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Abstract. We present empirical evidence that the halting times for a class of op-

timization algorithms are universal. The algorithms we consider come from quadratic

optimization, spin glasses and machine learning. A universality theorem is given in the

case of the quadratic gradient descent flow. More precisely, given an algorithm, which

we take to be both the optimization routine and the form of the random landscape, the

fluctuations of the halting time of the algorithm follow a distribution that, after center-

ing and scaling, appears invariant under changes in the distribution on the landscape —

universality is present.

1. Introduction. In this paper we discuss the presence of universality in optimiza-

tion algorithms. More precisely, we analyze the required number of iterations of a given

algorithm to optimize (or approximately optimize) an energy functional when the func-

tional is random. We consider the following iterative routines: gradient descent and the

conjugate gradient algorithm for solving a linear system [12], gradient descent for spin

glasses, and stochastic gradient descent for deep learning [5].

A bounded, piecewise differentiable random field1 where the randomness is non-

degenerate, may yield a landscape with many saddle points and local minima. We refer

to the value of the landscape at a given point as the energy. Consider a moving particle

on the landscape that takes a sequence of steps, attempting to reach a (local) minimum.

An essential quantity is the time (or number of steps) the particle requires to find this
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minimum. We call this the halting time. Many useful bounds on the halting time are

known for convex cases where the global minimum is necessarily found. In non-convex

cases, however, the particle knows only information that can be calculated locally. And

a locally computable stopping condition, such as the norm of the gradient at the present

point, or the difference in energy between successive steps, can lead the algorithm to

locate a local minimum. This feature allows the halting time to be calculated in a broad

range of non-convex, high-dimensional problems, even though the global minimum may

not be located.

A prototypical example of a random field is found in the class of polynomials with

random coefficients. Spin glasses and deep learning cost functions are special cases of

such fields that yield very different landscapes. We emphasize that polynomials with

random coefficients are a broad class of functions but they are hard to study in any

generality. Therefore, in order to capture essential features of such problems, we focus

on subclasses of random polynomials that are well studied (spin glasses) and practically

relevant (deep learning cost functions).

The halting time in such landscapes, when normalized to mean zero and variance

one (subtracting the mean and dividing by the standard deviation), appears to follow

a distribution that is independent of the random input data — the fluctuations are

universal. In statistical mechanics, the term “universality” is used to refer to a class of

systems which, on a certain macroscopic scale, behave statistically the same while having

different (input) statistics on a microscopic scale. An example is the central limit theorem

(CLT) which states that the sums of observations tend to follow the same distribution,

independent of the distribution of the individual observations. This holds provided the

contribution from each individual observation is reasonably small. The CLT may fail to

hold if the microscopic statistics are not independent, do not have a finite second-moment

or if we move beyond summation.

1.1. Results. We first present a universality theorem for the quadratic gradient de-

scent flow. This shows that universality within optimization processes is a bona fide

phenomenon. We use numerical experiments to show that universality persists when the

flow is discretized. The focus then turns to attempts to put forward cases where we

see universality (in addition to [6,8,9,14]) with an emphasis on routines and landscapes

from (or related to) machine learning. We present concrete evidence that the halting

time in such optimization problems is universal (Sections 3.2 and 3.3). But, in the spirit

of the potential failure of the CLT in degenerate cases, we show a degenerate case for

the conjugate gradient algorithm (Section 3.1) where the halting time fails to follow a

universal law.

Another example of halting time universality is in the work of Bakhtin and Correll [3].

In this experimental work, the time it takes a person to make a decision in the presence

of a visual stimulus is shown to have universal fluctuations. The theoretically predicted

distribution fBC for this experiment is a Gumbel distribution. In a surprising connection,

we sampled words uniformly at random from two different dictionaries (English and

Turkish) and submitted search queries to the GoogleTM search engine. The time it took

GoogleTM to present the results was recorded. After normalizing the times to mean zero
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Fig. 1. Normalized GoogleTM search times for randomly selected
words from two ensembles is compared with the curve fBC in [3] that
is estimated from the decision times in an experiment conducted on
humans. This plot indicates that the search time is universal for
searches performed randomly in different languages.

and variance one, the normalized search times closely follow the same Gumbel curve; see

Figure 1 — GoogleTM search times are universal.

