
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXVI, NUMBER 1

MARCH 2018, PAGES 65–111

http://dx.doi.org/10.1090/qam/1480

Article electronically published on October 2, 2017

A NOVEL STOCHASTIC METHOD FOR THE SOLUTION

OF DIRECT AND INVERSE EXTERIOR ELLIPTIC PROBLEMS

By

ANTONIOS CHARALAMBOPOULOS (Department of Mathematics, School of Applied
Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus,

15780, Greece)

and

LEONIDAS N. GERGIDIS (Department of Materials Science and Engineering, University of
Ioannina, 45110,Greece)

Abstract. A new method, in the interface of stochastic differential equations with

boundary value problems, is developed in this work, aiming at representing solutions

of exterior boundary value problems in terms of stochastic processes. The main effort

concerns exterior harmonic problems but furthermore special attention has been paid to

the investigation of time-reduced scattering processes (involving the Helmholtz operator)

in the realm of low frequencies. The method, in principle, faces the construction of the

solution of the direct versions of the aforementioned boundary value problems but the

special features of the method assure definitely the usefulness of the approach to the

solution of the corresponding inverse problems as clearly indicated herein.

1. Introduction. Solving boundary value problems in several scientific areas is tra-

ditionally connected with the implication of global methods that are based on analytical

or numerical approaches involving simultaneously the determination of the sought field in

a large number of observation points. As an example, the integral equation methods ([1],

[2]) involve integral representations along a whole manifold - which classically has to be

discretized totally in the framework of the numerical implementation via the boundary

element methodology - while in the realm of the finite element methods [3], the features

of the discretization of the continuum introduces a perplexity incorporating the struc-

ture of the whole region in which the problem is solved. It is well known however that in

several applications we are mainly interested in determining the solution of the problem

at a specific restricted region of the domain instead of having a global knowledge, which
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is usually an expensive goal. A representative example is the investigation of boundary

value problems aiming at the determination of the elastic displacement field inside an

elastic specimen enclosing crack defects. Then it is clear that only the field near the

crack endpoints really matters and it is usually annoying that the traditional methods

require by default the global determination of the whole elastic field.

In contrast to the traditional methods, the local methods give the solution of a partial

differential equation at an arbitrary point in the domain directly, instead of extract-

ing the response value at this point from the whole field solution. These methods are

based on probabilistic interpretations of certain partial differential equations. The re-

lationship between stochastic processes and parabolic and elliptic differential equations

was demonstrated a long time ago by Lord Rayleigh [4] and Courant [5], respectively.

The development of the probabilistic methods is based on the Itô calculus, properties

of Itô diffusion processes, and Monte Carlo simulations. The theoretical considerations

supporting the probabilistic methods involve random processes and stochastic integrals.

An elaborate presentation of this framework can be encountered in ([6]- [12]) and the

references cited therein. The main idea of these approaches concerns boundary value

problems in bounded domains and is included here for reference reasons in Appendix

A.2. The concept is the following: We are interested in the determination of the solution

of a direct elliptic boundary value problem at a specific point x of a bounded domain

D. The probabilistic manner is to create a large number of trajectories emanating from

this particular point x and obeying evolutionary to a system of stochastic differential

equations, which are driven by a drift and diffused by a Wiener process both connected

directly with the coefficients of the differential operator under investigation.1 These tra-

jectories hit for the first time the boundary ∂D of the bounded domain in finite time. So

every trajectory has a finite lifetime during its journey inside the domain D. All these

paths are gathered and exploited as follows: The points of the boundary on which the

first exit occurs - the traces of the trajectories on the boundary - are selected and offer

a set of points on which the average of the values of the boundary data of the boundary

value problem is calculated formatting as a first accumulation term. In addition, on

every trajectory a stochastic integral is calculated where the integrand is the inhomo-

geneous term of the underlying differential equation. The mean value of these integrals

over the large number of trajectories forms a second accumulator which is superposed

to the first one2 leading to the construction of an extended mean value term. When the

number of the trajectories increases, the aforementioned total mean value converges to

the corresponding probabilistic expectation value of the underlying fields, which in its

turn coincides with the sought, from the beginning, value of the solution of the B.V.

problem at the starting point x. The description above refers rather to the Dirichlet

problem, which is the main subject of investigation in the present work but similar ar-

guments are encountered in the Neumann boundary value problem ([14]-[15]). One of

the main advantages of the probabilistic approach is that it is based on very stable and

accurate Monte Carlo simulations.

