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Abstract. We study the motion of the coupled system S constituted by a heavy rigid

body, B, with an interior cavity entirely filled with a Navier-Stokes liquid. We suppose

that B is constrained to move around a fixed and frictionless point, O, belonging to

one of the central axes of inertia, a, of S. We then show, in a very general class of

solutions, that the terminal motion of S must be a uniform rigid rotation around the

vertical axis, e, passing through O with a either parallel to e or, more generally, forming

a (constant) non-zero angle, in which case the angular velocity must be sufficiently large.

These results are in sharp contrast with the (classical) analogous ones when the cavity is

empty, and show a remarkable stabilizing influence exerted by the liquid on the motion

of B. In order to point out these compelling differences, we apply our results to the two

significant cases of the spherical pendulum and the heavy top. We show, among other

things, the somehow unexpected property that a (frictionless) spherical pendulum with

a cavity entirely filled with a viscous liquid may eventually reach the rest configuration

with its center of mass in the lowest position.

1. Introduction. Problems involving the motion of a rigid body with a cavity filled

with a viscous liquid are of fundamental interest in several applied areas of research,

including dynamics of flight [12, 30], space technology [1, 2], and geophysical problems

[27, 34].
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Besides its important role in physical and engineering disciplines, the motion of these

coupled systems generates a number of mathematical questions, which are intriguing

and challenging at the same time. They are principally due to the occurrence of different

and coexisting dynamic properties, such as the dissipative nature of the liquid, and the

conservative character of some components of the angular momentum of the coupled

system as a whole. Thus, it is not surprising that a plethora of mathematical works

has been devoted to the study of several fundamental aspects of the problem, beginning

with the early contributions of Stokes [35], Zhoukovski [41], Hough [11], and Sobolev [33]

to more recent papers [5, 16, 19, 20, 25, 29, 31, 32, 38–40] and comprehensive monographs

[4, 15, 24], to cite a few.1

However, it must be emphasized that, for the most part, the above authors perform

their analysis under a number of simplifying assumptions that may involve the shape

of the cavity, viscosity of the liquid and “smallness” of the motion, the latter possibly

leading to the disregard of significant non-linear effects. As a consequence, on the one

hand, the findings are rarely of an exact nature, and, on the other hand and more

importantly, these simplifications may induce one to overlook or even obscure certain

important physical aspects of the problem.

Also motivated by these considerations, over the past few years the first and second

author, jointly with their collaborators, have initiated a systematic rigorous study of the

motion of the coupled system, S, constituted by a rigid body with a liquid-filled cavity

[7–10,21,22]. In particular, in [8] a rather complete analysis of the inertial motions of S,
characterized by S moving in absence of external forces is furnished. The analysis shows,

among other things, that for very general distributions of mass and provided the initial

(kinetic) energy of S is finite, all corresponding motions of S about its center of mass

(in a quite large functional class) must eventually reduce to a uniform rotation around

one of the central axes of inertia of S. This shows, in particular, a stabilizing influence

of the liquid on the motion of the body.

The objective of the present paper is to continue and, to an extent, complement and

complete the analysis initiated in [8]. More precisely, we are interested in studying the

motion of S when subject to the action of gravity. We shall perform this investigation

assuming that S is constrained to move around a fixed (and frictionless) point O that

belongs to one of its central axes of inertia, a. The reason for this choice is two-fold. For

one thing, because this type of constrained motion is among the most studied in classical

rigid-body mechanics (e.g. [17]), and, for another thing, because it thus allows us to

compare our results with those when the cavity is liquid-empty. In doing this, we shall

prove that the presence of the liquid may dramatically change the terminal dynamics of

the body.

More specifically, in Sections 4 through 6 we begin to show that, for a very general

class of motions (solutions à la Leray-Hopf) and for initial conditions of arbitrary “size”,

S must eventually tend to a steady-state where S moves as a single rigid-body (i.e. the

liquid comes to a relative rest). The class of these rigid motions is characterized in

Theorem 4.7. Precisely, denoting by e the axis directed along the gravity and passing

1See also the vast bibliography reported therein.
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through O, the terminal motion will be a uniform rigid rotation around e with a either

parallel to e, or, more generally, forming with e a non-zero (constant) angle (steady

precession; see [37, Section 10.10]). However, the latter may occur only if the terminal

angular velocity is sufficiently large; see Proposition 6.3. The eventual rigid-body motion

attained by the whole system is then shown to depend on the mass distribution of the

system S and, in particular, its principal moments of inertia with respect to O; see

Theorem 6.4 and Remark 6.5.

If we compare the above results with the analogous, classical ones when the cavity is

liquid-empty and where the motion is generally “chaotic” at all times [17,18,26], we may

then conclude that the presence of the liquid has a strong stabilizing effect, also in the

presence of external forces. In order to analyze the latter in a more quantitative fashion,

we apply the general results to two significant particular cases, namely, the spherical

pendulum and the heavy top. In the first case (Section 7) we prove that, for a large class

of initial conditions, the terminal motion must be a uniform rotation with a parallel to e.

This is in sharp contrast with the case of an empty cavity where, as is well known, the

motion of the center of mass of the body is, in general, very complicated and not even

time-periodic; e.g. [26, Section 5.3]. Moreover, in some relevant instances, the uniform

rotation may also reduce to rest. More specifically, we show the somehow unexpected

property that a frictionless spherical pendulum, with a cavity filled with a viscous liquid,

may reach the rest configuration with its center of mass at its lowest point. Interestingly

enough, this is the same terminal state that the pendulum would reach when the cavity

is liquid-empty, and the pendulum moves in a viscous liquid ([36]).

Our second application (Section 8) regards the motion of a heavy hollow top with its

interior entirely filled with viscous liquid. There are no restrictions on the distribution

of mass in the body nor on the shape of the cavity, so that, in particular the top can

be asymmetric. We focus our attention on the stability (in the sense of Lyapunov) of

the steady-state motion, s0, when the coupled system S rotates, as a single rigid-body,

around a with constant angular velocity ω0, and a parallel to e. We first consider the

interesting situation where the center of mass, G, of S is (initially) above O. We then

show that if the moment of inertia of S along a, C, is greater than those along the other

two principal axes, say A and B, and ω0 is sufficiently large in the sense of (8.5), not only

is s0 stable but also that the terminal state must coincide with s0, namely, the top will

eventually return to rotate uniformly around e, with G above O; see part (a) in Theorem

8.2. This result needs some comments. In the first place, to our knowledge, it is the

first rigorous and non-linear treatment of this stability problem. Previous contributions,

in fact, either restrict their analysis to the stability of the rigid body only [24, 28], or

else investigate the behavior of the perturbation fields by neglecting non-linear effects

[16, 19, 20].2 In the second place, our findings are in stark contrast with the (classical)

analogous ones obtained when the top is liquid-empty. Actually, in such a case, under the

same condition (8.5) the axis a, already in the symmetric case, moves in a neighborhood

of e with the top performing an unsteady precession around e (e.g. [26, Chapter 8]),

2Since, to date, a “linearization principle” for the relevant system of equations is not known –and
likely, very difficult to prove, if at all– these results are of no avail in the non-linear context.
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whereas, as mentioned earlier, the presence of the liquid forces a to remain parallel to e,

thus exerting a substantial stabilizing influence regardless of the symmetry of the top.

On the other side, if ω0 is not sufficiently large, in the sense of (8.8), then s0 is unstable

and, in particular, there is an initial perturbation that will bring the top, eventually, to

perform a uniform rotation again with a parallel to e but with G in its lowest position

below O; see part (b) in Theorem 8.2. It is worth remarking that our instability condition

(8.8) is more stringent than that requested by the linearized theory [16], probably due

to the presence, in our analysis, of non-linear effects that are entirely disregarded in [16];

see also part (ii) in Remark 7. Finally, in parts (c) and (d) of Theorem 8.2 we provide

similar results when, in the unperturbed state s0, G is (initially) below O, under different

assumptions on the relative magnitude of A, B, and C.

The plan of the paper is the following. After recalling some classical notation in

Section 2, in Section 3 we state the formulation of the problem. In Section 4, we furnish

a full characterization of the set of admissible steady-state solutions, whereas in Section

5, we define the functional class within which we will study the generic motion of S.
This class, basically, is constituted by weak solutions à la Leray-Hopf. Furthermore,

we derive (formally) the important equations of energy balance and conservation of the

vertical component of the total angular momentum, KV . One important property is

to show that every weak solution becomes regular for sufficiently large times. This is

not completely obvious at the outset, since KV can be arbitrarily large at all times

and may possibly induce some turbulent features in the motion of the liquid. Following

the arguments of [8], in Proposition 5.5 we show, however, that this is not the case.

In Section 6 we study the asymptotic behavior of a generic weak solution by means of

classical tools from Dynamical Systems. More specifically, we give a full characterization

of the corresponding Ω-limit set (which may depend on the particular solution, due to

the lack of uniqueness) and show, in particular, that it is not empty and is contained

in the set of all possible steady-state solutions; see Proposition 6.3. In the subsequent

Theorem 6.4 we then show which of these steady-state solutions is indeed attained by S,
under very general assumptions on its distribution of mass. Significant applications of

these findings to the case of spherical pendulum and heavy top are then carried out in

Sections 7 and 8, respectively. The paper ends with an Appendix dedicated to the proof

of a Gronwall-like lemma and a simple stability result.

2. Basic notation. The notation we shall use throughout this paper is quite stan-

dard. By N we denote the set of positive integers, and by R that of real numbers, so

that R
3 is the Euclidean three-dimensional space. Also, S2 indicates the unit sphere

in R
3. Vectors in R

3 are denoted by boldfaced letters, and the canonical basis in R
3

by {e1, e2, e3}. The components of a vector v with respect to the canonical basis are

(v1, v2, v3), whereas |v| represents the magnitude of v.

Let O be an open set of R3. L2(O), andW k,2(O), W k,2
0 (O), denote the usual Lebesgue

and Sobolev spaces, with norms ‖·‖2 and ‖·‖k,2, respectively. Moreover, the usual inner

product in L2(O) will be indicated with (·, ·). We shall use the same symbol for spaces

of scalar, vector and tensor functions.
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For a bounded, Lipschitz domain, A, with outward unit normal n, we define

H(A) := {u ∈ L2(A) : divu = 0 and u · n|∂A = 0} ,

where divu and u · n|∂A are understood in the sense of distributions. We also set

D1,2
0 (A) := H(A) ∩W 1,2

0 (A).

