1) For all v = t(vl’v%v3)a $= t(sala ¥2, 903) € [Cl(r(t))]ga

PrD(v)Pr =PrDr(v) Pr, (2.8)
Dr(v) : Dr(e) =Dr(v) : Dr(p). (2.9)

(ii) For all v = (v, v2,v3) € [C%(T'(t))]? and g, u, A € CH(T'(2)),
divp{uDr(v)v} =divp{puDr(v)} - v+ pDr(v) : Dr(v), (2.10)
divr{\Pp(divpo)v} =divp{\Pr(divrv)} - v 4+ A|divro|?, (2.11)

divp{Sr(v, g, p, v} — dive{Sr (v, g, u, )} - v

=2uDr(v) : Dr(v) + A|divro]? — g(divrov). (2.12)

(iii) For all v = *(v1, ve,v3) € [CH(L'(¢))]® and g, u, A € C(T(t)),
Sr(v, g, 4, A) : Dp(v) = 2uDr(v) : Dr(v) + Adivro* — g(divro). (2.13)

Proof of Lemma 26. We first prove (i). Fix v = Y(vy,v2,v3), ¢ = “(p1,p2,p3) €
[CH(T'(t))]3. By definition, we check that for each i,j = 1,2, 3,

[2PrD(v)]ij = 0} vj + 9jv; — ni(n - 0jv),
[2PrDr(v)];j = 0} v; + 8;1)1- —n;(n - 8511),
[2PrD(v)Prlij = 0} v; + 5;1)1' —ni(n-05v) —nj(n- 9 v)
[2PrDr(v)Pr)i; = 0} v; + Bjrvi —ni(n-05v) —nj(n- ol v).
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This shows ([2.8]). Next we shall show that
Dr(v) : {Dr(p) —Dr(p)} = 0. (2.14)
We now use the Einstein summation convention. From
2[Dr(v))i; =0f vj + 3jrvi —n;(n- ajfv) —nj(n- 0 v),
2[Dr(p)]i; =0} ¢j + 0j pi — ni(n - 9] ) — nj(n - 9} p),
2[Dr(p)]i; =0} i + 0} ;= 0} @; + 0} i,
we find that

4Dr(v) : {Dr(¢) — Dr(p)}
= {07 vj + 0 vi —ni(n-9jv) — nj(n- 0] v){—ni(n-0; ) —n;j(n- 0} )}
=—(0jv; + 3501'){”1‘(” : 8580) +nj(n-0 )}
+{ni(n- 95 v) +nj(n- 0 v)Hni(n - 05 ) +ny(n-0; ¢)}
= —A; +As. (2.15)
A direct calculation gives
Ay = (97 v + 05 vi){ni(n - 95 ) +n;(n- 8] v)}
= 0 vi{ni(n - 95 ¢)} + 05 vi{n;(n- 07 )} + 0; vi{n;(n - 8] )} + 05 vi{ni(n - 95 p)}.
Since njajf =n - gradp = 0, we see that
0; vi{ni(n- 05 )} + 05 vi{n;(n - 8 )} = n:0; v;(n - 0} @) +n;0; vi(n - 9 ) = 0.
It is easy to check that
0 vi{n;(n - 0; )} + 0 vi{ni(n - 95 )}
=2{(n-0yv)(n-01¢) + (n-9yv)(n- ) + (n-95v)(n-5)}.
Consequently, we have
A =2(n- 8;1))(11 . 8§<p). (2.16)
Next we consider
Az = {ni(n - 95 v) +n;(n- 07 v)H{ni(n - 9] ) +n;(n- 0 ¢)}
)(n- 05 )
) +nyni(n-9;v)(n -0 ¢).

=n;n;(n- afv)(n SO @) +nnj(n-0fv
+ nini(n - 8?11)(71 . 8jr<p
Since njajf =0, we check that
ning(n - 95 v)(n-9; ) = ni(n-n;0;v)(n - d; ¢) = 0.
This shows that
n;n;(n - Bjrv)(n -0F ) + n;n;(n - o) (n - 854,0) =0.
By n? +n3 +n? =1, we have

n;ni(n - 3§v)(n . Bjrcp) =(n- agrv)(n : ajr‘p)-
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As a result, we obtain
As =2(n- 8;1))(11 . 8jr<p). (2.17)

From ([2Z13), (214), and (2.17), we see ([2.14). Therefore we have (2.9]).

Next we show the assertion (ii). Fix v = *(v1,v2,v3) € [C*(T'(t))]® and g, u, X €
CH(T'(t)). Now we derive (2I0). Since

w[Dr(v)]11v1 + p[Dr(v)]i2ve + p[Dr(v)]i3vs
divp{pDr(v)v} = divy | p[Dr(v)]21v1 + p[Dr(v)]a2ve + p[Dr(v)]2svs
u[Dr(v)]z1v1 + p[Dr(v)]s2ve + p[Dr(v)]s3vs

we find that
divp{uDr(v)v} — divp{pDr(v)} - v = pDr(v) : Dp(v).
Note that [Dr(v)];i = [Dr(v)]i; and [Dr(v)]i; = (9} vi + 8] v;)/2. Using @3J), we have
EI10).
We now attack (211 and 2I2). Set M = APr(divpv). It is clear that
(diveM) - v = (91 [M]11 + 95 [M]12 + 95 [M]13)01
+ (0] [M]21 + 85 [M]22 + 95 [M]23)v2 + (95 [M]31 + 05 [M]32 + 05 [M]33)v5.
Since [M]Zj = [)\Pp(diVF’U)}ij = /\(dinv)(dij - ninj) = [M]ﬂ and njajr = O, we observe
that

[M]11v1 + [M]12v2 + [M]13v3
din{MU} = divp ([M]217)1 + [M]QQ'UQ + [M]237)3>
[M]s1v1 + [M]32v2 + [M]33v3

= (divp M) - v 4 A(divro) (0 vy + 0L vy + 0L v).
Therefore we have (ZII). Note that [M];;0} v; = A(divpv)dy;0f v; for each fixed i. From
23) and (24), we have
divp{(Prg)v} — divr{Prg} - v = g(divrv). (2.18)

Using 2.10), 211)), and ZI8), we derive (2.12]).
Finally, we show (iii). Fix v = *(vi,ve,v3) € [CY(T'(t))]? and g, u, A € C(I'(t)). Since
njajf =0, we see that
)\Pp(dinU) : DF(’U)
= A(divrv)(d;; — nmj){azrvj + ajfvi —n;(n- 8?7)) —nj(n- orv)}/2
= Mdivrv)d;; {0} v; + aj%i —ni(n- Bjrv) —nj(n-0fv)}/2 = Ndivpo|?
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and that
— Prg: Dr(v) = —g(6;; — nmj){afvj + 8;1)1- —ni(n- 8§v) —n;(n- 8{1})}/2
= —g(divpv).
Therefore we find that
Sr(v, g, 4, A) : Dr(v) =(2uDr(v) + APr(divrv) — Prg) : Dr(v)
=2uDr(v) : Dr(v) + A|divro]? — g(divrov).

Therefore the lemma follows. O
Next we study material derivatives on an evolving surface.

LEMMA 2.7 (Material derivatives on evolving surface).
Let v = (v, v9,v3) € [C11(Sy)]3. For every f € C1(Sr),

Dyf =0, f + (v, V),
DY f:=0f + (v-n)(n, V),
D} f:=0uf + (v, Vr)f.
Then for every f € C11(S7),
DN f + divr(fv) = Df + (divro) f, (2.19)
DN (fv) + divr(fv @ v) = {Dyf + (divrv) f}v + fDyv. (2.20)
Proof of Lemma 27 From (27]), we see that
DN f + divp(fv) ={0,f + (v,V = V) f} + {(v, V) f + (divpo) f}
:th + (diVFU)f
and that
DY (fv)+dive(foev) = {(Dy flv+F(DYv)}+({(v, Vi) flv+ f(v, Ve)o+ f(divrv)v)

= {DN [+ (v, Vr)f + (divro) fYo + f{DNv + (v, Vr)v}
= {D;f + (divrv) f}v + fDyv.

Therefore the lemma follows. Note that [fv ® v];; = fvv;. O
Finally we state integration by parts on surfaces.

LEMMA 2.8 (Integration by parts on surfaces).
Let I'y be a 2-dimensional surface in R3. Then two assertions hold;
(i) For each f € C*(Tg), g € C¢(Tg), v € [Ca(To)]3, and m € {1,2,3},

/ (050 g} () dH2 = / (/(0F0 )} (x) dH2 / (Hrynm fg}(z) dH2,
o

{f(divrop)}(2) dH = — | {gradp, f + fHron}(z) - o(x) dH;.

Fo I_‘0
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(ii) Assume that Ty is a closed surface. Then for each f,g € C1(I'g), p € [C1(I'g)]3, and
m 6 {17 2’ 3}’

/ (050 g} () dH2 = / (009} () dH2 — /F Ly nfo) )

{f(divryp)}(z) dHZ = — | {gradp, f+ fHr,n}(z) - (z) dH.
Fo I_‘0
Here n = n(z) = *(n1,n2,n3) denotes the unit outer normal vector at « € I'g, and Hr,
is the mean curvature defined by Hpr, = —divp,n

The proof of Lemma 2.8 is found in [23] Chapter 2] and [14].