In the cases we observe below, we find two qualitative universality classes: (1) A non-

symmetric Gumbel-like distribution that appears in GoogleTM searches, human decision

times and spin glasses, and (2) a symmetric Gaussian-like distribution that appears in

the conjugate gradient algorithm and in deep learning.

1.2. Definition of universality.

Definition 1.1. An algorithm A consists of both a random cost function F (x, w), a

random input x and an optimization routine that seeks to minimize F with respect to

w.

To each algorithm we attach a precise ε-dependent halting criterion for the algorithm.

The halting time, which is a random variable, is the time (i.e. the number of iterations)

it takes to meet this criterion. Within each algorithm there must be an intrinsic notion

of dimension which we denote by N . The halting time Tε,N,A,E depends on ε, N , the

choice of algorithm A, and the ensemble E (or probability distribution) on x. We use the

empirical distribution of Tε,N,A,E to provide heuristics for understanding the qualitative

performance of the algorithms — we look for universality.

The presence of universality in an algorithm is the observation that for sufficiently

large N and ε = ε(N), the halting time random variable satisfies

τε,N,A,E :=
Tε,N,A,E − E[Tε,N,A,E ]√

Var(Tε,N,A,E)
≈ τ∗

A
, (1)

where τ∗
A

is a continuous random variable that depends only on the algorithm. The

random variable τε,N,A,E is referred to as the fluctuation and when such an approximation

appears to be valid we say that N and ε (and any other external parameters) are in the
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scaling region. We note that universality in this sense can also be used as a measure of

stability in an algorithm. Some remarks must be made:

• A statement like (1) is known to hold rigorously for a few algorithms (see [8,

9]) but in practice, it is verified experimentally. Theorem 2.1 presents another

rigorous case. The experimental verification was first done in [14] and expanded

in [6] for a total of 8 different algorithms.

• The random variable τ∗
A

depends fundamentally on the functional form of F .

And we only expect (1) to hold for a restricted class of ensembles E.

• Tε,N,A,E is an integer-valued random variable. For it to become a continuous

distribution the limit N → ∞ must be taken. This is the only reason N must be

large — in practice, the approximation in (1) is seen even for small to moderate

N .

1.3. Core empirical examples: Spin glass Hamiltonians and deep learning cost func-

tions. A natural class of random fields is that of Gaussian random functions on a high-

dimensional sphere. These Hamiltonians are also known as p-spin spherical spin glass

models in the physics literature.2 From the point of view of optimization, minimizing

the spin glass Hamiltonian is fruitful because much is known about its critical points.

This allows one to experiment with questions regarding whether the local minima and

saddle points present an obstacle in the training of a system without convexity.

Following the asymptotic proof in [2], the local minima of the spin glass Hamiltonian

lie at roughly the same energy level. Moreover, the values of the ground states are

known and it has been shown that there is an exponential growth in the average number

of critical points below any given energy level. When the dimension (or the number of

spins) is large, it turns out that the bulk of the local minima have the same energy — an

energy level that is slightly above the global minimum. This level is called the floor level

of the function. An optimization simulation for this model can only locate the values at

the floor level, and not deeper. This same phenomenon is present in optimization for the

MNIST3 classification problem [16]. We emphasize that this striking similarity is only at

the level of analogy, and the two systems are in fact vastly different. To the best of the

authors’ knowledge, there are no known theoretical arguments that connect spin glass

Hamiltonians to deep learning. However, the feasibility of the observation of the floor

level in the optimization of the two problems may give a hint at universal properties that

can also be observed in other systems. In more detail, our two core random fields are:

