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Abstract. The longstanding problems of the linear stability of plane Couette flow

and circular pipe flow (to axisymmetric disturbances) are solved by operator theory. It

is shown simply that both are stable for all Reynolds numbers and wave numbers. The

proof is based on the von Neumann extension of a semi-bounded symmetric operator and

the notion of a square root of an unbounded positive definite selfadjoint operator. The

use of the latter operator representation is new for this type of hydrodynamic stability

problem. It is made clear how the method will apply in other problems with a similar

structure such as the planar stability of Couette flow between rotating coaxial cylinders

and parabolic Poiseuille flow.

1. Introduction.

1.1. Hydrodynamic stability. The theory of hydrodynamic stability has played an im-

portant role in Applied Mathematics for over a century. It is noteworthy that for the

Semicentennial of the American Mathematical Society in 1938, there was only one ad-

dress on applications, and that was by J. L. Synge, where the following outstanding

challenges to mathematicians in the field was given:

“(i) A simple proof, not involving elaborate computation that plane Couette motion

is stable under all circumstances. (ii) The establishment of some inequality defining a

condition under which Poiseuille motion in a tube of circular section is unstable.” The

purpose of this article is to present an outline of a unified solution of these problems

in the sense that I believe Synge intended. In that they all possess a universal linear

stability property they fit this approach.

In the course of his historic presentation to the A.M.S., Synge [26] considered a num-

ber of flow problems. They involved (what are now called) Taylor-Couette flow, pipe

Poiseuille flow, plane Couette flow and plane Poiseuille flow. In the intervening years

the literature concerning these problems has grown steadily ([25],[13],[6]). Many of the
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questions being asked and answered now are more sophisticated than those outlined by

Synge. Indeed, his notion of stability concerned infinitesimal disturbances. Consequently,

the governing stability equations he derived are linear. Nevertheless, every succeeding

nonlinear theory has relied on the linearized disturbance equations. Problems (i) and

(ii) have been attacked by numerical and analytical methods. Synge [26, Sections 10, 11]

reports on attempts by von Mises and by Hopf on problem (i) and by Sexl on problem

(ii). All numerical calculations indicated linear stability. Another early analytical attack

on problem (ii) was made by Pekeris [19]. However, the results were inconclusive. A

more recent analytical solution to problem (i) is that of Romanov [21]. A combination

of functional analysis and asymptotic methods were employed, but application of that

method to pipe flow has not been successful. There is another problem, (iii) the stability

of Couette flow to plane disturbances [2], which can also be solved by the method to be

presented here. Synge [26] discussed this problem but did not directly compare it to (i)

and (ii). However, later workers have noticed the similarity in structure [6, p.103]. Yet

another problem (iv), the stability of parabolic Poiseuille flow [11, § 22], may also be

solved in this way.

The use of operator methods in problems of hydrodynamic stability emerged in the

1960s ([5], [4]). These papers were the inspiration for much of my previous work on these

problems. It was possible to further the analysis of the underlying operators. However,

the proofs of stability advanced earlier ([7],[8],[2]) were incomplete. The introduction

of the square root operator unifies and cinches the proofs. In the next section are the

derivations of problems (i), (ii) and (iii). The origin of problem (iv) is given in section

3.1.

2. Derivations. The governing equations are the Navier-Stokes equations for incom-

pressible flow [10], with velocity u =(u, v, w) = u (x,t) , pressure p, x = (x1, x2, x3) :

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u,

which reflect Newton’s second law. Sometimes these are called the momentum equations.

Constant density ρ, kinematic viscosity ν, are parameters in the equation and continuity,

conservation of mass gives

∇ · u = 0,

so the velocity field is solenoidal on some region D. The relevant boundary conditions

are no-slip, that is, u = u0 on ∂D. Another important dynamic variable is vorticity,

ω = ∇× u.

Taking the curl of the momentum equations eliminates pressure:

∂ω

∂t
+ u · ∇ω − ω · ∇u = ν∇2ω.

However, no boundary conditions are available on vorticity in general. The flows whose

stability are to be studied are special. They are unidirectional u0 = U0 ı̂, or they have

constant vorticity ω = ω0k̂.
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2.1. Exact special solutions. (i) Channel flow [10]. Envision an infinitely long two-

dimensional channel whose parallel walls are separated by a distance h. Suppose one

wall moves with a constant velocity U0 in the x−direction, while the other is fixed. A

steady flow is sought with u = (u (y) , 0, 0) . The pressure is assumed to depend on x only,

with a constant gradient. The only nonzero component of the momentum equations is

therefore:

0 = −1

ρ

dp

dx
+

1

ν

∂2u

∂y2
.

