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INITIAL-BOUNDARY VALUE PROBLEM FOR EULER EQUATIONS

WITH INCOMPATIBLE DATA

By

DENING LI

Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506-0001

Abstract. We study the initial-boundary value problem for the general 3-D Eu-

ler equations with data which are incompatible in the classical sense, but are “shock-

compatible”. We show that such data are also shock-compatible of infinite order and the

initial-boundary value problem has a piece-wise smooth solution containing a shock.

1. Introduction. An initial-boundary value problem is one of the most important

problems, both in theoretical research and in application, in the study of hyperbolic

systems, in particular, the Euler system of gas-dynamics. It is well known that the

smoothness of both the initial and boundary data does not guarantee the existence of

a classical solution. A necessary condition to the existence of a smooth solution is the

compatibility of such data. In order for the solution to have higher differentiability, the

higher order compatibility of the data is required; see, e.g., [3, 8, 14, 17]. Similarly, for

certain free boundary value problems involving shock wave, rarefaction wave or contact

discontinuity of Euler equations, the data are also required to be compatible, often of

very high order, [1, 2, 4, 5, 10, 12, 13].

The compatibility is a set of conditions on the initial and boundary data at the points

of intersection of the boundary with the initial manifold. They consist of the algebraic

restrictions at the intersection on the values of data, together with their normal deriva-

tives of high order (depending upon the order of compatibility). Usually, such conditions

are complicated and very tedious to verify.

In this paper, we study the initial-boundary value problem for the general 3-D Euler

equation with data which are incompatible in the classical sense. The data may contain

a jump discontinuity at the intersection of the initial and boundary manifolds. For such

data, there exists no classical solution. Instead, we are looking for a piece-wise smooth

solution containing a shock front under a simple general assumption on the data; see

condition (A) in Theorem 1.1. We will call such data (satisfying (A)) “shock-compatible”.
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Similar to the situation for free boundary-value problems studied in [4, 11], for such

data, even though incompatible in the classical sense, permitting shock waves makes the

compatibility issue much simpler. It turns out that the 0-order shock-compatible data

(A) are automatically shock compatible of infinite order if both the initial and boundary

data are smooth. Taking advantage of this fact, we are able to show the existence of the

piece-wise smooth shock wave solution with the condition (A) only, without requiring

any high-order compatibility as in [1, 2, 4, 5, 10, 12, 13].

As the most important example of a quasi-linear hyperbolic system, the Euler equa-

tions for compressible non-viscous flow in 3-D space can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0,

∂t(ρu) + ∂x(p+ ρu2) + ∂y(ρuv) + ∂z(ρuw) = 0,

∂t(ρv) + ∂x(ρuv) + ∂y(p+ ρv2) + ∂z(ρvw) = 0,

∂t(ρw) + ∂x(ρuw) + ∂y(ρvw) + ∂z(p+ ρw2) = 0,

∂t(ρE) + ∂x(ρEu+ pu) + ∂y(ρEv + pv) + ∂z(ρEw + pw) = 0,

(1.1)

where (ρ, p, e) are the density, pressure, and the internal energy of the fluid, (u, v, w) is

the velocity in the (x, y, z) direction, and the total energy E = e+ 1
2 (u

2 + v2 +w2). For

convenience, we will consider the gas to be polytropic, with p = A(S)ργ with γ > 1.

One of the simplest and natural initial-boundary value problems for the Euler system

(1.1) describes the gas flow bounded by a solid wall x = 0 with given initial status

(ρ, u, v, w, e):

{
(ρ, u, v, w, e)(0, x, y, z) = (ρ0, u0, v0, w0, e0)(x, y, z) in x ≥ 0,

u(t, 0, y, z) = 0, on t ≥ 0.
(1.2)

In order to have a smooth solution for the problem (1.1), (1.2), it is necessary to

require the initial data (ρ0, u0, v0, w0, e0) to be compatible; see, e.g., [14]. The continuity

of the solution requires the 0-order compatibility

u0(0, y, z) = 0. (1.3)

If one wants the solution belonging to Ck, the higher order compatible conditions are

required, which consist of algebraic relations imposed upon u0 and its derivatives ∂j
xu0

(j ≤ k) at x = 0.

If (1.3) is not satisfied, i.e., if the data is not compatible in the classical sense, then

one cannot expect to have a continuous solution. However, there could be other solutions

which are only piece-wise smooth. In this paper, we will study the initial-boundary value

problem for (1.1) with data which is not compatible in the classical sense, but admits a

piece-wise solution containing a shock wave.
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In this paper, we will study a more general initial-boundary value problem, for which

(1.2) is a special case. Denote

H0 =

⎛
⎜⎜⎜⎜⎝

ρ

ρu

ρv

ρw

ρE

⎞
⎟⎟⎟⎟⎠ , H1 =

⎛
⎜⎜⎜⎜⎝

ρu

p+ ρu2

ρuv

ρuw

(ρE + p)u

⎞
⎟⎟⎟⎟⎠ , H2 =

⎛
⎜⎜⎜⎜⎝

ρv

ρuv

p+ ρv2

ρvw

(ρE + p)v

⎞
⎟⎟⎟⎟⎠ , H3 =

⎛
⎜⎜⎜⎜⎝

ρw

ρuw

ρvw

p+ ρw2

(ρE + p)w

⎞
⎟⎟⎟⎟⎠ .

Then system (1.1) can be written briefly as

∂tH0 + ∂xH1 + ∂yH2 + ∂zH3 = 0.

Introducing the unknown vector of functions U = (p, u, v, w, S), it is well-known (see,

e.g., [6, 16]) that for smooth solutions, the system (1.1) is equivalent to the following

system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p

∂t
+ (u, v, w) · ∇p+ ρc2∇ · (u, v, w) = 0,

ρ
∂u

∂t
+ ρ(u, v, w) · ∇u+

∂p

∂x
= 0,

ρ
∂v

∂t
+ ρ(u, v, w) · ∇v +

∂p

∂y
= 0,

ρ
∂w

∂t
+ ρ(u, v, w) · ∇w +

∂p

∂z
= 0,

∂S

∂t
+ (u, v, w) · ∇S = 0,

(1.4)

with c2 = p′ρ(ρ, S) > 0.