• Deep learning: Given data (i.e., from MNIST) and a measure L(x�, w) for

determining the cost, parametrized by w ∈ R
N , the training procedure aims to

find a point w∗ that minimizes the empirical training cost while keeping the test

cost low. Here x� ∈ Z for � ∈ {1, ..., S}, where Z is a random (ordered) sample

of size S from the training examples. Total training cost is then given by

F (Z,w) = LTrain(w) =
1

S

S∑
�=1

L(x�, w). (2)

2In the Gaussian process literature they are known as isotropic models.
3MNIST is a database of handwritten numerical digits that is commonly used as a means of bench-

marking deep learning networks [13].
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• Spin glass Hamiltonians: Let x(·) ∼ Gaussian(0, 1) be couplings that rep-

resent the strength of forces between triplets of spins and let the state (spins)

of the system be represented by w ∈ SN−1(
√
N) ⊂ R

N . The Hamiltonian (or

energy) of the simplest complex4 spherical spin glass model is then given by:

F (x(·), w) = HN (w) =
1

N

N∑
i,j,k

xijkwiwjwk. (3)

The two functions (2) and (3) are indeed different in two major ways. First, the domain

of the Hamiltonian (3) is a compact space and the couplings are independent Gaussian

random variables whereas the inputs for the cost function (2) are not independent and the

cost function has a non-compact domain. Second, at a fixed point w, the variance of the

function LTrain(w) is inversely proportional to the number of samples while the variance

of HN (w) is N . A randomly initialized Hamiltonian can take vastly different values,

but randomly initialized costs tend to have very similar values. The Hamiltonian has

macroscopic extensive quantities: Its minimum scales with a negative constant multiple

of N . In contrast, the minimum of the cost function is bounded from below by zero.

All of this indicates that landscapes with different geometries (glass-like, funnel-like, or

another geometry) might still lead to similar phenomena such as existence of the floor

level, and the universal behavior of the halting time.

2. Universality for gradient descent. We begin by considering a simpler linear

algebra problem. In this case we can present a universality theorem. Consider the

problem of solving Ax = b where A is (strictly) positive definite. This is turned directly

into a quadratic convex optimization problem by setting

F ((A, b), w) = L(w) = 1

2
w∗Aw − Rew∗b.

Here ∗ denotes the conjugate-transpose operation. Given an initial condition w(0) = w0,

the flow

ẇ(t) = −∇L(w(t)), ∇L(w(t)) = Aw(t)− b,

will converge to x = A−1b as t → ∞. We let A and b be random, and ask how long

it takes to converge to x. This time will be universal. We choose A to be a sample

covariance matrix.

Definition 2.1 (Sample covariance matrix (SCM)). A sample covariance matrix (en-

semble) is a real symmetric (β = 1) or complex Hermitian (β = 2) matrix H = V ∗V/M ,

V = (Vij)1≤i≤M,1≤j≤N such that Vij are independent random variables for 1 ≤ i ≤ M ,

1 ≤ j ≤ N given by a probability measure νij with

EVij = 0, E|Vij |2 = 1.

42-spin spherical spin glass, sum of xijwiwj terms, has exactly 2N critical points. When p ≥ 3,
p−spin model has exponentially many critical points with respect to N . For the latter case, complexity
is a measure on the number of critical points in an exponential scale. Deep learning problems are
suspected to be complex in this sense.
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Next, assume there is a fixed constant ν (independent of N, i, j) such that

P(|Vij | > x) ≤ ν−1 exp(−xν), x > 1. (4)

For β = 2 (when Vij is complex-valued) the condition

EV 2
ij = 0,

must also be satisfied.

We choose b to be an independent (of A) random unit vector.

Definition 2.2. A random unit vector is given by

v = Y/‖Y ‖2, Y = (Y1, Y2, . . . , YN )T ,

for the given (independent) random variables Yj .