1As an example, in case of the Laplace operator, this stochastic differential system disposes zero
driving term while the randomness is purely Brownian.

2This second term is absent in case of a homogeneous differential equation.
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Two main remarks should be made here. First, the boundedness of the domain D is

necessary for the first exit time to constitute a stochastic variable taking almost surely

finite values. The finiteness of the duration of the trajectories traveling inside D is a

prerequisite for the applicability of the probabilistic approach and this cannot be guar-

anteed in unbounded domains. Secondly, the whole setting of the stochastic approach

is appropriate only for the solution of the direct boundary value problem, in which the

domain D hosting the paths and its boundary ∂D being hit by them are known.

The aim of the present work is to develop local stochastic methods to face a class of

direct and inverse exterior boundary value problems involving the Laplace operator and

taking place in unbounded domains. It is immediately apparent that the fundamental

prerequisites for the applicability of the stochastic calculus, as presented above, are not

valid any more. Indeed, it is well known that the Brownian motion is recurrent in

R2 but transient [7] in Rn, n > 2. Consequently, the first drawback of the classical

stochastic approach is that the generated trajectories have a strong probability to travel

to infinity without hitting the boundary of the domain. Actually, even if some paths

cross the boundary, their travel time could be very large creating strong difficulties to

the application of the Monte Carlo simulation. Consequently, we need a reformulation of

the probabilistic settlement in exterior domains assuring first of all the certainty for the

trajectories to hit in finite time the boundary of the unbounded domain and establishing

good adaptation to the specific characteristics of the boundary value problems under

investigation.

In addition, our strong motif is to create a methodological framework handling not

only the direct but also the corresponding inverse problem where measurements of the

involved fields are given but the boundary ∂D, where the strikes of the trajectories occur

is unknown and constitutes the target of our investigation! It is obvious that in the

framework of the inverse problem a strong resettlement of the method is needed so that

the expectation values of the involved fields over the unknown surface obtain a specific

exploitable meaning.

The structure of the paper is the following: In Section 2 we gather all the exterior

boundary value problems related to the Laplace operator that attract our interest and

pertain to harmonic and low-frequency scattering processes outside a bounded region.

These problems are handled in the sequel via the novel stochastic approach. Before pro-

ceeding to the subsequent sections, the reader who is not familiar with the stochastic cal-

culus described so far, is encouraged to follow all the necessary probabilistic background

presented in Appendix A, where special focus is devoted to the stochastic processes and

their connection with expectation values representing solutions of differential equations

subject to suitable boundary conditions.

In Section 3, the stochastic representation for exterior boundary value problems is

presented gradually. More precisely, in Section 3.1, we reformulate the stochastic process

so that the first goal is assured: the trajectories emanating from the observation point

x, are forced to hit the boundary ∂D in a finite period of time. This is accomplished via

a suitable conditioning of the stochastic process - on the basis of evoking an auxiliary

harmonic function from a mono-parametric suitably selected set of functions - having as

support the intersection of the exterior region with a critical cone whose vertex ξ is a
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kind of attractor for the stochastic trajectories while the conical surface plays the role

of a repulsing reflector. The fundamental concept presented in Section 3.1 relies on the

selection of the attractor point inside the bounded component of the problem assuring

the secure attraction of the stochastic process towards the surface of the boundary. In

order to clarify the situation, we focus, for three-dimensional problems, on the selection

of a driving term3 of the form ∇hm(Xt−ξ)
hm(Xt−ξ) , where4 hm(y) = Pm(n̂·y/|y|)

|y|m+1 is a harmonic

function and ξ plays the role of the attractor. So the trajectories stem from the point

x belonging to the axis of the cone, are repulsed by the singular lateral surface and are

attracted - with “magnitude” increasing with the order m - by the source ξ which could

be located outside the exterior space to force, at last, hitting on the boundary. There

exist several alternative settlements as will be apparent in Section 3. In addition, several

issues emerge that must be appropriately faced. The most important is the necessity to

avoid singular behavior of the driving term of the process on the lateral surface of the

cone. This imposes the implication of an interior conical surface protecting the involved

fields to obtain infinite values. This protecting cone absorbs however a critical amount

of trajectories while it still repulses most parts of them. This antagonism between the

“successes” (hits on the boundary) and “fails” (strikes on the lateral conical surface)

gives birth to a stochastic calculus, which on the basis of Dynkin’s formula, offers the

possibility to obtain stochastic representations for exterior fields of elliptic boundary

value problems. It is worthwhile to notice that this specific conditional driving imposed

by hm leads to concrete expectation value and covariance for the travel time of the

trajectories dependent on the distance between the observation point and the attractor

as well as on the parameter m.