Take u(0) = 0, u (h) = U0 giving

ū =
U0y

h
− dp

dx

yh

ρν

(
1− y

h

)
.

This is called combined plane Poiseuille-Couette flow. When U0 = 0, plane Poiseuille

flow results.

If dp/dx = 0, then plane Couette flow results which is sometimes called a uniform

shear flow, and has the property that its vorticity is constant

ω̄ = − (U0/h) k̂.

See Fig. (i) in Fig. 1, taken from [9]. It is plane Couette flow to which the subsequent

analysis applies because then U ′′ ≡ 0.

The flow may be suitably nondimensionalized taking R = U0h/ν as the Reynolds

number and the spatial interval is scaled to 0 ≤ y ≤ 1.

(ii) Circular pipe flow [10]. Here the ideal problem in cylindrical coordinates (r, θ, z)

is an infinitely long pipe with a constant pressure gradient dp/dz along the pipe, fluid

velocity u = (u, v, w). Assuming its radius to be b, the governing equations for the steady

laminar velocity are

0 = −1

ρ

dp

dz
+ ν

(
∂2w̄

∂r2
+

1

r

∂w̄

∂r

)
with w̄ finite at r = 0 and w̄ (b) = 0 to give

w̄ = − 1

4ρν

dp

dz

(
b2 − r2

)
≡ wmax

(
1− r2/b2

)
.

The maximum of this parabolic velocity profile on the axis r = 0 is

wmax = −b2 (dp/dz) /4ρν.

In this unidirectional flow, the basic vorticity is

ω̄ =

(
2wmax

b2

)
r̂ıθ.

The flow may be suitably nondimensionalized taking R = wmax b/ν as the Reynolds

number and the radial interval is scaled to 0 < r ≤ 1. Here the analysis to be developed

applies because
(
1
rU

′)′ ≡ 0 [6, §31.2].

(iii) Couette flow between rotating cylinders [10]. Steady laminar flow between in-

finitely long concentric rotating cylinders is described in cylindrical coordinates (r, θ, z).
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Fig. 1. Flow geometry [9].

The velocity field is (u, v, w) where a circumferential field is sought with u = w = 0 and

v = v̄(r). The momentum equations reduce to

v̄2

r
=

1

ρ

dp

dr
: radial direction,

d2v̄

dr2
+

d

dr

( v̄

r

)
= 0: circumferential direction.

Boundary conditions are again no-slip

v̄ (a) = aΩ1, v̄ (b) = bΩ2.
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The solution for v̄ is

v̄ =
1

r

(
Ω1 − Ω2

a−2 − b−2

)
+ r

(
Ω1a

2 − Ω2b
2

a2 − b2

)
= rΩ̄ (r) .

This flow also has the constant vorticity property. That is,

ω̄ = 2

(
Ω1a

2 − Ω2b
2

a2 − b2

)
k̂.

See Fig. (ii) in Fig. 1, taken from [9]. Here the analysis to be developed applies because(
r3Ω̄′)′ ≡ 0 [6, §17.2].
The flow may be suitably nondimensionalized taking R = |Ω2| b2/ν as the Reynolds

number and the radial interval is scaled to η ≤ r ≤ 1, where η = a/b. Other choices of

length scale and Reynolds number may be found in the literature [3], to account for one

or the other of the cylinders to be fixed.

2.2. The instability problems. There is an important transformation, due to Squire

[24], which shows that the most unstable linear perturbation to plane Couette flow is

two-dimensional (2-D), rather than three-dimensional (3-D). Consequently, linear stabil-

ity of plane Couette flow to 2-D disturbances implies linear stability to 3-D disturbances.

Squire’s transformation is only successful in Cartesian coordinates. No such transforma-

tion holds for circular pipe flow or for Couette flow, since a cylindrical geometry applies

in these two problems. Therefore, the assumption of axisymmetric disturbances is a

crucial one, made at the beginning of the analysis of pipe flow. A complete analytical

resolution of the three-dimensional, nonaxisymmetric stability problem for circular pipe

flow remains open.

Because of Squire’s result in the case of plane parallel flows, Drazin and Reid [6] for

instance, argue that the vorticity equation in terms of the stream function is sufficient

to derive the disturbance equation. A traveling wave perturbation is assumed to be

of the form φeiα(x−ct), and terms quadratic in φ are ignored, so the resulting ordinary

differential equation is

M∗Mφ+ ikUMφ = −σMφ, (2.1)

whereM is a second order ordinary differential operator with four homogeneous boundary

conditions, so that it is symmetric and positive definite; M∗ the adjoint of M , has no

boundary conditions. This is because the adjoint is constructed, with a suitable inner

product, using integration by parts. Since enough boundary conditions apply to the

operator M , none are needed to define M∗. The constant k = αR is the product of the

wave number α and the Reynolds number R. The eigenvalue σ = −ikc also depends on

the (complex) wave speed c [6, §25]. The flow is said to be (linearly) stable if Re(σ) < 0.