System (1.4) can be further written into the following symmetric form:

L (U)U ≡ A0∂tU +A1(U)∂xU +A2(U)∂yU +A3(U)∂zU = 0, (1.5)

where

A0 =

⎡
⎢⎢⎢⎢⎢⎣

1
ρc2 0 0 0 0

0 ρ 0 0 0

0 0 ρ 0 0

0 0 0 ρ 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , A1 =

⎡
⎢⎢⎢⎢⎢⎣

u
ρc2 1 0 0 0

1 ρu 0 0 0

0 0 ρu 0 0

0 0 0 ρu 0

0 0 0 0 u

⎤
⎥⎥⎥⎥⎥⎦ ,

A2 =

⎡
⎢⎢⎢⎢⎢⎣

v
ρc2 0 1 0 0

0 ρv 0 0 0

1 0 ρv 0 0

0 0 0 ρv 0

0 0 0 0 v

⎤
⎥⎥⎥⎥⎥⎦ , A3 =

⎡
⎢⎢⎢⎢⎢⎣

w
ρc2 0 0 1 0

0 ρw 0 0 0

0 0 ρw 0 0

1 0 0 ρw 0

0 0 0 0 w

⎤
⎥⎥⎥⎥⎥⎦ .

The matrix A−1
0 [A1(U) + A2(U)ξ + A3(U)η] has two simple eigenvalues λ± and one

triple eigenvalue λ0:

λ− = u− vξ − wη − c
√
1 + ξ2 + η2,

λ0 = u− vξ − wη,

λ+ = u− vξ − wη + c
√
1 + ξ2 + η2,

(1.6)

with λ− < λ0 < λ+.
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Let x = b(t, y, z) be a smooth surface in (t, x, y, z) space with b(0, 0, 0) = by(0, 0, 0) =

bz(0, 0, 0) = 0. Denote b0(y, z) = b(0, y, z). For the Euler system (1.1), consider the

initial-boundary value problem in the domain bounded by the moving solid boundary

x = b(y, z, t) and the initial plane t = 0:⎧⎪⎪⎨
⎪⎪⎩

∂tH0(U) + ∂xH1(U) + ∂yH2(U) + ∂zH3(U) = 0,

U(0, x, y, z) = U0(x, y, z) in x ≥ 0,

u− bt − byv − bzw = 0 on x = b(t, y, z), t ≥ 0.

(1.7)

Obviously, (1.1), (1.2) is the special case of (1.7) with b = 0.

The main result of this paper is the following

Theorem 1.1. For the initial-boundary value problem (1.7), assume the following con-

dition (A) is satisfied:

(A)

{
|bt(0, 0, 0)| < c0 with c20 = pρ U0(0,0,0),

u0(0, 0, 0) < bt(0, 0, 0).

Then the problem (1.7) admits a piece-wise smooth solution near the origin in the domain

x > b(t, y, z), t > 0, containing one shock front x = φ(t, y, z) emanating from the initial

curve x = b0(y, z).

Remark 1.1. (1) The assumption |bt(0, 0, 0)| < c in Theorem 1.1 is a necessary

condition. Otherwise, the problem (1.7) is not well-posed. In particular, for the

fixed boundary x = 0 in (1.2), the condition is trivially satisfied.

(2) The assumption u0(0, 0, 0) < bt(0, 0, 0) in Theorem 1.1 ensures the existence of a

shock wave. For the special case of fixed boundary x = 0 in (1.4), the condition

becomes simply u0 < 0.

(3) It is worth mentioning here that if u0(0, 0, 0) > bt(0, 0, 0), there would be a

solution containing a rarefaction wave. Such case will be studied later in another

paper. The degenerate case of u0(0, 0, 0) = bt(0, 0, 0) would imply either a smooth

solution or a solution with weak discontinuity such as sound wave.

In the following, Section 2 will be devoted to the set-up of the problem and the con-

struction of an approximate solution of infinite order. The problem will be reformulated

in Section 3 by introducing new coordinates in (1.7) to flatten the boundary x = b(t, y, z)

as well as the shock front x = φ(t, y, z). The linear stability of the transformed equivalent

problem will be derived in Section 4 by combining the results from [3, 7, 13, 14]. Then

the existence of a piece-wise smooth solution containing a shock front will be established

in Section 5 by iteration.

2. Shock wave solution and its approximation. From the solid wall condition

u− bt − byv − bzw = 0 on the moving boundary x = b(t, y, z) in (1.7) and the condition

u0(0, 0, 0) < bt(0, 0, 0) in the assumption (A) of Theorem 1.1, it is obvious that the data

for the initial-boundary value problem (1.7) is not compatible in the classical sense and

hence (1.7) admits no classical smooth solution. Therefore we will look for a piece-wise

smooth solution which contains, in the specific case of (A), a right propagating shock

wave.
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Specifically, a shock wave solution for (1.7) is a set of smooth functions (U, φ, U∗) near

the origin (0, 0, 0, 0) such that

• The shock front S : x = φ(t, y, z) divides the domain x > b(t, y, z), t > 0 into two

parts:

Ω = {(t, x, y, z) : b(t, y, z) < x < φ(t, y, z), t > 0},
Ω∗ = {(t, x, y, z) : φ(t, y, z) < x, t > 0},

with

φ(0, y, z) = b(0, y, z), and c0 < φt(0, 0, 0); (2.1)

� x
0
�
�
�

�
�
�

�
�
�
�
�
�
�

Ω∗

Ω
S : x = φ(t, y, z)

C : x = b(t, y, z)

Figure 2.1: Shock wave solution for (1.7)

• U (or U∗) is defined and smooth in Ω (or Ω∗), and satisfies the equations

∂tH0(U) + ∂xH1(U) + ∂yH2(U) + ∂zH3(U) = 0 (2.2)

in Ω (or Ω∗);

• (U, φ, U∗) satisfies the Rankine-Hugoniot condition on x = φ(t, y, z):

φt[H0]
+
− − [H1]

+
− + φy[H2]

+
− + φz[H3]

+
− = 0. (2.3)

Here in (2.3), [f ]+− denotes the jump of the value of f across the shock front.