3. Flow maps and Riemannian metrics. This section has two purposes. The first
one is to derive the continuity equation for the fluid on an evolving surface. The second
one is to investigate a mathematical validity of our energy densities for compressible fluid
on the evolving surface. To achieve these purposes, we make use of a flow map on the
evolving surface and the Riemannian metric induced by the flow map.

In subsection Bl we introduce a flow map on an evolving surface and the Riemannian
metric defined by the flow map. In subsection B.2] by using a flow map and the Riemann-
ian metric, we investigate the orthogonal projection Pr and surface divergence divr. In
subsection [B.3] we derive the continuity equation for the fluid on an evolving surface to
prove Proposition[[.3l In subsection [3.4] we study the representation of the kinetic energy,
dissipation energies, and work for compressible fluid on an evolving surface.

3.1. Flow maps and Riemannian metrics on evolving surfaces. We first introduce a
flow map on an evolving surface and the Riemannian metric defined by the flow map.
Then we study surface area integral by applying the flow map and the Riemannian metric.
We also consider a flow map on a variation of the evolving surface and the Riemannian
metric induced by the flow map.

DEFINITION 3.1 (Flow map on an evolving surface).

Let I'(t) be an evolving 2-dimensional surface in R? on [0,7) for some T € (0, .
Let x = (z1, 20, 23) € [C®(RY)]3. We call z = 2(&,t) a flow map on I'(t) if the three
properties hold:

(i) for every £ € T'(0)

2(£,0) =&,
(ii) for all € e I'(0) and 0 <t < T
£(¢,t) € I(1),
(iii) for each 0 <t < T
Z(-,t) : T(0) — I'(¢t) is bijective.

The mapping & — (&, t) is called a flow map on T'(¢), while the mapping ¢t — &(&,¢) is
called an orbit starting from &.
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DEFINITION 3.2 (Velocity determined by a flow map).

Let I'(¢) be an evolving 2-dimensional surface in R? on [0, 7') for some T € (0, c0]. Let
& = %(&,t) be a flow map on I'(¢). Suppose that there is a smooth function v = v(z,t) =
(v1,v2,v3) such that for £ € T'(0) and 0 < t < T,

B = bt 1) = vlale,0).0).

We call the vector-valued function v the velocity determined by the flow map (&, t).

Let us now study fundamental properties of a flow map on an evolving surface and
the velocity determined by the flow map. Let I'(t) be a given evolving 2-dimensional
surface in R? on [0,7T) for some T € (0,00]. Let & = #(&,t) be a flow map on I'(t), and
let v = v(x,t) be the velocity determined by the flow map Z, i.e., for every £ € T'(0) and
0<t<T,

{%(m) = v(#(¢,1). 1),
2(€,0) =¢.

We assume that v is the total velocity. From now on we write I'g = I'(0). By the bijection
of the flow map, we see that T'(¢) is expressed as follows:

[(t) = {z ="(z1, 22, 23) € R = = &(€,1), £ €T}

Since I'g(= I'(0)) is a closed Riemannian 2-dimensional manifold, there are I'y, C Ty,
®,, € C°(R?), U,, CR? ¥,, € C®(R3), (m=1,2,--- ,N) such that

N
U 1_‘mb = FO,
m=1

suppVy, C Iy,
[Win|[Loe =1,

N
Z v,, =1on .
m=1
This is a partition of unity. Fix £ € T'g. Assume that £ € T, for some m € {1,2,--- | N}.

Since we can write £ = ®,,(X) for some X = (X1, X3) € U,, C R?, we set
Z=2(X,t) = (P (X),t)(= 2(§,1)).

b:=9,if£el,,.
Then for each £ € 'g and 0 <t < T,

{% = 74(X,t) = v(&(X, 1), 1),
Zli=0 = ®(X) (=€)

Then

&

X

(X t) = v(2(X, 1), 1),
(I)m(X)(: f)

53

ST

=0

t

Now we write
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We also call Z(X,t) a flow map on I'(t). For the map = Z(X,t), we define

J=J(X,t) = det{"(VxZ)(VxE)},

where
83?1 8%1
s
5o 2 2
VxT=|35% 7%
0%3  Odis
X, 0X»

We assume that J > 0. Indeed, we can choose a coordinate such that J > 0 from the

definition of evolving surfaces (see Definitions Z.THZ.3)).
Next we study surface area integral by applying the flow maps (¢, t) and Z(X,t) on

['(t). For each f(-,-) € C(R3 x R), we find that

Fa,t) dH2 = / B(X)f(#(X, 1), )/ T(X, 1) dX. (3.1)
r(t) U
Here
N
/U B(X) f (X, 0, 0/T(G 1) dX = 3 /U U (D0 (X)) F(E(X, 1), 1) /T, D) dX.
Since

I'(t)={z e R® z=23(1), £ €Ty},
we use the change of variables and usual surface area integral to check that for 0 <¢ < T
flat) di2 = | f(2(&1),t) det(Ved) dHZ
I(t) Ty

N
=30 [ B0, den(Ved) an
m=1 m

N
-y /U W, (B0 (X)) f(@(y(X), 1), 1) det(Veir) /Aot (T x B,V x B,r) dX

m=1

N
=3 [ wn@n ) IG0,0VTD X,

Note that
852 853 6552 6553
0X1 0X2  0X2 0X1

_ | 925 9z, _ 05 0@

= | 09X, 0Xs ~ 9X» 0X1
0%, Oy 0%, Oy
0X| 0X2  0X2 0X1
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and that
8%1 8$1 + d:Cz 8302 _|_ 8%3 8$3 81'1 81'1 + 8$2 8$2 + 8303 8303
t(v j‘,},)(v j‘,},) _ 0X1 8X1 8X1 8X1 8X1 0X1 8X1 BXQ 8X1 8X2 8X1 BXQ
X X - oz, O + + 3 O3 + + x3
0Xo 8X1 6X2 (9X1 3X2 0X, 8X2 8X2 BXQ BXQ 6X2 0Xo

Thus, we have (B)). Recall that U,,, ¥,,, ®,,, J are independent of f.

Next we introduce the Riemannian metric induced by the flow map Z(X,t). For the
flow map & = Z(X,t) on I'(¢),

0%, 0%y OFs
_ _t
9o = ga (X, 1) := (axa’axa’axa)'

Write

0F; 07 0%; 0%
9ap = gap(X,t) =00 - g5 = X o 0X 5 Z(?Xa 0Xp'

Set

11 12 -t
By, . 1 that is, (g g ):z (g” 912) :
(97 )2x2 = ((gap)2x2) g*t g2 921 go2

9" =995 = "' 91 + "9,

, ._i _ﬁ_t 81)1 81)2 81}3
Jo 1= 2190 = =

00X, 0X, 0X, 0X,
It is easy to check that gga = gags, 9°% = g°%, g% = g% - ¢°, 9% - g5 = Sap,
9o = 9apg” = gar9' + gazg?,
gaﬁ = §a “98 + 9a 'gﬁa

, _ Ov 0% Ov Z ox; Ov
Jo = 59X, = 09X, 0i; 09X, 07,

, o &%Z an 8@ 3 8.’31 8’[)j afj

Yo' 98 = 9X, 0i; 0X 5 jz_: 90X, 0%; 0X 5’

o 0E [(Ov; O\ 0F o O3 1oy, D0
98 = 5X. <a:zi * agzj> X5 Z g,

where d,5 is Kronecker’s delta. Indeed, we see at once that

- ¢ 67)1 6?)2 8v3 ot 8;%1 8:52 8;%3
Yot 95 =\ 9X,’ 90X, 0X, axﬁ’ 90X, 0X4
ot < 3 8@‘, 8’01 3 8531' 81)2

ovy oT; Z Ox; dug \ 4 (0% Oy 0O
—1 8Xa 6:%1 ’ =1 6Xa 850 ’ iz 8Xa aIz 8X67 aX/57 6X5

N i &%Z 8Uj &%j N ({9{31 (%j afj

0X, 0%;0X5  0Xa 0i; 0X 5
7,7=1
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and that g% - g5 = (¢*'g1 + 9*%g2) g = galgm + gO‘Qggg = o8- Recall that

(RHS.) of(B:n):/U\i/(X)f(gz(X,t),t) det (9” 912) dx.

g21  g22

See [7] and [13] for differential geometry and the Riemannian manifold.

Next we introduce a flow map on a variation of the evolving surface I'(¢).

DEFINITION 3.3 (Flow map on a variation of an evolving surface).

Let I'(¢) be an evolving 2-dimensional surface in R3 on [0, T) for some T € (0, 0o]. For
—1 < e <1, let T'°(t) be a variation of I'(¢). Let 2° = *(25, 25, 25) € [C>°(R*)]3. We call
i° = 3°(&,t) a flow map on T'¢(t) if the three properties hold:

(i) for every £ € T'o(=T(0))
1°(¢,0) = ¢,
(ii) forall € e g and 0 <t < T
(€, t) € T°(1),
(iii) for each 0 <t < T
Z°(-,t) : Tp — I'°(¢) is bijective.
Note that from the property (iii) we can write

Ie(t) = {z € R 2 =3°(&,t), £ €Ty}

DEFINITION 3.4 (Velocity determined by a flow map on I'®(t)).