Hence for problem (i) [7], u0 = yı̂,

Mφ = −d2φ

dy2
+ α2φ, 0 < y < 1, (2.2)

φ(0) = φ
′
(0) = φ(1) = φ

′
(1) = 0. (2.3)

The function Mφ ≡ ζ represents the disturbance vorticity in this formulation but as was

indicated earlier, it satisfies no simple boundary conditions.
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The inner product is

〈ϕ, χ〉 =
∫ 1

0

ϕ(y)χ̄(y)dy, ϕ, χ ∈ H, (2.4)

where

H =

{
ϕ

∣∣∣∣
∫ 1

0

|ϕ|2 dy
}

< ∞.

In the case of circular pipe flow, an axisymmetric wave perturbation is assumed of the

form φeiα(z−ct). So for problem (ii) [8],

u0 = (1− r2)k̂,

Mφ = −r
d

dr

(
1

r

dφ

dr

)
+ α2φ, 0 < r < 1, (2.5)

lim
r→0+

φ

r
,
φ

′

r
finite, φ(1) = φ

′
(1) = 0. (2.6)

The inner product is

〈ϕ, χ〉 =
∫ 1

0+
r−1ϕ(r)χ̄(r)dr, ϕ, χ ∈ H, (2.7)

where

H =

{
ϕ

∣∣∣∣
∫ 1

0+
r−1 |ϕ|2 dr

}
< ∞. (2.8)

Problem (iii) [2], is similar to problems (i) and (ii), the basic flow being circumferential

rather than axial. Nevertheless, an equation like (2.1) also occurs. In this case the

equation reads

M∗Mφ+ inRΩMφ = −σMφ, (2.9)

where

Mφ = −1

r

d

dr

(
r
dφ

dr

)
+

n2

r2
φ, 0 < η < r < 1, (2.10)

φ(η) = φ
′
(η) = φ(1) = φ

′
(1) = 0, (2.11)

from a Fourier decomposition of the form φein(θ−ct) with u0 = (A+ B/r2)̂ıθ = rΩ(r)̂ıθ.

Here Ω is the nondimensional angular velocity of the basic flow. The domains are con-

tained in H, where

H =

{
φ

∣∣∣∣
∫ 1

η

r |φ|2 dr
}

< ∞,

with inner product

〈φ, χ〉 =
∫ 1

η

rφ(r)χ̄(r)dr, φ, χ ∈ H.

In order to obtain the resolution of these problems, the Hilbert space adjoint of (2.1)

is employed, by introducing the appropriate inner product 〈·, ·〉 for each. The norm ‖·‖
in this inner product is given by 〈φ, φ〉 = ‖φ‖2 . The adjoint equation to (2.1) is therefore

M∗Mχ− ikM(Uχ) = −σ̄Mχ. (2.12)
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Owing to the fact that (2.12) has only three terms, the approach will be to connect the

real part of the spectrum with the first term, which contains a positive definite operator,

and show that the second term only contributes to the imaginary part of the spectrum, no

matter the form for U. Of course this will not be true for the Orr-Sommerfeld equation in

general or its cylindrical counterparts, but only for the special flows we are considering.1

Still, a more detailed analysis is necessary to show that the fourth order differential

operator acting on χ has a special structure of its own, due to the fact that the other

two terms in (2.12) lie in the range of M, which we will abbreviate as rngM .

First, a more abstract approach is taken based on work of von Neumann which re-

markably, had already appeared at the time of the Synge challenge.

2.3. The von Neumann operator. The symmetric (but not selfadjoint) operator M

is bounded below or semi-bounded since there is a real number b such that 〈Mφ,φ〉 ≥
b ‖φ‖2 , for every φ ∈ dmnM. In his classic paper of 1929 ([17], [1]), von Neumann proved

the following theorem which holds for the operator M in each of the stability problems.

Theorem: (von Neumann) A semi-bounded symmetric operator M in a Hilbert space

H, with lower bound b , has a selfadjoint extension M̃ with lower bound not smaller than

an arbitrarily pre-assigned number b′ < b.

In order to prove linear stability, use will be made of the von Neumann extension. We

have developed an equivalent representation in earlier studies for problem (i) in [7], for

problem (ii) in ([7],[8]), and for problem (iii) in [2]. To complete the proof we need the

following two lemmas. The lemmas generalize and unify the approaches in ([7], [8], [2]).