The Lax’s shock condition [16] implies that the shock front x = φ(t, y, z) is space-like

in front of the shock front, thus the condition in (2.1). So the flow status U∗ is uniquely

determined in Ω∗ by the initial data U0(x, y, z). In order to find the solution, one needs

only to determine the functions (U, φ).

The set of functions (Ũ , φ̃, Ũ∗) is called an approximate solution of order k for (1.7)

and (2.3), if the following is satisfied near t = 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tH0(Ũ) + ∂xH1(Ũ) + ∂yH2(Ũ) + ∂zH3(Ũ) = O(tk) in Ω

∂tH0(Ũ
∗) + ∂xH1(Ũ

∗) + ∂yH2(Ũ
∗) + ∂zH3(Ũ

∗) = O(tk) in Ω∗

φ̃t[H0]
+
− − [H1]

+
− + φ̃y[H2]

+
− + φ̃z[H3]

+
− = O(tk) on x = φ̃;

U∗(0, x, y, z) = U0(x, y, z) in x ≥ 0,

ũ− bt − by ṽ − bzw̃ = O(tk) on x = b(t, y, z), t ≥ 0.

(2.4)
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Since U∗ can be uniquely determined by U0(x, y, z), one can simply take Ũ∗ = U∗,

the conditions in (2.4) for Ũ∗ can be dropped. (2.4) can be simplified into the following

conditions containing only (Ũ , φ̃):⎧⎪⎪⎨
⎪⎪⎩

∂tH0(Ũ) + ∂xH1(Ũ) + ∂yH2(Ũ) + ∂zH3(Ũ) = O(tk) in Ω;

φ̃t[H0]
+
− − [H1]

+
− + φ̃y[H2]

+
− + φ̃z[H3]

+
− = O(tk) on x = φ̃;

ũ− bt − by ṽ − bzw̃ = O(tk) on x = b(t, y, z), t ≥ 0.

(2.5)

Obviously, the existence of the k-th order approximate solution is equivalent to the

fact that all the derivatives at t = 0 up to the order of k for (U, φ) can be uniquely

determined by the equations in (2.5) along the initial sub-surface x = b(0, y, z). For the

existence of an infinite order approximate solution, we have the following theorem

Theorem 2.1. Under the condition (A) in Theorem 1.1, and also assuming that b(t, y, z)

∈ C∞, U0(x, y, z) ∈ C∞ in the initial-boundary value problem (1.7) and (2.3), then all

the derivatives of (U, φ) at t = 0 can be uniquely determined by the equations in (2.5) at

the intersection x = b(0, y, z), and consequently, there exists an infinite order approximate

solution (Ũ , φ̃).

To prove Theorem 2.1, we need to show that ∀k ≥ 0, all the derivatives up to the

order k of (U, φ) can be uniquely determined at x = b(0, y, z). First we prove the case

k = 0.

The 0-order compatibility does not include any derivatives of U , and we have six

variables

U(0, φ0(y, z), y, z), ∂tφ(0, y, z),

to satisfy six equations in the boundary conditions of (2.5).

Due to the continuity in the variables y and z and by the implicit function theorem,

we need only to show that at the origin (0,0,0,0), the system consisting of six boundary

conditions in (2.5) has one solution

U(0, 0, 0, 0), ∂tφ(0, 0, 0),

and the corresponding Jacobian matrix is non-degenerate.

At (0,0,0,0) the six boundary equations in (2.5) become

φt(0)

⎛
⎜⎜⎜⎜⎝

ρ− ρ0
ρu− ρ0u0

ρv − ρ0v0
ρw − ρ0w0

ρE − ρ0E0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ρu− ρ0u0

p+ ρu2 − p0 − ρ0u
2
0

ρuv − ρ0u0v0
ρuw − ρ0u0w0

(ρE + p)u− (ρ0E0 + p0)u0

⎞
⎟⎟⎟⎟⎠ ; (2.6)

u = bt. (2.7)

The variable u is obviously uniquely determined by (2.7). The two variables (v, w),

each appears only in one equation of (2.6), and they all have non-zero coefficient ρ(φt−u)

because φt > bt = u.
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Eliminating these three variables from (2.6) and (2.7) and replacing the energy conser-

vation by the equivalent thermodynamic Hugoniot relation [6], we obtain a 3× 3 system

for (φt, ρ, p): ⎧⎪⎨
⎪⎩

φt(0)

(
ρ− ρ0

ρu− ρ0u0

)
−
(

ρu− ρ0u0

p− p0 + ρu2 − ρ0u
2
0

)
= 0;

(ρ0 − μ2ρ)p− (ρ− μ2ρ0)p0 = 0.

(2.8)

Here τ = 1/ρ as usual and μ2 = (γ − 1)/(γ + 1).

Because u = bt > u0 in (2.8), there exists a unique solution (ρ, p, φt), by the shock

curve [16] with ρ > ρ0, p > p0 and φt − u0 supersonic and φt − u subsonic.

Denote by F the left hand sides of the boundary conditions in (2.5), and J the coef-

ficient matrix of their linearization. We need to show

detJ = det
∂F

∂(U, φt)
�= 0 at (0, 0, 0, 0). (2.9)

Similar to (2.6) and (2.7), the last row of J contains only variable u, and the variables

(v, w) appear only in the third and the fourth rows and with non-zero coefficients (=

ρ0(φt(0) − u0)). We need to consider only the first two rows and the fifth row for the

variables (ρ, p, φt). Also, we may replace the energy conservation by the equivalent

thermodynamic Hugoniot relation as in (2.8). The corresponding coefficient matrix is⎛
⎝ φt(0)− u 0 ρ− ρ0

(φt(0)− u)u −1 ρu− ρ0u0

−μ2p− p0 ρ0 − μ2ρ 0

⎞
⎠ . (2.10)

Using the relation φt(ρ − ρ0) = ρu − ρ0u0 to simplify the last column, the determinant

of (2.10) is equal to

(ρ− ρ0) det

(
(φt(0)− u)2 1

μ2p+ p0 μ2ρ− ρ0

)
. (2.11)

Obviously, (2.11) is non-zero if μ2ρ− ρ0 < 0, which follows readily from the restrictions

on the compression ratio (see [6], p. 148)

μ2 < ρ/ρ0 < μ−2.

