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Abstract. In this paper, we consider an initial-value problem for the Korteweg-

de Vries equation with time dependent coefficients. The normalized variable coefficient

Korteweg-de Vries equation considered is given by

ut +Φ(t)uux +Ψ(t)uxxx = 0, −∞ < x < ∞, t > 0,

where x and t represent dimensionless distance and time respectively, whilst Φ(t), Ψ(t)

are given functions of t(> 0). In particular, we consider the case when the initial data has

a discontinuous expansive step, where u(x, 0) = u+ for x ≥ 0 and u(x, 0) = u− for x < 0.

We focus attention on the case when Φ(t) = tδ (with δ > − 2
3 ) and Ψ(t) = 1. The constant

states u+, u− (< u+) and δ are problem parameters. The method of matched asymptotic

coordinate expansions is used to obtain the large-t asymptotic structure of the solution

to this problem, which exhibits the formation of an expansion wave in x ≥ u−
(δ+1) t

(δ+1)

as t → ∞, while the solution is oscillatory in x < u−
(δ+1) t

(δ+1) as t → ∞. We conclude

with a brief discussion of the structure of the large-t solution of the initial-value problem

when the initial data is step-like being continuous with algebraic decay as |x| → ∞, with

u(x, t) → u+ as x → ∞ and u(x, t) → u−(< u+) as x → −∞.

1. Introduction. In this paper we consider the following initial-value problem for

the normalized variable coefficient Korteweg-de Vries equation, namely,

ut +Φ(t)uux +Ψ(t)uxxx = 0, −∞ < x < ∞, t > 0, (1.1)

u(x, 0) =

{
u−, x < 0,

u+, x ≥ 0,
(1.2)

u(x, t) →
{

u−, x → −∞,

u+, x → ∞,
t ≥ 0, (1.3)
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where u+ and u− (< u+) are parameters and the monomial functions Φ(t) and Ψ(t) are

algebraic functions of t. We consider, without loss of generality, the case when

Φ(t) = tδ (δ > −1), Ψ(t) = 1, (1.4)

and restrict attention in the analysis presented in this paper to δ > − 2
3 (excluding the

case when δ = 0 which has been considered in [24] and [25]). We note that the initial

data is a discontinuous expansive step. In what follows we label initial-value problem

(1.1)-(1.3) (with (1.4)) as IVP.

The more general situation of equation (1.1) with Φ(t) = tα (α > −1) and Ψ(t) = tβ

(β > −1) where α �= β can be transformed to equation (1.1) with (1.4) by the change of

variables

u = (β + 1)−δū, τ =

∫ t

0

sβ ds,

where δ = α−β
β+1 (∈ (−1,∞)). When α = β the change of variable τ =

∫ t

0
sα ds transforms

(1.1) to the classical Korteweg-de Vries equation. We also note that equation (1.1) (with

(1.4)) can be transformed, on writing u = t−δv, to the generalized Korteweg-de Vries

equation

vt −
δ

t
v + vvx + vxxx = 0. (1.5)

Equation (1.5) corresponds to the classical Korteweg-de Vries equation when δ = 0, the

cylindrical Korteweg-de Vries equation when δ = − 1
2 (see for example [27]) and the

spherical Korteweg-de Vries equation when δ = −1 (see for example [28]).

The classical Korteweg-de Vries equation (δ = 0) was named after D. J. Korteweg

and G. de Vries who derived the equation in 1895 (see [21]). However, the equation

had already appeared earlier in the work of Rayleigh [33] and Boussinesq [3]. Although

the Korteweg-de Vries was originally derived in the context of shallow water waves as

a canonical equation combining both nonlinearity and dispersion it arises in the mod-

elling of many physical phenomenon including for example: ion-acoustic waves [37], the

anharmonic lattice [39], waves in the atmosphere and ocean [29] and pressure waves in

liquid-gas bubble mixtures [38]. Clearly, the literature relating to the Korteweg-de Vries

equation is vast and we make no attempt in this here to summarize it, rather we make

reference only to the most salient to this present paper. However, the interested reader

is referred to the following excellent reviews and books on the subject (and the extensive

lists of references contained therein) [1], [35], [4], [8], [10], [14], [15], [16], [26], [30], [31]

and [34].

The variable coefficient Korteweg-de Vries equation (1.1) arises in the modelling of

numerous complex physical systems (for example, waves in elastic tubes [5] and water

waves moving over a shelf [19] and [6]), but is far less studied in the literature than

its constant coefficient counterpart. This is due in part to the fact that methods of

solution such as inverse scattering which can be applied to the classical Korteweg-de

Vries equation are not applicable in general to equations of the form (1.1). We further

note that in the majority of the existing studies on initial-value problems for the variable

coefficient Korteweg-de Vries equation the focus has been on soliton propagation (see for

example, [11], [17], [19] and [12]). Finally, we draw the attention of the interested reader
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to a number of interesting studies, given in [9], [20], [32] and [36], that identify exact

solutions of the variable coefficient Korteweg-de Vries equation.

It is well known (see [20] for example) that equation (1.1) will pass the Painlevé test

if and only if the functions Φ(t) and Ψ(t) satisfy the condition,

Ψ(t) = Φ(t)

(
c0

∫ t

0

Φ(s)ds+ c1

)
,

where c0 and c1 are arbitrary constants with c20+ c21 �= 0. Consideration of (1.4) indicates

that this condition can only be satisfied when δ = 0 and equation (1.1) reduces to its

integrable constant coefficient counterpart the classical Korteweg-de Vries equation, or

when δ = − 1
2 and equation (1.1) reduces to the integrable cylindrical Korteweg-de Vries

equation which in turn is related to the classical Korteweg-de Vries equation.

It is the purpose of this paper to obtain the detailed asymptotic structure of the initial-

value problem IVP as t → ∞, uniformly for −∞ < x < ∞. The methodology we employ

is based on the method of matched asymptotic coordinate expansions and was developed

in the context of reaction-diffusion equations (see for example the monograph [23]). This

technique uses matched asymptotic coordinate expansions to transfer information from

the initial data (1.2) as t → 0, via asymptotic structures when t = O(1) as |x| → ∞, into

the asymptotic structure as t → ∞. The initial-value problem for the classical Korteweg-

de Vries equation when the initial data has a discontinuous expansive (compressive) step

has recently been considered via this approach in [24] ([25]).

