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Abstract. There are two minor flaws in our 2017 paper. The first flaw is in the

proof of Lemma 2.7, which relates a generalization of Helmholtz-Weyl decomposition on

a closed surface. The second one is in Appendix (I), where we compare our model to

Taylor’s model when the surface does not move. We give a full proof of Lemma 2.7 as

well as a correct comparison of our model with Taylor’s model (1992). It will be properly

interpreted.

1. On errata for Koba-Liu-Giga [6].

Generalized Helmholtz-Weyl decomposition and comparison with Taylor’s model.

There are two minor flaws in Koba-Liu-Giga [6]. The first one is in the proof of Lemma 2.7

in [6]. The proof of the sufficient condition of Lemma 2.7 in [6] is incomplete. Therefore,
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we give a detailed proof of Lemma 2.7 in Subsection 1.1. The second one is some mis-

calculation with misinterpretation in the Appendix (I) in [6]. We give some explanation

to clarify the points in Subsection 1.2. We follow the notation in [6].

1.1. Proof of Lemma 2.7 in [6].

Let Γ0 be a closed C∞-surface, and let H = H(x, t) be the mean curvature of Γ0 in

the direction of n = n(x, t) = t(n1, n2, n3) which is the unit outer normal vector of Γ0.

Theorem 1.1 (Lemma 2.7 in [6]). Set

E :=

{
f ∈ [L2(Γ0)]

3;

∫
Γ0

f · ϕ dH2
x = 0 for all ϕ ∈ [C∞(Γ0)]

3 with divΓϕ = 0

}
.

Then f ∈ E if and only if there is p ∈ W 1,2(Γ0) such that

f = ∇tanp+ pHn.

Moreover, if f is continuous, then p ∈ C1(Γ0).

Note that C∞(Γ0) = C∞
0 (Γ0) since Γ0 is a closed surface. Note also that one can

decompose an L2-vector field on a surface into a surface divergence part, surface gradient

part, and mean curvature part by Theorem 1.1. This is interpreted as a generalized

Helmholtz-Weyl decomposition on a surface.

To prove Theorem 1.1, we prepare one proposition.

Proposition 1.2. Let f ∈ [L2(Γ0)]
3 and p ∈ L2(Γ0). Assume that for every ϕ ∈

[C∞(Γ0)]
3 satisfying divΓϕ = 0,∫

Γ0

(f · n−Hp)(ϕ · n) dH2
x = 0.

Then there is a c ∈ R such that

f · n−Hp = cH.

To prove Proposition 1.2, we prepare two lemmas.

Lemma 1.3. Let g, h ∈ L1(Γ0). Assume that for all ψ ∈ C∞(Γ0) satisfying
∫
Γ0

hψ dH2
x =

0, ∫
Γ0

gψ dH2
x = 0.

Then there is c ∈ R such that

g = ch.

Lemma 1.4. Let χ ∈ C∞(Γ0) such that∫
Γ0

χH dH2
x = 0.

Then there is ϕ ∈ [C∞(Γ0)]
3 such that divΓϕ = 0 and ϕ · n = χ.

Proof of Lemma 1.3. When h = 0, we easily see that g = 0. Assume that h �= 0. Let

ϕ ∈ C∞(Γ0) such that ∫
Γ0

hϕ dH2
x = 1.
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Fix φ ∈ C∞(Γ0). Set

ψ = φ−
(∫

Γ0

hφ dH2
x

)
ϕ.

It is clear that ψ ∈ C∞(Γ0) and ∫
Γ0

hψ dH2
x = 0.

By assumption, we observe that

0 =

∫
Γ0

gψ dH2
x

=

∫
Γ0

gφ dH2
x −

(∫
Γ0

gϕ dH2
x

)(∫
Γ0

hφ dH2
x

)
.

Therefore, we see that for all φ ∈ C∞(Γ0)∫
Γ0

(g − ch)φ dH2
x = 0,

where c =
∫
Γ0

gϕ dH2
x. From fundamental lemmas of calculus of variations, we conclude

that

g = ch.

Note that C∞(Γ0) = C∞
0 (Γ0). Therefore the lemma follows. �

Proof of Lemma 1.4. Fix χ ∈ C∞(Γ0) such that∫
Γ0

χH dH2
x = 0.

We consider the elliptic equation:

ΔΓU = −χH,

where U is an unknown function. Since Γ0 is a closed surface and∫
Γ0

χH dH2
x = 0,

there is a weak solution U ∈ W 1,2(Γ0) such that 〈∇tanU,∇tanΦ〉 = 〈χH,Φ〉 for Φ ∈
W 1,2(Γ0). Moreover, we see that U ∈ C∞(Γ0) from the elliptic regularity theory. See

Aubin [2, Section 4] and Jost [4, Appendix A] for the existence and regularity of solutions

to the elliptic equation: −ΔΓU = F . Set

ϕ = ∇tanU + χn.