The first order compatibility consists of eleven linear equations for the eleven variables

Ut(0, φ0(y, z), y, z), Un(0, φ0(y, z), y, z), φtt(0, y, z).

Here Un denotes the normal derivative to the shock front x = φ(t, y, z).

Again by the continuity in (y, z) and because the equations for these variables are

linear, we need only to show the Jacobian of these eleven equations is non-degenerate at

(0,0,0,0). In particular at the origin, Un = Ux, φly = φlz = φry = φrz = θy = θz = 0 and

θt = ua = ub = u.

Let (Dφ, Du) be the tangential vectors at the origin in the directions of the curves

x = φ(t, 0, 0) and x = b(t, 0, 0) (noticing bt = u at the origin):

Dφ = ∂t + φt∂x, Du = ∂t + u∂x.
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As usual, we will replace the energy conservation by the thermodynamic Hugoniot

relation. Denote by (H04, H14) the first four components of (H0, H1) and then take

tangential derivatives Dφ along x = φ of thus modified boundary equations in (2.5) in

the t-x plane. Evaluating them at (0,0,0,0), we obtain (here and in the following in this

paper, ∗ stands for terms already determined by lower order compatibility):

{
φtt[H04]

+
− + (φtH

′
04 −H ′

14)DφU = ∗,
(p0 + μ2p)Dφρ+ (μ2ρ− ρ0)Dφp = ∗.

(2.12)

where the 4× 5 matrix (φtH
′
04 −H ′

14) is

φtH
′
04 −H ′

14 =

⎡
⎢⎢⎣

φt − u −ρ 0 0 0

u(φt − u) ρ(φt − 2u) 0 0 −1

0 0 ρ(φt − u) 0 0

0 0 0 ρ(φt − u) 0

⎤
⎥⎥⎦ .

At the origin (0,0,0,0), the interior equations in (2.5) become

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Duρ+ ρ∂xu = ∗,
Duu+ 1

ρ∂xp = ∗,
Duv = ∗,
Duw = ∗,
Dup+ ρc2∂xu = ∗.

in Ω (2.13)

Obviously, from the last boundary condition in (2.5) on x = b we have

Duu = ∗, (2.14)

The linear system (2.12)-(2.14) consists of eleven equations for the eleven variables

(φtt, Ut, Ux), where U = (ρ, u, v, w, p). They can be simplified as follows.

Because Dφ, Du are not parallel, (vt, vx) are uniquely determined by (Duv,Dφv, ).

Since the derivatives of v appears only in one equation in (2.13) in the form Duv, and also

appears only in one equation in (2.12) in the form Dφv, both with non-zero coefficients,

hence (Duv,Dφv) can be uniquely determined. Therefore (vt, vx) can be eliminated.

The same argument also applies to (wt, wx). Thus, we can eliminate the four variables

(vt, vx, wt, wx) from (2.12)-(2.14) and obtain seven equations for the remaining seven

variables

(φtt, ρt, ρx, ut, ux, pt, px).

Eliminating φtt from (2.12) yields

[
(u− φt)

2 2ρ(u− φt) 1

p0 + μ2p 0 μ2ρ− ρ0

]
Dφ

⎡
⎣ ρ

u

p

⎤
⎦ = ∗. (2.15)
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Eliminating Dφρ from (2.15) yields

(m1,m2)Dφ

[
u

p

]
= ∗ (2.16)

with {
m1 = 2ρ(u− φt)(p0 + μ2p) < 0,

m2 = (p0 + μ2p)− (μ2ρ− ρ0)(u− φt)
2 > 0.

(2.17)

Dropping the two equations containing Duv and Duw in (2.13), the remaining last

two equations contain no term of Duρ:{
Duu+ 1

ρ∂xp = ∗,
Dup+ ρc2∂xu = ∗.

(2.18)

Or equivalently

Du

[
u

p

]
+ cE ∂x

[
u

p

]
= ∗, (2.19)

with the operator E defined as (see also [11])

E ≡
[

0 (cρ)−1

cρ 0

]
= E −1. (2.20)

Since Dφ = Du + (φt − u)∂x, we have by (2.19){
Dφ

[
u

p

]
= (I − βE )Du

[
u

p

]
+ ∗, (2.21)

where

β ≡ φt − u

c
> 0, with |β| < 1 (2.22)

by the Lax’ shock inequality.

Replacing (Dφu,Dφp) in (2.16) by (2.21), we obtain:

[
m1−m2βcρ −m1β(cρ)

−1+m2

]
Du

[
u

p

]
= ∗. (2.23)

By (2.17) and (2.22), we have

m1 −m2βcρ < 0, −m1β(cρ)
−1 +m2 > 0.

Since Duu is already uniquely determined by (2.14), Dup is also uniquely determined.

Consequently (ux, px) are uniquely determined by (2.19). Also, (Dφρ,Duρ) are uniquely

determined by (2.12) and (2.13). This finishes the proof of the first order compatibility.

For the k-th order compatibility, apply Dk
φ to the modified boundary conditions

(2.5) and evaluate them at the origin (0,0,0,0). Also apply Dk−1
u to the interior equa-

tions and evaluate them at (0,0,0,0). Similar to the first order compatibility, the nine

variables (Dk
φv,D

k−1
φ ∂xv,D

k
φw,D

k−1
φ ∂xw) can be determined independently and thus be

eliminated.
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For the remaining seven variables

∂k+1
t φ,Dk

uρ,D
k−1
u ∂xρ,D

k
uu,D

k−1
u ∂xu,D

k
up,D

k−1
u ∂xp,

we have seven equations:⎧⎪⎪⎨
⎪⎪⎩

[
ρ

ρu

]+
−
∂k+1
t φ+

[
φt − u −ρ 0

u(φt − u) ρ(φt − 2u) −1

]
Dk

φ

⎡
⎣ ρ

u

p

⎤
⎦ = ∗;

(p0 + μ2p)Dk
φρ+ (μ2ρ− ρ0)D

k
φp = ∗.