The structure of the paper is as follows: in Section 2 we develop the complete large-t

solution, u(x, t), of IVP which exhibits the formation of an expansion wave profile, where

u(x, t) →
{

u+, x > u+

(δ+1) t
(δ+1),

(δ + 1)xt−(δ+1), u−
(δ+1) t

(δ+1) ≤ x ≤ u+

(δ+1) t
(δ+1),

(1.6)

as t → ∞, uniformly in x, while u(x, t) is oscillatory (oscillating about u = u−) for

x < u−
(δ+1) t

(δ+1) as t → ∞. We conclude in Section 3 with a brief discussion of the

structure of the large-t solution of the initial-value problem when the initial data is

‘step-like’ being continuous with algebraic decay as |x| → ∞, with u(x, t) → u+ as

x → ∞ and u(x, t) → u−(< u+) as x → −∞. Specifically, we consider

u(x, 0) =

⎧⎪⎨
⎪⎩

u− +
AL

(−x)γ
+O

(
E(|x|)

)
as x → −∞,

u+ +
AR

xγ
+O

(
E(|x|)

)
as x → ∞,

(1.7)

where AL (> 0), AR (< 0) and γ (> 0) are parameters and E(|x|) is linearly exponentially

small in x as |x| → ∞. This change in initial data leads to a significant change in the

detailed structure of the large-t solution of the initial-value problem (1.1), (1.7), (1.3)

and (1.4). These changes in structure illustrate just how sensitive the large-t solution

is to changes in the initial data. We note that although the large-t attractor for the

solution of this initial-value problem is again an expansion wave the details of all the

asymptotic regions that constitute the large-t structure are now modified (see Section

3 for full details). In particular, the oscillations observed in the large-t solution of IVP
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in x < u−
(δ+1) t

(δ+1) are not present up to O
(
t−γ(δ+1)

)
as t → ∞ in the solution to this

problem.

Finally, we note that the analysis presented in this paper is formal in nature being

based on the method of matched asymptotic coordinate expansions. Further, in the anal-

ysis of some of the boundary value problems considered we have had to make conjectures

based on the available supporting numerical evidence. It is hoped that the structure of

the large-time asymptotic solution of IVP presented in this paper will form the basis for

a more rigorous analysis of this interesting initial-value problem in the future.

2. Asymptotic solution as t → ∞. In this section we develop the asymptotic

structure of the solution to IVP as t → ∞. We must first begin by examining the

asymptotic structure of the solution of IVP as t → 0.

2.1. Asymptotic solution to IVP as t → 0. Consideration of the initial data (1.2) indi-

cates that the structure of the asymptotic solution to IVP as t → 0 has three asymptotic

regions for x ∈ (−∞,∞), namely,

region I: x = o(1), u(x, t) = O(1)

region II+: x = O(1) (> 0), u(x, t) = u+ − o(1)

region II−: x = O(1) (< 0), u(x, t) = u− + o(1)

⎫⎬
⎭ as t → 0. (2.1)

Consideration of equation (1.1) for t � 1 indicates that the small-time solution of IVP

follows, after minor modification, that given in [24]. For brevity we omit the details and

summarize as follows:

Region I. x = O(t
1
3 ) as t → 0.

η = xt−
1
3 = O(1) as t → 0, and,

u(η, t) =

⎛
⎝ (u− + 2u+)

3
− (u− − u+)

∫ 3−
1
3 η

0

Ai(s)ds

⎞
⎠+ o(1), (2.2)

as t → 0 with η = O(1), and where Ai(.) is the standard Airy function (see [2]).

Region II+. x = O(1) (> 0) as t → 0.

u(x, t) = u+ − e−φ(x,t), (2.3)

as t → 0 with x = O(1)(> 0), and where

φ(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3
√
3
x

3
2 t−

1
2 − 1

4 ln t+
3
4 ln x− ln

(
(u+−u−)3

1
4

2
√
π

)
+O

(
t(δ+

1
2 )
)
, δ > − 1

2 ,

2
3
√
3
x

3
2 t−

1
2 − 1

4 ln t+
3
4 ln x− 2u+√

3
x

1
2 − ln

(
(u+−u−)3

1
4

2
√
π

)
+ o(1), δ = − 1

2 ,

2
3
√
3
x

3
2 t−

1
2 − u+

(δ+1)
√
3
x

1
2 t(δ+

1
2 ) − 1

4 ln t+
3
4 lnx− ln

(
(u+−u−)3

1
4

2
√
π

)
+ o(1),

− 2
3 < δ < − 1

2 ,
(2.4)

as t → 0 with x = O(1) (> 0).
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Region II−. x = O(1) (< 0) as t → 0.

u(x, t) = u− +
(
eψ+(x,t) + eψ−(x,t)

)
(2.5)

as t → 0 with x = O(1) (< 0), and where

ψ±(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±ı̇ 2
3
√
3
(−x)

3
2 t−

1
2 + 1

4 ln t+

[
±ı̇π4 − 3

4 ln(−x) + ln

(
(u+−u−)3

1
4

2
√
π

)]
+O

(
t(δ+

1
2 )
)
, δ > − 1

2 ,

±ı̇ 2
3
√
3
(−x)

3
2 t−

1
2 + 1

4 ln t+

[
± ı̇π4 ± ı̇2u−√

3
(−x)

1
2 − 3

4 ln(−x)

+ ln

(
(u+−u−)3

1
4

2
√
π

)]
+ o (1) , δ = − 1

2 ,

±ı̇ 2
3
√
3
(−x)

3
2 t−

1
2 ± ı̇ u−

(δ+1)
√
3
(−x)

1
2 t(δ+

1
2 ) + 1

4 ln t+

[
± ı̇π4 − 3

4 ln(−x)

+ ln

(
(u+−u−)3

1
4

2
√
π

)]
+ o (1) , − 2

3 < δ < − 1
2 ,

(2.6)

as t → 0 with x = O(1)(< 0).

The asymptotic structure as t → 0 is now complete, with the expansions in regions I,

II+ and II− providing a uniform approximation to the solution of IVP as t → 0.

2.2. Asymptotic solution to IVP as |x| → ∞. We now investigate the asymptotic

structure of the solution to IVP as |x| → ∞ with t = O(1). We first determine the

structure of the solution to IVP as x → ∞ with t = O(1). The form of expansion (2.3)

(with (2.4)) of region II+ for x 	 1 as t → 0 suggests that in this region, which we label

as region III+, we write

u(x, t) = u+ − e−θ(x,t) (2.7)

as x → ∞ with t = O(1), and where

θ(x, t) = θ0(t)x
3
2 + θ1(t)x

1
2 + θ2(t) lnx+ θ3(t) + o(1) (2.8)

as x → ∞ with t = O(1). On substituting (2.7) and (2.8) into equation (1.1) and solving

at each order in turn, we find (after matching with (2.3) as t → 0+) that

u(x, t) = u+ − exp

(
− 2

3
√
3
t−

1
2 x

3
2 +

u+

(δ + 1)
√
3
t(δ+

1
2 )x

1
2 − 3

4
lnx

+
1

4
ln t+ ln

(
(u+ − u−)3

1
4

2
√
π

)
+ o(1)