If X is a Banach space with norm ‖·‖X , and I ⊂ R an interval, we denote by

Lq(I;X) (resp. W k,q(I;X), k ∈ N), the space of functions f from I to X such that(∫
I
‖f(t)‖qX dt

)1/q
< ∞ (resp.

∑k
�=0

(∫
I
‖∂�

tf(t)‖
q
X dt

)1/q
< ∞). Similarly, Ck(I;X)

indicates the space of functions which are k-times differentiable with values in X and

having maxt∈I‖∂�
t ·‖X < ∞, for all � = 0, 1, ..., k. Moreover, f ∈ Cw(I;X) iff the map

t ∈ I �→ φ(f(t)) ∈ R is continuous for all bounded linear functionals φ defined on X.

Finally, if X ≡ R
d, d ≥ 1, in the above notation we shall omit the letter X, and denote

the Euclidean norm simply by | · |.

3. Formulation of the problem. Let S := B∪L, be the coupled system constituted

by a heavy rigid-body, B, with an interior cavity, C, completely filled with a viscous liquid

L. Suppose that a point O of B is constrained to be fixed, at all times, with respect to an

inertial frame, and that the center of mass, G, of S lies on the principal axis of inertia,

a, of S with respect to O.

Our main objective is to investigate the motions of S about the fixed point O, under

the action of gravity.

In mathematical terms, we have B := Ω1 \Ω2, C := Ω2, where Ωi, i = 1, 2, are simply

connected bounded domains in R
3 with Ω2 ⊂ Ω1. Throughout this paper, we will assume

that C is of class C2.

Let F ≡ {O, e1, e2, e3} be the body-fixed frame with origin at O, e3 ≡ a, oriented

from O to G, and e1, e2 directed along the other principal axes of the inertia tensor I of

S with respect to O. Thus, I = Ae1 ⊗ e1 +Be2 ⊗ e2 +Ce3 ⊗ e3 where A,B,C > 0 are

constants representing, in the order, the moments of inertia of S with respect to e1, e2,

and e3.

As in analogous problems of liquid-solid interaction [8, 10], it is convenient to study

the motion of S when referred to a body-fixed frame. Thus, assuming that the viscous

liquid L is of the Navier-Stokes type, one can show that the generic motion of S in the

frame F is governed by the following set of equations (see [22] for details):

ρ (vt + v · ∇v + (ω̇∞ + ȧ)× x+ 2(ω∞ + a)× v)

= μΔv −∇p+ ρgγ

div v = 0

⎫⎪⎬
⎪⎭ in C × (0,∞),

I · ω̇∞ + (ω∞ + a)× I · ω∞ = β2e3 × γ in (0,∞),

γ̇ + (ω∞ + a)× γ = 0,

v = 0 on ∂C .

(3.1)
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Here v, μ and ρ denote relative velocity of the liquid, its shear viscosity coefficient and

(constant) density, respectively. Moreover, we set

β2 := M�g, ω∞ := ω − a, a := −ρI−1 ·
∫
C
x× v, p := π − ρ

2
|ω × x|2, (3.2)

where π is the Eulerian pressure of the liquid, ω is the angular velocity of B, while M

is the total mass of S, g is the magnitude of the acceleration of gravity and � > 0 is the

distance between the fixed point O and G (which is constant in time by assumption).

Finally, γ is a unit vector denoting the direction of the gravity, which is time-dependent,

since the equations of motion are written in the non-inertial frame F .

It is worth observing that, from the physical viewpoint, the generic motion of S consists

of a combination of dissipative, excited and conservative ingredients, with the dissipative

role played by the viscous liquid (see equations (3.1)1,2,5), whereas the excited features

are related to the dynamics of the solid (see equations (3.1)3,4). Moreover, as we will

show later on (see equation (5.6)), the component of the total angular momentum (with

respect to O) along the direction of the gravity must be conserved in every motion of S.

4. Steady-state solutions. One of the main goals of this paper is to analyze the

asymptotic behavior in time of the generic motion of the coupled system S. In particular,

we will investigate under which conditions the ultimate motion of S reduces to a steady-

state, namely, a time-independent solution of (3.1) (see Theorem 6.4). As a matter of

fact, the class of such solutions is fairly rich, and the objective of the current section is

to provide a corresponding complete and detailed characterization of steady states.

We begin to observe that from (3.1) it follows that all steady-state motions must be

solutions to the following boundary value problem:

v · ∇v + 2(ω∞ + a)× v = νΔv −∇p̃

div v = 0

}
in C,

(ω∞ + a)× I · ω∞ = β2e3 × γ,

(ω∞ + a)× γ = 0,

v = 0 on ∂C,

(4.1)

where ν := μ/ρ is the coefficient of kinematic viscosity, and p̃ := p/ρ − gγ · x is

the“modified” pressure.

We want to characterize solutions to (4.1) in the (a priori) very general class of weak

solutions. To this end, we give the following.

Definition 4.1. The triple (v,ω∞,γ) ∈ D1,2
0 (C) × R

3 × S2 is a weak steady-state

solution to (3.1), if it satisfies the following system of equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν

∫
C
∇v :∇ϕ =

∫
C
{(v · ∇ϕ) · v − 2[(ω∞ + a)× v] ·ϕ} , all ϕ ∈ D1,2

0 (C),

(ω∞ + a)× I · ω∞ = β2e3 × γ,

(ω∞ + a)× γ = 0.

(4.2)
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Remark 4.2. Let (v,ω∞,γ) be a weak steady-state solution. By standard arguments

(see [6, Lemma IX.1.2]), one can show the existence of a corresponding pressure field

p̃ ∈ L2(C),
∫
C p̃ = 0, such that (v, p̃) is a weak solution to the Stokes problem

νΔv = ∇p̃+ f ,

div v = 0,

}
in C,

v = 0 on ∂C,

where f := v · ∇v + 2(ω∞ + a) × v. Therefore, by using well-known results (see [6,

Theorems IV.4.1, IV.4.2 and IV.6.1]) along with a classical boot-strap procedure, we

may deduce that v ∈ W 2,2(C)∩C∞(C), p̃ ∈ W 1,2(C)∩C∞(C), and equations (4.1)1,2 are

satisfied in the ordinary sense.

We have the following simple but important result.

Lemma 4.3. (v,ω∞,γ) is a weak steady-state solution to (3.1) if and only if it satisfies⎧⎪⎨
⎪⎩

v ≡ 0 in C,
ω∞ × I · ω∞ = β2e3 × γ,

ω∞ × γ = 0 ,

(4.3)

with corresponding pressure field p = ρ g γ · x.

Proof. Let (v,ω∞,γ) be a weak steady-state solution to (3.1). In particular, v ∈
D1,2

0 (C), and we can use it in place of ϕ in the equation (4.2)1. By a simple and easily

justified integration by parts on the right-hand side of the resulting equation leads to

‖∇v‖22 = 0. Thus, by Poincaré inequality,

v = a ≡ 0.

Replacing this information back in (4.2)2,3, we at once derive (4.3). The reverse impli-

cation is obvious. �
Remark 4.4. The result just shown tells us, in particular, that in every steady-state

motion the liquid is at rest relative to B, which means that the coupled system S moves

like a single rigid-body.

We now observe that any solution to (4.3) has the form (v ≡ 0,ω∞ = λγ,γ), where

λ and γ = γ1e1 + γ2e2 + γ3e3 satisfy⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ2(C −B)γ2γ3 = −β2γ2,

λ2(A− C)γ1γ3 = β2γ1,

λ2(B −A)γ1γ2 = 0,

γ2
1 + γ2

2 + γ2
3 = 1.

(4.4)

Note that from the above equations, we have γ3 �= 0 since β2 �= 0.

In order to discuss and classify all possible solutions to (4.4), it is convenient to

introduce appropriate classes of steady-state solutions. More precisely, let

PR := {(u ≡ 0,ω, q) ∈ D1,2
0 (C)× R

3 × S2 : q × e3 = 0, ω = λq for some λ ∈ R} .

Clearly, each element of PR represents a permanent (uniform) rotation of S around e3.
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Remark 4.5. Permanent rotations can only occur around the principal axis of inertia

of S that passes through O and G, with the latter parallel to q (i.e., the direction of the

gravity).

Next, define

SP := {(u ≡ 0,ω, q) ∈ D1,2
0 (C)× R

3 × S2 : ω = λq, q3 = − β2

λ2(C −A)
,

for some λ ∈ R− {0}, 0 < q3 < 1},

along with

SP1 := {(u ≡ 0,ω, q) ∈ D1,2
0 (C)× R

3 × S2 : ω = λq, some λ ∈ R− {0},

q2 ≡ 0, q3 = − β2

λ2(C −A)
, 0 < q3 < 1 } ,

SP2 := {(u ≡ 0,ω, q) ∈ D1,2
0 (C)× R

3 × S2 : ω = λq, some λ ∈ R− {0},

q1 ≡ 0, q3 = − β2

λ2(C −B)
, 0 < q3 < 1 }.

Elements of SPi, i = 1, 2, represent steady precessions, namely, motions that when ob-

served from an inertial frame, are characterized by having the e3-axis rotating with

constant angular velocity about q (i.e. the direction of the gravity) and describing a

cone of constant (non-zero) angle; see, e.g., [37, Section 10.10].

Remark 4.6. For fixed A,B and C, the class SPi, i = 1, 2, is not empty if and only

if |ω| is sufficiently large; see equations (4.5), (4.6).

We are now in a position to provide a complete and detailed description of the class

of steady-state solutions to (3.1) in terms of principal moments of inertia of S.

Theorem 4.7. The set S of all steady-state solutions to (3.1) is not empty and satisfies

S ⊆ PR ∪ SP .

More precisely, the following characterization holds.

If λ = 0, then

S = {(u ≡ 0,ω, q) ∈ D1,2
0 (C)× R

3 × S2 : ω = 0 , q = ±e3} .

If λ �= 0, we have, instead:

(1) If A = B = C, then S ≡ PR.

(2) If A = B �= C, then S ≡ PR ∪ SP.

(3) If A �= B = C, then S ≡ PR ∪ SP1.

(4) If A = C �= B, then S ≡ PR ∪ SP2.

(5) If A �= B �= C, then S ≡ PR ∪ SP1 ∪ SP2.