In Section 3.2 two different stochastic representations are constructed. The first one

(the mildly conditioned stochastic method) allows the attractor point to exit in the exte-

rior region and the cones to become thick in order to create a large space for the mobility

of the stochastic process, serving at solving the direct boundary value problem since in

this case all the surface points have the opportunity to serve as strike absorbers and

equivalently participate to the accumulation buffers. Theorem 4 contains the principal

results of this approach. Its usefulness is dependent on the specific partition of the strikes

of the trajectories over the possible escaping boundaries confining the region of the evo-

lution of the trajectories. If the strikes over the lateral surface of the cone and its remote

cup are considerably less than the strikes over the surface ∂D, then a useful stochastic

representation for the solution of the direct problem arises though disposing a remainder

dependent explicitly on the fraction of the “fails” over the “successes”.

The second method (the strongly conditioned stochastic method) is closer to the ini-

tial concept working with attractor points inside the bounded component of the space

and with thin cones detaching only a small portion of the boundary. The ultimate goal

of this approach is the treatment of the inverse problem as presented later in Section

4.2. However the method has applicability also to the direct problem. Theorems 11 and

3The driving term of the stochastic differential system governing the evolution of the trajectories Xt.
4Pm is the Legendre polynomial of order m ∈ N , while n̂ = x−ξ

|x−ξ| defines the orientation of the

aforementioned critical cone, the lateral surface of which is characterized by a zero of Pm. The driving
term blows up on this lateral surface.
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12 present the stochastic representations for the Dirichlet and Neumann boundary value

problems. In the same paragraph, it is demonstrated how a local stochastic characteri-

zation of the Dirichlet to Neumann operator can be constructed. The advantage of the

method is that the modified field which is subject to stochastic analysis vanishes over

the protective interior cone and so the lost strikes do not hide information from the total

accumulator. The disadvantage of the strongly conditioned stochastic method is that it

offers representations for the far or the very near field, while the involved reminder is not

controllable5 for intermediate locations of the observation point x (always with respect

to the location of the auxiliary attractor point ξ).

In the interface of the two methods, a striking result has been proved giving an exact

stochastic representation to the simple spherical symmetric potential outside a sphere (see

Proposition 9). Although disposing the character of a benchmark solution, this exact

representation is very helpful in connecting, in stochastic terms, the local curvature of the

boundary with the measured field at points inside narrow cones cropping small portions

of the boundary, at least in the direct problem framework. In addition, it merits its own

interest as an exact theoretical result establishing a probabilistic representation for the

simplest exterior three-dimensional harmonic function.

Section 3.3 is devoted to revealing the efficiency of the strongly conditioned stochastic

method to represent stochastically the far-field pattern of the acoustical scattering prob-

lem in low-frequencies. The representation offered by Corollary 17 can be considered the

main outcome of this section giving birth to the development of the method solving the

inverse low-frequency acoustical problem presented in Section 4.2.

The numerical implementation of the problem is presented in Section 4 where both

direct and inverse exterior boundary value problems are encountered mainly in the realm

of low-frequency acoustic scattering. Although the theoretical arsenal of Section 3.1 has

been constructed for both 2-D and 3-D problems, the numerical investigation has been

confined to 3-D dimensional problems, mainly due to the fact that they constitute the

suitable cradle for the low-frequency processes. The numerical ingredients of the in-

vestigation of the set of the stochastic differential equations governing the trajectories

formation are first discussed in order to reveal the complexity level of this effort. In

Section 4.1 the mildly conditioned method is used to solve the multiple low-frequency

scattering problem referring to a system of two spheres. The results are in perfect agree-

ment with the already existing analytical results met in [18]. In Section 4.2, the strongly

conditioned method is tested and proved to comply with the rigorous aforementioned

result of the probabilistic representation of the spherically symmetric potential. In ad-

dition, it is used to solve the inverse low-frequency scattering problem of plane waves

by a specific ellipsoidal surface on the basis of data furnished by the analytical results

found in [21]. The architecture of the inversion algorithm is based on the construction

and implication of several auxiliary cones connecting a set of measurement points with a

corresponding set of interior attractors, assuming that we have knowledge about a core

5The mildly conditioned stochastic method works for all possible distances |x − ξ|, a fact which in
combination with the freedom of trajectory moves supported by the thin cones render this method more
appropriate for the solution of the direct problem not only in asymptotic regions, but in all the exterior
domains.
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interior region of the scatterer where attractors can be safely located. We form then

an appropriate functional forcing the stochastically determined - via the strongly con-

ditioned method - values of the far-field pattern (at the observation points) to comply

with the data of the problem. This functional is implicitly dependent on the intersec-

tion points (rather small patches) of the thin cones with the unknown scatterer. The

optimization of this functional with respect to the aforementioned intersection points for

several states of plane incidence offers the reconstruction of the scatterer as the assembly

of these minimizing intersection points.