) (2.9)

as x → ∞ with t = O(1). Expansion (2.9) remains uniform for t 	 1 provided that

x 	 λ(t), but becomes nonuniform when x = O (λ(t)) for t 	 1, where

λ(t) =

{
t−1, − 2

3 < δ < 0,

t−(δ+1), δ > 0.
(2.10)

We next investigate the structure of the solution to IVP as x → −∞ with t = O(1),

which we label as region III−. The details in this case follow, after minor modification,
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those given above and we obtain in region III− that

u(x, t) = u− +
(
eψ̂+(x,t) + eψ̂−(x,t)

)
(2.11)

as x → −∞ with t = O(1), and where

ψ̂±(x, t) = ±ı̇
2

3
√
3
t−

1
2 (−x)

3
2 ± ı̇

u−

(δ + 1)
√
3
t(δ+

1
2 )(−x)

1
2 − 3

4
ln(−x) +

1

4
ln t

±ı̇
π

4
+ ln

(
(u+ − u−)3

1
4

2
√
π

)
+ o(1)

(2.12)

as x → −∞ with t = O(1). Expansion (2.12) remains uniform for t 	 1 provided that

(−x) 	 λ(t), but becomes nonuniform when (−x) = O (λ(t)) as t → ∞, where λ(t) is

given by (2.10).

2.3. Asymptotic solution to IVP as t → ∞. As t → ∞, the asymptotic expansions

(2.9) and (2.11) (with (2.12)) of regions III+ (x → ∞, t = O(1)) and III− (x →
−∞, t = O(1)), respectively, continue to remain uniform provided |x| 	 λ(t) as t → ∞.

However, as already noted, a nonuniformity develops when |x| = O (λ(t)) as t → ∞,

where λ(t) depends on δ and is given by (2.10). Therefore, in what follows we must

consider the cases when − 2
3 < δ < 0 and when δ > 0 separately.

2.3.1. δ > 0. We now investigate the structure of IVP as t → ∞ when δ > 0 and

u+ > u−. Before we begin we note that a schematic representation of the asymptotic

structure of IVP as t → ∞ in this case is given in Figure 1. We recall from Section 2.2

that expansions (2.9) and (2.11) (with (2.12) of regions III+ (x → ∞, t = O(1)) and

III− (x → −∞, t = O(1)) respectively, continue to remain uniform provided |x| 	 t(δ+1)

as t → ∞. However, as already noted, a nonuniformity develops when |x| = O
(
t(δ+1)

)
as t → ∞. We begin by considering the asymptotic structure as t → ∞ moving in from

the far field region III+, when x 	 t(δ+1) as t → ∞. To proceed we introduce a new

region labelled as region IV+, in which x = O
(
t(δ+1)

)
as t → ∞.

Region IV+. To examine region IV+ we introduce the scaled coordinate

y =
x

t(δ+1)
, (2.13)

where y = O(1) as t → ∞ in region IV+, whilst the form of expansion (2.9) in region

III+, when t 	 1 and x = O
(
t(δ+1)

)
requires that we expand as

u(y, t) = u+ − e−f(y,t) (2.14)

as t → ∞ with y = O(1), and where

f(y, t) = f0(y) t
1
2 (3δ+2) + f1(y) ln t+ f2(y) + o(1) (2.15)

as t → ∞ with y = O(1), and where f0(y) > 0. On substituting (2.14) and (2.15) into

equation (1.1) (when written in terms of y and t) and solving at each order in turn, we
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find (after matching with (2.9) as y → ∞) that

u(y, t) = u+ − exp

(
− 2

3
√
3

(
y − u+

(δ + 1)

) 3
2

t
1
2 (3δ+2) − 1

4
(3δ + 2) ln t

−3

4
ln

(
y − u+

(δ + 1)

)
+ ln

(
(u+ − u−)3

1
4

2
√
π

)
+ o(1)

) (2.16)

as t → ∞ with y = O(1)
(
∈

(
u+

(δ+1) ,∞
))

. Expansion (2.16) becomes nonuniform when

y = u+

(δ+1) + O
(
t−δ

)
as t → ∞ (that is, when x = u+

(δ+1) t
(δ+1) + O (t) as t → ∞). To

proceed we introduce a localized region, region V+.

Region V+. To investigate region V+ we introduce the scaled coordinate η via

η =

(
y − u+

δ + 1

)
tδ, (2.17)

as t → ∞ with η = O(1), and look for an expansion of the form (as suggested by (2.16))

u(η, t) = u+ − e−f̂(η,t) (2.18)

as t → ∞ with η = O(1), and where

f̂(η, t) = f̂0(η)t+ f̂1(η) ln t+ f̂2(η) + o(1) (2.19)

as t → ∞ with η = O(1), and where f̂0(η) > 0. On substituting (2.18) and (2.19) into

equation (1.1) (when written in terms of η and t) and solving at each order in turn, we

find (after matching with (2.16) as η → ∞) that

u(η, t) = u+ − exp

(
− 2

3
√
3
η

3
2 t− 1

2
ln t+ Ĥ+(η) + o(1)

)
(2.20)

as t → ∞ with η = O(1) (> 0), and where the function Ĥ+(η) : (0,∞) → R is undeter-

mined, but having

Ĥ+(η) ∼ −3

4
ln η + ln

(
(u+ − u−)3

1
4

2
√
π

)
as η → ∞.

Expansion (2.20) becomes nonuniform when η = O(t−
2
3 ) as t → ∞ (that is, when

y = u+

δ+1 + O
(
t−

1
3 (3δ+2)

)
as t → ∞). Therefore, we must now introduce a second local-

ized region CR+ (corner region) in which y = u+

(δ+1) +O
(
t−

1
3 (3δ+2)

)
as t → ∞.

Region CR+. To examine region CR+ we write

y =
u+

(δ + 1)
+ ξ t−

1
3 (3δ+2) (2.21)

in region CR+, with ξ = O(1) as t → ∞. It follows from (2.21) and expansion (2.20) in

region V+, that we should expand as

u(ξ, t) = u+ + F (ξ)Θ(t) + o (Θ(t)) as t → ∞ (2.22)



368 J. A. LEACH

with ξ = O(1), and the gauge function Θ(t) = o(1) as t → ∞ is to be determined. On

substituting (2.22) into equation (1.1) (when written in terms of ξ and t) we obtain

Θ′(t)F − Θ(t)

t

ξ

3
F + t(δ−

1
3 )Θ2(t)FFξ +

Θ(t)

t
Fξξξ = 0. (2.23)

A nontrivial balance (that retains the most structure in equation (2.23)) requires

t(δ−
1
3 )Θ2(t) ∼ Θ(t)

t
as t → ∞,

and so, without loss of generality, we have that

Θ(t) = t−
1
3 (3δ+2). (2.24)

We observe that all terms in (2.23) are retained at leading order as t → ∞ and (2.23)

becomes

Fξξξ + FFξ −
ξ

3
Fξ −

1

3
(3δ + 2)F = 0, −∞ < ξ < ∞. (2.25)

We note that equation (2.25) admits the solution

F (ξ) = (δ + 1)ξ, −∞ < ξ < ∞.