Assume A = UΛU∗ where Λ = diag(λ1, λ2, . . . , λN ) and 0 < λ1 ≤ λ2 ≤ · · · ≤ λN . We

halt the gradient descent flow when the norm of the gradient is small

Tε,N,qGD,E := min{t : ‖∇L(w(t))‖2 ≤ ε}.

An explicit expression for ‖∇L(w(t))‖2 is available. Indeed, it follows that

w(t) = e−At(w(0)−A−1b) +A−1b,

and therefore

∇L(w(t)) = Aw(t)− b = e−At(Aw(0)− b).

Using the spectral decomposition for A, assuming, for simplicity that w(0) = 0, we have

‖∇L(w(t))‖22 = E(t) :=

N∑
n=1

e−2λntλ2
nq

2
n, q = (qn)1≤n≤N = U∗b.

We write

E(t) = q21e
−2λ1t

(
λ2
1 +

N∑
n=2

λ2
ne

−2(λn−λ1)t
q2n
q21

)
.

We assume M ∼ N/d for 0 < d < 1. The following lemmas are a consequence of [4,15]

(see also [9]).

Lemma 2.1. For s > 0 fixed, let MC , C > 1, denote the set of matrices which satisfy the

estimates

N−2/3−s ≤ |λ1 − λ2| ≤ N−2/3+s, N−1/2−s/2 ≤ q1 ≤ N−1/2+s/2,

and

C−1 ≤ λj ≤ C for all j.

For SCMs, there exists C > 1 such that P(MC) → 1 as N → ∞ for every fixed s > 0.

Lemma 2.2. There exists a distribution function Fβ(t) such that

lim
N→∞

P(2−7/6λ
−2/3
− N2/3(λ− − λ1) ≤ t) = Fβ(t), λ− = (1− d1/2)2.
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The distribution function Fβ(t) is called the Tracy–Widom distribution [17]. We

preform calculations only for matrices in MC for an appropriate choice of C. Since E(t) is

strictly monotonic, it follows that Tε,N,qGD,E is the unique time at which E(Tε,N,qGD,E) =

ε2. We construct an approximation to Tε,N,qGD,E by setting

λ2
1q

2
1e

−2λ1T̂ = ε2, T̂ =
log ε−1 − log q1 − log λ1

λ1
.

From the Mean-Value Theorem

|T̂ − Tε,N,qGD,E | = |E(T̂ )− E(Tε,N,qGD,E)|
1

|E′(ζ)| ,

where ζ is between T̂ and Tε,N,qGD,E . We assume ε = N−σ for σ > 1/2. It also follows

that Tε,N,qGD,E ≥ T̂ so that

|T̂ − Tε,N,qGD,E | ≤
|E(T̂ )− E(Tε,N,qGD,E)|

|E′(Tε,N,qGD,E)|
≤ ε−2

2λ1

N∑
n=2

e−2λnT̂λ2
nq

2
n

=
ε−2

2λ1

N∑
n=2

(
ε

q1

)2λn
λ1

λ2
nq

2
n ≤ C3 ε

−2

2

(
ε

q1λ1

)2
λ2
λ1

. (5)

This last inequality follows because
∑

n λ
2
nq

2
n ≤ C2, λ−1

1 ≤ C and ε < λ1q1. This estimate

is not without issue: λ2 − λ1 → 0 as N → ∞. But it will turn out to be sufficient that

(5) is bounded by C3/2. In other words, we require

log ε−2 + 2
λ2

λ1
log ε− 2

λ2

λ1
log λ1q1 ≤ 0

σ

(
2− 2

λ2

λ1

)
≥ 2

λ2 log λ
−1
1 q−1

1

λ1 logN
.