In all cases, the corresponding pressure field is given by p = ρgγ · x, for all x ∈ C.
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Proof. Let us denote by s := (v ≡ 0,ω∞ = λγ,γ), a generic solution to (4.3), for

some λ ∈ R.

If λ = 0, then γ1 = γ2 = 0 and γ3 = ±1. Thus, (v ≡ 0,ω∞ ≡ 0,γ = ±e3) which

proves the first claim. From now on, we assume λ �= 0.

(1) Let A = B = C. Then, (4.4) furnishes⎧⎪⎨
⎪⎩

γ2 = 0,

γ1 = 0,

γ3 = ±1.

Thus, s = (v ≡ 0,ω∞ = ±λe3,γ = ±e3).

(2) Let A = B �= C. Then, (4.4) becomes⎧⎪⎪⎨
⎪⎪⎩

λ2(C −A)γ2γ3 = −β2γ2,

λ2(A− C)γ1γ3 = β2γ1,

γ2
1 + γ2

2 + γ2
3 = 1.

As remarked earlier, γ3 �= 0 otherwise, since β �= 0, from the first two equations

we would infer γ1 = γ2 = γ3 = 0, which is at odds with the third equation. Thus,

only the following cases (a)–(c) may occur.

(a) γ1 = γ2 = 0. So, γ3 = ±1, and s = (v ≡ 0,ω∞ = ±λe3,γ = ±e3), namely,

s ∈ PR.

(b) γ1, γ2 �= 0. In this case,

γ3 = − β2

λ2(C −A)
, γ2

1 + γ2
2 = 1− β4

λ4(C −A)2
.

(c) γ1 = 0, γ2 �= 0. In this case,

γ3 = − β2

λ2(C −A)
, γ2 = ±

√
1− β4

λ4(C −A)2
.

(d) γ1 �= 0, γ2 = 0. In this case,

γ3 = − β2

λ2(C −A)
, γ1 = ±

√
1− β4

λ4(C −A)2
.

Thus, in all cases (b)–(d), s ∈ SP, provided, of course,

β2 < λ2|C −A| (4.5)

(3) Let A �= B = C. From (4.4)1, it follows that γ2 = 0. Moreover, (4.4)2 implies

that only the following two cases may occur.

(a) γ1 = 0, then γ3 = ±1 and s ∈ PR.

(b) γ1 �= 0, then

γ3 = − β2

λ2(C −A)
, γ1 = ±

√
1− β4

λ4(C −A)2
,

and s ∈ SP1, provided (4.5) holds.
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(4) Let A = C �= B. From (4.4)2, it follows that γ1 = 0. Moreover, (4.4)1 implies

that we have only the following two cases:

(a) γ2 = 0, then γ3 = ±1 and s ∈ PR.

(b) γ2 �= 0, then

γ3 = − β2

λ2(C −B)
, γ2 = ±

√
1− β4

λ4(C −B)2
,

and s ∈ SP2, provided

β2 < λ2|C −B| . (4.6)

(5) Let A �= B �= C. From (4.4)3, it follows that at least one of the components γ1,

γ2 is zero. Thus, we have the following cases:

(a) γ1 = γ2 = 0, then γ3 = ±1, and s ∈ PR.

(b) γ1 �= 0, γ2 = 0, then

γ3 = − β2

λ2(C −A)
, γ1 = ±

√
1− β4

λ4(C −A)2
,

and s ∈ SP1, provided (4.5) holds.

(c) γ1 = 0, γ2 �= 0, then

γ3 = − β2

λ2(C −B)
, γ2 = ±

√
1− β4

λ4(C −B)2
,

and s ∈ SP2, provided (4.6) holds �

Our next result furnishes sufficient conditions for a permanent rotation around e3 to

be an axially isolated steady-state. More precisely, set H := H(C) × R
3 × S2 endowed

with its natural topology; the following proposition holds.

Proposition 4.8. The following two properties hold:

(1) Let m0 = (0, r0 e3,−e3) ∈ PR. If

r20 �= β2

C −A
,

β2

C −B
, (4.7)

then there exists a neighborhood of m0, I(m0) ⊂ H, such that

m ∈ I(m0) ∩ S ⇒ m ∈ PR.

(2) Let m1 = (0, r0 e3, e3) ∈ PR. If

r20 �= − β2

C −A
,− β2

C −B
, (4.8)

then there exists a neighborhood of m1, I(m1) ⊂ H, such that

m ∈ I(m1) ∩ S ⇒ m ∈ PR.
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Proof. Consider case (1) and let us argue by contradiction. By Theorem 4.7, we

know S ⊆ PR ∪ SP. Thus, assume that there exists a sequence {mn}n∈N with mn :=

(0, λnγn,γn) ∈ SP for all n ∈ N, such that mn → m0 as n → ∞; precisely

|λnγn − r0e3| → 0 and |γn + e3| → 0 as n → ∞.

So, as n → ∞,

(γn · e1) → 0, (γn · e2) → 0, (γn · e3) → −1 and λn → −r0 . (4.9)

On the other side, since mn ∈ SP for all n ∈ N, either

γn · e3 = − β2

λ2
n(C −A)

or

γn · e3 = − β2

λ2
n(C −B)

.

Letting n → ∞ on both sides of the last two equations, by (4.9), we find a result in

contradiction with the hypothesis (4.7).

The proof of the second statement is carried out by an entirely analogous argument

and will be therefore omitted. �

5. Weak solutions and preliminary results. The study of the motion of a liquid-

filled rigid-body constrained to move around a fixed point will be carried out in a con-

siderably large class of solutions to (3.1) characterized, basically, by having finite total

energy (weak solutions à la Leray-Hopf). Before introducing this class, let us formally

derive the balance of the total energy, together with an important first integral of motion

for S.
To this end, we recall the following result for whose proof we refer to [15, Chapter 1,

Section 7.2.2 and 7.2.3]: for any bounded Lipschitz domain C, the functional

〈·, ·〉 : (u,v) ∈ H(C)×H(C)

�→ 〈u,v〉 := ρ(u,v)−
(∫

C
ρ x× u

)
· I−1 ·

(∫
C
ρ x× v

)
(5.1)

defines an inner product in L2(C) with associated norm ‖u‖ := 〈u,u〉1/2, which is equiv-

alent to the norm ‖·‖2. In particular, there exists a positive constant c < 1 such that

c ‖u‖22 ≤ ‖u‖2 ≤ ‖u‖22, all u ∈ H(C). (5.2)

We shall now (formally) derive the energy balance equation:

d

dt
(E + U) + 2μ‖∇v‖22 = 0, (5.3)

where

E(t) := ρ‖v‖2 + ω∞ · I · ω∞, U(t) := −2β2γ · e3,
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are kinetic and potential energy of S, respectively. To obtain (5.3), let us formally dot-

multiply (3.1)1 by v, and integrate the resulting equation over C. By a simple integration

by parts we show

1

2
ρ
d

dt
‖v‖22 + ρ

∫
C
[(ω̇∞ + ȧ)× x] · v + μ‖∇v‖22 = 0. (5.4)

Using (3.1)3 and (3.1)4, one can deduce that

ρ

∫
C
[(ω̇∞ + ȧ)× x] · v =

1

2

d

dt
(ω∞ · I · ω∞)− β2 d

dt
(γ · e3)−

1

2

d

dt
(a · I · a). (5.5)

Taking into account (5.4) and (5.5) along with (5.1), we at once infer (5.3).

We also notice that the projection of the total angular momentum along γ has to be

conserved:
d

dt
(γ · I · ω∞) = 0. (5.6)

Indeed, let us dot-multiply both sides of (3.1)3 by γ, and of (3.1)4 by I ·ω∞. Summing

up the resulting equations, we find

d

dt
(γ · I · ω∞) = −γ · [(ω∞ + a)× I · ω∞]− (I · ω∞) · [(ω∞ + a)× γ]

= −γ · [(ω∞ + a)× I · ω∞] + γ · [(ω∞ + a)× (I · ω∞)] = 0.

The weak formulation for the problem (3.1) is obtained in the usual way, namely,

by dot-multiplying both sides of (3.1)1 by ψ ∈ D1,2
0 (C), and integrating (by parts) the

resulting equation over C × (0, t); this leads to the following:

(ρv(t),ψ)+ρ(ω∞(t) + a(t)) ·
∫
C
x×ψ

+

∫ t

0

{ρ(v · ∇v,ψ) + 2ρ((ω∞ + a)× v,ψ) + μ(∇v,∇ψ)}

=(ρv(0),ψ) + ρ(ω∞(0) + a(0)) ·
∫
C
x×ψ ,

for all ψ ∈ D1,2
0 (C) and all t ∈ (0,∞).

(5.7)

Moreover, integrating (3.1)3 and (3.1)4 over (0, t) we get

I · ω∞(t) = I · ω∞(0)−
∫ t

0

[
(ω∞ + a)× (I · ω∞)− β2(e3 × γ)

]
, for all t ∈ (0,∞)

(5.8)

and

γ(t) = γ(0)−
∫ t

0

(ω∞ + a)× γ , for all t ∈ (0,∞). (5.9)

Definition 5.1. The triple (v,ω∞,γ) is a weak solution to (3.1) if it meets the

following requirements:

(a) v ∈ Cw([0,∞);H(C)) ∩ L∞(0,∞;H(C)) ∩ L2(0,∞;W 1,2
0 (C));

(b) ω∞ ∈ C0([0,∞)) ∩ C1((0,∞)), γ ∈ C1([0,∞);S2);

(c) (v,ω∞,γ) satisfies (5.7), (5.8) and (5.9);
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(d) (v,ω∞,γ) obeys the “strong” energy inequality:

E(t) + U(t) + 2μ

∫ t

s

‖∇v(τ )‖22 dτ ≤ E(s) + U(s) (5.10)

for all t ≥ s and a.a. s ≥ 0 including s = 0.

The class of weak solutions to (3.1) is not empty, provided the initial motion imparted

to the system has finite total energy. Moreover, since by (b) ω∞ ∈ C1((0,∞)) and

γ ∈ C1([0,∞)), we may use the same argument employed earlier to conclude that weak

solutions satisfy indeed also (5.6). These properties are summarized in the following

proposition, whose proof is quite standard and, therefore, will only be sketched (see

[21, 22] for details).