Now matching expansion (2.20) (as η → 0+) with expansion (2.22) (as ξ → ∞) requires

first that

Ĥ+(η) ∼
(
3δ

2
+

1

4

)
ln η + lnD as η → 0+, (2.26)

with D > 0 as yet undetermined, after which we require that

F (ξ) ∼ −D ξ(
3δ
2 + 1

4 )e
− 2

3
√

3
ξ

3
2

as ξ → ∞. (2.27)

Finally for u to remain bounded as t → ∞ when y = u+

(δ+1) −O(1) then we require,

ξ−1F (ξ) is bounded as ξ → −∞. (2.28)

The leading order problem is now complete, and is given by (2.25), (2.27) and (2.28). The

boundary value problem (2.25)-(2.28) is both nonlinear and nonautonomous. A numerical

study of initial-value problem (2.25) and (2.27) using a shooting method has been carried

out in [24] for the case when δ = 0, and this approach can readily be extended to consider

the current situation where δ > 0. Following [24] it is straightforward to conjecture, via

the shooting method, that for fixed δ > 0 (for the values of δ tested) there exists a

value D = D∗ such that boundary value problem (2.25)-(2.28) has a unique solution, say

F = F ∗(ξ), for −∞ < ξ < ∞. Moreover, F ∗(ξ) is monotone increasing in −∞ < ξ < ∞,

such that F ∗(ξ) < 0 for all −∞ < ξ < ∞, and

F ∗(ξ) = (δ+1)ξ+α(−ξ)−
1

(3δ+2) +O

(
(−ξ)−

(δ+1)
(3δ+2) exp

(
− 2

3
√
3
(3δ + 2)

1
2 (−ξ)

3
2

))
(2.29)

as ξ → −∞, where α is a constant. We note that (2.29) was obtained by developing

the boundary condition as ξ → −∞. We note as in the case when δ = 0 initial-value

problem (2.25) and (2.27) admits solutions which blow up at finite-ξ and solutions which

are oscillatory in ξ < 0. However, the former do not satisfy condition (2.28), while the

latter can following the discussion given in [24] be ruled out at this stage. We conclude
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that D = D∗ (where the value of D∗ depends on the value of δ), and F = F ∗(ξ) for

−∞ < ξ < ∞.

Finally, when δ = 0 we recall from [25] that on making the substitution

F (ξ) = 2 3
1
3

(
Wη̂(η̂)−W 2(η̂)

)
, ξ = 3

1
3 η̂ (2.30)

boundary value problem (2.25)-(2.28) becomes

Wη̂η̂ = η̂W + 2W 3, −∞ < η̂ < ∞, (2.31)

W (η̂) ∼ D

2.31/4
η̂−1/4 exp

(
−2

3
η̂2/3

)
as η̂ → ∞, (2.32)

(−η̂)1/2W (η̂) is bounded as η̂ → −∞, (2.33)

where we recognize equation (2.31) as the second Painlevé equation. Moreover, it has

been established in [13], that equation (2.31) has a solution W = W ∗(η̂), −∞ < η̂ < ∞,

for which

W ∗(η̂) ∼

⎧⎨
⎩

1
2
√
π
η̂−

1
4 exp

(
− 2

3 η̂
3
2

)
as η̂ → ∞,(

− η̂
2

) 1
2

as η̂ → −∞.
(2.34)

A comparison of (2.34)1 with (2.32) establishes that D∗ = 31/4√
π
, while a comparison of

(2.30) (with (2.34)2) with (2.29) (when δ = 0) gives that α = −
√

3
2 . Unfortunately,

similar results for δ > 0 are not available.

Now as ξ → −∞, we move out of the corner region, region CR+, into region EW

(expansion wave region), where y = O(1)
(
∈

(
−∞, u+

(δ+1)

))
as t → ∞.

Region EW. It follows, via (2.22), (2.24) and (2.29) that in region EW we have that

u(y, t) = O(1) as t → ∞. Hence we expand as

u(y, t) = G0(y) +G1(y)t
−(δ+1) + o

(
t−(δ+1)

)
(2.35)

as t → ∞ with y = O(1)
(
∈

(
−∞, u+

(δ+1)

))
. On substitution of (2.35) into equation (1.1)

(when written in terms of y and t) we obtain the leading order problem as

G′
0

(
G0 − (δ + 1)y

)
= 0, −∞ < y <

u+

(δ + 1)
, (2.36)

G0(y) ∼ (δ + 1)y as y →
(

u+

(δ + 1)

)−
, (2.37)

with the final condition being the matching condition with region CR+. The solution of

(2.36), (2.37) is readily obtained as

G0(y) = (δ + 1)y, −∞ < y <
u+

(δ + 1)
. (2.38)

The function G1(y) remains undetermined, being a remnant of the global evolution when

t = O(1). However, matching to region CR+ requires that

G1(y) ∼ α

(
u+

(δ + 1)
− y

)− 1
(3δ+2)

as y →
(

u+

(δ + 1)

)−
.
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The solution in region EW is therefore given by

u(y, t) = (δ + 1)y +O
(
t−(δ+1)

)
(2.39)

as t → ∞ with y = O(1)
(
∈

(
−∞, u+

(δ+1)

))
. We will establish later in this analysis that

y ∈
(

u−
(δ+1) ,

u+

(δ+1)

)
as t → ∞ in region EW.

We next develop the asymptotic structure of u(y, t) as t → ∞, moving in from region

III− (when (−y) 	 1) to y = O(1) as t → ∞. To proceed we introduce a new region,

labelled as region IV−.

Region IV−. It follows from expansion (2.11) (with (2.12)) that in region IV− we should

expand as

u(y, t) = u− +
(
eg

+(y,t) + eg
−(y,t)

)
(2.40)

as t → ∞, and where

g±(y, t) = ± ı̇ g0(y)t
1
2 (3δ+2) + g1(y) ln t+ g2(y)± ı̇ g3(y) + o(1) (2.41)

as t → ∞ with y = O(1)(< u+

(δ+1) ). On substituting (2.40) and (2.41) into equation

(1.1) (when written in terms of y and t) and solving at each order in turn, we find (after

matching with (2.11), (2.12) as y → ∞) that

u(y, t) = u− + exp

(
ı̇

2

3
√
3

(
u−

(δ + 1)
− y

) 3
2

t
1
2 (3δ+2) − 1

4
(3δ + 2) ln t

−3

4
ln

(
u−

(δ + 1)
− y

)
+ ı̇

π

4
+ ln

(
(u+ − u−)3

1
4

2
√
π

)
+ o(1)

)

+exp

(
− ı̇

2

3
√
3

(
u−

(δ + 1)
− y

) 3
2

t
1
2 (3δ+2) − 1

4
(3δ + 2) ln t

−3

4
ln

(
u−

(δ + 1)
− y

)
− ı̇

π

4
+ ln

(
(u+ − u−)3

1
4

2
√
π

)
+ o(1)

)
(2.42)

as t → ∞ with y = O(1)
(
∈

(
−∞, u−

(δ+1)

))
. The large-t solution of IVP is therefore

oscillatory in y < u−
(δ+1) , with the oscillatory envelope being of O

(
t−

1
4 (3δ+2)

)
as t → ∞.