The outcome of the present work constitute a first attempt to develop stochastic meth-

ods for the solution of exterior direct and inverse boundary value problems pertaining to

the Laplace operator. Our investigation extends to the study of the Helmholtz operator

with small wave number k, in the realm of low-frequency scattering but actually the

stochastic trajectories are built via the methodology induced by the Laplace operator.

Our next goal is to work with the whole Helmholtz operator in order mainly to con-

front the scattering processes stemmed from acoustics or electromagnetism in the time

harmonic regime with arbitrary frequency. We can see [16] that when trying to construct

stochastic paths with drift and diffusion pertaining to the Helmholtz operator, then these

paths must live in a complex (2n)−dimensional space in contrast to the Laplace equa-

tion where the trajectories belong to the real n−dimensional space. This increases the

complexity of the problem, which is under current investigation by the authors [23].

An intermediate stage, which is also under current investigation, is the extension of the

method to provide representations of the solution of the modified Helmholtz equation in

exterior domains. Given that this operator is the negative of a strongly elliptic operator,

the trajectory space remains embedded in the real n−dimensional space and the tra-

jectories have more deterministic behavior due to the diffusive character of the Green’s

function - pertaining to the modified Helmholtz operator - involving in the driving force

of the stochastic differential system.

2. Exterior boundary value problems. Let us consider an open bounded region

D, confined by a smooth6 surface ∂D, standing for a hosted inclusion inside the sur-

rounding medium De = Rn\D̄. We state the problem generally in the n−dimensional

space having in mind though that in applications the cases n = 2, 3 are of special interest.

Let us consider the following exterior Dirichlet boundary value problem:

Lu(x) = 0, x ∈ De, (2.1)

u(x) = f(x), x ∈ ∂D, (2.2)

Mu(x) = 0, x ∈ Rn, (2.3)

where L is an elliptic - or better the opposite of an elliptic - differential operator of second

order, which in the realm of the present work is expressed generally by the formula7

L =
∑

i bi(x)
∂

∂xi
+ 1

2

∑
i,j aij(x)

∂2

∂xi∂xj
, f(x) represents the Dirichlet data on the surface

6With continuous curvature to support the classical version of the probabilistic calculus though there
exist improvements allowing Lipschitz domains [13].

7We will allow that the operator L disposes also an additional multiplicative term of the form c0(x)
but only the derivative terms will be connected, in this work, with the subsequent stochastic analysis.
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∂D, while the functionMu(x) is the more intricate term of the scheme and is constructed

via the application of the second Green’s identity to the pair of functions consisting of

the solution u(x) and the fundamental free space solution G(x, y) corresponding to the

operator L. The definition formula of Mu(x) is a global relation of integral type on a

sphere of a sufficiently large radius but it is not necessary to present it here and can

be found for example in [1]. Its significance lies in the fact that its specification is

equivalent to imposing constraints on the behavior of the solution u(x) as the distance

r = |x| increases. So in case that Mu(x) = 0, it is proved [1] that any solution of

the boundary value problem (2.1)-(2.3), being locally square integrable (along with its

derivatives of first order), can be represented as a superposition of single and double layer

potentials and so the solution has specific asymptotic decaying behavior at infinity with

known convergence rate.

The situation is clarified in the case of the Laplace operator (L = Δ), in which the

condition Mu(x) = 0, x ∈ Rn holds if and only if u(x) = O(|x|2−n) as |x| → ∞ for

n ≥ 3 and u(x) = b log(|x|) + O(|x|−1
) as |x| → ∞ for n = 2. Moreover, in the case

n = 2, demanding solutions remaining finite for large values of r, is equivalent with the

existence of a constant b such that Mu(x) = b and u(x) = b+O(|x|−1) as |x| → ∞. We

are then in position to state the well-known exterior Dirichlet boundary value problem

for Laplace operator concerning bounded solutions for n = 2, 3:

Δu(x) = 0, x ∈ De, (2.4)

u(x) = f(x), x ∈ ∂D, (2.5)

u(x) = b+O(|x|−1), r = |x| → ∞, (2.6)

with b = 0 necessarily in case n = 3 while in the two-dimensional case the relation

Mu(x) = b connects the solution u(x) with the remote dominant term b. However, by

considering as unknown function the field u(x)− b instead of u(x) itself, it is equivalent

to take b = 0 for both dimensional cases.