(2.24)

⎧⎪⎪⎨
⎪⎪⎩

Dk
uρ+ ρDk−1

u ∂xu = ∗,
Dk

uu+ 1
ρD

k−1
u ∂xp = ∗,

Dk
up+ ρc2Dk−1

u ∂xu = ∗.
(2.25)

Dk
uu = ∗. (2.26)

As usual, eliminating ∂k+1
t φ and Dkρ from (2.24) and (2.25), we obtain

(m1,m2)D
k
φ

[
u

p

]
= ∗. (2.27)

Furthermore, we can use (2.25) to replace (Dk
φu,D

k
φp) with (Dk

uu,D
k
up) by applying the

following lemma; see [4, 11]

Lemma 2.1. (Dk
φu,D

k
φp) in (2.25) can be expressed by (Dk

uu,D
k
up) as

Dk
φ

[
u

p

]
= δ(αk − βE )Dk

u

[
u

p

]
= ∗, (2.28)

where 0 < |β| < αk ≤ 1, and δ is a positive constant which may depend on k and the

explicit form of which is of no consequence in our discussion.

We omit the proof here.

Applying the lemma, we can rewrite (2.27) as follows:

(m1,m2)δ(αk − βE )Dk
u

[
u

p

]
= ∗, (2.29)

or

[m1αk −m2β(cρ)]D
k
uu+ [−m1β(cρ)

−1 +m2αk]D
k
up = ∗. (2.30)

From (2.17) and (2.22), we have

m1αk −m2β(cρ) < 0, −m1β(cρ)
−1 +m2αk > 0.

Combining (2.26) and (2.30), (Dk
uu,D

k
up) are uniquely determined. (Dk−1

u ∂xu,D
k−1
u ∂xp)

can then also be determined by (2.25), as well as Dk
uρ. D

k
φρ and consequently Dk−1

u ∂xρ

can be determined from (2.24). An induction on the index j would give all k-th order

derivatives for Dk−j
u ∂j

xρ,D
k−j
u ∂j

xu,D
k−j
u ∂j

xp (j = 2, · · · , k). This finishes the proof of

k-th order compatibility. Since k is arbitrary, this implies infinite order compatibility.
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Once all the derivatives of (U, φ) can be uniquely determined at t = 0, x = 0, we can

construct explicitly an infinite order approximate solution by the usual Borel technique;

see [4]. In particular, for the case considered in this paper, we also have the following

Remark 2.1. The infinite order approximate solution in Lemma 2.1 can be con-

structed such that the condition on the boundary x = b(t, y, z) in (1.7) and (2.5) can be

satisfied accurately, i.e.,

ũ− bt − by ṽ − bzw̃ = 0 on x = b(t, y, z), t ≥ 0. (2.31)

Indeed, given the approximate solution Ũ , one can construct Û by solving a linear

boundary value problem for the linearized equation of (1.7) at the approximate solution

Ũ with the linear boundary condition

û− bt − by v̂ − bzŵ = −[ũ− bt − by ṽ − bzw̃] on x = b(t, y, z), t ≥ 0.

Then (Û + Ũ , φ̃) will be the desired approximate solution.

3. Transformation and reformulation. To prove the existence of the piece-wise

smooth shock wave solution in Theorem 1.1, we first perform a singular transformation

to reformulate the problem. The purpose of the transformation is to fix the shock front

and straighten the solid boundary x = b(t, y, z); see also [1, 2, 4, 10].

Let {
t = t̃, y = ỹ, z = z̃,

x = ξ(t̃, x̃, ỹ, z̃) = (1− x̃)b(t̃, ỹ, z̃) + x̃φ(t̃, ỹ, z̃).
(3.1)

With the transformation (3.1), the domain Ω in the (t, x, y, z) coordinates becomes a

rectanglar region Ω̃ in the (t̃, x̃, ỹ, z̃) coordinates:

Ω̃ = {(t̃, x̃, ỹ, z̃) : 0 < x̃ < 1, t̃ > 0, (ỹ, z̃) ∈ R
2}.

The system (1.5) of interior differential equations in the new coordinates (t̃, x̃, ỹ, z̃)

becomes

A0(U)∂t̃U + Ã1(U)∂x̃U +A2(U)∂ỹU ++A3(U)∂z̃U = 0 (3.2)

with

Ã1(U) =
1

∂x̃ξ
(A1(U)−A0(U)ξt̃ −A2(U)ξỹ −A3(U)ξz̃).

Because ∂x̃ξ = O(t̃), the system (3.2) is singular at t̃ = 0 with order O(t̃). To formally

remove this singularity, let (see also [2, 4])

t̃ = τ with ∂t̃ = e−τ∂τ . (3.3)

The transform (3.3) changes the domain Ω̃ into ω:

ω = {(τ, x̃, ỹ, z̃) : 0 < x̃ < 1, τ > −∞, (ỹ, z̃) ∈ R
2}.

In the coordinates (τ, x̃, ỹ, z̃), the system (3.2) becomes

L (U, φ) ≡ ∂τU + ˜̃A1(U, φ)∂x̃U + eτA2(U)∂ỹU + eτA3(U)∂z̃U = 0 (3.4)

with
˜̃A1(U, φ) =

eτ

ξx̃
(A1(U)− e−τ ξτA0(U)− ξỹA2(U)− ξz̃A3(U)). (3.5)
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In addition, we also notice that under the coordinates transform (3.3), the t̃η-weighted

integration in the domain Ω̃ becomes the hyperbolic (η + 1)-weighted integration in ω:∫
Ω̃

t̃η|U(t̃, x̃, ỹ, z̃)|2dt̃dx̃dỹdz̃ =

∫
ω

e(η+1)τ |U (j)(τ, x̃, ỹ, z̃)|2dτdx̃dỹdz̃.