Expansion (2.42) becomes nonuniform when y = u−
(δ+1) +O

(
t−δ

)
as t → ∞ (that is, when

x = u−
(δ+1) t

(δ+1)+O (t) as t → ∞). To proceed we introduce a localized region, regionV−.

Region V−. To investigate region V− we introduce the scaled coordinate η̄ via

η̄ =

(
y − u−

δ + 1

)
tδ, (2.43)

as t → ∞ with η̄ = O(1), and look for an expansion of the form (as suggested by (2.42))

u(η̄, t) = u− +
(
eĝ

+(η̄,t) + eĝ
−(η̄,t)

)
(2.44)
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as t → ∞ with η̄ = O(1), and where

ĝ±(η̄, t) = ± ı̇ ĝ0(η̄)t+ ĝ1(η̄) ln t+ ĝ2(η̄)± ı̇ ĝ4(η̄) + o(1) (2.45)

as t → ∞ with η̄ = O(1). On substituting (2.44) and (2.45) into equation (1.1) (when

written in terms of η̄ and t) and solving at each order in turn, we find (after matching

with (2.42) as η̄ → −∞) that

u(η̄, t) = u− + exp

(
ı̇

2

3
√
3
(−η̄)

3
2 t− 1

2
ln t+H0(η̄) + ı̇ H1(η̄) + o(1)

)

+exp

(
− ı̇

2

3
√
3
(−η̄)

3
2 t− 1

2
ln t+H0(η̄)− ı̇ H1(η̄) + o(1)

) (2.46)

as t → ∞ with η̄ = O(1) (< 0), and where the functions H0(η̄) and H1(η̄) remain

undetermined, but matching with region IV− requires that

H1(η̄) ∼ −3

4
ln(−η̄) + ln

(
(u+ − u−)3

1
4

2
√
π

)
, H0(η̄) ∼

π

4
as η̄ → −∞.

It is instructive in what follows to rewrite expansion (2.46) in terms of the cosine function

to give

u(η̄, t) = u− +
Ĥ1(η̄)

t
1
2

cos

(
2

3
√
3
(−η̄)

3
2 t+H0(η̄)

)
+ o

(
1

t
1
2

)
(2.47)

as t → ∞ with η̄ = O(1) (< 0), and where Ĥ1(η̄) = 2 exp (H1(η̄)). We note that the

oscillatory envelope of the large-t solution of IVP in region V− of O
(
t−

1
2

)
as t → ∞.

Expansion (2.47) becomes nonuniform when η̄ = O(t−
2
3 ) as t → ∞ (that is, when

y = u−
(δ+1) + O

(
t−

1
3 (3δ+2)

)
as t → ∞). Therefore, we must now introduce a second

localized region CR− (corner region) in which y = u−
(δ+1) +O

(
t−

1
3 (3δ+2)

)
as t → ∞.

Region CR−. Thus we write

y =
u−

(δ + 1)
+ ξ t−

1
3 (3δ+2) (2.48)

in region CR−, with ξ = O(1) as t → ∞. It follows from expansion (2.47) and (2.48)

that in region CR− we should expand as

u(ξ, t) = u− + F (ξ)t−
1
3 (3δ+2) + o

(
t−

1
3 (3δ+2)

)
(2.49)

as t → ∞ with ξ = O(1). On substitution of expansion (2.49) into equation (1.1) (when

written in terms of ξ and t) we obtain at leading order

Fξξξ + FFξ −
ξ

3
Fξ −

1

3
(3δ + 2)F = 0, −∞ < ξ < ∞, (2.50)
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which we recognize as equation (2.25) of region CR+. We recall that equation (2.50)

admits the solution

F (ξ) = (δ + 1)ξ, −∞ < ξ < ∞.

Now matching expansion (2.47) (as η̄ → 0−) with expansion (2.49) (as ξ → −∞) requires

first that

Ĥ1(η̄) ∼ β0(−η̄)(
3
2 δ+

1
4 ), H0(η̄) ∼ β1 as η̄ → 0−,

with the constants β0 (> 0) and β1 undetermined at this stage, after which matching

requires that

F (ξ) ∼ β0(−ξ)(
3
2 δ+

1
4 ) cos

(
2

3
√
3
(−ξ)

3
2 + β1

)
as ξ → −∞. (2.51)

The matching condition between expansion (2.49) (as ξ → ∞) and expansion (2.39) (as

y →
(

u−
(δ+1)

)−
) of region EW then requires that

F (ξ) ∼ (δ + 1)ξ as ξ → ∞. (2.52)

The leading order problem in region CR− is now complete, being the nonlinear nonau-

tonomous boundary value problem (2.50), (2.51) and (2.52). The boundary condition

(2.52) can be developed to give

F (ξ) = (δ + 1)ξ + ξ−
1

(3δ+2)

(
ᾱ+ R̄ cos

(
2

3

√
δ +

2

3
ξ

3
2 + β2

))
+ o

(
ξ−

1
(3δ+2)

)
(2.53)

as ξ → ∞, with β2, ᾱ and R̄ constants to be determined. However, consideration of

(2.49) (with (2.53)) as we move into region EW reveals that matching with expansion

(2.39) of region EW requires that R̄ = 0, and

G1(y) ∼ ᾱ

(
y − u−

(δ + 1)

)− 1
(3δ+2)

as y →
(

u−
(δ + 1)

)+

,

giving that

F (ξ) = (δ + 1)ξ + ᾱξ−
1

(3δ+2) + o
(
ξ−

1
(3δ+2)

)
(2.54)

as ξ → ∞. The boundary value problem (2.50), (2.51) and (2.54) is both nonlinear and

nonautonomous. A numerical study of initial-value problem (2.50) and (2.54) using a

shooting method reveals that a unique solution exists, which is oscillatory in ξ < 0, being

of the form (2.51) for (−ξ) 	 1, for each ᾱ ≥ α+ (where α+ > 0 is a constant which

depends on δ > 0). However, when ᾱ < α+ (excluding ᾱ = 0) the solution to initial-

value problem (2.50) and (2.54) blows up at finite ξ, whilst when ᾱ = 0 the solution to

initial-value problem (2.50) and (2.54) is F (ξ) = (δ + 1)ξ. We conclude, by making the

conjecture (based on the available supporting numerical evidence), that boundary value

problem (2.50), (2.51) and (2.54) has a unique solution for each ᾱ ≥ α+, but no solution

for ᾱ < α+. Moreover, for a specified ᾱ ≥ α+, then β0 and β1 are fixed uniquely. The

parameter ᾱ remains undetermined in this analysis. Finally, we note that α+ → 0 as

δ → 0+.
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Fig. 1. A schematic representation of the asymptotic structure of
u(y, t) in the (y, u) plane as t → ∞ for IVP when δ > 0 and u+ >
u−. Here (EXP ) denotes terms exponentially in t as t → ∞ and

y = xt−(δ+1). We note that the solution to IVP is oscillatory in

regions IV− and V−, and we recall that u = u− + O
(
t−

1
2

)
as

t → ∞ in region V− while u = u+ −O
(
t−δ− 2

3

)
as t → ∞ in region

CR+.