We easily check that ϕ · n = χ and that

divΓϕ = ΔΓU − χH = 0.

Therefore the lemma follows. �
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Proof of Proposition 1.2. Let χ ∈ C∞(Γ0) such that∫
Γ0

χH dH2
x = 0.

From Lemma 1.4 there is a ϕ ∈ C∞(Γ0) such that divΓϕ = 0 and ϕ · n = χ. By

assumption, we see that ∫
Γ0

(f · n−Hp)(ϕ · n) dH2
x = 0.

Therefore we find that ∫
Γ0

(f · n−Hp)χ dH2
x = 0

for all χ ∈ C∞(Γ0) such that ∫
Γ0

χH dH2
x = 0.

Lemma 1.3 implies that there is c ∈ R such that

f · n−Hp = cH.

Therefore Proposition 1.2 is proved. �
Proof of Theorem 1.1. We first show the necessary condition ⇐). Let p ∈ W 1,2(Γ0).

Set

f = divΓ(PΓp) = ∇tanp+ pHn.

It is clear that f ∈ [L2(Γ0)]
3. Fix ϕ ∈ [C∞(Γ0)]

3 with divΓϕ = 0. Using integration by

parts, we check that ∫
Γ0

f · ϕ dH2
x =

∫
Γ0

divΓ(PΓp) · ϕ dH2
x

= −
∫
Γ0

p(divΓϕ) dH2
x = 0.

Here we used the fact that nj∂
tan
j = 0. Therefore we see f ∈ E.

Next we prove the sufficient condition ⇒). Let f ∈ E. By definition of E, we see that∫
Γ0

ftan · ϕtan dH2
x = 0 for all ϕ ∈ [C∞(Γ0)]

3 with divΓϕtan = 0.

Here ftan := PΓf and ϕtan := PΓϕ. Note that ftan ·ϕtan = f ·ϕtan and f = ftan+(f ·n)n.
We easily check that for every circle C in Γ0∫

C
ftan dH1

x = 0.

From Weyl’s Theorem, there is a p̃ ∈ W 1,2(Γ0) such that ftan = ∇tanp̃. Therefore we

have

f = ∇tanp̃+ (f · n)n.
Fix ϕ ∈ [C∞(Γ0)]

3 with divΓϕ = 0. By definition of E, we have

0 =

∫
Γ0

f · ϕ dH2
x = −

∫
Γ0

Hn · (p̃ϕ) dH2
x +

∫
Γ0

(f · n)n · ϕ dH2
x.
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Here we used the fact that∫
Γ0

(∇tanp̃) · ϕ dH2
x =

∫
Γ0

divΓ(p̃ϕ) dH2
x

=−
∫
Γ0

Hn · (p̃ϕ) dH2
x.

Since ϕ is arbitrary, it follows from Proposition 1.2 to see that there is c ∈ R such that

f · n = p̃H + cH.

Set p = p̃+ c. We find that f = ∇tanp+ pHn. Moreover, we see that p ∈ C1(Γ0) when

f is continuous since Γ0 is a smooth surface. �
1.2. Comparison of Koba-Liu-Giga’s model with Taylor’s.

Let us first clarify one misinterpretation in the Appendix (I) in [6]. Let M be a closed

2-dimensional Riemannian manifold.

(i): Taylor [9] did not use PΓD
tan(u) but {(∇Mu) + t(∇Mu)}/2, where Dtan(u) =

{(∇tanu) + t(∇tanu)}/2 and ∇M is the covariant derivative. Note that in general

PΓD
tan(u) is different from (∇Mu) + t(∇Mu) even if u is a 1-form on M. This is

one interpretation in the Appendix (I) in [6]. Recall that Mitsumatsu-Yano [7] and

Arnaudon-Cruzeiro [1] used Taylor’s tensor {(∇Mu) + t(∇Mu)}/2.
(ii) The equality: PΓdivΓ(PΓD

tan(v)) = ΔBv +Kv in the Appendix (I) in [6] is not

right even if divΓv = 0 and v · n = 0. The following equality is correct: under the

conditions that divΓv = 0 and v · n = 0,

2PΓdivΓDΓ(v) = ΔBv +Kv

when we consider v as a 1-form on the surface Γ0 = M. See Jankuhn-Olshanskii-Reusken

[3], Miura [8], and Koba [5] for details. Note that differential operators on a 1-form are

different from the differential operators in [6].

Conclusion: The tangential incompressible fluid system in [6] is the same as Taylor’s

[9] when we consider v as a 1-form. Note that both systems in Mitsumatsu-Yano [7] and

Arnaudon-Cruzeiro [1] agree with Taylor’s system. For a more detailed comparison of

our model and Taylor’s model, see Miura [8, Lemma 2.5, Remark 4.2, and Remark 4.3].
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