Proposition 5.2. For every v0 ∈ H(C),ω∞0 ∈ R
3 and γ0 ∈ S2, there exists at least

one weak solution to (3.1) such that

lim
t→0+

‖v(t)− v0‖2 = lim
t→0+

|ω∞(t)− ω∞0| = lim
t→0+

|γ(t)− γ0| = 0.

Proof. The proof of the statement can be accomplished with a combination of the

classical Galerkin method with a priori estimates of the energy. Let {ψn}∈N be a subset of

smooth functions from D1,2
0 (C) whose linear hull is dense in D1,2

0 (C), and let us normalize

it with respect to the inner product 〈·, ·〉 defined in (5.1). We look for “approximate”

solutions

vn(x, t) =

n∑
k=1

cnk(t)ψk(x), ω∞,n(t) =

3∑
i=1

c̃ni(t)ei, γn(t) =

3∑
j=1

ĉnj(t)ej ,

satisfying (5.7), (5.8) and (5.9) for all n ∈ N. This leads to a system of first order

ordinary differential equations in the unknowns cnk, c̃ni and ĉnj . Thanks to the balance

of energy equation (5.3) and (5.2), we get

ρ‖vn‖2(t) + ω∞,n(t) · I · ω∞,n(t)− 2β2e3 · γn(t)

≤ ρ‖vn‖2(0) + ω∞,n(0) · I · ω∞,n(0)− 2β2e3 · γn(0),

which allows us to show that this system admits a unique global (in time) solution

(cnk, c̃ni, ĉnj) corresponding to initial data

(cnk(0) = 〈v0,ψk〉, c̃ni(0) = ω∞0 · ei, ĉnj = γ0 · ej)

for all n ∈ N, k = 1, . . . , n, i, j = 1, 2, 3. We omit the details of the previous argument and

the proof of the convergence properties of these approximate solutions as the treatment

is standard and analogous (up to some minor changes and adaptations) to the one given

in [21], Chapter 3. �

Remark 5.3. Using standard arguments, it can be shown that if (v,ω∞,γ) is suf-

ficiently smooth to allow for integration by parts on C × (0,∞), then there exists a

corresponding pressure field p = p(x, t) such that (v,ω∞,γ, p) satisfies (3.1)1,2,3,4 a.e. in

space and time.
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As in the case of the “classical” Navier-Stokes problem, also for the problem at hand,

the uniqueness and continuous dependence upon initial data of weak solutions is not

known. However, as in the classical Navier-Stokes case, one can show that the above

properties hold for any weak solution possessing a further regularity, as stated in the next

proposition, and for whose proof we refer to [22], Proposition 5.1.4, and [21], Theorem

3.4.2.

Proposition 5.4. Let (v,ω∞,γ), (v∗,ω∗
∞,γ∗) be two weak solutions corresponding to

initial data (v0,ω0,γ0) and (v∗
0,ω

∗
0,γ

∗
0), respectively. Suppose that there exists a time

T > 0 such that

v∗ ∈ Lp(0, T ;Lq(C)), 2

p
+

3

q
= 1, for some q > 3. (5.11)

Then, there exists a constant c > 0, depending only on ess supt∈[0,T ]‖v∗(t)‖2,
‖v∗‖Lp(0,T ;Lq(C)) and maxt∈[0,T ] |ω∗

∞(t)|, such that

‖v(t)− v∗(t)‖2 + |ω∞(t)− ω∗
∞(t)|+ |γ(t)− γ∗(t)|

≤ c (‖v0 − v∗
0‖2 + |ω0 − ω∗

0|+ |γ0 − γ∗
0|) .

In particular, if (v0,ω0,γ0) ≡ (v∗
0,ω

∗
0,γ

∗
0), then (v,ω∞,γ) ≡ (v∗,ω∗

∞,γ∗) a.e. in

[0, T ]× C.
Moreover, the energy equality holds:

E(t) + U(t) + 2μ

∫ t

s

‖∇v‖22 = E(s) + U(s) for all 0 ≤ s ≤ t ≤ T.

We next show the fundamental property that weak solutions become strong after a

sufficiently large time. As we expect from the classical Navier-Stokes theory, this will

happen if the weak solution becomes eventually “small” in appropriate norms. In the

case at hand, however, such a property, at the outset, does not seem obvious, because

of conservation of the projection of the total angular momentum in the direction of the

gravity (see (5.6)), whose size can be made arbitrarily large. However, we can show the

following.

Proposition 5.5. Let s := (v,ω∞,γ) be a weak solution corresponding to initial data

with finite energy, in the sense of Proposition 5.2. Then, there exists t0 = t0(s) > 0 such

that for all T > 0

v ∈ C0([t0, t0 + T ];W 1,2
0 (C)) ∩ L2(t0, t0 + T ;W 2,2(C)),

vt ∈ L2(t0, t0 + T ;H(C)), ω∞ ∈ W 1,∞(t0, t0 + T ), γ ∈ W 1,∞(t0, t0 + T ).

Moreover, there exists p ∈ L2(t0, t0 + T ;W 1,2(C)), all T > 0; such that (v,ω∞,γ, p)

satisfies (3.1) a.e. in (t0,∞). Finally,

lim
t→∞

‖v(t)‖1,2 = 0. (5.12)

Proof. The stated properties are obtained by suitably adapting to the current situ-

ation the arguments employed in the proofs of [8, Theorem 1 and Proposition 1] and
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[22, Proposition 5.1.5] in a slightly different context. Due to their importance in ac-

complishing the main results, for the reader’s sake we find it appropriate to sketch a

proof here, by limiting ourselves to derive the necessary fundamental estimates, at least

formally. For all missing technical details, we refer to the references cited above. Now,

by the requirement (d) of weak solution, it easily follows that for any given ε, η > 0 there

is t0 = t0(ε, η, s) > 0 such that

‖∇v(t0)‖2 < ε ,

∫ ∞

t0

‖∇v(τ )‖22 dτ < η . (5.13)

We now use (v(t0),ω∞(t0),γ(t0)) as initial data to construct a corresponding strong

solution s̃ ≡ (ṽ, ω̃, γ̃) in the interval [t0, T
∗), for some T ∗ > t0. Such a solution can be

obtained by using the Galerkin method described in Proposition 5.2 with {ψn}n∈N eigen-

vectors of the Stokes operator −P Δ,3 and coupling it with suitable “energy” estimates

that we are (formally) about to derive. By dot-multiplying both sides of (3.1)1 by vt,

integrating by parts over C, and employing (3.1)2 and (3.1)5, we deduce (with ν := μ/ρ)

ν

2

d

dt
‖∇v‖22 + ‖vt‖22+ ȧ ·

∫
C
x× vt = −(v · ∇v,vt)

−ω̇∞ ·
∫
C
x× vt − 2(ω∞ + a) ·

∫
C
v × vt ,

(5.14)

where we used g γ = ∇(g γ · x). Notice that by (5.1) and (5.2) we have

‖vt‖22 + ȧ ·
∫
C
x× vt ≥ c0‖vt‖22

so that, with the help of Schwarz inequality, from (5.14) we easily deduce

d

dt
‖∇v‖22 + c1‖vt‖22 ≤ c2

[
|ω̇∞|2 + (|a|2 + |ω∞|2)‖v‖22 + ‖v · ∇v‖22

]
. (5.15)

Moreover, by dot-multiplying (3.1)1 by PΔv (see Footnote 3), it follows that

ν‖PΔv‖22 =
([

vt + v · ∇v + (ω̇∞ + ȧ)× x+ 2(ω∞ + a)× v
]
, PΔv

)
,

which, in turn, again by the Schwarz inequality, delivers

‖P Δv‖22 ≤ c3
(
‖vt‖22 + ‖v · ∇v‖22 + |ω̇∞|2 + (|a|2 + |ω∞|2)‖v‖22

)
. (5.16)

Here and in the following ci > 0, i ∈ N, denote constants depending at most on the

physical parameters and the data, s0, of the weak solution s at t = 0. We now observe

that since |γ(t)| = 1 for all t ≥ t0, by the strong energy inequality (5.10) and (3.1)3 we

infer

‖v(t)‖2 + |ω(t)|+ |ω̇∞(t)|+ |a(t)| ≤ c4 , all t ≥ t0 . (5.17)

As a result, from (5.15), (5.16) and (5.17) it follows that

d

dt
‖∇v‖22 + c1‖vt‖22 ≤ c5

(
‖v · ∇v‖22 + 1

)
,

‖PΔv‖22 ≤ c6
(
‖vt‖22 + ‖v · ∇v‖22 + 1

)
,

3P is the (Helmholtz-Weyl) projection of L2(C) onto H(C).
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which, in turn, implies

d

dt
‖∇v‖22 + c7‖vt‖22 + c8‖PΔv‖22 ≤ c9

(
‖v · ∇v‖22 + 1

)
. (5.18)

Recalling that C is of class C2, we have (e.g. [6, Theorem IV.6.1])

‖v‖22,2 ≤ c10‖PΔv‖22 , (5.19)

and also, by well-known embedding results and Cauchy-Schwarz inequality we deduce

with arbitrary ζ > 0,

‖v · ∇v‖22 ≤ ‖v‖2∞‖∇v‖22 ≤ c11 ‖∇v‖32‖v‖2,2 ≤ c12‖∇v‖62 + ζ ‖v‖22,2 , (5.20)

where c12 → ∞ as ζ → 0. Therefore, choosing ζ small enough, from (5.18)–(5.20) we

may conclude

d

dt
‖∇v‖22 + c7‖vt‖22 + c13‖v‖22,2 ≤ c14

(
‖∇v‖62 + 1

)
. (5.21)

From this differential inequality we derive that there are continuous functions G1 and

G2 defined on [t0, t0 + T ∗) for some T ∗ = T ∗(s0) > 0, such that

‖v(t)‖1,2 ≤ G1(t) ,

∫ t

t0

(
‖vτ (τ )‖2 + ‖v(τ )‖22,2

)
dτ ≤ G2(t) . (5.22)

By combining the latter with the classical Galerkin method, we can then show the ex-

istence of a solution s̃ ≡ (ṽ, ω̃, γ̃) corresponding to the initial data s0, and such that,

setting It0,τ := (t0, t0 + τ ),

ṽ ∈ C0(It0,τ ;W
1,2
0 (C)) ∩ L∞(It0,τ ;W

1,2
0 (C)) ∩ L2(It0,τ ;W

2,2(C)) ,
ṽt ∈ L2(It0,τ ;H(C)), ω̃ ∈ W 1,∞(It0,τ ) , γ̃ ∈ W 2,∞(It0,τ ) ,

for all τ ∈ (0, T ∗) ,

(5.23)

with t0 as in (5.13). By virtue of the Sobolev embedding theorem, we check at once that

ṽ satisfies (5.11) for some r > 3, so that s̃ = s on the interval [t0, t0 + T ∗). Now, by

proceeding exactly as in the proof of [8, Theorem 3], one shows that if T ∗ < ∞ necessarily

lim
t→T∗−

‖∇v(t)‖2 = ∞ . (5.24)

However, this condition cannot hold. Actually, by choosing in (5.13) ε and η appropri-

ately, from (5.21) we see that ‖∇v‖22 satisfies all assumptions of the Gronwall-like Lemma

shown in the Appendix. Therefore, by that lemma we deduce that, on the one hand,

‖∇v(t)‖2 ∈ L∞(t0,∞) and, on the other hand, also using Poincaré inequality, ‖v(t)‖1,2
obeys (5.12), which ends the (formal) proof of the proposition. �

From the previous propositions, we can easily deduce the following result.