Denote the boundary operators on x̃ = 0, 1 in the coordinates (τ, x̃, ỹ, z̃) as follows:

• On x̃ = 0:

B(0)(U) ≡ e−τ bτ − u+ vbỹ + wbz̃.

• On x̃ = 1:

B(1)(U, φ) ≡ ∂τφ[H0]− eτ [H1] + eτ∂ỹφ[H2] + eτ∂z̃φ[H3].

To simplify the notation, we will drop the ˜ in the coordinates (τ, x̃, ỹ, z̃) in the

following, and replace τ by t. In summary, the proof of Theorem 1.1 is reduced to

finding the unknown functions (U, φ) near t = −∞ in the domain ω = {(t, x, y, z) : 0 <

x < 1, t > −∞}, satisfying:
• Interior equations:

L (U, φ) = 0 in ω; (3.6)

• Boundary conditions:

B(0)(U) = 0 on x = 0, (3.7)

B(1)(U, φ) = 0 on x = 1; (3.8)

• “Initial” condition:

(U − Ũ , φ− φ̃) = O(eηt) at t = −∞. (3.9)

Remark 3.1. Through these transformations, the fixed boundary function b(t, y, z)

is incorporated into the coefficients of the operators L and B(0), in the form of ∇b, i.e.,

containing the derivatives of order one, the same order as for the variable φ. This fact

will not be used in this paper, but will be useful in future studies.

By the coordinates transformations introduced above, the original initial-boundary

value problem (1.7) with solution containing a shock front is now transformed into an

equivalent problem (3.6)-(3.9). Therefore, in order to prove Theorem 1.1, we need only

to prove the following

Theorem 3.1. There exists a C∞ solution (U, φ) to the boundary value problem (3.6)-

(3.9).

Theorem 3.1 will be proved by linear iteration of (3.6)-(3.9) near the approximate

solution (Ũ , φ̃).

4. Linearization and energy estimate. The solution for the problem (3.6)-(3.9)

will be obtained by linear iteration near the approximate solution (Ũ , φ̃). Let (V, ψ) =

(U − Ũ , φ − φ̃) and we rewrite the problem (3.6)-(3.9) into the problem for the new

unknown variables (V, ψ).
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The operators L (U, φ) and B(1)(U, φ) in (3.6) and (3.8) can be written as{
L (U, φ) = L (Ũ , φ̃) + L(V, ψ)(V, ψ),

B(1)(U, φ) = B(1)(Ũ , φ̃) + B
(1)(V, ψ)(V, ψ).

(4.1)

The operators L(V, ψ)(V, ψ) and B
(1)(V, ψ)(V, ψ) in (4.1) have the following explicit

forms:

• L(V, ψ)(V, ψ):

L(V, ψ)(V, ψ) ≡ ∂tV + ˜̃A1(Ũ + V, φ̃+ ψ)∂xV

+etA2(Ũ + V )∂yV + etA3(Ũ + V )∂zV

+C1(Ũ , V,∇φ̃,∇ψ)(V,∇ψ),

(4.2)

where C1(Ũ , V,∇φ̃,∇ψ)(V,∇ψ) is a 5×5 linear algebraic system for the variables

(V,∇ψ), consisting of terms coming from the following three terms:

Ũx[
˜̃A1(Ũ + V, φ̃+ ψ)− ˜̃A1(Ũ φ̃)],

Ũy[A2(Ũ + V )−A2(Ũ)],

Ũz[A3(Ũ + V )−A3(Ũ)].

(4.3)

The elements of matrix C1(Ũ , V,∇φ̃,∇ψ) are all smooth functions of (Ũ , V,∇φ̃,

∇ψ) and their explicit forms are of no importance in the following discussion.

• B
(1)(V, ψ)(V, ψ):

B
(1)(V, ψ)(V, ψ) ≡ β(1)(Ũ , V )ψ +M (1)(Ũ , V, φ̃)V, (4.4)

where

β(1)(Ũ , V )ψ ≡ b0∂tψ + b1∂yψ + b2∂zψ

= [H0(Ũ + V )]∂tψ + et[H2(Ũ + V )]∂yψ + et[H3(Ũ + V )]∂zψ,
(4.5)

and
M (1)(Ũ , V, φ̃)V = [φ̃tH0(Ũ , V )− etH1(Ũ , V )]V

+[etφ̃yH2(Ũ , V ) + etφ̃zH3(Ũ , V )]V.
(4.6)

In (4.6), Hj((Ũ , V )V (j = 0, 1, 2, 3) is defined by

Hj((Ũ , V )V = Hj(Ũ + V )−Hj(Ũ) =

[∫ 1

0

H ′
j(Ũ + θV )dθ

]
V. (4.7)

In particular, Hj((Ũ , 0)V = H ′
j((Ũ)V .

Therefore the problem (3.6)-(3.9) can be rewritten for (V, ψ) as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L(V, ψ)(V, ψ) = f ≡ −L (Ũ , φ̃), 0 < x < 1,

B
(0)V = B(0)(V ) = 0, x = 0,

B
(1)(V, ψ)(V, ψ) = g ≡ −B(1)(Ũ , φ̃), x = 1,

(V, ψ) = O(eηt) at t = −∞.

(4.8)

Here in (4.8), the boundary condition on x = 0 remains unchanged since B(0) is linear

and Ũ satisfies B(0)(Ũ) = 0 accurately.
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Consider the following linearization of (4.8):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L(V, ψ)(V̇ , ψ̇) = f, 0 < x < 1,

B
(0)V̇ = 0, x = 0,

B
(1)(V, ψ)(V̇ , ψ̇) = g, x = 1,

(V̇ , ψ̇) = O(eηt) at t = −∞.

(4.9)

For fixed (V, ψ), (4.9) is an initial-boundary value problem for (V̇ , ψ̇) in the domain ω.

The linear stability of the problem (4.9) is discussed as follows, by combining the known

results for solid boundary and for shock front.