Let T'(t) be a given evolving 2-dimensional surface in R3 on [0, T) for some T' € (0, 00].
For —1 < & < 1, let T'%(t) be a variation of I'(¢). Let 2* = £°({,t) be a flow map on
I'¢(t). Suppose that there is a smooth function v® = v (z,t) = *(v§, v§, v§) such that for
Eer(0)and 0 <t < T,

dt
We call the vector-valued function v® the velocity determined by the flow map (&, t).
For —1 < e < 1, let T¢(t) be a variation of I'(¢). Let & = 2°(¢,t) be a flow map
on I'“(t), and let v® = ve(x,t) be the velocity determined by the flow map i°, i.e., for
Eel(0)and 0 <t < T,

{%E(fvt) = 0% (2°(, 1), 1),
#(6,0) = ¢,

By the same way as in the previous argument, we write
(X, t) = 2°(D,(X), t).
We also call 2°(X,t) a flow map on I'®(¢). Set
JE = J(X,t) = det{"(Vx&°)(Vxi%)},

where
2zs  9is
0X 0X
v 7€ — af:g aif
Xl o%
o5 81‘3

90X, 0Xo
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We assume that J¢ > 0. We see at once that for f € C(R?*)
[ty a = [ 500G (X001 (XD ax. (3:2)
(®) U

Here

/U\iJ(X)f(:EE(X,t),t)\/JE(X,t) dX
N
=3 [ @ CON G X 0.0V TS X,

m=1
For each flow map ¢ = (X, t) on I'*(¢),

ox; 0x5 01§
gZ::t< 1 2 3).

0X, 0X, 0X,
Write
R . . 0% 075 oz 0z
Jop = 9098 = 5X, 0X 5 Z 90X, 0Xj5
Set

11 12 € €
_ . g g g g
0z = (p)one) s, (%, 95, ) = (0 92)
g

9c 921 922

al e

9 = 9295 = g2 g7 + 92295,
d . Ov° t(@vf ovs 3v§>

Jo = 9 = ox. =~ \ X, 90X, 0X,

It is clear that g3, = 955, gbe = goB gB =g gB, g2 95 = 0ap;

95 = 95595 = 9509t + 95092,
Jop = 9o 95t 90 95

B 23;

Yo = 9X, ~ 09X, 0i° axs’

e e % ax 23: 075 Bv 5

o' 98 = 9X,, 0ic 8Xg P X, ax aXﬁ

. 0@ [0v5 s 0F5 2 83& o) 0z
o0 = ox, \ 0z " 0 X, e i g%,

where d,5 is Kronecker’s delta. Recall that

952

(RHS.) of B2) = /U B(X)F(3 (X, 1), £), | det (ZU 952) ix.
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Throughout Section [3 we follow the convention:

CONVENTION 3.5. Let I'(t) be a given evolving 2-dimensional surface in R? on [0,7)
for some T € (0,00]. Let & = Z(§,t) be a flow map on I'(t), and let v = v(z,t) be the
velocity determined by the flow map #(&,t). For —1 < e < 1, let T'°(¢) be a variation
of I'(t). Let 2° = 2°(§,t) be a flow map on I'?(¢), and let v = v°(x,t) be the velocity
determined by the flow map #°(&,t). The symbols g%, go, 97, gap and gg,gg,ggﬁ,gzﬂ
are the components of the Riemannian metrics determined by the flow maps &(,t) and
#°(&,1), respectively. The symbols U, U,,, ¥, U,,, ®,,. J, J° represent the notation
appearing in the argument in subsection [311

3.2. Orthogonal projection and surface divergence. Let us study an orthogonal projec-
tion and surface divergence by using the Riemannian metrics determined by flow maps.
By definition, we see that

(gs“ g§2>: 1 (952 —g%) (3.3)
931 932 911952 — 912951 \—921 911

€ 7€ 7€ I~ I~ €
0z5 0z =~ 0%5 035 07§ 075

I T X, 0X, 09X, 0X, 90X, 0X,’ (3-4)
.. o5 om0 08y | 015 0i

9279217 5x 59X, T 0X, 0Xs | 0X, 0Xs' (3.5)
. 035 935 015 035 035 O 3.6)

9227 59X, 0X, | 09X, 0Xy | 0X5 90Xy
The above equalities are still valid without . We also see that for each i,j = 1,2, 3,

0x; 01; gof = 0i; 01; gt 015 91; g2 4 015 91; e 015 01; g2 (3.7)
0X, 0Xp"*¢ 0X10X17°  0X10X27°  0X20X17°  0Xp0Xp7 '

Let us now study the projections Pr and Pr-. Let us first recall that [Pr];; = d;; —nn;

and [PFE]ij = 51']' - nfnj

LEMMA 3.6 (Representation of Pr and Pre).
For each i,j = 1,2, 3,

(61 — mny (1) dH2 = /U ®<X>{ 07; 0%; gaﬁ}<x,t>\/.f<x,t>dx,

F(t) 8Xa 3X5
9 - oxc 63”:5 P
/ {65 — nEns} (e, 1) dH2 = / B(x) L 9T 2 an L x4 /TE (X 1)dX.
e (t) U 8Xa aX,B
Here

N
[ #0070 ax -3 | @ x)sxs ax.
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Proof of Lemma B8l Since n® is the unit outer normal vector of I'?(¢), we see that

€
e = Z% _ L 9i x5
ng |97 x 95|
o5 0I5 0z 015
. 1 T WA (3.8)

00X, 0X 0X2 0X
V g§1g§2 - giQ.ggl 81’% 8x§ 81% 815

X1 0X2  0Xp 90X,

Note that
/ n(z,t) dHi:/ \TI(X){ } (X, t)\/J(X,t)dX.
I(t) U |91 x g5|

Here we only show that

05 0I5 .4

1 —nini = X, 8795 ) (3.9)
0z5 015
—nin L2 go? 3.10
"2 = X, 90X, (3.10)
We first attack (39). From B8], we have

1 € 7€ 7€ 7€ 2

nSm = —— _ (83&2 1§ 3 15 8x3> (3.11)
911932 — 912951 \0X1 00Xy  0X50X,

Combining [B7) and [B3]), we find that

O 03 o5 _ OFf O35 1y, 005 05 o, 03f 03
90X, 0X57° 90X, 0X; %% 2%, 0%, % T 0%, 0%,
_ 1 (&Bl 8:61 0] 8:61 L+ 0 a5 071 . ) (3.12)
911952 — 912951 \0X1 8X1 0X1 6X 0Xo 8X2

Adding BI1) and (B12), then using B4), B1H), and (B6), we see that
0xy 0% B _ 911952 — 912951 -1
X 0Xp7" 911932 — 912951
Next we show (BI0). From (B.8]), we have

1 (affzg 0z5 i agzg) (a:z:g 0z i agzi)
911952 — 912951 \0X1 00Xy 0X50X, 0X,0X, 0X50X,
By 1), .3), and the fact that g5; = g5;, we check that

E LE
ning +

E E __
ning =

0x§ 8:102 op _ 0z] 075 gl 0z] 075 g2 0z] 0175 2! 0z] 0175 622
0X, 0X 3 00X, 6X 0X; 8X 0X5 8X 0X5 8X
B 1 075 89c2 0z] 075 .
901952 — 952051 <‘9X1 90Xy 9oz~ X1 0X; iz
0z5 83@2 L+ 0z] 075
T 09X, 0x,72 T 9X, 0X, gll)
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A direct calculation with (B4]), (B.5), and (B.6]) shows that

o5 0715
ning + ot 2 g =

0.
90X, 09X,

In the same manner, we see that for each i,j = 1,2, 3,

o€ 8@;
EE T (15 — A..
T AX, ax, %
07; 0%
n; i b _ g, .
Mt X, 0x Y g

Therefore the lemma follows.
See [I4] for another proof of Lemma
Using flow maps and the Riemannian metrics, we study surface divergence.

LEMMA 3.7. For each fixed Qg CT'gand 0 <t < T

Qt) :={z € R3; 2 = z(&,t), €€ Qo},
Q°(t) :={x € R% z =2°(&, 1), £ € Qo},

where z(&,t) and 2°(€,t) are two flow maps on I'(t) and I'°(¢), respectively. Then the

following two assertions hold:
(1) For every f = t(flvf?a f3) € CI(RS X ]R),

i = N (x4 oo 9F
/mt){dlvrf}(x’t) A = /U oo (B(X))H(X) {g X, \/7} (X, 1) dX,
i = J a | ﬁ (>4
/Qs(t){dlvfff}(“) dHi—/UlQo(‘P(X))\I’(X){gE > }(X,t) dx.

(ii) For all f € C(R?® x R),

{f(divro)} (2, t) dH?
Q(t)

~ - 0
= [ 1, @)ER G0 (5 VTED) ax.