Lemma 1. Suppose M is a closed symmetric operator in a Hilbert space H, positive

bounded below with bound b, and with closed range. Then M has a unique closed

adjoint M∗, with closed range [12].

Define an operator M̂ with domain

dmn M̂ = {ψ ∈ dmnM∗ | M∗ψ⊥ nulM∗} (2.13)

such that

M̂ψ = M∗ψ, ψ ∈ dmn M̂. (2.14)

Then M̂ is a selfadjoint extension of M and

〈M̂ψ, ψ〉 ≥ 0, ψ ∈ dmn M̂.

Proof. Since M has closed range,

H = rngM ⊕ nulM∗.

By (2.13) and (2.14), M̂ is a restriction of M∗, nul M̂ = nulM∗, and rng M̂ = rngM .

But M̂ is also an extension of M , since ψ ∈ dmnM ⇒ Mψ⊥ nulM∗, so that ψ ∈ dmn M̂.

It is also evident that M̂ is selfadjoint since

H = rng M̂ ⊕ nul M̂.

1In fact for the case of plane Poiseuille flow, already described, U ′′ �≡ 0, and this term makes a
crucially significant contribution to the instability.
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The fact that M̂ is positive semi-definite follows since if ψ ∈ dmn M̂ , M̂ψ = Mφ, for

some φ ∈ dmnM . Moreover, ψ = φ+ f , for some f ∈ nulM∗. Then

〈M̂ψ, ψ〉 = 〈Mφ,φ+ f〉 = 〈Mφ,φ〉 ≥ b ‖ φ ‖2 .

However, f ∈ dmnM̂ , so if φ = 0, 〈M̂ψ, ψ〉 = 0. �

Lemma 2. The operator M̃ in von Neumann’s theorem is equivalent to the operator M̂

in Lemma 1.

Proof. The von Neumann extension M̃ was defined by him as

M̃ψ = M∗ψ, ψ ∈ dmn M̃,

where

dmn M̃ = dmnM ⊕ nulM∗.

Suppose ψ ∈ dmn M̃ ; then

ψ = h+ f

for some h ∈ dmnM and some f ∈ nulM∗.

M̃ψ = M∗ψ = M∗(h+ f) = Mh ∈ rngM.

Consequently M̃ψ⊥ nulM∗. Conversely, suppose ψ ∈ dmn M̂ ; then

M̂ψ = M∗ψ and M∗ψ⊥ nulM∗.

Then M∗ψ ∈ rngM , so M∗ψ = Mh for some h ∈ dmnM . Thus M∗(ψ − h) = 0 ⇒
ψ − h = f for some f ∈ nulM∗ and

ψ = h+ f.

Moreover this representation is unique. If

M∗ψ = Mh1 = Mh2 ⇒ M(h1 − h2) = 0.

However, M is positive definite so h1 − h2 = 0. The choice of f must also be unique,

otherwise ψ − f = h is not unique. �
2.4. Operator square root. For the operator M of Lemma 1, the operator Ls = M∗M

is well defined [12, Chapter V]. Name the positive square root as

Ms = L1/2
s = (M∗M)1/2 . (2.15)

Known results on the structure of this operator:

(a) ([22], [27]):

dmnMs = dmnM.

(b) ([22], [27]): There exists a bounded operator P on rngMs, that extends to H such

that

Mφ = PMsφ, φ ∈ dmnM. (2.16)

(c) [27]: Owing to no-slip boundary conditions, we have the identity

〈φ, Lsφ〉 = ‖Mφ‖2 , ∀φ ∈ dmnLs,

which ensures that the operator P is partially isometric [12], that is, P ∗ = P−1 on rngM

and hence extends to H.
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The partial isometry is summarized as

P ∗P = I, PP ∗ = E, (2.17)

the orthogonal projection on rngM .

Consequently, with (2.17),

‖P‖ = 1, ‖P ∗‖ = 1.

Define

P = I +B, P ∗ = I + S, B∗ = S. (2.18)

That Ms is positive definite also permits the definition of its inverse:

M−1
s = M†P, (2.19)

where M† is the generalized inverse of M [14], [7]. That is, M†M = I, while MM† =

E = I −Q, where Q is the orthogonal projection on nulM∗.

2.5. Illustrations. Plane Couette flow. We present the forms for the relevant opera-

tors in the case of problem (i), plane Couette flow. The operator M̂ originally introduced

in ([7]) is given as

M̂φ = −d2φ

dy2
+ α2φ, 0 < y < 1, (2.20)

with boundary conditions:

α coshαφ(1)− sinhαφ
′
(1)− αφ(0) = 0, (2.21)

α sinhαφ(1)− coshαφ
′
(1) + φ

′
(0) = 0. (2.22)

Next, illustrate the structure of the square root, where (2.2)

Lsφ = M∗Mφ = (−D2 + α2)2φ

and (2.3) hold. As described by Russell [22], we may construct the operators Ms and P

from the eigenfunctions of

Lsφ = λφ.