The asymptotic structure to the solution of IVP as t → ∞ when δ > 0 and u+ > u− is

now complete. A uniform approximation has been given through regions IV±, V±, CR±

and EW. A schematic representation of the location and thickness of the asymptotic

regions as t → ∞ is given in Figure 1. The large-t attractor for the solution of IVP when

δ > 0 and u+ > u− is the expansion wave which allows for the adjustment of the solution

from u+ to u−.

2.3.2. −2
3
< δ < 0. We now investigate the structure of IVP as t → ∞ when − 2

3 <

δ < 0 and u+ > u−. We recall from Section 2.2 that expansions (2.9) and (2.11) (with

(2.12) of regions III+ (x → ∞, t = O(1)) and III− (x → −∞, t = O(1)) respectively,

continue to remain uniform provided |x| 	 t as t → ∞. However, as already noted,

a nonuniformity develops when |x| = O (t) as t → ∞. We begin by considering the

asymptotic structure as t → ∞ moving in from region III+, when x 	 t as t → ∞. To

proceed we introduce a new region labelled as region R, in which x = O (t) as t → ∞.

To examine region R we introduce the scaled coordinate

ζ =
x

t
, (2.55)
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where ζ = O(1) as t → ∞ in region R. Following Section 2.3.1 we readily find that in

region R we have

u(ζ, t) = u+ −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
− 2

3
√
3
ζ

3
2 t+ u+√

3(δ+1)
y

1
2 t(δ+1) − 1

2 ln t+H2(ζ) + o(1)
)
,

− 1
2 ≤ δ < 0,

exp

(
− 2

3
√
3
ζ

3
2 t+

[
u+√

3(δ+1)
y

1
2 t(δ+1) + O

(
t(2δ+1)

)]
− 1

2 ln t

+H2(ζ) + o(1)

)
, − 2

3 < δ < − 1
2 ,

(2.56)

as t → ∞ with ζ = O(1) (> 0), and where the function H2(ζ) : (0,∞) → R remains

undetermined being a remnant of the global evolution when t = O(1), but having

H2(ζ) ∼ −3

4
ln ζ + ln

(
(u+ − u−)3

1
4

2
√
π

)
as ζ → ∞.

Further, we will require that

H2(ζ) ∼ −3

4
ln ζ + C0 as ζ → 0+,

where C0 (> 0) is a constant. Expansion (2.56) becomes nonuniform when ζ = O
(
tδ
)
as

t → ∞ (that is, when x = O
(
t(δ+1)

)
as t → ∞).

We next develop the asymptotic structure of uζ, t) as t → ∞, moving in from region

III− (when (−ζ) 	 1) to ζ = O(1) as t → ∞. To proceed we introduce a new region,

labelled L. Following Section 2.3.1 we obtain in region L that

u(ζ, t) = u− +
(
ek

+(ζ,t) + ek
−(ζ,t)

)
(2.57)

as t → ∞ with ζ = O(1) (< 0), and where

k±(ζ, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

± ı̇ 2
3
√
3
(−ζ)

3
2 t± ı̇ u−√

3(δ+1)
(−ζ)

1
2 t(δ+1) − 1

2 ln t+H3(ζ)± ı̇ H4(ζ) + o(1),

− 1
2 ≤ δ < 0,

± ı̇ 2
3
√
3
(−ζ)

3
2 t± ı̇

[
u−√

3(δ+1)
(−ζ)

1
2 t(δ+1) +O

(
t(2δ+1)

)]
− 1

2 ln t+H3(ζ)

± ı̇ H4(ζ) + o(1), − 3
2 < δ < − 1

2 ,
(2.58)

as t → ∞, with ζ = O(1) (< 0), and where the functions H3(ζ) and H4(ζ) remain

undetermined, but matching to the far field requires that

H3(ζ) ∼ −3

4
ln(−ζ) + ln

(
(u+ − u−)3

1
4

2
√
π

)
, H4(ζ) ∼

π

4
as ζ → −∞.

Expansion (2.58) becomes nonuniform when (−ζ) = O(tδ) as t → ∞ (that is, when

(−x) = O
(
t(δ+1)

)
as t → ∞).

Therefore, to complete the asymptotic structure in this case it remains to investigate

the region when |ζ| = O(tδ) as t → ∞. To investigate this region we introduce the scaled

coordinate

y =
x

t(δ+1)
(2.59)
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as t → ∞ with y = O(1). The asymptotic structure of the solution to IVP as t → ∞
follows, after some minor modification, that given through regions IV±, V±, CR± and

EW in Section 2.3.1 and is summarized here for brevity.

Region IV+. x = O
(
t(δ+1)

)
as t → ∞

y = x
t(δ+1) = O(1)

(
∈

(
u+

(δ+1) ,∞
))

as t → ∞, and

u(y, t) = u+ − exp

(
− 2

3
√
3

(
y − u+

(δ + 1)

) 3
2

t
1
2 (3δ+2) − 1

4
(3δ + 2) ln t

−3

4
ln

(
y − u+

(δ + 1)

)
+ ln C0 + o(1)

)

as t → ∞ with y = O(1)
(
∈

(
u+

(δ+1) ,∞
))

.

Region V+. x = u+

(δ+1) t
(δ+1) +O(t) as t → ∞

η =
(
y − u+

(δ+1)

)
tδ = O(1) (> 0) as t → ∞, and

u(η, t) = u+ − exp

(
− 2

3
√
3
η

3
2 t− 1

2
ln t+ Ĥ+(η) + o(1)

)

as t → ∞ with η = O(1) (> 0), and where the function Ĥ+(η) : (0,∞) → R is undeter-

mined, but having

Ĥ+(η) ∼
{

− 3
4 ln η + ln C0 as η → ∞,(
3
2δ +

1
4

)
ln η + lnD∗ as η → 0+,

where D∗ (> 0) is a constant.