/ (F(diveev)}(z, £) dH2
Q= ()

:/ Log ((X))#(X) £(3(X, 1), 1) (%«/JE(X,t)) X,
U

Here

. 1, £ € Qy,
190(5) i {07 g c RS \QO

(3.13)

(3.14)

(3.15)

(3.16)
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Proof of Lemma B We first show [B.14). Fix Qp C I'g and 0 < ¢ < T. By change of
variables, we check that

/ {divre f}(z,t) dH = / divre f(2°(&, t), 1) det(Vea) dH;
€ QO
_ /F Ly (€)divre f(3° (£, 1), £) det(Vei®) dH2

= / Lo (®(X))U(X)divr: f(35(X, 1), )/ J5 (X, 1) dX.
U
A direct calculation shows that

a af _ af e af _ 1B e 6f af

e
of ofr | of
a 12 € . 21 ¢ . 22
e 92 3X1) + (ga 91 aX 2 X

( 1 07§ 8f1 12 05 0f1 s 0] 8f1 g2 07 8f1>

X, 0%, 9 ax, 0%, % ox, 0%, % ox,0x,
11 075 0fs 12 075 Ofa e 2! 075 af2 22 075 Ofs

T\ axox, T ax,0x, % ax,ox, T ax, 0x,
0T§ 6f3 015 8f3 015 8f3 0T§ 6f3

11 3 12 3 21 3 22 3
% ax,ox, T ax,0x, T ax, 0x, % ax, 0x,

=17+ 15+ 15.

Since

of; 0 | 9% 0
OXa aXf (&0, _g i

we observe that
e — (11 971 035 g2 977 013 g2 977 01} g2 9zy 071\ 9N
! ©0X,0X, 7 0X10X, 7% 0X,0X, U7 0X.0X, ) 0if
(1 O 035 | 1o 035 05 5y 031 055 | 5 031 035\ Of
= 0X,0X, 70X, 0X, | T 09X, 00X, % 09X, 0X, ) 015
N ( 1y 05 035 | 1, 085 05 | 5y 05 035 | 4, 0if 83:3) dfy

S 9X 00X, 70X, 0X, % 09X, 0x, ' 77 09X, 0X, ) 0
0x5 0§ a,@ 8 0z7 015 .5 O or{ 015 e 0 f
90X, 0X ;5" 0X. 0X57 975 ' 09X, 00X 035 )7V

Applying Lemma [3.6] we see that
ARG RALOR S /U L, (B(X)) BT (X, )/ T7(X, ) dX.
Similarly, we check that
/ o) 7t = /U Lo (@COYP(X){(IF + 15 + I5)VIFH(X, 1) dX.

Therefore we have [B.I4]). Similarly, we obtain (3.13).
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Next we derive (3.16]). Since J¢ = det{"(Vxi°)(Vxz®)}, we find that

0%y 8902 + o5 0%5 oz 8901 + 0T5 Bz2 + o5 0%5
8X2 6X1 0X5 0X1 | 0X2 0X1 0X50X> | 0X5 0X2 | 90X, 0X»

et (gl-gl 9?95) — det (911 912>
9591 9395 951 952

= (91 -91)(95 - 95) — (91 - 95)(95 - 91) = 951932 — 912951

0z azl + 8z2 8952 + 8:1:3 oz3 OT] 8951 + 812 812 + oz5 0§
J¢ = det dXél 8X£1 8X51 BX dXél dXél 8X51 8X dXél 8X 8X51 an

From the fact that
9, . o _ o O . Ov®

we check that

QJE_ . Ov° Lo . Ov° _ogf . Ov° ogt . O0v°
ot 2950 | 97 - 8X 911 | 95 —8X2 912 | 92 —8X1 921 | 91 0X, )

Dividing both sides of the above equality by J* = ¢§; 95, — 952951, and then using (33)),
we have

10 v v v v
__J5:211 € . 222 € . 212 € . 221 € .
Je 315 e (gl 3X1) + e 9o 3X2 + e (953 8X1 + e g1 8X2

ov® ov®
—9 11 e 12 e 2 21 e 22 ¢
((gs 91 +9:93) X, +2( (991 +9:793) X,
ove ov®
=2 242 -
9 X, Xy

As a result, we have

0 . o Ov° .
EJ (gs . 8Xa) Je.

9 1o
oV ==

v
=g - Vv JE.
gE 8Xa
Applying B14), we see (B.I6]). Similarly, we see (B8.15]). Therefore the lemma follows. O
3.3. Continuity equation on an evolving surface. In this subsection we study the con-
tinuity equation on an evolving surface and a variation of the evolving surface. We first
prepare two lemmas, and then we prove Proposition [[.3

Therefore we find that

LEMMA 3.8. For every f € C11(S5),
Dif:=0f + (v°,V)/,
DY f:=0uf + (v° - n%)(n", V),
DI f:= 0uf 4+ (v°, V) f.
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Then for every f € C11(85),
DN f + divp- (fv°) = Dy f + (divp-v°) f,
DN (fv¥) + divpe (fo° @ v°) = {D5 f + (divpev®) f}o° + fD50".

Since we can prove Lemma by using the same argument in the proof of Lemma
27 the proof of Lemma [3.8 is left to the reader.

LEMMA 3.9. For each fixed Qg CTgand 0 <t < T,
Q(t) :={z e R®*; 2 = (£, 1), £ € Qo},
(1) :={z € R? 2 =3°(£,1), € € Qo},
where & and #° are two flow maps on I'(¢) and I'“(¢), respectively. Then for each Qo C T,
0<t<T,and f € C(R? xR),
d

dt Jagw Q)

a

Proof of Lemma B9l We first derive (318). Fix Qo C T, 0 < ¢ < T and f €
C(R? x R). By definition, we observe that

/ fat) dH2 = [ FGEE D), 1) det(Vei) di2
Qe (t) Qo '

f(x,t) dH2 = /QE( ){D§f+ (divpev®)f} dH2. (3.18)

- / Lo, (6)F(3°(€.1). ) det(Vi®) dH2

= [ 10,(@0) I (X0, VT(ED dx.

1, £ € Qq,
taold) = {0, ce RE\QO.

Using the assertion (ii) of Lemma [B.7 we check that

Here

i X 2 = 0 i 7 -
7 /Qs(t)f( ) dH2 /UlQO(CP(X))\If(X) (dtf( (X,t),t)) VIE(X, 1) dX

N . P -
+/UlQO(<I>(X))\II(X)f(a: (X,1),t) (a J (X,t)) dX

= / {D; f + (divpev®) f}(z, t) d?-[i.
Qs (1)

Therefore we have [BI8)). Similarly, we see (B17). O
Lemma attacks Proposition [[.3
Proof of Proposition L3l We only prove the assertion (ii) of Proposition Fix
€ (0,7) and Q°(t) C I'“(¢). Since the flow map #°(,t) is bijective, there is Qg C Ty
such that
Q°(t) = {z e R® o =3%(&,t), €€ Q).



338 HAJIME KOBA

From Lemma 3.9 we see that

d

G|t ant = [ (D iveot)f) ) k2

Q=(t)
Since Q°(t) is arbitrary, we conclude that
D; p® + (divpev®)p® =0 on S7.

Therefore we have the continuity equation for the fluid on I'“(¢). Similarly, we can prove
Proposition [[L3l a

See also [4], [11], [8], [14], and [22] for the proof of Proposition [[3l

3.4. Representation of density, kinetic energy, dissipation energies, work for the fluid
on an evolving surface. In this subsection we study the representation of the kinetic
energy, dissipation energies, and work for the fluid on an evolving surface by applying
the Riemannian metric induced by a flow map. From now we follow the convention:

CONVENTION 3.10. Assume that p = p(x,t), p° = p°(x,t), po = po(z), 0 = o(z,1),
e=e(x,t), 0 =0(z,t), h = h(x,t), s = s(x,t), er = ep(x,t), F = F(x,t) = '(Fy, F», F3),
w = pulz,t), A = Mz, t), £ = k(z,t), v = v(z,t), C = C(x,t), Cyp = Cy(x,t), Qp =
Qo(x,1), Qo = Qc(x,t), F1 = Fi(z,t), Fo = Fa(x,t) are smooth functions. Moreover,
p € C1((0,00)) or p € C([0,00)).

Based on Proposition [[L3] we assume that p and p° satisfies

Dip + (divpv)p=0 on Sr,
plt=o = po on I'(0),

D5 p® + (divp=v®)p =0 on 8%,
p°li=0 = po on I'(0).

The aim of this subsection is to prove the following three propositions.

PROPOSITION 3.11 (Representation of energy densities (I)).
Set

ﬁO(X) :/)O(j(X’O)) V ‘](X7 0)7

Klex) =3 =0, (X0,

Klen) =LA {06,056, + ela(X, 0.0}
1 ) - 3 po(X)

]C(GB) 2 J(X, t){ t(X7t) t(th)} p < J(X,t)) )
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Then
{ p|v|2} (z,t) dH2 = U ~(X)IC(eK)\/J(X,t) X,
/ { p|v|2+pe} (z,t) dH2 = N(X)IC(eA)\/J(X,t) dX,
T'(t) U
/ { plol? - } (2,1) dH2 = ~(X)IC(eB)\/J(X,t) dx,
r(t) U
{pF -v}(x,t) dH2 = / U(X)K(ew,)V/J(X,t) dX.
I'(t) U
Here

N
[ B0y ax - > / (@ (X)X, 1) dX

PROPOSITION 3.12 (Representation of energy densities (II)).