By Lemma 2.1, for any s > 0, the probability is that

2
λ2 log λ

−1
1 q−1

1

λ1 logN
≤ 1 + s

tends to one as N → ∞. Thus, it suffices to choose

σ ≥ (1 + s)

(
2− 2

λ2

λ1

)−1

or, more simply, σ ≥ N2/3+γ for any γ > 0. For such a choice of σ, on the set MC we

have

|T̂ − Tε,N,qGD,E |
log ε−1

≤ N−2/3−γ .

Because P(MC) → 1 as N → ∞, it follows that

N2/3 |T̂ − Tε,N,qGD,E |
log ε−1

→ 0

in probability. It follows from Lemma 2.2 that 2−7/6λ
−2/3
− N2/3(T̂ / log ε−1−λ−) converges

in distribution to the Tracy–Widom distribution, and therefore we have the following

theorem.
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(a) (b)

Fig. 2. A demonstration that Theorem 2.1 (approximately) holds

outside the scaling region log ε < −N2/3+γ logN . The histograms in
each panel are for the distributions given by M = 2N and (Vij) are
iid standard normal or mean zero Bernoulli random variables (defined
as PBE and LOE in the following section). (a) Universality across
different distributions for gradient descent for N = 100, Δt = 0.01
and ε = 0.001. Here τε,N,qGD,A is compared against the (mean zero,
variance one) Tracy–Widom distribution. (b) Universality across
different distributions for gradient descent for N = 200, Δt = 0.01
and ε = 0.0001. Here τε,N,qGD,A is compared against the (mean
zero, variance one) Tracy–Widom distribution.

Theorem 2.1. For γ > 0, log ε < −N2/3+γ logN , if E is an SCM and t ∈ R

lim
N→∞

P

(
2−7/6λ

−2/3
− N2/3

(
Tε,N,qGD,E

log ε−1
− 1

λ−

)
≤ t

)
= Fβ(t).

The restriction on ε is unrealistic for what would be used in practice — it is exponential

in N . It is our conjecture that this is necessary for a limit theorem — with Fβ being the

limit — to hold for gradient descent with this choice of ensembles. Nonetheless, numerical

observations, which are presented in Figure 2, demonstrate that for an approximate

integration of the flow ẇ(t) = −∇L(w(t)), Theorem 2.1 still gives a good approximation

of the normalized halting time, even when ε is not small. More precisely, for Δt > 0

define the discretization by Euler’s method

wn = wn−1 −Δt∇L(wn−1), n ≥ 0, w0 = 0.

The discrete halting time is then given by

T̄ε,N,dGD,E := min{nΔt : ‖∇L(wn)‖2 ≤ ε}.

For Δt=0.01, we plot histograms for the normalized halting time (fluctuations) τε,N,dGD,E

in Figure 2. Particularly in Figure 2(b), the histograms significantly overlap with density

F ′
1(t), after it is normalized to mean zero and variance one.

3. Empirical observation of universality. We discuss the presence of universality

in algorithms that are of a very different character, building of the ideas in the previous

section. The conjugate gradient algorithm, an improvement on quadratic gradient de-

scent, discussed in Section 3.1, effectively solves a convex optimization problem. Gradient
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descent applied in the spin glass setting (discussed in Section 3.2) and stochastic gradient

descent in the context of deep learning (MNIST, discussed in Section 3.3) are much more

complicated non-convex optimization processes. Despite the fact that these algorithms

share very little geometry in common, they all (empirically) exhibit universality in their

halting times (Table 1). Indeed, if the normalized third and fourth moments are close,

across different ensembles, there is a strong indication that fluctuations are universal.

Table 1. Skewness (normalized third moment) and kurtosis (nor-
malized fourth moment) for the halting times in the experiments

performed below: (Rows 1-5, Section 3.1) In the M = N +2�
√
N� it

is clear that these normalized moments nearly coincide and they are
quite distinct for M = N . (Rows 6-8, Section 3.2) The Gumbel-like
distribution in spin glasses. (Rows 9-12, Section 3.3) Gaussian-like
distribution, with a flat left tail for deep learning.