We note that the eigenvalues are all positive and λk > α4, k = 1, 2, 3, . . . because

λ = 〈Lsφ, φ〉 / ‖φ‖2 = (‖φ′′‖2 + 2α2 ‖φ′‖)/ ‖φ‖2 + α4. (2.23)

The eigenfunctions for this problem are given by

φk (y) = c1 (coshβy − cos γy) + c2

(
sinh βy

β
− sin γy

γ

)
, (2.24)

which clearly satisfy the conditions at y = 0 and to satisfy those at y = 1 find√
λ− α4 (1− coshβ cos γ) + α2 sinh β sin γ = 0, (2.25)

where

λ = ω4, β =
√
α2 + ω2, γ =

√
ω2 − α2.

The roots of (2.25) determine the eigenvalues λk = ω4
k.

Call Mφk ≡ ω2
kψk. Define L

1/2
s = Ms by

Msφk = ω2
kφk, k = 1, 2, . . . (2.26)
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The eigenfunctions are used to construct P = I +B by setting

(Bφk) (y) = −2(c′1 cosh βky + c′2 sinhβky) ≡ θk(y)

and so Pφk = ψk. Since the eigenfunctions φk form an orthonormal basis for H = L
2 [0, 1] ,

then ([22, sec. 5])

(Bw) (y) =

∞∑
k=1

〈w, φk〉θk(y)

=

∫ 1

0

( ∞∑
k=1

θk(y)φk(z)

)
w(z)dz

≡
∫ 1

0

b (y, z)w(z)dz.

The series defining the kernel converges for 0 < y < 1. The convergence is also discussed

thoroughly in [27].

So for w ∈ dmnMs = dmnM

(Mw) (y) = (Msw) (y) +

∫ 1

0

b (y, z) (Msw) (z)dz

=

∫ 1

0

( ∞∑
k=1

ψk(y)φk(z)

)
(Msw) (z)dz

≡ (PMs)w.

Also important is the representation for P ∗; similarly, on rngP = rngM . Since P is

partially isometric: P ∗P = I. It operates as, for w ∈ dmnM, P ∗ = I + S,

(Msw) (y) =

∫ 1

0

( ∞∑
k=1

φk(y)ψk(z)

)
(Mw) (z)dz

= (Mw) (y) +

∫ 1

0

( ∞∑
k=1

φk(y)θk(z)

)
(Mw) (z)dz

= (Mw) (y) +

∫ 1

0

s (y, z) (Mw) (z)dz

≡ (P ∗M)w(y).

We observe that, as expected, Ms is positive definite:

〈Msw,w〉 =
∫ 1

0

∫ 1

0

( ∞∑
k=1

φk(y)ψk(z)

)
(Mw) (z)w(y)dzdy

=

∫ 1

0

∫ 1

0

( ∞∑
k=1

ω2
kφk(y)φk(z)

)
w(z)w(y)dzdy

=
∞∑
k=1

[ωk〈w, φk〉]2 .

We are able to conclude that

〈Msw,w〉 ≥ ω2
1 ‖w‖

2
. (2.27)
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Circular pipe flow. The structure of M for circular pipe flow (2.5)-(2.6) is analyzed

in detail in an earlier article [8]. The situation is more involved technically, owing to the

fact that the problem is singular at r = 0. There proof is provided that the hypotheses

of Lemma 1 are met. The existence of M̂ is derived, so that Lemma 2 is proved to hold

for that case. The operator M̂ is shown to be given as

M̂φ = −r
d

dr

(
1

r

dφ

dr

)
+ α2φ, 0 < r < 1,

and boundary conditions

lim
r→0+

φ

r
finite, −φ

′
(1)I1 (α) + φ(1)αI0 (α) = 0,

with the modified Bessel functions of orders 0, 1: I0 (α) , I1 (α).

However, the proof of the stability of pipe flow given in that article is flawed. Knowl-

edge of the square root of Ls = M∗M introduced here, removes the flaw. It is clear that

Bessel functions will be needed to solve Lsφ = λφ explicitly and display the structure

of the operators P and P ∗. Importantly, we do have the results that because P is only

partially isometric, PP ∗ = E where E is the orthogonal projection on rngM, that is,

E = I −Q,

with Q the orthogonal projection on nulM∗. So it was previously shown [7] for the pipe

flow problem to be defined explicitly as

(Qχ) (r) =

∫ 1

0+
gQ(r, s)s

−1χ (s) ds,

χ ∈ H, where

gQ (r, s) = rI1 (αr)

{∫ 1

0+
s [I1 (αs)]

2 ds

}−1

sI1 (αs) .