Set
Klew,) =50 (X, 0),1) (Gasg™ ) (X, 1),
K(en) =5 { B0, 000nains™ o™ + TG00 Gnatins™*s™ .
Klerp) =gr(a(x.0).0 { o 557 L),
K(esn) :%V(i”(X, £),1) {gaﬁ 88)2 86705} (X, 1),
Then

/ {o(divrv)}(z, t) dH2 = / U(X)K(ew, )V J(X,t) dX,
(1) U
| 5 CulPeD@P + Ndiveo} a2 = [ B(X0K(en) VT dx.
() U
/ {%KgradFHF} (2,1) dH2 = / B(X)K(ern)/TX ) dX,
T(t) U
/ {%ugradFCF} (2,1) dH2 = / B(X)K (es0)V/T(X, 1) dX.
(1) U

PROPOSITION 3.13 (Representation of energy density (III)).
Assume that e; € C1((0,0)) or ey € C([0,00)). Set

Kleo) = gea ({7 g o} (x00).

/ Sea(larady f(x, ) dH2 = / B(X)K () /T (X, DX,
T(t) U

In order to prove the three propositions, we prepare several lemmas. Let us first study
the representation of the density of the fluid on an evolving surface.

Then
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LEMMA 3.14 (Representation of density).

Let fo = fo(x), f = f(z,t) and F = F(z,t) be three smooth functions. Then two
assertions hold:
(i) Suppose that

{th + (divpv) f = F on Sp,
fli=o = fo.

Then for each X and ¢,

fo(#(X,0))/J(X,0)

J(X,1) \/7/ F@

f(‘i(th)vt): T)\/J(X,T) dr.

(ii) Suppose that
D¢ f + (divpev®) f = F on 8%,
{fto = Jo.
Then for each X and ¢,

T (X, 1)

f(jE(Xv t)vt) =

1 6o :
+W/o F(#(X,7), 1)V I (X,7) dr. (3.19)

Proof of Lemma BT4l. We only prove (ii). Fix X. Set
G* (X, 1) = f(&° (X, 1), 1)/ Jo(X, 1)

Applying Lemma [37] and the assumption, we check that

dGe dzt
a ={<Eavig>f+5t }\/J_-i-f vag

={Di f + (dive=v®) [}V JE = FVJ2.

Integrating with respect to time, we have

Ge(t) = G°(0) +/0 F(z (X, 1), 7)\/Je (X, 7) dr.

This implies that

(@°(X,1), 1)/ Jo(X, 1) = fo(2°(X,0)) JE(X,O)JF/O F(@* (X, 7), 1)V (X, 7) dr.

Since 7°(X,0) = Z(X,0) = ®(X) = &, we have (B19). Similarly, we see (i). Therefore
the lemma follows. O

Let us now study the representation of several energies for the fluid on an evolving
surface.
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LEMMA 3.15 (Representation of energies (I)).

(i)
/ plx, t)|v(x,t))* dH2 :/ U (X) o (X)|4(X, t)]? dX, (3.20)
r(t) U
/ o2, D)e(z, £) dH2 = / B(X)po(X)e(E(X, ), ) dX, (3.21)
r(t) U

/ pla,t)F(z,t) - v(z,t) dH2 = / T(X)po(X)F(2(X, 1), 1) - (X, ) dX,  (3.22)
I(t) U

/ p(p(z,t)) dHﬁ:/xix(X);;( Po(X) ) J(X,t) dX. (3.23)
T(t) U

J(X,t)
(i)
/ p° (z, t)|v (, 1) 2 dH> :/ T (X) po(X)|75 (X, )2 dX, (3.24)
I=(t) U
5 2 ~ 5
/ra@)p(p (z,1)) dH; —/U\IJ(X)p (\/ﬁ) VIE(X 1) dX. (3.25)
Here

5o(X) = polE(X,0))v/T(X,0).
Proof of Lemma BI5. We first show ([B:24). From Lemma B14] we check that

/ pF (@, ) |v" (z, 1) [* dH3 = / pE(E° (€, 1), )0 (2° (&, ), 1) [Pdet (Ved®) dHE
I=(t) r'(0)
= / U(X)pf(55(X, 1), )5 (X, t) - 25(X, 1)/ (X, t) dX
U
= [ #0003 (X.0)-3(X.0) ax
Therefore we have [B:24]). Similarly, we see (3:20)-(329). O

LEMMA 3.16 (Representation of energies (II)).
Let f = f(x,t) € C19(Sr). Then

{o(divpv)}(x, t) dH?

T'(t)
:/ U(X)o(#(X, 1), ){%gaﬁga } (X, )V J(X,t) dX, (3.26)
U

/ (Aldiveo[2} (2, ) dH2
(1)
- 1
:/U\I/(X)/\(i:(X,t) t){4gaﬂg<ng Bg@} (X, )/ J(X,t) dX, (3.27)
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/ (Ul PeD () Pr[?} (z, 1) dH2
T'()

- 1
:/ fo(X)u(ﬁc(X,t),t){4ga5g<nga<gﬁ"} (X, t)\/J(X,t) dX, (3.28)
U

T SO ey 3
[ ety e = [ 00 {0 SR G0 VTR D ax. (320

Proof of Lemma [316l A direct calculation shows that

gaﬁgaﬁ :(ga “gp + gﬁ 'ga)gaﬁ
=jo 9"+ 359"
ov v

:8Xa g* + —8X (: 2divro).

From Lemma 3.7 we see that

/U\i/(X)a(aE(X,t),t)<lga5g )x/ (X,t) dX = {o(divrv)}(z, t) dH2

r(t)

and that
_ ) 1,
[ 906,000 (g5 ) (g™ ) VI ax
:/ (Aldiveo|2) (z, £) dH2.
T'()
Thus, we have (8:26) and (327). Since

1 0z, 0%; or; 0,
iy _ 7 P P 7 J _apf
29045 5Xa[ ()]ij v 9X4 and  [Prli; X, 3ng )
we observe that
1 0; 0% ; or ox
af Bn _ ‘D J ac, pn 9Lk D Oy
4.90’69("]9 g 6Xa [ ( )]’L] 6X g 6X [ ('U)]k[ aXT,
8x2 0%y ac 8% &u An

= [D( )ij[Prlan[D(v )]kz[PF]gé = Tr{D(v)PrD(v)Fr}.
From the fact that [PrD(v)Prli; = {0} vj 4+ 9jv; — ni(n - 9} v) — nj(n - 8 v)}/2, we
find that PrD(v)Pr is a symmetric matrix. Since PrD(v)Pr is a symmetric matrix and
PrPr = Pr, we check that
(PrD(v)Pr) : (PrD(v)Pr) =Tr{(PrD(v) Pr)(PrD(v) Pr)}
:TI‘{PFD(U)PFD(U)PF}
=Tr{D(v)PrD(v)Pr}.



ON COMPRESSIBLE FLUID FLOWS ON AN EVOLVING SURFACE 343

Thus, we see ([B.28]). Since

o ox; of
B—Xﬁf(x(x’t)’t)_@@’

we apply Lemma to see that for each i = 1,2, 3,

0i; 0i; 4 0f

r = i J O[B—

%1 =ox. 0%, oz,
90X, 0X5

By definition, we observe that

. o afs ail ﬁ ai.z ﬂ
lgradp f|* = (97 1)(9; f) = (9 X, aXﬁ> <9CW8X< 6Xn>

af af
— 4B S . N . —_2 74
9 (9% - 9")(9a gC)axﬁaxn
of of
0X4 0X,

=g*"(g" - ga)

Moreover, we see that

0X50X, 7 0X, "0X, 0i;
ap Of 0%; Of _ o5 O OF

g ga) 2L DL _ oo OF 5 035 0F

0Xp 0X, 0 0Xp 00X,
Here §,), is Kronecker’s delta. Therefore we have ([3.29). O
Proof of Propositions BI1IH3.13l From Lemmas and [3.16] we have Propositions
BITEI3 O

4. Variations of the kinetic, dissipation energies, and work. In this section
we study variations of several energies for compressible fluid on an evolving surface.
Throughout Section [ we follow Conventions and B.100

In subsection [4.] we consider variation of the flow map to the action integral to prove
Theorems [[.4] and L9 In subsection we calculate variation of the velocity to the
dissipation energies and work for the fluid on the evolving surface to prove Theorems
5 6 and L7

4.1. Variation of the flow maps to action integral. Let us study variation of the flow
map to the action integral. We call p = p(x,t) and p® = p(z,t) the two densities of the
fluid on T'(¢) and I'°(t), respectively, if p and p° satisfy

Dip+ (divrv)p=0 on Sy, | Djp° + (divpev®)p® =0 on S5,
pli=0 = po on I'(0), | p°[t=0 = po on I'(0).
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Suppose there are § € [C®(R? x R)]® and z € [C*(Sr)]® such that for every ¢ €
Io(=T(0)) and 0 <t < T,