For Euler system of gas-dynamics, the linearized solid boundary problem and the

linearized shock wave front problem, both have already been well-studied see, e.g., [13,15].

Near the solid boundary x = 0 and the shock front boundary x = 1, one can obtain the

energy estimates and the existence of solutions.

Let ωT = ω
⋂
{t; t < T} and k = (k0, k1, k2, k3) be the multiple index with |k| =

k0 + k1 + k2 + k3. For any non-negative integer s, let Hs
η(ω

T ) be the η-weighted Sobolev

space with the norm

‖U‖2Hs
η(ω

T )=
∑

0≤|k|+2m≤s

∫
ωT

|∂k0
t Dk1

x ∂k2
y ∂k3

z ∂m
x (e−ηtU(x,y,z,t))|2dydzdxdt, (4.10)

where η is a fixed sufficiently large constant, Dx = x∂x is an operator tangential to the

boundary x = 0. The space Hs
η(ω

T ) is the usual η-weighted Sobolev space Hs away from

the boundary x = 0. At x = 0, the regularity in the x-derivatives is reduced because of

the characteristic nature of the boundary; see section 4.1 (Proposition 4.1.1) of [1], also

[7, 15].

The boundary spaces Hs
η(Γ

T
j ) can be similarly defined with

ΓT
j = {x;x = j}

⋂
{t; t < T}, (j = 0, 1).

As with the standard Sobolev space, there are also similar embedding and trace results

for the space Hs
η(ω

T ); see also section 4.1 (Proposition 4.1.2) of [1].

At the boundary x = 0, the matrix ˜̃A1 in (4.2) is independent of φ̃+ψ and is uniformly

characteristic because the approximate solution Ũ satisfies the boundary condition (3.7)

accurately. Therefore, the linear problem (4.9) near x = 0 is a standard boundary value

problem for symmetric hyperbolic system with uniform characteristic boundary. It is

well known that near the boundary x = 0, the solution V̇ of (4.9) satisfies the energy

estimate

η‖ϕ0V̇ ‖2Hs
η(ω

T ) ≤
Cs

η
‖f‖2Hs

η(ω
T ), (4.11)

where ϕ0(x) is a smooth function with ϕ0(x) = 1 near x = 0 and ϕ0(x) = 0 near x = 1.

The estimate (4.11) can be established first for the tangential derivatives

Ds
xV̇ , ∂yV̇ , ∂zV̇

as in [7]. Then the estimate for the normal derivative ∂xV̇ can be recovered through

interior equation, taking advantage of the uniformly characteristic boundary condition

at x = 0 as in [1, 15], even though with a loss of order in regularity.
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Near the shock boundary x = 1, it is shown in [13] that the solution (V̇ , ψ̇) of (4.9)

exists and satisfies the energy estimate

η‖ϕ1V̇ ‖2Hs
η(ω

T ) + ‖V̇ ‖2
Hs

η(Γ
T
1 )

+ ‖ψ̇‖2
Hs+1

η (ΓT
1 )

≤ Cs

(
1

η
‖f‖2Hs

η(ω
T ) + ‖g‖2

Hs
η(Γ

T
1 )

)
,

(4.12)

where ϕ1(x) is a smooth function with ϕ1(x) = 0 near x = 0 and ϕ1(x) = 1 near x = 1.

The energy estimate (4.12) is derived following the same method as in [13] by microlo-

cal analysis, with minor modification as in [2]. It is briefly described as follows.

From (4.4), the boundary condition on x = 1 in (4.9) is

B
(1)(V, ψ)(V̇ , ψ̇) = β(1)(Ũ , V )ψ̇ +M (1)(Ũ , V, φ̃)V̇ = g. (4.13)

Let (s = η + iσ, iω1, iω2) be the dual variables of (t, y, z). β(1)(Ũ , V ) is a first order

overdetermined linear differential operator on ψ̇ with system symbol b0s+ b1iω1+ b2iω2.

Under the assumption (A) in the Theorem 1.1, we have

b0s+ b1iω1 + b2iω2 �= 0 (4.14)

on the unit circle of the dual space

|s|2 + |ω1|2 + |ω2|2 = 1 with η ≥ 0.

Let P (s, ω1, ω2) be the projection in the 5-dimensional space onto the direction of

b0s+b1iω1+b2iω2, and let Π(D) be the 0-order pseudo-differential operator with symbol

P (s, ω1, ω2). Then the boundary condition (4.13) can be rewritten, omitting the lower

order terms, into two parts:{
Π(D)β(1)(Ũ , V )ψ̇ = g1,

(I −Π(D))M (1)(Ũ , V, φ̃)V̇ = g2.
(4.15)

Therefore the first part of (4.15) yields the estimate for ‖ψ̇‖2
Hs+1

η (ΓT
1 )

in (4.12).

The second part of (4.15) consists of the boundary condition for V̇ in the interior

equations in (4.9): {
L(V, ψ)V̇ = f, x < 1,

(I −Π(D))M (1)(Ũ , V, φ̃)V̇ = g2 on x = 0.
(4.16)

Here in (4.16), we have omitted the lower order terms containing ψ̇. Again, the as-

sumption (A) in the Theorem 1.1 implies the boundary value problem (4.16) satisfies the

uniform Lopatinski condition in [9]. Therefore one can obtain the estimate for

‖ϕ1V̇ ‖2Hs
η(ω

T ) + ‖V̇ ‖2Hs
η(Γ

T
1 ).

For more details, see section 4 of [13], also [2].

Using the usual localization technique, we can combine the two energy estimates in

(4.11) and (4.12) to obtain an energy estimate for the solution (V̇ , ψ̇) of (4.9) throughout
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the domain ωT :
η‖V̇ ‖2Hs

η(ω
T ) + ‖V̇ ‖2

Hs
η(Γ

T
1 )

+ ‖ψ̇‖2
Hs+1

η (ωT )

≤ Cs

(
1

η
‖f‖2Hs

η(ω
T ) + ‖g‖2

Hs
η(Γ

T
1 )

)
.