It is possible to provide the following indications of where the spectral parameters needed

lie. We begin with (2.5)-(2.6):

Lsφ = M∗Mφ =

(
−r

d

dr

(
1

r

d

dr

)
+ α2

)2

φ

and study

Lsφ = λφ.

We note that again the eigenvalues are all positive and λk > α4, k = 1, 2, 3, . . . because

λ = 〈Mφ,Mφ〉 / ‖φ‖2 =

(∥∥∥r (
r−1φ′)′∥∥∥2

+ 2α2 ‖φ′‖2
)
/ ‖φ‖2 + α4. (2.28)

Set

λ = ω4.

The eigenfunctions for this problem are given by

φk (y) = c1rI1 (βr) + c2rJ1 (γr) , (2.29)

with Bessel function J1, where

β =
√
α2 + ω2, γ =

√
ω2 − α2.
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The expression (2.29) satisfies the conditions (2.6) at r = 0 and to satisfy those at r = 1

find

γJ0 (γ) I1 (β)− βI0 (β)J1 (γ) = 0. (2.30)

The solutions of (2.30) determine the eigenvalues λk = ω4
k.

We may follow the same procedure as for the plane Couette flow operators to produce

the expressions for Ms, P and P ∗.

Again set Mφk ≡ ω2
kψk and define L

1/2
s = Ms by

Msφk = ω2
kφk, k = 1, 2, . . . . (2.31)

Here the eigenfunctions are used to construct P = I +B by setting

(Bφk) (r) = −2c1rI1(βr) ≡ θk(r)

with Pφk = ψk. Using expansions in (2.8) with (2.7),

(Bw) (r) =

∞∑
k=1

〈w, φk〉θk(r)

=

∫ 1

0+

( ∞∑
k=1

θk(r)φk(s)

)
w(s)s−1ds

≡
∫ 1

0+
b (r, s)w(s)s−1ds.

So for w ∈ dmnMs = dmnM

(Mw) (r) = (Msw) (r) +

∫ 1

0+
b (r, s) (Msw) (s)s

−1ds

=

∫ 1

0+

( ∞∑
k=1

ψk(r)φk(s)

)
(Msw) (s)s

−1ds

≡ (PMs)w.

In a similar manner to the plane Couette flow operator one can show that

(Msw) (r) =

∫ 1

0+

( ∞∑
k=1

φk(r)ψk(s)

)
(Mw) (s)s−1ds

≡ (P ∗M)w(r).

Hence

〈Msw,w〉 =
∫ 1

0+

∫ 1

0+

( ∞∑
k=1

φk(r)ψk(s)

)
(Mw) (s)w(s)s−1r−1dsdr

=

∫ 1

0+

∫ 1

0+

( ∞∑
k=1

ω2
kφk(r)φk(s)

)
w(s)w(r)s−1r−1dsdr

=

∞∑
k=1

[ωk〈w, φk〉]2 .

Importantly, once again

〈Msw,w〉 ≥ ω2
1 ‖w‖

2
. (2.32)
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2.6. Connection of the square root to the von Neumann operator. From our knowledge

of the operator properties, we now introduce a lemma which connects the von Neumann

operator to the square root for all of the problems.

Lemma 3. The operator M̂ has the representation

M̂ =
1

2
EMsP

∗ +
1

2
PMsE, (2.33)

where E = PP ∗ is the orthogonal projection on rngM = rng M̂ .

Proof. Based on (2.16), if ψ ∈ dmnM∗,

〈Mφ,ψ〉 = 〈PMsφ, ψ〉 = 〈φ,MsP
∗ψ〉 ≡ 〈φ,M∗ψ〉.

So we have that M∗ = MsP
∗. We see that as expected, M∗M = MsP

∗PMs = M2
s .

Suppose furthermore that ψ ∈ dmn M̂ . From Lemma 1,

M̂ψ = M∗ψ, ψ ∈ dmn M̂. (2.34)

Hence for such ψ, M̂ψ and PP ∗MsP
∗ψ = EMsP

∗ψ have the same range, because the

map P effects that M̂ψ⊥ nulM∗. Furthermore, because M̂ is selfadjoint we may write

M̂ψ =
1

2
EMsP

∗ψ +
1

2
PMsEψ, (2.35)

by taking the formal adjoint of EMsP
∗, for ψ ∈ dmn M̂ ∩ dmn (PMsE) .