(€, 1)

= (&),

e=0

vt (2°(&, 1), 1)
d

e=0

de Ezoia(fvt) = Q(f,t)7
Z(f(ﬁ,t),t) = y(fa t)'

For each variation #° = £°(¢,t) of the flow map x = &(&,t), we define the action integral

Ag[2°] by
/ / E < (Dl (@, 1) p(p%c,t))) dH2dt,

where p° is the density of the fluid on I'*(¢) and v* is determined by the flow map ¢ (¢, ¢).
Note that

Ie(t) = {z e R} 2 =3°(¢,t), (€T}
We begin by discussing some properties of § = g(&, t).
LEMMA 4.1. Set
y(X,t) = g((X), ) = §(&, 1)
for £ €eTgand 0 <t <T. Then

9(X,0) =4(&,0) =0, (4.1)
1d e oo OU
j% Y = g aXa . (42)

Proof of Lemma A1l We first show ([I]). Since
i‘a(§70) - '%(570) = 5 - 5 =0,

we find that
d

| en=0=iE0=gx.0.

e=0

Next we prove [.2)). From J® = g{,95, — 972951 and g5 5 = g, - g3, we have

. 07 05
g:oJ 2(91 ax; )922-1-2(92 e )911

ay Y
-2 91'8—X2 go1 — 2 92'8—X1 gi2-

d

de
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Since (g%%)oxo = (gag)gxl2 and ¢#* = ¢°#, we see that

1d o o
el JE — 2 11 + 12 ) + 2 ( 21 + 22 . )
- ((919 929"") - X, (19" + 9297) X,

J de
oy oy
_ 1. 9y 2
2<g axl>+2(g 8X2>

Thus, we have ([@2). O
Let us attack variation of the flow map to the action integral.

PROPOSITION 4.2. Assume for every £ € g and 0 <t < T,

ps(jjs(fa t)7 t)|5:0 = p(x(ﬁ, t), t)
Then
d

de

T
Aglzf] = / {pDyv + gradpp + pHrn}(z,t) - 2(x,t) dH2dt (4.3)
e=0 0 F(t)

where p = pp'(p) — p(p).

Proof of Proposition 2l Set po(X) = po(#(X,0))y/J(X,0). From Lemma BI85 we
find that

[ {3 @ onteor - s oz

T, 1. ~€ 2 T, =
:/U\I/(X)ipo(X)|xt(X,t)| dX_/U\I:(X)p<\/J€7> VT (X, D)dX.

A direct calculation yields

/ / X)X, 6)[2dX dt

/ / X)ge(X,t) - 3(X,t)dXdt = (R.H.S.).

Integrating by parts with () and using Proposition B.I1] we observe that

ds

(RHS.) / / X)X, ) - v(F(X, 1), £)dX dt
/ / X 1) - ;lt[ (3(X, 1), )] dX dt
= — J 4/)0()() vHT
- /0 /U\II(X) G DX .01 5 VI(X, HdXdt

T
—/ / p(x,t)Dyv(x,t) - z(z,t) dH2dt.
0 T'(t)

Therefore we see that

d T 1 T
4 / / {—p5|v6|2}(ac,t) dH2dt = —/ / (pDyv - =} (1) dH2dt.
e=0+v0 (t) 2 0 I'(t)

de
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On the other hand, a direct calculation shows that

4 [§

% )y (X)p<\/m>

oot () e
+/UCII(X)p< ii((?t)> (d% JE(Xat)> dX

-3 20w (i) (o) (o) v

+%/U ( JEXt> Jidi

Applying Lemma B.7 and ([Z2]), we see that

VJE(X,t)dX

i

VJIE(X t)dX.

d

_?ﬂL@um<%F__>¢FYEM
oo [ _Bo(X) fo(X) o 0p
L) ) 2) e
)) g )\/ J(X,t)dX

- p(t){ p( )p+p( )}(%t){divrz}(x,t) d'Hi,.

—~

Note that z(2(€,t),t) = (£, t). Since I'(¢) is a closed surface, we use integration by parts
(Lemma 2.8)) to check that

/ {(=p'(p)p + p)divrz}(z,t) dHZ = / {(gradpp + pHrn) - 2} (x,t) dH2,

where p = pp’(p) — p(p). Thus, we see that

/ / )) dH2dt
e=0

T
—/ / {gradpp + pHrn}(z,t) - 2(x,t) dH2dt.
o Jru

Therefore Proposition is proved. a



ON COMPRESSIBLE FLUID FLOWS ON AN EVOLVING SURFACE

Let us complete the proof of Theorems [[.4] and [[L9
Proof of Theorems [L4] and [LIl Since the former part of Theorems [[.4] and [L.9] has
been already proved by Proposition 2] we give the proof of the assertion (ii) of Theorem
LA Assume that for each z € [C§°(S7)]? satisfying z - n = 0,

T
/ {pDyv + gradpp + pHrn}(x,t) - 2(x,t) dH2dt = 0.
o Jre

From the fact that for f = f(z,t) = *(f1, f2, f3),

T T
/ / [z, t) - 2(x,t) dH2dt = / f(z,t) - {Prz}(x,t) dH2dt
0o Jr(t) 0 JT(t)

we conclude that

Note that Pr(pHrn)

T
_ / (PefY(,t) - =(z,t) dH2dt,
o Jre

PrpDyv + gradpp = 0.

=*%(0,0,0). Therefore Theorems [ and [[9] are proved.
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O

4.2. Variation of the velocity to dissipation energies and work. In this subsection we
consider variation of the velocity to the dissipation energies and work for the fluid on the
evolving surface T'(¢) to prove Theorems [[H [0 and [71 We first attack the following

lemma.

LEMMA 4.3. For each t € (0,T) and V =V (a,t) = {(V1, Vo, V3) € [C=(Sr)]?,

Eq([V](t) := F(t){(divﬂ/)a}(a:,t) dH2,

Ex[V](t) = F(t){pF -V, t) dHZ,

BalV](t) = /m) {%dervﬁ} (a, 1) dH2,

EVI0) = [ ., {3u1De )P} oty v

Then for all 0 < ¢t < T and ¢ = (1, @2, p3) € [C(T(#))]?

d

de

d

de

d
de

d

de

Here Dr(V)

e=0

e=0

e=0

Brfo + el / {dive(Pro)}(a,) - ol(a) dH2,

Es[v + ep](t / {pF}(x,t) - p(x) d’Hi,

— Eslv+ep](t) =— / {divp(APr(divrv)) }(z, t) - p(x) d’Hi,
e=0 T'(t)

Eulo +egl(t / {divi (D ()} (2. 1) - o) dH.

= PeD(V)Pp and D(V) = {(VV) +1(VV)}/2.
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Proof of Lemma 3 Fix t € (0,T) and ¢ = (1,92, 3) € [C(T(2))]>. We first
show (£4) and (@H). Using integration by parts (Lemma [2.8]) and Lemma 23] we see
that

d
N v+ ed(t) = / oz, t)divep(z) dH2
de | .—g r(t)

=— {gradpo + o Hrn}(z,t) - p(z) dH2
L'(t)

_ / {dive(Pro)} (@, ) - o(x) dH2.
WO

Thus, we have [@4]). A direct calculation gives

d
Z Elredny = [ pe0r@o- e a,
del—o r ()
which is ({@3).

Next we prove (£6). Using integration by parts and (Z3]), we check that

d . .

—|  Esfv+ey(t) = {\(divpo) (divre) Yz, t) dH2

de o r(t)

= —/ (Mivrv)Hrn - o dH? — / gradp (Adivro) - ¢ dH2
T'(t) I'(t)

=— . ){din(APp(divFv))}(x,t) ~p(x) dH2.

Therefore we see ([.G]).
Finally we prove ([@1). It is clear that

d

de

Eifo-+ =0l = [ uDr(v): Dr(p) dit.

e=0 I'(¢)

Since

divp{uDr(v)} - ¢ = (01 {u[Dr (v)]ir} + Op{u[Dr (v)li2} + 95 {u[Dr(v)]is}) @i,

we apply Lemma 2.8 to see that

| die{ube)) - b2 = [ uDe(o)  Dr(e) i
T'(t) T'(t)

— /r(t) (Hrna[uDr(v)]i1 + Hrno[uDr(v))i2 + Hrns[uDr(v)]i3)e; dHE.