Corollary 5.6. Let s := (v,ω∞,γ) be a weak solution to (3.1). Then, there exists

t0 > 0 such that

(1) s is unique in the class of weak solutions to (3.1) in [t0,∞);

(2) s depends continuously upon the data in [t0,∞), in the class of weak solutions,

in the sense of Proposition 5.4.
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6. Asymptotic behavior of weak solutions. For the proof of our main theorem

(Theorem 6.4) concerning the long-time behavior of the coupled system S, we will use

some tools from classical theory of the Dynamical Systems. In particular, we will give

a complete characterization of the Ω-limit set corresponding to a weak solution and, for

a large class of liquid-solid configurations, we will show that this weak solution indeed

converges to a point of the corresponding Ω-limit set. To this end, let us recall some

definitions and well-known results. Consider H = H(C) × R
3 × S2, endowed with its

natural topology. We define the Ω-limit set of a weak solution s := (v,ω∞,γ) as follows:

Ω(s) := {(u,ω, q) ∈ H : there exists tk ≥ 0, tk ↗ ∞ s.t.

lim
k→∞

‖v(tk)− u‖2 = lim
k→∞

|ω∞(tk)− ω| = lim
k→∞

|γ(tk)− q| = 0}.

We also use the notation w(t; z) to denote a weak solution to (3.1) corresponding to

the initial data z ∈ H, in the sense of Proposition 5.2.

Definition 6.1. Ω(s) is positively invariant if the following implication holds:

y ∈ Ω(s) ⇒ w(t; y) ∈ Ω(s), all t ≥ 0,

and for all weak solutions w(t; y).

In [10], Proposition 1.4.2 (see also [22], Proposition 5.1.8), it has been proved that Ω(s)

is positively invariant in the class of weak solutions, if s(t; s0) is asymptotically regular.

We recall the statement here, for completeness.

Proposition 6.2. Let s(t; s0) be a weak solution to (3.1). Suppose there exists t0 > 0

such that the following properties hold:

(i) Asymptotic uniqueness:

s(t+ τ ; s0) = s(t; s(τ ; s0)), for all τ ≥ t0, and t ≥ 0.

(ii) Asymptotic continuous data dependence:

{tk}k∈N ⊂ [t0,+∞) with s(tk; s0) → y in H
⇒ s(t; s(tk; s0)) → w(t, y) in H, all t ≥ 0.

Then, Ω(s) is positively invariant.

In the next proposition, we show a full characterization of the Ω-limit set of any weak

solution to (3.1). As expected, such a characterization depends on the mass distribution

in the system S.

Proposition 6.3. Let s(t; s0) := (v,ω∞,γ) be a weak solution to (3.1) corresponding

to an initial data s0 := (v0,ω0,γ0) ∈ H, in the sense of Proposition 5.2. Then, Ω(s) is

non-empty, compact, connected, and positively invariant in the class of weak solutions
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to (3.1). Moreover, Ω(s) ⊆ S where S is given in Theorem 4.7, and it has the following

characterization:

(1) If A = B = C, then either

Ω(s) = {(v ≡ 0, ω̄ = (γ0 · ω0)e3, γ̄ = e3)} ⊂ PR

or

Ω(s) = {(v ≡ 0, ω̄ = −(γ0 · ω0)e3, γ̄ = −e3)} ⊂ PR.

(2) If A = B �= C, then we have the following possibilities:

(a)

Ω(s) = {(v ≡ 0, ω̄ =
1

C
(γ0 · I · ω0)e3, γ̄ = e3)} ⊂ PR.

(b)

Ω(s) = {(v ≡ 0, ω̄ = − 1

C
(γ0 · I · ω0)e3, γ̄ = −e3)} ⊂ PR.

(c)

Ω(s) = {(v ≡ 0, ω̄ = λγ̄, γ̄) :

γ̄3 = − β2

λ2(C −A)
, γ̄2

1 + γ̄2
2 = 1− β4

λ4(C −A)2
} ⊂ SP,

where λ is a (real) solution to the following fourth order algebraic equation:

(C −A)Aλ4 − (C −A)(γ0 · I · ω0)λ
3 + β4 = 0. (6.1)

(3) If A �= B = C, then we have the following cases:

(a)

Ω(s) = {(v ≡ 0, ω̄ =
1

C
(γ0 · I · ω0)e3, γ̄ = e3)} ⊂ PR.

(b)

Ω(s) = {(v ≡ 0, ω̄ = − 1

C
(γ0 · I · ω0)e3, γ̄ = −e3)} ⊂ PR.

(c)

Ω(s) = {(v ≡ 0, ω̄ = λγ̄, γ̄) :

γ̄3 = − β2

λ2(C −A)
, γ̄2 = 0, γ̄1 =

√
1− β4

λ4(C −A)2
} ⊂ SP1.

(d)

Ω(s) = {(v ≡ 0, ω̄ = λγ̄, γ̄) :

γ̄3 = − β2

λ2(C −A)
, γ̄2 = 0, γ̄1 = −

√
1− β4

λ4(C −A)2
} ⊂ SP1.

In the last two cases, λ satisfies (6.1).
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(4) If A = C �= B, then we have the following cases:

(a)

Ω(s) = {(v ≡ 0, ω̄ =
1

C
(γ0 · I · ω0)e3, γ̄ = e3)} ⊂ PR.

(b)

Ω(s) = {(v ≡ 0, ω̄ = − 1

C
(γ0 · I · ω0)e3, γ̄ = −e3)} ⊂ PR.

(c)

Ω(s) = {(v ≡ 0, ω̄ = λγ̄, γ̄) :

γ̄3 = − β2

λ2(C −B)
, γ̄1 = 0, γ̄2 =

√
1− β4

λ4(C −B)2
} ⊂ SP2.

(d)

Ω(s) = {(v ≡ 0, ω̄ = λγ̄, γ̄) :

γ̄3 = − β2

λ2(C −B)
, γ̄1 = 0, γ̄2 = −

√
1− β4

λ4(C −B)2
} ⊂ SP2.

In the last two cases, λ satisfies

(C −B)Bλ4 − (C −B)(γ0 · I · ω0)λ
3 + β4 = 0. (6.2)

(5) If A �= B �= C, then we have the following cases:

(a)

Ω(s) = {(v ≡ 0, ω̄ =
1

C
(γ0 · I · ω0)e3, γ̄ = e3)} ⊂ PR.

(b)

Ω(s) = {(v ≡ 0, ω̄ = − 1

C
(γ0 · I · ω0)e3, γ̄ = −e3)} ⊂ PR.

(c)

Ω(s) = {(v ≡ 0, ω̄ = λγ̄, γ̄) :

γ̄3 = − β2

λ2(C −A)
, γ̄2 = 0, γ̄1 =

√
1− β4

λ4(C −A)2
} ⊂ SP1.

(d)

Ω(s) = {(v ≡ 0, ω̄ = λγ̄, γ̄) :

γ̄3 = − β2

λ2(C −A)
, γ̄2 = 0, γ̄1 = −

√
1− β4

λ4(C −A)2
} ⊂ SP1.

(e)

Ω(s) = {(v ≡ 0, ω̄ = λγ̄, γ̄) :

γ̄3 = − β2

λ2(C −B)
, γ̄1 = 0, γ̄2 =

√
1− β4

λ4(C −B)2
} ⊂ SP2.
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(f)

Ω(s) = {(v ≡ 0, ω̄ = λγ̄, γ̄) :

γ̄3 = − β2

λ2(C −B)
, γ̄1 = 0, γ̄2 = −

√
1− β4

λ4(C −B)2
} ⊂ SP2.

In the cases (c) and (d), λ satisfies (6.1). While, in the cases (e) and (f), λ

satisfies (6.2).

Proof. The strong energy inequality (5.10) and Proposition 5.5 show that, for suffi-

ciently large times, the trajectory becomes uniformly bounded, continuous in time and

belongs to a compact subset of H. Thus, Ω(s) is non-empty, connected and compact.

In addition, from Corollary 5.6 and Proposition 6.2, we infer that Ω(s) is invariant in

the class of weak solutions to (3.1). Thus, by (5.12) and (3.1), the dynamics on Ω(s) is

completely described by the following system of equations:

v ≡ 0, ω̇∞ × x = −∇p+ ρgγ,

I · ω̇∞ + ω∞ × I · ω∞ = β2e3 × γ,

γ̇ + ω∞ × γ = 0.

(6.3)

Taking the curl of the second equation in (6.3)1, we find ω̇∞ = 0, which implies e3×γ =

const. Moreover, by (6.3)3 we get

˙(γ · e3) = γ × ω∞ · e3

and so dot-multiplying by ω∞ both sides of (6.3)2 (with ω̇∞ ≡ 0), we deduce also

γ · e3 = const., and conclude γ̇ = 0. Therefore, Ω(s) ⊆ S, and the generic motion over

Ω(s) must thus be a solution to the system of equations (4.3) (or equivalently (4.4)), and

whose characterization is given by Theorem 4.7. In particular, in view of (5.6), on Ω(s)

we must have

ω∞ = λγ , λγ · I · γ = ω0 · I · γ0 . (6.4)

From (6.4)2 and the expression of the γ’s given in parts 4(c) and 4(d), and 5(c)–5(f) of

this proposition, one can easily derive that λ has to satisfy, equations (6.1) and (6.2), as

claimed. �
It is important to emphasize that in all the cases above (except the case A = B �= C),

Ω(s) is the union of disjoint points in H. The next theorem exploits this fact along

with the topological properties of Ω(s) to provide a rather complete description of the

asymptotic behavior of weak solutions.