(4.17)

With the energy estimate (4.17), we can use the standard dual argument to establish

the existence of the solution (V̇ , ψ̇) of (4.9) with specified regularity.

In summary, we obtained the following

Lemma 4.1. For s ≥ 5, there exists a constant δ > 0 such that

∀(V, ψ) ∈ Hs
η(ω

T )×Hs
η(Γ

T
1 ) and

η‖V̇ ‖2Hs
η(ω

T ) + ‖V̇ ‖2Hs
η(Γ

T
1 ) + ‖ψ̇‖2

Hs+1
η (ΓT

1 )
≤ δ,

the linear problem (4.9), for every (f, g) ∈ Hs
η(ω

T ) × Hs
η(Γ

T
1 ), there exists a unique

solution (V̇ , ψ̇) ∈ Hs
η(ω

T )×Hs
η(Γ

T
1 ), satisfying the energy estimate (4.17).

In addition, the constant Cs in (4.17) depends only upon δ and is independent of

specific (V, ψ).

5. Linear iteration and existence of solution. We are now ready to use linear

iteration to establish the existence of solution for the problem (4.8). In particular, one

notices that in the energy estimate (4.17), the order of regularity is the same for (V̇ , ψ̇)

and for (f, g). So the standard iteration can be used instead of the more sophisticated

Nash-Moser iteration.

Let (V0, φ0) = (0, 0) and (Vn, φn) (n = 1, 2, · · · ) be the solution of the following linear

boundary value problem:⎧⎪⎪⎨
⎪⎪⎩

L(Vn−1, ψn−1)(Vn, ψn) = f, 0 < x < 1,

B
(0)Vn = 0, x = 0,

B
(1)(Vn−1, ψn−1)(Vn, ψn) = g, x = 1.

(5.1)

Here, we drop the initial condition in (5.1) because it is automatically satisfied for solu-

tions (Vn, ψn) ∈ Hs
η(ω

T )×Hs
η(Γ

T
1 ).

From Lemma 4.1, we have the following

Lemma 5.1. ∀s ≥ 5, assume that

‖Vn−1‖2Hs
η(ω

T ) + ‖Vn−1‖2Hs
η(Γ

T
1 ) + ‖ψn−1‖2Hs+1

η (ΓT
1 )

≤ δ, (5.2)

there exists a unique solution (Vn, ψn) of (5.1), satisfying

η‖Vn‖2Hs
η(ω

T ) + ‖Vn‖2Hs
η(Γ

T
1 )

+ ‖ψn‖2Hs+1
η (ΓT

1 )

≤ Cs

(
1

η
‖f‖2Hs

η(ω
T ) + ‖g‖2

Hs
η(Γ

T
1 )

)
.

(5.3)

Here, the constant Cs depends upon s and δ, but independent of the (Vn−1, ψn−1).

Now we need only to show that the sequence (Vn, ψn) is well-defined for some fixed T

and it is also convergent in an appropriate norm.
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Lemma 5.2. ∃T with −T  1 such that for all n = 0, 1, 2, · · · , we have

‖Vn‖2Hs
η(ω

T ) + ‖Vn‖2Hs
η(Γ

T
1 ) + ‖ψn‖2Hs+1

η (ΓT
1 )

≤ δ, (5.4)

Proof. By (4.1), f = −L (Ũ , φ̃) and g = −B(1)(Ũ , φ̃). Because (Ũ , φ̃) is an approxi-

mate solution of infinite order in Theorem 2.1, this implies that for any fixed s,

lim
T→−∞

(
‖f‖2Hs

η(ω
T ) + ‖g‖2Hs

η(Γ
T
1 )

)
= 0.

Choose −T  1 such that (
‖f‖2Hs

η(ω
T ) + ‖g‖2Hs

η(Γ
T
1 )

)
≤ δ

Cs
. (5.5)

Combining (5.5) and (5.3) in Lemma 5.1 yields that (5.4) is satisfied for n, hence the

sequence (Vn, ψn) is well-defined for such T .

Lemma 5.3. The sequence (Vn, ψn) is convergent in the space Hs
η(ω

T )×Hs
η(Γ

T
1 ) to the

solution (V, ψ) of (4.8).

Proof. From Lemma 5.2, it is already known that the sequence (Vn, ψn) is uniformly

bounded in the space Hs
η(ω

T ) × Hs
η(Γ

T
1 ). By the Banach-Saks Theorem, we need only

to show that (Vn, ψn) is convergent in the space H0
η (ω

T )×H0
η (Γ

T
1 ).

Let

(V̇n, ψ̇n) = (Vn+1 − Vn, ψn+1 − ψn), n = 0, 1, 2, · · · .

Then (V̇n, ψ̇n) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(Vn, ψn)(V̇n, ψ̇n)

= [L(Vn−1, ψn−1)− L(Vn, ψn)](Vn, ψn), 0 < x < 1,

B
(0)V̇n = 0, x = 0,

B
(1)(Vn,ψn)(V̇n, ψ̇n)

= [B(1)(Vn−1,ψn−1)−B(1)(Vn,ψn)](Vn, ψn), x = 1.

(5.6)

Applying the estimate (4.17) and Lemma 4.1 with s = 0 to the problem (5.6), we have

η‖V̇n‖2H0
η(ω

T ) + ‖V̇n‖2H0
η(Γ

T
1 )

+ ‖ψ̇n‖2H1
η(Γ

T
1 )

≤ C ′
s|||(V̇n−1, ψ̇n−1)|||20 |||(Vn, ψn)|||2s.

(5.7)

Here,

|||(Vn, ψn)|||2s ≡ ‖Vn‖2Hs
η(ω

T ) + ‖Vn‖2Hs
η(Γ

T
1 ) + ‖ψn‖2Hs

η(Γ
T
1 ).

For sufficiently small δ, (5.7) implies that the sequence (V̇n, ψ̇n) is contracting and

hence the sequence (Vn, ψn) converges in H0
η (ω

T )×H0
η (Γ

T
1 ). This concludes the proof of

the existence of solution.
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