By definition, we observe that
n;[Dr(v)]ij = n1{0; v1 + 0 v; —ni(n -0 v) — ny(n- O v)}
+ 12{0} vo + Oy v; — ni(n - Oy v) — na(n-0f v)}
+n3{0} v3 + 05 v; — ny(n - O v) —nz(n-Of v)}
= (n-0"v) — (n? +n2+n2)(n-0v) =0.
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Since Dr(v) : Dr(v) = Dr(v) : Dr(p) by Lemma [2.6] we have

[ dwe{ube)) o a2 = = [ uDee) Dr(e) an2
I'(t) I'(t)

Therefore we see ([@.T]). O
Proof of Theorem [LI. Applying Lemma [£3] we have Theorem Recall that if
@-n =0, then Pryp = . (]

Finally, we prove Theorems and [[L7 Since we can prove Theorem by applying
Theorem [[7] we only prove Theorem [[7

Proof of Theorem 7. Let ez € C1([0,00)) or ey € C1((0,00)). Fix f € C*9(Sr)
with |gradp f| # 0. Suppose that e is a non-negative function. Since

Boolf +2(0) = = [ Seqllemde(s +0)") a2

we use integration by parts to see that

d

T Eonls ool =~ [ r(madesPigradyf - grade dr

€le=0 (1)

= /( : divr{ef7(|gradrf|2)gradpf}g0 dH?2.
I(t
Since
(%52, %60, 60 ) = (3 + 93 + 3)" (61,0, ),
we find that
! (8{?51[)’ ngf’ 6855;3,3) = —€/;(|gradp f|?)grady f.
(91=07 f,92=08L f,03=08%f)
Therefore Theorem [[.7] is proved. |
5. Energetic variational approaches for compressible fluid systems. In

this section we apply our energetic variational approaches, the thermodynamic theory,
Proposition [[L3] and Theorems to make mathematical models of compressible
fluid flow on an evolving surface. Moreover, we derive the two generalized heat and
diffusion systems on an evolving surface from an energetic point of view. Throughout
Section Bl we follow Conventions and [3.101

The outline of this section is as follows: We apply our energetic variational approaches
to derive the full compressible fluid system (T]), the tangential compressible fluid system
(LId), the non-canonical compressible fluid system ([LI2)), the barotropic compressible
fluid systems ([I3) and ([I4), and the generalized heat and diffusion systems (LIH])
and (LI6) in subsections Bl (4] B0 B.6] and B respectively. In subsection [0.2] we
study the enthalpy, entropy, free energy, and conservative form of the system (LI). In
subsection (.3 we study conservation laws of the system (L.I]) to prove Theorem [[.8
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5.1. Energetic variational approach for full compressible fluid system. Let us apply
our energetic variational approaches to derive the full compressible fluid system (I]) on
the evolving surface I'(t). We assume that I'(t) is flowed by the total velocity v. We set
the energy densities for compressible fluid as in Assumption Based on Proposition
[3] we set the continuity equation on the evolving surface as follows:

D.p + (divrv)p = 0 on Sr. (5.1)

We first derive the momentum equation of the full compressible fluid system. Applying
an energetic variational approach with Theorems [[.4l and [[L5] we have the following
momentum equation:

pDyv = divpSr(v, o, i, \) + pF on Sy, (5.2)

where Sr(v, 0, 4, A) = 2uDr(v) + APr(divpv) — Pro. Here we consider variations on the
total velocity v. More precisely, we set the action integral A[z], the dissipation energy
Eplv], and the work Ey[v] as follows:

/ /m){ pDQ} (2,1) dH2dt, (5.3)

Epv] = — /F(t) {5(2/1Dr(v)|2 + A|divrv2)} (z,t) dH2, (5.4)

Ew] = /F(t){(divFv)a + pF - v}(x,t) dH2. (5.5)

Applying Theorems [[4] and [[5] we consider variations d/de|.—oA[2¢] with di®/dt = v®,
d/dele=oEplv + €], and d/de|.—o Ew[v + €¢] to have

5 =pDyv, (5.6)
0FEDp .
S0 =divp(2uDr(v) + APr(divrv)), (5.7)
OF
5—JV = — divp(Pro) + pF. (5.8)

We assume the following energetic variational principle:

0A  dEp.w ( O0Ep  6Ew

5z oo ( 5o T Tou >
This is (52). Note that we may assume that 0Ap/d& = dEpiw/dv, there Ap is the
action integral defined by Theorem [[L9 Secondly, we study the internal energy of com-
pressible fluid. From Theorem [[.6] we have the following forces:

5E65D = divp(kgradp0),
0E .
5gD = divp(vgradpC).
Set
qo = rgradp,

gc = vgradpC.
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In order to use the first law of thermodynamics, we consider the energy dissipation due
to the viscosities and the work done by the pressure. Using (5.2) and integration by
parts (Lemma [2.8]), we check that

d 1
— {—p|v|2} (z,t) dH2 = / pDyw - v dH?
dt Jpe 12 (t)

= / (divrSr(v, o, i, \) + pF) - v dH?2
I'(t)

- / {— (20 Dr (0)[? + Adivpo[2) + (divev)o + pF - v} (z, £) dH2.
I(t)

Integrating with respect to time, we find that for 0 < t; < s < T,

1 K
/ Lopp cmg+/ / (20| Dr ()2 + Ndiveo[?) — (divev)o} dH2dr
T(ts) 2 t, Jrin

1 t2
:/ —plv|? d%§+/ / pF v dH2dr.
T(t) 2 t, JT(r)

This shows that (2u|Dr(v)|? + A|divrv|?) is the density for the energy dissipation due to
the viscosities and that (divpv)o is the density for the work done by the pressure of our
compressible fluid system. Set

ép = 2u|Dr(v)|> + A|divro|?.
Since p satisfies (B.I)), we use Lemma and an argument in the proof of Proposition
[C3 to see that for Q(t) C T'(t) flowed by the total velocity v,
d

G| e a1z = [ (Di(pe) + peldiveo)) o) ari
dt Q(t) Q(t)

:/ (pDic}(x, t) dH2.
0

Now we apply the first law of thermodynamics, that is, we assume that for arbitrary
O(t) C T'(t) flowed by the total velocity v,
d )

— {pe}(z,t) dH2 = / { +pQo +€p — (divrv)a} (z,t) dH2.

Then we have
pDie = divrgg + pQo + ép — (divpv)o on Sp.

This is equivalent to
pDie + (divpv)o = divrgg + pQe + €p on St (5.9)

Finally we derive the diffusion system of our compressible fluid system. We assume
that the change of rate of the concentration C' equals the force derived from a variation
of the energy dissipation due to surface diffusion, that is, for arbitrary Q(¢t) C T'(t) flowed

by the velocity v,
d 0Esp
— C dH?2 :/ ( +Qc) dH?.
dt Jo aw) \ oC
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From Proposition [[.3], we obtain
D,.C+ (diVF’U)C = divpgc + Q¢ on Sy. (5.10)
Combining (&.1)), (5.2), (5.9)), and (GI0), we have the full compressible fluid system (LI).

5.2. On full compressible fluid system. In this section we study conservative form of
the full compressible fluid system (L]), and investigate the enthalpy, entropy, and free
energy of the system (L]).

We first consider the total energy. Set e4 = {p|v|*}/2 + pe. We apply Lemmas
and 27 to observe that

DiveA + divr(eav) = Dies + (divrv)ea

= <%v2Dtp + pDwv-v+eDip + the) + (divpo) (%p|v|2 + pe>
= pDyv - v+ pDqe
= {divp{Sr(v,0, 1, \)} - v + pF - v} + {divrqe + pQy + ép — (divrv)o}
= divrgy + pQg + pF - v + divp{Sr (v, o, p, \)v}.
Therefore we have
DNey + divr(eav — qo — Sr(v, 0, 11, \)v) = pQg + pF - v.

Similarly, we see that the system (1)) satisfies the conservative form ([2]).
Next we investigate the enthalpy, entropy, and free energy of the system (LI). Assume
that p, 0, i, A, k are positive functions. Suppose that

Die =0D;s — oDy <1> on St. (5.11)
p

Set h =€+ o/p and ep = e — fs. By the definition of h, we find that

o
pDih =pDie + pDy (;)

={divrgs + pQy + ép — (divrv)a} + {(divrv)o + Do}
=divrgy + pQs + €p + Dyo.
It is easy to check that
DN (ph) + divr (phv — qo) — pQo = ép + Dyo.
Since p satisfies (B.]), we see that

1 Dy di
D, <—) — e
p P

By (&11]), we check that

1
0pDis =pDie + opDy (E)

=(divrgg + pQo + ép — (divrv)o) + (divpv)o
=divrgy + pQs + €p.
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Therefore we have
0pDys = divrgg + pQo + €p.
Using Lemma 2.7, we observe that
D{¥(ps) + divr(psv) = Di(ps) + (divro)(ps)
= pDis + {Dp + (divrv)p}s
1

7 (divrge + pQo + €p) -

= thS =
A direct calculation gives

dive (_%9> — dive (_ngadr9> __ divp(kgradpb) L f$|gradre|2.

0 02
Consequently, we see that

é drb)?
ép | Algradpd

0 02 0.

DY (ps) + divr(psv) — divr (%9) _ P% _

Since ep = e — 0s, we check that
pDier + psDi0 =(pDie — psDil — pOD;s) + psD.6
=pD,e — pDys

= — (divpv)o.

By ([213), we see that
pDiep + psD0 — Sr(v, 0,1, A) : Dr(v) = —ép < 0.