We have thus found a representation of the operator M̂ in terms of Ms, which also

indicates a spectral difference between M̂ and Ms. �

3. Main result.

Theorem 1. (A) Plane Couette flow is linearly stable under all circumstances, that is,

for all wave numbers and Reynolds numbers. (B) Poiseuille flow in a tube of circular

cross section is linearly stable to axisymmetric disturbances for all wave numbers and

Reynolds numbers.

Proof. Suppose f ∈ nulM∗. Take the inner product of (2.12) with f to obtain:

〈M∗Mχ, f〉 = 0.

With Lemma 1, we see that the adjoint eigenfunctions also satisfy:

M̂Mχ− ikM(Uχ) = −σ̄Mχ. (3.1)

We have that, operating throughout with M† (section 2.4):

M†M̂Mχ− ikUχ = −σ̄χ. (3.2)

We make use of other information [7]. Though not invertible on H, M̂ has a generalized

inverse M̂† such that

M̂†M̂ = M̂M̂† = E = I −Q.

This also leads to

M̂†M = I −Q.
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Applying M̂† to (3.1) results in

Mχ− ik(I −Q)(Uχ) = −σ̄(I −Q)χ. (3.3)

So, operating on (3.2) with Q and adding the result to (3.3), obtain:

Mχ+QM†M̂Mχ− ikUχ = −σ̄χ. (3.4)

Employing Lemma 3, (3.4) becomes

Mχ+QM−1
s P ∗

(
1

2
EMsP

∗ +
1

2
PMsE

)
PMsχ− ik(Uχ) = −σ̄χ. (3.5)

Simplified this reduces to

Mχ+
1

2
QM−1

s P ∗M2
sχ− ikUχ = −σ̄χ. (3.6)

because nulM∗ ⊥ rngM. This suggests taking the inner product of (3.6) with χ :

〈PMsχ, χ〉+
1

2
〈QM−1

s P ∗M2
sχ, χ〉 − ik〈Uχ, χ〉 = −σ̄〈χ, χ〉. (3.7)

By equating real and imaginary parts, noting that ‖P‖ = 1, ‖P ∗‖ = 1 and ‖Q‖ = 1

Re(σ) = −
(
〈PMsχ, χ〉+

1

2
Re〈QM−1

s P ∗M2
sχ, χ〉

)
/〈χ, χ〉 < 0, (3.8)

which assures linear stability. �
3.1. Applications. Plane Couette flow. In keeping with the earlier illustrations, we

start by examining the case of problem (i) plane Couette flow.

First we examine when the Reynolds number R = 0. The advantage in this case is

that the eigenfunctions and eigenvalues may be found explicitly. The Orr-Sommerfeld

equation and its adjoint are both(
−D2 + α2

)2
χ = −σ

(
−D2 + α2

)
χ, 0 < y < 1, (3.9)

χ(0) = χ
′
(0) = χ(1) = χ

′
(1) = 0. (3.10)

By a calculation similar to (2.23), we can show that σ is real and −σ ≥ α2. The

eigenfunctions for this problem are given by

χk (y) = c1 (coshαy − cos γy) + c2

(
sinhαy

α
− sin γy

γ

)
,

clearly satisfying the boundary conditions at y = 0, and made to satisfy the boundary

conditions at y = 1. The eigenvalue relation in this case is

2αγ (1− coshα cos γ) +
(
α2 − γ2

)
sinhα sin γ = 0, (3.11)

where

γ =
√
−σ − α2.

In the special case where α = 1, we use a numerical root finder to obtain the lowest value

of −σ given by (3.11) to be 38.61. By comparison, the eigenvalue relation for Ms (2.25),

has a lowest value of ω2 given by 18.92. This shows the utility of the minimum (2.27) in

the bound (3.8).
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Next, when R �= 0, we have the results for the Orr-Sommerfeld equation [23, p. 67],

where a large number of modes, all stable, are displayed with the use of Squire’s transfor-

mation. In the notation of our work, when αR = 1000, with α =
√
2, the first eigenvalue,

which is complex, has −σr � 100. Using the numerical root finder for (2.25) one obtains

the lowest value of ω2 to be approximately 51.1. Once again, this signifies the spec-

tral difference implied by (3.8). This is suggestive of the efficacy of the analysis and is

indicative of what to expect numerically for pipe flow.

Circular pipe flow. For circular pipe flow, it is well known that Bessel functions

can be employed to analyze the stability. Sufficient conditions for linear stability have

been proved by these methods in the work of Pr̊uša [20]. There use was made of the

eigenvalue expansion of the Stokes problem

− 1

RΔu+∇p = λu, (3.12)

divu=0,

with no-slip boundary conditions on the pipe wall and axial periodicity 2π/α.