Theorem 6.4. Let C be a bounded domain in R
3 of class C2, and s := (v,ω∞,γ) be a

weak solution to (3.1) corresponding to an initial data (v0,ω0,γ0) ∈ H, in the sense of

Proposition 5.2. Then,

lim
t→∞

‖v(t)‖1,2 = 0.
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Moreover, the following properties hold:

(i) In each of the cases A = B = C, A �= B = C, A = C �= B and A �= B �= C, there

exists (0, λ̄ γ̄, γ̄) ∈ Ω(s), with

λ̄ =
ω0 · I · γ0

γ̄ · I · γ̄ , (6.5)

such that

lim
t→∞

ω∞(t) = λ̄ γ̄, lim
t→∞

γ(t) = γ̄.

(ii) In the case A = B �= C, let K := min{A,C}. If

|γ0 · I · ω0|2 <
K2β2

|C −A| , (6.6)

then either

lim
t→∞

ω∞(t) =
1

C
(γ0 · I · ω0)e3, lim

t→∞
γ(t) = e3,

or

lim
t→∞

ω∞(t) = − 1

C
(γ0 · I · ω0)e3, lim

t→∞
γ(t) = −e3.

Proof. In Proposition 5.5, we have shown that

lim
t→∞

‖v(t)‖1,2 = 0.

Moreover, by Proposition 6.3, in the cases A = B = C, A �= B = C, A = C �= B and

A �= B �= C, the corresponding Ω-limit set reduces to a point set in S; as a matter of fact

Ω(s) is connected, and equations (6.1) and (6.2) are fourth order algebraic equations,

which admits at most four (real) roots. Thus, taking into account (6.4), for the above

mentioned cases, we can conclude that there exists (0, λ̄ γ̄, γ̄) ∈ Ω(s) with λ̄ given in

(6.5), such that

lim
t→∞

ω∞(t) = λ̄ γ̄, lim
t→∞

γ(t) = γ̄.

Let us show part (ii) of the statement. Because of Proposition 6.3 2(c), we have to

show that, under the stated assumptions, the case

Ω(s) =

{
(v ≡ 0, ω̄ = λγ̄, γ̄) : γ̄3 = − β2

λ2(C −A)
, γ̄2

1 + γ̄2
2 = 1− β4

λ4(C −A)2

}
with λ a real solution to (6.1), is not allowed. We argue by contradiction. By the

connectedness property of Ω(s) and the uniquely determined values of γ̄3 and γ̄2
1 + γ̄2

2

(for each fixed value of λ), we deduce that the following limits exist:

lim
t→∞

γ3(t) = − β2

λ2(C −A)
, lim

t→∞
(γ2

1(t) + γ2
2(t)) = 1− β4

λ4(C −A)2
.

However, by (6.4),

|λ| ≤ |γ0 · I · ω0|
K

.

Thus, from the latter and the assumption (6.6), we infer

| lim
t→∞

γ3(t)| =
β2

λ2|C −A| ≥
β2K2

|γ0 · I · ω0|2 |C −A| > 1,

which is at odds with the constraint |γ3(t)| ≤ 1, for all t > 0. �
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Remark 6.5. We find it appropriate to rephrase the results of Theorem 6.4 in more

physical terms as follows. Let B be a heavy rigid-body, constrained to move around a

fixed point, O, and with an interior, sufficiently smooth cavity, C, completely filled with

a viscous liquid. We assume that the center of mass, G, of the coupled system S := B∪C
lies on a principal axis of inertia, a, of S relative to O. Then, if the principal moments

of inertia of S satisfy the assumptions in (i), all motions of S that initially possess a

finite kinetic energy must eventually converge to a steady state characterized by the

property that S moves, as a whole rigid-body, either by a constant rotation around the

direction of gravity, e, passing through O, or else by a motion of steady precession, where

a rotates uniformly around e, and forms with e a non-zero, constant angle. If, instead,

the principal moments of inertia of S satisfy the assumptions in (ii), then the final state

reduces to a rotation around e, provided the projection of the initial angular momentum

along e is not too large, in the sense of (6.6).

7. Application to a spherical pendulum with a liquid-filled cavity. The find-

ing shown in Theorem 6.4 and commented in Remark 6.5 implies that the presence of

the liquid in the cavity may affect dramatically the “terminal” motion of the rigid-body

with an empty cavity and, in particular, may produce a strong stabilizing influence by

forcing the coupled system to perform a specific steady motion. The objective of this

and the next section is to provide two significant examples of such a stabilization, in the

cases of a spherical pendulum and a spinning top, respectively.

To this purpose, we premise the following general result.

Proposition 7.1. Let s(t; s0) := (v,ω∞,γ) be a weak solution to (3.1) corresponding

to initial data s0 := (v0,ω0,γ0) ∈ H, in the sense of Proposition 5.2. Suppose that

|γ0 · I · ω0|2 < min

{
K2β2

|C −A| ,
K2β2

|C −B|

}
, (7.1)

where K := min{A,B,C}. Then, in the cases A = B �= C, A �= B = C, A = C �= B,

A �= B �= C,4 either

lim
t→∞

ω∞(t) =
1

C
(γ0 · I · ω0)e3, lim

t→∞
γ(t) = e3 (7.2)

or

lim
t→∞

ω∞(t) = − 1

C
(γ0 · I · ω0)e3, lim

t→∞
γ(t) = −e3. (7.3)

Moreover, if (7.1) is augmented with the following condition:

C
[
ρ‖v0‖2 + ω0 · I · ω0 − 2β2(γ0 · e3 + 1)

]
≤ |γ0 · I · ω0|2, (7.4)

4If A = C or B = C, one of the fractions in (7.1) becomes undefined. However, by the characterization
of the Ω-limit, in these two cases, (7.1) reduces to

|γ0 · I · ω0|2 <
K2β2

|C −B|
or |γ0 · I · ω0|2 <

K2β2

|C −A|
,

respectively.
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then necessarily5

lim
t→∞

ω∞(t) =
1

C
(γ0 · I · ω0)e3, lim

t→∞
γ(t) = e3.

Finally, if A = B = C, the same conclusion holds under the sole assumption (7.4)

Proof. We begin to observe that, by Theorem 6.4, it follows that if A = B = C,

either condition (7.2) or condition (7.3) is valid, for arbitrary initial data s0 ∈ H. By

the same theorem, either (7.2) or (7.3) holds also when A = B �= C as (7.1) coincides

with (6.6). For all the remaining cases, A �= B = C, A = C �= B, A �= B �= C, we will

argue by contradiction. By Theorem 6.4 and Proposition 6.3, we infer that there exists

(0, λγ̄, γ̄) ∈ Ω(s) ⊂ SP1 ∪ SP2 such that

lim
t→∞

ω∞(t) = λγ̄, lim
t→∞

γ(t) = γ̄,

where, by (6.5),

λγ̄ · I · γ̄ = γ0 · I · ω0.

Thus,

|λ| ≤ |γ0 · I · ω0|
K

.

Since (0, λγ̄, γ̄) ∈ Ω(s) ⊂ SP1 ∪ SP2, and by (7.1), we find that

| lim
t→∞

γ3(t)| ≥
β2

λ2
min

{
1

|C −A| ,
1

|C −B|

}

≥ K2β2

|γ0 · I · ω0|2
min

{
1

|C −A| ,
1

|C −B|

}
> 1,

and this is at odd with the constraint |γ3(t)| ≤ 1, for all times. The proof of the last part

of the theorem is an immediate consequence of the strong energy inequality. Indeed, if

the following holds:

lim
t→∞

ω∞(t) = − 1

C
(γ0 · I · ω0)e3, lim

t→∞
γ(t) = −e3,

taking the limit as t → ∞ in (5.10), we would get6

1

C
|γ0 · I · ω0|2 + 2β2 < ρ‖v0‖2 + ω0 · I · ω0 − 2β2γ0 · e3,

but the latter displayed inequality contradicts (7.4). �
We now wish to apply the previous proposition to the case when B is a spherical

pendulum. As is well known, by the latter is meant the system constituted by a massive

rigid body P which is attached to a frictionless spherical joint, whose center is placed at

a fixed point O, via a rod whose mass can be neglected. In such a case, the motion of the

center of mass, Ĝ, of P can be very complicated. In fact, in general, it is not necessarily

periodic, with Ĝ describing a trajectory that lies in the zone between two horizontal

concentric circles centered at points of the vertical axis that passes through O; see, e.g.,

[26, Section 5.3]. Suppose now that we entirely fill the hollow cavity C in P with a viscous

5We exclude that (v0,ω0,γ0) ≡ (0, r0e3,−e3), since, in this case, the corresponding motion (weak

solution) will then reduce simply to a rigid rotation of S around e3.
6See Footnote 5.
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liquid L. Then, Proposition 7.1 ensures that for an open set of initial data (satisfying,

in general, condition (7.1)), the coupled system S := P ∪ L must, eventually, perform a

uniform rotation around the vertical axis passing through O, aO, with its center of mass

G being either in its lowest, G�, or highest, Gh, position. This uniform rotation can even

reduce to the rest if the initial data produce zero angular momentum along aO (namely,

γ0 · I · ω0 = 0). Furthermore, if the initial data obey also (7.4), then the terminal

steady-state motion of the pendulum will have G ≡ G�. In order to exemplify the latter,

suppose P is a hollow homogeneous sphere entirely filled with a viscous liquid. We then

have A = B = C, so that, by Proposition 7.1, we know that the terminal state of S will

be a uniform rotation around aO, or even the rest, with either G = G� or G = Gh. Now

take v0 ≡ 0 (liquid initially at rest relative to P), and ω0 = ω0 γ0 (initial spin around

the vertical direction passing through O; see Fig 1 (a)). Under these circumstances, (7.4)

becomes

C[C ω2
0 − 2β2(γ0 · e3 + 1)] ≤ C2 ω2

0 ,

a condition that is always satisfied.7 As a consequence, the sphere will eventually perform

a uniform rotation about aO, with G = G�. If we instead choose ω0 · γ0 = 0 (see Fig. 1

(b)), we get γ0 · I ·ω0 = 0 and, again by Proposition 7.1, we conclude that the terminal

motion of the pendulum is the rest state with G = G�.