Model Ensemble Mean St.dev. Norm. 3rd Norm. 4th

CG: M = N LOE 970 164 5.1 35.2

CG: M = N LUE 921 46 15.7 288.5

CG: M = N + 2�
√
N� LOE 366 13 0.08 3.1

CG: M = N + 2�
√
N� LUE 367 9 0.07 3.0

CG: M = N + 2�
√
N� PBE 365 13 0.08 3.0

Spin Glass Gaussian 192 79.7 1.10 4.58

Spin Glass Bernoulli 192 80.2 1.10 4.56

Spin Glass Uniform 193 79.6 1.10 4.54

Fully connected MNIST 2929 106 -0.32 3.24

Fully connected Random 4223 53 -0.08 2.98

Convnet MNIST 2096 166 -0.11 3.18

Cond. on gradient MNIST 3371 118 -0.34 3.31

3.1. The conjugate gradient algorithm. The conjugate gradient algorithm [12] for solv-

ing the N × N linear system Ax = b, when A = A∗ is positive definite, is an iterative

procedure to find the minimum of the convex quadratic form

F (A,w) =
1

2
w∗Aw − Rew∗b.

Given an initial guess x0 (we use x0 = b), compute r0 = b − Ax0 and set p0 = r0. For

k = 1, . . . , N ,

(1) Compute rk = rk−1 − ak−1Apk−1 where ak−1 = 〈rk−1, rk−1〉/〈pk−1, Apk−1〉.
(2) Compute pk = rk + bk−1pk−1 where bk−1 = 〈rk, rk〉/〈rk−1, rk−1〉.
(3) Compute xk = xk−1 + ak−1pk−1.

If A is strictly positive definite xk → x = A−1b as k → ∞. Geometrically, the iterates

xk are the best approximations of x over larger and larger affine Krylov subspaces Kk,

‖Axk − b‖A = minx∈Kk
‖Ax− b‖A, Kk = x0 + span{r0, Ar0, . . . , A

k−1r0},
‖x‖2A = 〈x,A−1x〉,

as k ↑ N . The quantity one monitors over the course of the conjugate gradient algorithm

is the norm ‖rk‖:
Tε,N,CG,E(A, b) := min{k : ‖rk‖ < ε}.
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In exact arithmetic, the method takes at most N steps: In calculations with finite-

precision arithmetic the number of steps can be much larger than N and the behavior of

the algorithm in finite-precision arithmetic has been the focus of much research [10, 11].

(a) (b)

Fig. 3. Empirical histograms for the halting time fluctuations
τε,N,CG,E when N = 500, ε = 10−10 for various choices of en-

sembles E. (a) The scaling M = N + 2�
√
N� demonstrating the

presence of universality. This plot shows three histograms, one each
for E = LUE, LOE and PBE. (b) The scaling M = N showing
two histograms for E = LUE and LOE and demonstrating the non-
existence of universality.

Now, we discuss our choices for ensembles E of random data. In all computations, we

take b = (bj)1≤j≤N where each bj is iid uniform on (−1, 1). We construct SCMs A by

A = V V ∗ where V = (Vij)1≤i≤N, 1≤j≤M and each Vij ∼ D is iid with distribution D.

We make the following three choices for D:

PBE Positive definite Bernoulli ensemble: D a Bernoulli ±1 random variable (equal

probability).

LOE Laguerre orthogonal ensemble: D is a standard normal random variable.

LUE Laguerre unitary ensemble: D is a standard complex normal random variable.

The choice of the integer M , which is the inner dimension of the matrices in the prod-

uct V V ∗, is critical for the existence of universality. In [6] and [7] it is demonstrated

that universality is present when M = N +�c
√
N� and ε is small, but fixed. Universality

is not present when M = N and this can be explained heuristically by examining the

distribution of the condition number of the matrix A in the LUE setting [7]. We demon-

strate this again in Figure 3(a). We also demonstrate that universality does indeed fail5

for M = N in Figure 3(b). We refer to Table 1(Rows 1-5) for a quantitative indicator of

universality.