Of greatest interest for our work are the eigenvalues in the axisymmetric case. The Orr-

Sommerfeld type equation occurs through the introduction of the axisymmetric stream

function into (3.12) [6, § 31.2]. The comparison spectrum is thus given by the cylindrical

counterpart of (3.9) with σ = Rλ. The set of values for α = 1 gives −σ1 = 26.9. This

compares with the bound provided by (2.30): ω2
1 = 22.06.

Couette flow between rotating cylinders. It is readily seen that problem (iii),

the stability of Couette flow to plane disturbances, may be solved in the same way. It is

noteworthy that in (2.9), the directions of rotations of cylinders are arbitrary.

The detailed realizations of the operators M, M∗ and M̂ are discussed in [2]. There

Lemma 1 is proved for the operator M̂. The stability proof given there was flawed.

However, the introduction of the square root of M∗M advanced in this work, makes

it possible to complete the proof. An estimate similar to (2.28) applies. Consider then

M∗Mφ = λφ. We have with (2.10)-(2.11):

λ〈φ, φ〉 = 〈M∗Mφ,φ〉 = 〈Mφ,Mφ〉 =‖ Mφ ‖2≥ 〈Mφ,φ〉2/ ‖ φ ‖2

> n2〈Mφ,φ〉 > n4 ‖ φ ‖2 .

By the introduction of Bessel functions, the equation Lsφ = M∗Mφ = λφ may be solved

as indicated earlier. If the association λ = ω4 is made, the underlying eigenfunctions

are {Jn (ωr) , Yn(ωr), In (ωr) ,Knωr)}, much like (2.24). Also as before, operators Ms,

P and P ∗ may be constructed. The following may be therefore advanced.

Theorem 2. Couette flow between rotating coaxial cylinders, including cylinders ro-

tating in opposite directions, is linearly stable with respect to two-dimensional (planar)

disturbances.

Proof. The proof is the same as Theorem 1. �
Parabolic Poiseuille flow. Another flow to which the analysis may be shown to

apply quite easily, is parabolic Poiseuille flow, a special annular pipe flow [11, § 22], [15].

The basic flow under consideration occurs between two infinitely long coaxial circular
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pipes, with inner and outer radii a and b, respectively. The inner pipe also moves axially

with speed Wc. In cylindrical coordinates (r, θ, z), the velocity is

U = (0, 0, W(r)) ,

where

W(r) = Wc
ln(r/b)

ln(a/b)
− Pz

4νρ0

{
b2 − r2 − (b2 − a2)

ln(a/b)
ln

(r

b

)}
,

Pz is the (constant) pressure gradient, ρ0 is the density, and ν is the kinematic viscosity.

If

Wc = −Pz(b
2 − a2)

4νρ0
,

the flow is called parabolic Poiseuille flow. The result is that the basic flow has the same

parabolic form as circular pipe flow, but without the theoretical singularity at r = 0. So

when the linear stability analysis is carried out, the governing equation for axisymmetric

disturbances is the same as for circular pipe flow. The boundary conditions are then

no-slip at the inner and outer pipes. It follows that (3.8), universal linear stability to

axisymmetric disturbances, applies to parabolic Poiseuille flow.

4. Concluding remarks. It has been demonstrated how several classical hydro-

dynamic stability problems of fourth order have a common structure and method of

solution. These problems are essentially two-dimensional or axisymmetric. To the chal-

lenge of Synge: “...The establishment of some inequality defining a condition under which

Poiseuille motion in a tube of circular section is unstable...”, we have shown that to ax-

isymmetric perturbations, the inequality gives stability and that the analysis also applies

to parabolic Poiseuille flow. As a further indication of the connection between these two

problems, Maserumule [15] computed the eigenvalue spectrum for each and found that

for values of the ratio of the inner and outer radii between 0.01 and 10−6, the eigenvalues

(all stable) of parabolic Poiseuille approached those of circular pipe flow. To the other

extreme, as the radius ratio approaches 1, one might argue that plane Poiseuille flow

could be the result. However, because of the motion of the inner cylinder, a linear term

would likely occur in the profile and this would more closely resemble combined plane

Couette-Poiseuille flow, which is stabilized by a small component of plane Couette flow

[6, § 31.4].

Nowadays, the general three-dimensional pipe flow problem is treated numerically

routinely. For instance, it was examined in a thorough and definitive way by O’Sullivan

& Breuer [18] and by Meseguer & Trefethen [16]. Their calculations all indicate linear

stability. The analytical verification of this result by operator theory is still an open

problem.
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