This latter circumstance provides the rather unforeseen property that a spherical pen-

dulum, with a cavity filled with a viscous liquid, may reach the equilibrium configuration

with its center of mass at its lowest point, similarly to what happens when the cavity is

empty and the pendulum is immersed in a viscous liquid ([36]).

Figure 1.

8. Application to a top with a liquid-filled cavity. The main objective of this

section is to investigate the motion of a (non-necessarily symmetric) top with a liquid-

filled cavity that is initially spinning around the e3-axis, with the latter slightly off

the vertical direction. It is worth emphasizing that this type of problems has been

investigated by numerous authors for the last forty years; see, e.g., [3, 4, 13, 15, 16, 20,

24, 39]. However, these results are mostly obtained by making ad hoc assumptions such

as neglecting the non-linear effects and/or imposing suitably symmetry restrictions on

7See Footnote 5.
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the shape of the cavity. In contrast, the study we shall perform here will not only be of

completely rigorous nature, but will also show certain significant features that were not

envisaged by previous authors, also because of their simplifying hypotheses.

To achieve all the above, we begin with some general considerations about the stability

of steady-state solutions.

Let m0 = (0, kγ,γ) ∈ S be a given steady-state configuration of S, and let m :=

m̃+m0 = (v, ω̃∞ + kγ, z + γ) be a corresponding “perturbed” motion with initial data

(v0, kγ + ω̃∞0,γ + z0) ∈ H.

We collect a number of fundamental properties that the “perturbation”

(v(t), ω̃∞(t), z(t)) must satisfy at all times t ≥ 0. By Proposition 5.2, the perturbed

motion obeys the strong energy inequality (5.10), which in particular furnishes

ρ‖v(t)‖2 + (kγ + ω̃∞(t)) · I · (kγ + ω̃∞(t))− 2β2(γ + z(t)) · e3
≤ ρ‖v0‖2 + (kγ + ω̃∞0) · I · (kγ + ω̃∞0)− 2β2(γ + z0) · e3 , for all t ≥ 0 ,

as well as conservation of axial angular momentum (5.6):

(γ + z(t)) · I · (kγ + ω̃∞(t)) = (γ + z0) · I · (kγ + ω̃∞0), for all t ≥ 0.

The above implies that the perturbation must satisfy

ρ‖v(t)‖2 + ω̃∞(t) · I · ω̃∞(t) + 2kγ · I · ω̃∞(t)− 2β2z3(t)

≤ ρ‖v0‖2 + ω̃∞0 · I · ω̃∞0 + 2kγ · I · ω̃∞0 − 2β2z0 · e3 , for all t ≥ 0 , (8.1)

and

γ · I · ω̃∞(t) + kz(t) · I · γ + z(t) · I · ω̃∞(t)

= γ · I · ω̃∞0 + kz0 · I · γ + z0 · I · ω̃∞0, for all t ≥ 0. (8.2)

Moreover, we have the following integral of motion:

(γ + z(t)) · (γ + z(t)) = 1, for all t ≥ 0

which, together with the constraint γ · γ = 1, gives the following:

z(t) · z(t) + 2γ · z(t) = 0, for all t ≥ 0. (8.3)

Following classical literature, we shall say that m0 is stable (in the sense of Lyapunov)

if for any ε > 0 there exists δ = δ(ε) > 0 such that

‖v0‖2 + |ω̃∞0|+ |z0| < δ =⇒ ‖v(t)‖2 + |ω̃∞(t)|+ |z(t)| < ε , for all t > 0.

Otherwise, m0 is unstable.

The following result provides a general stability criterion. Very probably, its (simple)

proof can be found in the existing literature; however, for completeness, we shall give

our own in the Appendix.

Lemma 8.1. Let m0 ∈ S and m̃ = (v,y), y ≡ (ω̃∞, z), be a corresponding perturbation.

Moreover, let F : H(C) → [0,∞) be such that

c1‖v‖2 ≤ F (v) ≤ c2‖v‖2 , (8.4)
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and let U : R
3 ×R

3 → R be continuous and, in addition, positive definite in a neighbor-

hood I(0) of the origin in R
3 × R

3, namely,

(i) U(0) = 0,

(ii) U(y) > 0 for all y ∈ I(0) \ {0}.
Then, if V (t) := F (v(t)) + U(y(t)) satisfies V (t) ≤ V (0) for all t ≥ 0, m0 is stable.

We are now in a position to analyze in detail some important aspects of the motion

of a spinning (possibly asymmetric) top with a liquid-filled cavity. Precisely, we have:

Theorem 8.2. Let m0 = (0, r0e3,−e3), that is, the top is spinning with G in the highest

position. Then, if C > A,B the following properties hold:

(a) If

r20 >
β2

C −M
, M := max{A,B} , (8.5)

then m0 is stable. Moreover, there exists δ > 0 such that if

‖(v0, ω̃∞0, z0)‖H < δ , (8.6)

then

lim
t→∞

‖v(t)‖1,2 = 0 ,

lim
t→∞

ω̃∞(t) = − 1

C

{
(z0 − e3) · I · ω̃∞0 − r0z0 · I · e3

}
e3 ,

lim
t→∞

z(t) = 0 .

(8.7)

(b) If 8

r20 < min
{β2

C
,
μ2

C2

β2

C −M

}
, μ := min{A,B} , (8.8)

then m0 is unstable. More precisely, there is an initial perturbation such that

lim
t→∞

z(t) = 2e3 . (8.9)

Let m0 = (0, r0e3, e3), that is, the top is spinning with G in its lowest position. The

following properties hold:

(c) If C > A,B, then m0 is stable.

(d) If A,B > C and

r20 <
β2

M − C
, M := max{A,B}, (8.10)

then m0 is stable.

8Notice that if C ≥ [(1 +
√
5)/2]M , condition (8.8) becomes

r20 <
μ2

C2

β2

C −M
.

In fact, to fix the ideas, suppose B ≥ A. It is at once verified that if C satisfies the further restriction,
then

B2 < C(C −B) ,

which proves our claim. Conversely, if M < C ≤ [(1 +
√
5)/2]μ, condition (8.8) becomes

r20 <
β2

C
.
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Moreover, in both cases (c), (d) there exists δ > 0 such that, if condition (8.6) is met,

then
lim
t→∞

‖v(t)‖1,2 = 0 ,

lim
t→∞

ω̃∞(t) =
1

C

{
(z0 + e3) · I · ω̃∞0 + r0z0 · I · e3

}
e3 ,

lim
t→∞

z(t) = 0 .

(8.11)

Proof. We will begin to show the stability properties stated in (a), (c) and (d). To

this end, consider the perturbed fields m = (0+ ṽ, r0γ + ω̃∞,γ + z), where

γ :=

{
−e3 in case (a),

e3 in cases (c) and (d) .

By multiplying both sides of (8.2) by 2r0, we get

2r0γ · I · ω̃∞(t) = −2r20z(t) · I · γ − 2r0z(t) · I · ω̃∞(t)

+ 2r0γ · I · ω̃∞0 + 2r20z0 · I · γ + 2r0z0 · I · ω̃∞0, (8.12)

Next, consider the following scalar function:

U(ω̃∞, z) := ω̃∞ · I · ω̃∞ − 2r20z · I · γ − 2r0z · I · ω̃∞ − 2β2z3

+ η
[
(z · z)2 + 4(γ · z)2 + 4(z · z)(γ · z)

]
, (8.13)

where η ≥ 0 is a parameter that we will determine later. Replacing (8.12) in (8.1), and

taking into account (8.3) and (8.13), we find that

ρ‖v(t)‖2 + U(ω̃∞(t), z(t)) ≤ ρ‖v0‖2 + U(ω̃∞(0), z(0)). (8.14)

Notice that (8.13), in a more explicit form, is

U(ω̃∞, z) = ω̃∞ · I · ω̃∞ − 2r20(Az1γ1 + Cz3γ3)− 2r0z · I · ω̃∞ − 2β2z3

+ η
[
(z · z)2 + 4(z · z)(z · γ) + 4(γ2

1z
2
1 + γ2

3z
2
3 + 2γ1γ3z1z3)

]
.

Thus, by multiplying both sides of (8.3) by r20A, and replacing the resulting equation in

the previous one, we infer

U(ω̃∞, z) = ω̃∞ · I · ω̃∞ + (Ar20 + 4ηγ2
1)z

2
1 +Ar20z

2
2 + (Ar20 + 4ηγ2

3)z
2
3

− 2[(r20(C −A)− 4ηγ1z1)γ3 + β2]z3 − 2kz · I · ω̃∞

+ η
[
(z · z)2 + 4(z · z)(z · γ)

]
.

To prove the theorem, it is enough to show that the following quadratic form is positive

definite:

Q(ω̃∞, z) := ω̃∞ · I · ω̃∞ + (Ar20 + 4ηγ2
1)z

2
1 +Ar20z

2
2 + (Ar20 + 4ηγ2

3)z
2
3

− 2[(r20(C −A)− 4ηγ1z1)γ3 + β2]z3 − 2r0z · I · ω̃∞. (8.15)

In fact, if Q is positive definite, then U is positive definite in a suitable neighborhood

of the origin, and we can apply Theorem 8.1 with F := ρ ‖v‖2 and employ (8.14), to

conclude our proof. Now, consider the cases in the statement.
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(a) In this case, γ = −e3. Then (8.3) becomes

2z3 = z21 + z22 + z23 .

Replacing this in (8.15), we find that

Q(ω̃∞, z) = ω̃∞ · I · ω̃∞

+ (Cr20 − β2)(z21 + z22) + (Cr20 − β2 + 4η)z23 − 2r0z · I · ω̃∞.

Choosing η > β2/4, we at once deduce that Q is positive definite provided

r20 >
β2

C −M
, C > M , M := max{A,B}.

(c)-(d) In both cases, γ = e3. Then, (8.3) reads as follows:

2z3 = −z21 − z22 − z23 .