Region CR+. x = u+

(δ+1) +O
(
t
1
3

)
as t → ∞

ξ = ηt
2
3 = O(1) as t → ∞, and

u(ξ, t) = u+ + F ∗(ξ)t−
1
3 (3δ+2) + o

(
t−

1
3 (3δ+2)

)
as t → ∞ with ξ = O(1), and where F ∗(ξ) is the solution to boundary value problem

(2.25), (2.27) and (2.28) when D = D∗. Also

F ∗(ξ) ∼
{

−D∗ξ(
3
2 δ+

1
4 )e

− 2
3
√

3
ξ

3
2

as ξ → ∞,

(δ + 1)ξ + α(−ξ)−
1

(3δ+2) as ξ → −∞,
(2.60)

with D∗ and α discussed earlier. A numerical study of initial value problem (2.25) and

(2.27) using a shooting method reveals that there exists a value D = D∗ > 0 such that

boundary condition (2.28) is satisfied for each D ∈ (0, D∗], whilst for each D ∈ (D∗,∞)

the solution blows up at finite-ξ. In particular, the solution of (2.25), (2.27) is oscillatory

in ξ < 0 when 0 < D < D∗, while F (ξ) ∼ (δ + 1)ξ as ξ → −∞ when D = D∗. Confirm-

ing that a unique solution, F ∗(ξ), to boundary value problem (2.25), (2.27) and (2.28)

satisfying condition (2.60)2 exists when D = D∗.
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Region EW. x = O
(
t(δ+1)

)
as t → ∞

y = x
t(δ+1) = O(1)

(
∈

(
u−

(δ+1) ,
u+

(δ+1)

))
as t → ∞, and

u(y, t) = (δ + 1)y +O
(
t−(δ+1)

)
as t → ∞ with y = O(1)

(
∈

(
u−

(δ+1) ,
u+

(δ+1)

))
.

Region CR−. x = u−
(δ+1) +O

(
t
1
3

)
as t → ∞

ξ = η̄t
2
3 = O(1) as t → ∞, and

u(ξ, t) = u+ + F (ξ)t−
1
3 (3δ+2) + o

(
t−

1
3 (3δ+2)

)
as t → ∞ with ξ = O(1), and where F (ξ) is the solution to boundary value problem

(2.50), (2.51) and (2.54), and has

F (ξ) ∼
{

(δ + 1)ξ + ᾱξ−
1

(3δ+2) as ξ → ∞,

β0(−ξ)(
3
2 δ+

1
4 ) cos

(
2

3
√
3
(−ξ)

3
2 + β1

)
as ξ → −∞,

(2.61)

with β0 and β1 as discussed earlier. A numerical study of initial value problem (2.50)

and (2.54) using a shooting method confirms that a unique solution, F (ξ), to boundary

value problem (2.50), (2.51) and (2.54) exists for each ᾱ > 0, but no solution exists for

ᾱ ≤ 0. Although we have not been able to determine ᾱ in this analysis, a specified ᾱ

fixes β0 and β1 uniquely.

Region V−. x = u−
(δ+1) +O (t) as t → ∞

η̄ =
(
y − u−

(δ+1)

)
tδ = O(1)(< 0) as t → ∞, and

u(η̄, t) = u− +
Ĥ1(η̄)

t
1
2

cos

(
2

3
√
3
(−η̄)

3
2 t+H0(η̄)

)
+ o

(
1

t
1
2

)
(2.62)

as t → ∞ with η̄ = O(1) (< 0), and where the functions Ĥ1(η̄) and H0(η̄) are undeter-

mined, having

Ĥ1(η̄) ∼ β0(−η̄)(
3
2 δ+

1
4 ), H0(η̄) ∼ β1 as η̄ → 0−.

Region IV−. x = O
(
t(δ+1)

)
as t → ∞

y = x
t(δ+1) = O(1)

(
∈

(
−∞, u−

(δ+1)

))
as t → ∞, and

u(y, t) = u− +
(
ek̂

+(y,t) + ek̂
−(y,t)

)
(2.63)

as t → ∞, and where

k̂±(y, t) = ±ı̇
2

3
√
3

(
u−

(δ + 1)
− y

) 3
2

t
1
2 (3δ+2) − 1

2
ln t+H5(y)± ı̇ H6(y) + o(1)
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as t → ∞ with y = O(1)
(
∈

(
−∞, u−

(δ+1)

))
, and where the functions H5(y) and H6(y)

remain undetermined.

The undetermined functions in expansions (2.58), (2.63), (2.62) of regions L, IV−, V−

respectively, are remnants from the evolution when t = O(1). Although, they remain

undetermined they must allow for matching between regions L, IV− and V−.

The asymptotic structure to the solution of IVP as t → ∞ when − 2
3 < δ < 0 and

u+ > u− is now complete. A uniform approximation has been given through regions

L, IV±, V±, CR±, EW and R. The large-t attractor for the solution of IVP when

− 3
2 < δ < 0 and u+ > u− is the expansion wave which allows for the adjustment of the

solution from u+ to u−.

2.3.3. Summary. In this section we have obtained, via the method of matched asymp-

totic coordinate expansions, the uniform asymptotic structure of the large-t solution to

the initial-value problem IVP for − 2
3 < δ < 0 and δ > 0 when u+ > u− (the case when

δ = 0 having been considered in [24]). In each case the large-t structure was obtained

by careful consideration of the asymptotic structures as t → 0 (−∞ < x < ∞) and as

|x| → ∞ (t ≥ O(1)). In both cases the solution, u(x, t), to IVP exhibits the formation

of an expansion wave profile in y > u−
(δ+1) (where we recall that y = xt−(δ+1)), with

u(yt(δ+1), t) →
{

u+, y > u+

(δ+1) ,

(δ + 1)y, u−
(δ+1) ≤ y ≤ u+

(δ+1) ,

as t → ∞, uniformly in y, while the solution is oscillatory (oscillating about u = u−)

for y < u−
(δ+1) , with the oscillatory envelope for (−y) 	 1 being of order O

(
t−

1
4 (3δ+2)

)
[
O

(
t−

1
2

)]
as t → ∞ when δ > 0

[
− 2

3 < δ < 0
]
, respectively. The rate of convergence

to the expansion wave in region EW is of O
(
t−(δ+1)

)
as t → ∞. Finally, we conclude

by noting that regions V± present in the large-t solution of IVP are not present in the

large-t solution given in [24] for the case δ = 0.