Therefore we have the enthalpy, entropy, and free energy of the system (L]).
5.3. Conservation laws of full compressible fluid system. In this section, we investigate
conservation laws of the system ([I]) to prove Theorem [[.8
Proof of Theorem [L8 Assume that I'(¢) is flowed by the total velocity v. We first
show (LIT). Since p satisfies
D} p+ divp(pv) =0,
we use Lemmas [277] and B.9] to see that
d

— p(x,t) dH2 = 0.
dt I'(t) ( )

Integrating with respect to time, we see that for 0 < t; < ts < T,

| vty anz = [ plaitr) ane.
[ (t2)

L(t1)
Next we show ([Ig]). From
DY (pv) + divr(pv ® v) = divpSr (v, o, i, ) + pF,

we check that

d
— {pv}(z,t) dH2 = {DN (pv) + divr(pv @ v)}(x,t) dH>
dt Jre ()

:/ {divpSr(v, 0, i, \) + pF}(x,t) dH2.
I(t)
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Using integration by parts (Lemma [28]), we find that
d 2 2
pr {pv}(z,t) dH; = {pF}(z,t) dH;.

r(t) r(t)

Remark that T'(¢) is a closed surface and that Sr(v,o,u,A) - n = 0. Integrating with
respect to time, we see the law of conservation of momentum.

Next we derive the law of conservation of angular momentum (LZI]). Since Dyz = 2v
and v X v = 0, we find that

d

— x x ({pv}(z,t)) dH? = / x X pDyv dH?
dt I'(t)

L(t)

= / o x {divpSr (v, o, g, \) + pF} dH2.
T'()

Set M = Sr(v, 0, u, A). It is clear that

22(0] [M]s1 + 85 [M]32 + 05 [M]s3) — 23(0] [M]a1 + 05 [M]22 + 05 [M]23)
xx M = | 23(0f [M]11 + 05 [M]12 + 05 [M]13) — x1(0] [M]31 + 05 [M]32 + 05 [M]33)
21(8] [M]a1 + 85 [Maz + 95 [M]a3) — x2(91 [M]11 + 95 [M]12 + 05 [M]13)

We now prove that for each ¢,j = 1,2, 3,
/ {:(01 [M]j1 + 05 [M]j2 + 05 [M]3) — 25 (01 [M]i1 + 83 [M)in + 05 [M]i3)} dH = 0.
I'(t)

Fix i and j. Using the integration by parts and the fact that n - M = %(0,0,0), we see
that

{2:(0r [M];1 + 05 [M]2 + 85 [M];3) dH
r(t)

= {(ni + Ha;) (n1[M]j1 + n2[M]j2 + ns[M];s) + [M];:} dH2

r'(t)
= —/ [M];; dH.
T(t)

Since [M];; = [M];;, we check that

” ){961'(31F [M];1 + 05 [M]j2 + 05 [M];3) — x;(0y [M]i1 + 05 [M]iz + 05 [M];3)} dH

I'(t) I'(t)

Therefore we conclude that
/ x x divpSr(v, o, u, \) dH2 =1(0,0,0).
I'(t)

As a result, we have

4 x x (pv) dH2 = / x x (pF) dH2.
dt Jr r(1)



ON COMPRESSIBLE FLUID FLOWS ON AN EVOLVING SURFACE 355

Integrating with respect to time, we find that

/ x x {pv}(z,ty) dH2
T(t2)

2
:/ x x {pv}(z,t,) dH? —|—/ / x x {pFY(zx,7) dH2dr.
T(t) tr Jr(t)

Finally, we prove (LI9) and (20). Since e4 and C satisfy
DNey 4 divr(eav) = div(St(v, o, g, \)v) + pQg + pF - v,
DNC + divp(Cv) = divrge + Qc,

we use the previous argument to deduce (ILI9) and ([20). Therefore Theorem [[§ is
proved. ([l

5.4. Energetic variational approach for tangential compressible fluid system. Let us
apply our energetic variational approaches to derive the tangential compressible fluid
system (II)) on the evolving surface I'(t). We assume that I'(¢) is flowed by the total

velocity v. We set the energy densities for compressible fluid as in Assumption .2} Based
on Proposition [[L3] we set the continuity equation on the evolving surface as follows:

Dyp + (divrv)p = 0 on Sr. (5.12)

We first derive the momentum equation of the tangential compressible fluid system.
Applying an energetic variational principle with Theorems [[L4] and [[5] we derive the
following momentum equation:

Ppth’U = PrdiVFSF(Q), g, W, )\) + PFpF on ST. (513)
Here we consider variations on the tangential part of the total velocity v. More precisely,
we assume the following energetic variational principle:

dA _ 6Ep,w
0 |, o o

pn=0
That is,
PFth’U = PrdiVFSF(’U, g, W, )\) + PFpF,

where A, Ep, and Eyy are the action integral, dissipation energy, and work defined as in
subsection [1.]l Note that we may assume that A /02|,.n=0 = IEp+w /0v|p.n=0, where
Ap is the action integral defined by Theorem On the basis of Propositions B.12]
B3l and Theorem [[6 we set g9 = kgradf and gc = vgradpC.

Next we study the internal energy. Assume that v-n = 0. Applying (5I3) and
integration by parts (Lemma [2.8)), we check that

1
4 {—p|v|2} (z,t) dH2 = / PrpDsv - v dH2
dt Jrey 12 T(t)

:/ (diveSr(v, 0, 1, A) + PrpF) -0 dH2
()

= / {—2p|Dr(v)[* + A|divrv|?) + (divrv)o + PrpF - v}(z,t) dH2.
I'(?)
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Note that Prv = v. Integrating with respect to time, we find that for 0 < t; <o < T,
1 b2
/ 5/)\11\2 dH? —|—/ / {(2u|Dr(v)[* + A|[divro|?) — (divrv)o} dH2dr
F(tQ) t1 F(T)

1 t2
= / —plv|* dH? —|—/ / PrpF -v dH2dr.
I'(t) 2 t, Jr(r)

This shows that (2u|Dr(v)|? 4+ A|divrv|?) is the density for the energy dissipation due to
the viscosities and that (divrv)o is the density for the work done by the pressure of our
compressible fluid system. Set

ép = 2u|Dr (v)|* + A|divrv|?.
Applying the first law of thermodynamics, we obtain
pDie + (divrv)o = divrgyg + pQp + €p on St. (5.14)
By an similar argument to derive the diffusion system in subsection [5.I] we have
D,C + (divpv)C = divrge + Q¢ (5.15)

Therefore we have the tangential compressible fluid system (II1]) on the evolving surface
by combining (5.12))-([GE.15).

5.5. Derivation of non-canonical compressible fluid system. Let us consider compress-
ible fluid flow on the evolving surface I'(¢) from a different point of view. Based on
Proposition we admit (BI). We set the action integral A[Z] and the work Eyy [v]
defined by (E3) and (53, respectively. We set the dissipation energy Ep[u] as follows:

1 .
Eplu] = —/F( : 5{2,u|Dp(u)|2 + /\\dwpu\z}(aj,t) d?—[i.
t

Using arguments similar to those in the proof of Theorems [[4] and [[L5] we have (5.0)),

B3), and

SE
a—f = Prdivp (2uDr (u) + APp(divpu)) = Prdive Sy (u, 0, g, A).

We assume the following energetic variational principle:

0AlE] _ 0Eplu] , 6Ew (]

0% ou ov

to have
pDiv = PrdivpSr(u, 0, p, A) — gradpo — o Hrn + pF.

Therefore we have the non-canonical compressible fluid system (I2]) on the evolving
surface.
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5.6. Derivation of barotropic compressible fluid systems. Let us consider the barotropic
compressible fluid flow on the evolving surface I'(¢). Based on Proposition [[3] we set
the continuity equation on an evolving surface as follows:

Dyp + (divrv)p = 0 on Sr.

On the basis of Proposition B 11l we set the total energy eg as follows:

1
ep = 5plvl* = p(p).

From Theorem [[L9, we obtain the two barotropic compressible fluid systems (I3 and
).

5.7. Derivation of generalized heat and diffusion systems. Let us derive the generalized
heat and diffusion systems on the evolving surface I'(¢). From Proposition [[3] we set

the continuity equation on the evolving surface as follows:
Dyp + (divrv)p = 0 on Sr.

Let ez,,e7, € C*([0,00)) or ez,,e7, € C((0,00)). Suppose that ez, ez, are two
non-negative functions. Based on Proposition B.13] we set the following energy densities:

erp = ej1(|gradF9\2) and egp = ejz(\gradFCP).

From Theorem [[L7] we have the following forces:

5E579“D —divr{e/;, (|gradp0|?)gradp6},
OF
52’D =divp{e’, ( |gradpC|*)gradC'}.

Let Fi1 = Fi(z,t) and Fo = Fa(z,t) be two smooth functions. Assume that for every
Q(t) C T'(t) flowed by the total velocity v,

d 5B

| e = [ {2 00 A} ane
d SEsp

— Oz, t dHi:/ { +Q +f}cm§.

dt Jo (#:1) a@ L oC ¢ ?

Then we have
pD(Cy0) = divr{e’;, (|gradp0|*)gradp6} + pQp + Fi on Sr,
D,C + (divpv)C = divr{e;, (|grad;C|?*)gradC} + Q¢ + F2 on Sy.

Therefore we have the generalized heat system ([LI5]) and diffusion system (LI6) on an
evolving surface.
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