3.2. Spin glasses and gradient descent. The gradient descent algorithm for the Hamil-

tonian of the p-spin spherical glass will find a local minimum of the non-convex function

(3). Since variance of the HN (w) is typically of order N , a local minimum scale like −N .

More precisely, from [2], the energy of the floor level where most of local minima are lo-

cated is asymptotically at −2
√
2/3N ≈ −1.633N and the ground state is approximately

5For those familiar with random matrix theory, this might not be surprising as real and complex
matrices typically lie in different universality classes. From this point of view, it is yet more striking
that Figure 3(a) gives a universal curve.
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(a) (b)

Fig. 4. (a) Spin glass landscape: Universality across different dis-
tributions: We choose D ∼ Gaussian(0, 1), D ∼ uniform on

(−(3/2)1/3, (3/2)1/3) and D ∼ Bernoulli ±1/
√
2 with equal prob-

ability. (b) Deep learning landscape: Universality in the halting
time for deep learning cost functions. MNIST digit inputs and in-
dependent Gaussian noise inputs give rise to the same halting time
fluctuations. The same is true of a convnet with a different stopping
condition.

−1.657N . The algorithm starts by picking a random element w of the sphere with radius√
N as a starting point for each trial. For a fixed dimension N , accuracy ε and ensemble

E: (1) Calculate the gradient step: wt+1 = wt−ηt∇wH(wt), (2) normalize the resulting

vector to the sphere:
√
N wt+1

||wt+1|| ← wt+1, and (3) stop when the norm of the gradient

size is below ε and record Tε,N,GD,E . This procedure is repeated 10,000 times for different

ensembles. We vary the environment for each trial and introduce ensembles by setting

x(·) ∼ D for a number of choices of distributions D. Figure 4(b) exhibits the universal

halting time which presents evidence that τε,N,GD,E is independent of the ensemble. We

refer to Table 1(Rows 6-8) for a clear quantitative verification of universality.

3.3. Digit inputs vs. random inputs in deep learning. A deep learning cost function

is trained on two drastically different ensembles. The first is the MNIST dataset, which

consists of 60,000 samples of training examples and 10,000 samples of test examples. The

model is a fully connected network with two hidden layers that have 500 and 300 units

respectively. Each hidden unit has rectified linear activation and a cross entropy cost is

attached at the end. To randomize the input data we sample 30,000 samples from the

training set each time we set up the model and initialize the weights randomly. Then we

train the model by the stochastic gradient descent method with a minibatch size of 100.

This model gives approximately 97% accuracy without any further tuning. The second

ensemble uses the same model and outputs, but the input data is changed from characters

to independent Gaussian noise. This model, as expected, gives about 10% accuracy: It

randomly picks a number! For these two methods, the stopping condition is calculated

through the running average of the stochastic costs. To be more precise, let F (Z,w) =

LTrain(w) be the cost function associated with a given model. The cost is formed by the

average of the costs per example: LTrain(w) =
1
S

∑S
�=1 L(x

�, w) (see equation (2)). Then

the stochastic gradients are the following L′
Train(w) = 1

S′
∑S′

�=1 L(x
�, w) where S′ ⊂ S.
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Then the stopping criterion is reached when the running average of the last 100 stochastic

costs is below 10−2.

As a comparison we have also added a deep convolutional network (convnet), and

we used the fully connected model with a different stopping condition; one that is tied

to the norm of the gradient. In this one, we calculate the norm of the gradient on the

cost itself, so the stopping criteria is reached when ||∇wLTrain(w)||2 < ε. Figure 4(a)

demonstrates universal fluctuations in the halting time in all four cases. Again, we refer

to Table 1(Rows 9-12) for a quantitative verification of universality — despite the large

amount of noise in the dataset the skewness and kurtosis remain very close across different

ensembles.
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