3. Discussion. We conclude by giving a brief overview of the structure of the large-t

solution of IVP when the initial data is continuously differentiable and has algebraic

decay as |x| → ∞ (step-like initial data), rather than the discontinuous expansive step

considered above. Specifically, we consider

u(x, 0) =

⎧⎪⎨
⎪⎩

u− +
AL

(−x)γ
+O

(
E(|x|)

)
as x → −∞,

u+ +
AR

xγ
+O

(
E(|x|)

)
as x → ∞,

(3.1)

where AL (> 0), AR (< 0) and γ (> 0) are parameters and E(|x|) is linearly exponentially

small in x as |x| → ∞. In what follows we refer to initial-value problem (1.1), (3.1) and

(1.3) as IVP2. The structure of asymptotic solution of IVP2 as t → 0 (−∞ < x < ∞)

as |x| → ∞ (t = O(1)) follows, after minor modification, that given in [22] ([7]) and is

omitted here for brevity. We now review the structure of the asymptotic solution of IVP2

as t → ∞, and focus attention initially on the situation when 0 < γ < 3δ+2. The large-t

structure of the solution of IVP2 when δ > − 2
3 (taken for direct comparison with the
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Fig. 2. A schematic representation of the asymptotic structure of
u(y, t) in the (y, u) plane as t → ∞ for IVP2 when γ < 3δ + 2. We

recall that y = x
t(δ+1) and u = u+ − O

(
t
− γ(δ+1)

γ+1

)
as t → ∞ in

region CR+.

analysis presented in Section 2), 0 < γ < 3δ+2 and u+ > u− consists of five asymptotic

regions, which in terms of the coordinate y (where y = xt−(δ+1)), are displayed in Figure

2. These five regions are namely, as t → ∞

Region III+. x = O
(
t(δ+1)

)
as t → ∞

y = x
t(δ+1) = O(1)

(
∈

(
u+

(δ+1) ,∞
))

as t → ∞, and

u(y, t) = u+ +AR

(
y − u+

(δ + 1)

)−γ

t−γ(δ+1) + o
(
t−γ(δ+1)

)
(3.2)

as t → ∞ with y = O(1)
(
∈

(
u+

(δ+1) ,∞
))

. Expansion (3.2) becomes nouniform when

y = u+

(δ+1) +o(1) as t → ∞, and further examination in the case when 0 < γ < (3δ+2) re-

veals that expansion (3.2) becomes nonuniform when y = u+

(δ+1) +O
(
t−

γ(δ+1)
γ+1

)
as t → ∞.

Region CR+. x = u+

(δ+1) t
(δ+1) +O

(
t

(δ+1)
(γ+1)

)
as t → ∞

ξ =
(
y − u+

(δ+1)

)
t
γ(δ+1)
γ+1 = O(1) as t → ∞, and

u(ξ, t) = u+ + F (ξ)t−
γ(δ+1)
γ+1 + o

(
t−

γ(δ+1)
γ+1

)
(3.3)
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as t → ∞ with ξ = O(1), and where F (ξ) satisfies the nonlinear differential equation

FFξ −
(δ + 1)

(γ + 1)
ξFξ − γ

(δ + 1)

(γ + 1)
F = 0, −∞ < ξ < ∞. (3.4)

The matching condition with region III+ requires

F (ξ) ∼ ARξ
−γ as ξ → ∞. (3.5)

We note that equation (3.4) admits the exact solution

F (ξ) = ξ, −∞ < ξ < ∞. (3.6)

In general, equation (3.4) is of homogeneous type, and admits a quadrature, after which

the solution of (3.4) with (3.5) is given implicitly by

ξ =
F (ξ)

(δ + 1)
+

(
AR

F (ξ)

) 1
γ

, −∞ < ξ < ∞. (3.7)

It follows from (3.7) that (on recalling that AR < 0),

F (ξ) < 0 for all −∞ < ξ < ∞, (3.8)

F (ξ) is strictly monotone increasing, with −∞ < ξ < ∞, (3.9)

F (ξ) ∼ ARξ
−γ +

A2
Rγ

(δ + 1)
ξ−(2γ+1) as ξ → ∞, (3.10)

F (ξ) ∼ (δ + 1)ξ − (−AR)
1
γ (δ + 1)1−

1
γ (−ξ)−

1
γ as ξ → −∞. (3.11)

Region EW. x = O
(
t(δ+1)

)
as t → ∞

y = x
t(δ+1) = O(1)

(
∈

(
u−

(δ+1) ,
u+

(δ+1)

))
as t → ∞, and

u(y, t) = (δ + 1)y +O
(
t−(δ+1)

)
(3.12)

as t → ∞ with y = x
t(δ+1) = O(1)

(
∈

(
u−

(δ+1) ,
u+

(δ+1)

))
.

Region CR−. x = u−
(δ+1) t

(δ+1) +O
(
t

(δ+1)
(γ+1)

)
as t → ∞

ξ =
(
y − u−

(δ+1)

)
t
γ(δ+1)
γ+1 = O(1) as t → ∞, and

u(ξ, t) = u− + F̂ (ξ)t−
γ(δ+1)
γ+1 + o

(
t−

γ(δ+1)
γ+1

)
(3.13)

as t → ∞ with ξ = O(1). The details are identical to those of region CR+, and are not

repeated here. In fact. making the replacement of AR by (−AL), we obtain for F̂ (ξ),

−∞ < ξ < ∞, that F̂ (ξ) = −F (−ξ) when 0 < γ < 3δ + 2.

Region III−. x = O
(
t(δ+1)

)
as t → ∞

y = x
t(δ+1) = O(1)

(
∈

(
−∞, u−

(δ+1)

))
as t → ∞, and

u(y, t) = u− +AL

(
u−

(δ + 1)
− y

)−γ

t−γ(δ+1) + o
(
t−γ(δ+1)

)
(3.14)
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as t → ∞ with y = O(1)
(
∈

(
−∞, u−

(δ+1)

))
. When 0 < γ < (3δ + 2) expansion (3.14)

becomes nonuniform when y = u−
(δ+1) +O

(
t−

γ(δ+1)
γ+1

)
as t → ∞.

The asymptotic structure to the solution of IVP2 as t → ∞ when δ > − 2
3 , 0 <

γ < 3δ + 2 and u+ > u− is now complete. A uniform approximation has been given

through regions III±, CR± and EW. The large-t attractor for the solution of IVP2 is

the expansion wave which allows for the adjustment of the solution from u+ to u−.

Although the large-t solutions of IVP and IVP2 both exhibit the formation of an

expansion wave structure we note that there are significant differences in the structure

of the solution between the two problems. First, we observe immediately that the os-

cillations observed in the large-t solution of IVP in y < u−
(δ+1) are not present up to

O
(
t−γ(δ+1)

)
as t → ∞ in the solution to IVP2 (these oscillations being generated by the

discontinuous initial data in IVP). Secondly, the corner regions CR± are of thickness

O
(
t−

1
3 (3δ+2)

)
as t → ∞ in the large-t solution of IVP, whereas they are thicker being

of O
(
t−

γ(δ+1)
γ+1

)
as t → ∞ in the large-t solution of IVP2 (when 0 < γ < 3δ + 2). The

associated boundary value problems in these corner regions are related and accommodate

the required change in structure in the large-t solution of the initial-value problem under

consideration.
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