Using the latter displayed equation in (8.15) and choosing η ≡ 0, we find that

Q(ω̃∞, z) = ω̃∞ · I · ω̃∞ + (Cr20 + β2)(z21 + z22 + z23)− 2r0z · I · ω̃∞. (8.16)

From this it easily follows that if C > A,B, then Q is a positive definite quadratic

form, whereas if C < A,B, then Q enjoys the same property provided condition

(8.10) is satisfied.

We shall next prove the asymptotic properties stated in (a), (c) and (d). We begin to

observe that, in all cases, the decay property for the velocity field v follows from Theorem

6.4. Furthermore, once the stated asymptotic condition on z is proved, the asymptotic

expression for the angular velocity follows from Proposition 7.1. Therefore, we only have

to show (8.7)3 and (8.11)3, and begin with case (a). Since condition (8.5) holds and

C > A,B, in particular

r20 �= β2

C −A
,

β2

C −B
.

Thus, we can apply Proposition 4.8 to infer the existence of a neighborhood I(m0) such

that I(m0) ∩ S ⊂ PR. Fix ε > 0 such that

Bε(m0) := {(u,ω, q) ∈ H : ‖u‖2 + |ω − r0e3|+ |q + e3| < ε} ⊂ I(m0).

Since m0 is stable, corresponding to ε > 0, there exists δ > 0 such that

‖v(0)‖2 + |ω̃∞(0)|+ |z(0)| < δ ⇒ ‖v(t)‖2 + |ω̃∞(t)|+ |z(t)| < ε for all t ≥ 0,

in other words, m := m̃ + m0 ∈ Bε(m0) at all times. The latter along with Proposition

6.3 imply that the Ω-limit set of the weak solution m satisfies Ω(m) ⊂ Bε(m0)∩ S ⊂ PR.

Therefore, we have the following two possibilities: either

Ω(m) =

{(
u ≡ 0, ω̄ = − 1

C
(z(0)− e3) · I · (ω̃∞(0) + r0e3), γ̄ = −e3

)}
or

Ω(m) =

{(
u ≡ 0, ω̄ =

1

C
(z(0)− e3) · I · (ω̃∞(0) + r0e3), γ̄ = e3

)}
.

However, the second choice cannot occur since, otherwise,

lim
t→∞

z(t) = 2e3
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and this would contradict the stability property. Therefore, z(t) → 0 as t → ∞, as

claimed. An entirely similar argument can be used to show that the statement holds

also in the cases (c) and (d). In particular, condition (4.8) is automatically satisfied if

C > A,B.

It remains to show the instability property claimed in part (b). We choose as initial

conditions v0 = ω̃∞0 = 0 and z0 �= 0. This means that we are just applying a small

disorientation (tilt) to the vertical axis. By (8.3) with γ = −e3, it follows

z30 =
1

2
(z210 + z220 + z230). (8.17)

We now show that we can choose z30 so small as to satisfy both conditions (7.1), (7.4)

in Proposition 7.1. In fact, under the given assumptions on A,B and C, and our choice

of initial perturbations (7.1) becomes

|(z0 − e3) · I · (r0e3)|2 <
μ2β2

(C −M)
,

which, in view of hypothesis (8.8) and (8.17), is certainly satisfied by taking z30 suffi-

ciently small. As for (7.4), with our choice of initial perturbations it becomes

C2r20 − 2β2 C z30 ≤ |(z0 − e3) · I · (r0e3)|2 ,

namely,

C r20 ≤ β2 +O(z3) ,

which, again by the assumption (8.8), is also satisfied. We may then conclude that, when

condition (8.8) is met, both requirements (7.1) and (7.4) are satisfied, so that Proposition

7.1 ensures the validity of (8.17) and the claimed instability follows. The proof of the

theorem is completed. �
Remark 8.3. The following important comments about the results just proved are in

order.

(i) A classical result of Rumyantsev [28] (see also [23]) ensures that condition of the type

(8.5) guarantees the stability of the “upright” rotation of the top also when the cavity

is liquid-empty. Thus, in such a case, the perturbed motion will occur with e3 in a

neighborhood of the vertical axis through O, e. In particular, if the top is symmetric

(A = B) the top will eventually perform an unsteady motion of precession around e. The

fundamental difference with a liquid-filled cavity consists in the fact that, in the latter

circumstance, the only terminal state that the top can reach is a uniform rotation around

e, with e3 ≡ e, and G in its highest position. This shows, one more time, the strong

stabilizing influence of the liquid. A similar stabilizing effect occurs for the “downright”

rotation discussed in cases (c) and (d), where in the presence of liquid, the terminal state

is again a uniform rotation around e, with e3 parallel to e, and G in its lowest position.

(ii) The condition for the instability of the “upright” rotation presented in (8.8) is some-

how stronger than the one found by a linearized instability analysis. In fact, if one

linearizes (3.1) around m0 = (0, r0 e3,−e3) one can show [16] that m0 is unstable if

r20 <
β2

(C −M)
,
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which is the “strict” negation of (8.5). Seemingly, our analysis is not able to confirm this

result at the non-linear level. However, we may guess the following. For simplicity, let

us assume that C ≥ (1 +
√
5)M/2 so that (8.10) becomes (see Footnote 8)

r20 <
μ2

C2

β2

(C −M)
. (8.18)

By Theorem 8.2, we know that if (8.5) holds, then m0 is stable and the terminal motion

is a uniform “upright” rotation around e, while if (8.18) holds, then m0 is unstable and

the terminal state is a uniform “downright” rotation around aO. The question is then

what will the terminal state, tS, be if

μ2

C2

β2

(C −M)
≤ r20 ≤ β2

(C −M)
.

If we expect that m0 is unstable, then tS cannot be a uniform rotation around e with G in

its highest position. On the other hand, especially for values of r20 close to β2/(C −M),

the system could still have enough kinetic energy to overbalance the potential energy

and thus sustain a motion different from a uniform rotation around aO with G in its

lowest position. Thus, according to parts 2 and 5 in Proposition 6.3, the only remaining

possibility is that tS is a steady precession with G above O. Proving or disproving this

statement is still far from our current analytical reach. As a matter of fact, we do not

even know if these steady precessions are stable or not. In this respect, it is worth

noticing that, instead, one can show that steady precessions with G below O are indeed

stable.9 For example, following the same argument used in the proof of Theorem 8.2 (a),

we may prove that if A > B,C, then every element of SP1 is stable, whereas if B > A,C,

then every element of SP2, is stable. In conclusion, we believe that a targeted numerical

simulation could prove useful insight on the whole issue.

Appendix.

Lemma A.1 (A Gronwall-like Lemma). Let y : [t0, t1) → [0,∞), t1 > t0 ≥ 0, be an

absolutely continuous function satisfying for some a, b, c, δ > 010 and α > 1,

(i) y′ ≤ −a y + b yα + c in (t0, t1) ;

(ii)

∫ t1

t0

y(τ ) dτ <
δ2

4c
, y(t0) <

δ√
2
.

Then, if k := −a+ b δα−1 < 0, we have

y(t) < δ , for all t ∈ [t0, t1) . (A.1)

Moreover, if t1 = ∞ we have also

lim
t→∞

y(t) = 0 . (A.2)

Proof. Setting Y := y2, from (i) we get

Y ′ ≤ −2a Y + 2b Y β + F , t ∈ (t0, t1) , (A.3)

9Notice that such steady motions can only exist if either C < A or C < B.
10For the sake of completeness, we would like to remark that, as is well known, the lemma continues

to hold if c = 0, even without assuming the first condition in (ii).



MOTION OF A LIQUID-FILLED HEAVY BODY AROUND A FIXED POINT 143

where β := (α + 1)/2, F := 2c y. In view of the second condition in (ii), contradicting

(A.1) means that there exists t∗ ∈ (t0, t1) such that

Y (t) < δ2 , for all t ∈ [t0, t
∗) ; Y (t∗) = δ2 . (A.4)

Using this information back in (A.3) we find for all t ∈ (t0, t
∗)

Y ′(t) ≤ 2(−a+ bδα−1)Y (t) + F (t) ,

which in view of the assumptions, after integration from t0 to t∗, furnishes

Y (t∗) <
δ2

2
+

∫ t1

t0

F (t) dt < δ2 .

However, the latter is at odds with (A.4), and we thus conclude the proof of the first

part of the lemma. In order to show the second part, we observe that from (A.1) and

(A.3) we have

Y ′ ≤ −2a Y + 2(bδα + c)y := −2a Y + α y .

By integrating the latter and using (A.1) we get, for all t ≥ 2t0,

Y (t) ≤ Y (t/2) e−2a(t/2) + α

∫ t

t/2

y(τ )dτ < δ e−2a(t/2) + α

∫ t

t/2

y(τ )dτ ,

from which (A.2) follows. �
Proof of Lemma 8.1. Denote by |||y||| :=

√
|ω̃∞|2 + |z|2 the Euclidean norm on R

3×
R

3, and let ε0 > 0 be such that

Bε0 := {y ∈ R
3 × R

3 : |||y||| ≤ ε0} ⊂ I(0).

Fix ε ∈ (0, ε0) and define

ξ := min
|||y|||=ε/2

U(y) > 0.

The minimum exists since U is continuous on Bε0 and the sphere of radius ε is compact in

R
3×R

3; moreover, ξ is strictly positive because of condition (ii) in the lemma. Again by

the continuity of U , we find δ0 > 0 such that |||y||| < δ0 implies U(y) < 1
2 min{ξ, ε, 1

2c1ε},
with c1 defined in (8.4). Choose δ < min{δ0, 1

2c2
ξ, 14

c1
c2
ε} with c2 defined in (8.4). We

want to show that

|||y(t)||| < ε/2 , for all t ≥ 0. (A.5)

Suppose, on the contrary, that t̄ is the first instant of time when |||y(t̄)||| = ε/2. Thus,

since F is positive definite and V (t) ≤ V (0) for all t ≥ 0, we deduce with the help of

(8.4)

ξ ≤ V (t̄) = F (v(t̄)) + U(y(t̄)) ≤ c2‖v(0)‖2 + U(y(0)) <
ξ

2
+

ξ

2
= ξ ,

which shows a contradiction. Thus, (A.5) holds and, in addition, for all t ≥ 0,

c1‖v(t)‖2 ≤ F (v(t)) ≤ V (0) ≤ c2‖v(0)‖2 + U(y(0)) <
1

4
c1ε+

1

4
c1ε =

1

2
c1ε

which completes the proof. �
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