It is possible for the boundary value problem above to stem from different interesting

physical processes. As an example, in three dimensions, the field u(x) could be the

potential part of the low-frequency expansion of the acoustic scattered field connected

on the soft scatterer with the first component (−f(x)) of the corresponding frequency

expansion of the incident field. Alternatively, u(x) could be the electrostatic potential

induced by the interference of the perfect conductor D̄ with a specific exciting field

(stemmed by the potential Φ0(x) = −f(x)). Equivalently, the boundary value problem

above might represent the temperature distribution - in the steady state - outside a

region D̄, whose surface is held in specific temperature f(x). For n = 2, the potential

problem could lead to solutions expanding logarithmically far away from the domain D.

However, if we are interested in bounded solutions, the problem (2.4)-(2.6) adequately

serves as the suitable model to describe static processes as mentioned above.

Another elliptic boundary value problem of great importance is the one involving

the Helmholtz equation, which is produced after imposing time harmonic dependence in

scattering and vibrating processes in acoustics, electromagnetism and elasticity. As an

example, the acoustic scattering field u(x) exp(−iωt) emanated from the interference of

an incident time harmonic wave uin(x, t) = exp(i(kk̂ · x − ωt)) with the soft scatterer
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D̄ ⊂ Rn satisfies the following boundary value problem:

(Δ + k2)u(x) = 0, x ∈ De, (2.7)

u(x) = − exp(ikk̂ · x), x ∈ ∂D, (2.8)

limr→∞r
1−n
2

(
∂u(x)

∂r
− iku(x)

)
= 0, (2.9)

where we recognize the wave number k �= 0, the unit vector k̂ indicating the direction of

the incident wave and the angular frequency ω of the scattering process. Now the relation

Mu(x) = 0 leads to the Sommerfeld radiation condition (2.9) which holds uniformly

over all possible direction x̂ = x
r and is valid for every dimension n. This condition

not only gives information about the asymptotic behavior of the scattered wave but also

incorporates the physical property according to which the whole energy of the scattered

wave travels outward leaving behind the scatterer from which it emanates. For example

for n = 3 we obtain

u(x) =
1

|x|u∞(x̂; k̂, k) + u1(x), |x|u1(x) → 0, as |x| → ∞, (2.10)

where we recognize the far-field pattern u∞(x̂; k̂, k) totally characterizing the behavior

of the wave field u(x) a few wave-lengths away from the scatterer D.

The Helmholtz operator L = Δ+k2 (with k real) can be considered as a perturbation

of the general formula L =
∑

i bi(x)
∂

∂xi
+ 1

2

∑
i,j aij(x)

∂2

∂xi∂xj
, encountered above, due to

the k2−term. Although this term does not belong to the principal part of the elliptic

operator, it introduces qualitative differences in handling the corresponding boundary

value problem via stochastic calculus. We can see [16] that when trying to construct

stochastic paths with drift and diffusion pertaining to the Helmholtz equation, then

these paths must live in a complex (2n)−dimensional space in contrast to the Laplace

equation where the trajectories belong to the real n−dimensional space.

This is not the case if we deal with the modified Helmholtz equation L = Δ − k2,

which is the opposite of a bounded below elliptic operator [1], and the stochastic method-

ology applying for the Laplace operator can also be evoked in this case. This operator

could naturally appear if we studied damped, in time, solutions of the wave equation in

the exterior space of a bounded domain and the corresponding boundary value can be

generated from problem (2.7)-(2.9) by the assumption k ∈ C, �k = π
2 . We obtain then

the model

(Δ− k2)u(x) = 0, x ∈ De (k > 0) (2.11)

u(x) = f(x), x ∈ ∂D (2.12)

limr→∞r
1−n
2

(
∂u(x)

∂r
+ ku(x)

)
= 0, (2.13)

where the modified Sommerfeld condition excludes solutions of space exponential growth

and after this is accomplished, the Green’s operator of the problem is so regular that

every term participating in the condition (2.13) decays exponentially in space as r = |x|
increases.
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All the previous examples of boundary value problems involve boundary conditions of

Dirichlet type but almost the same arguments could be developed in case that instead

Neumann boundary conditions were present. In that case, we have knowledge about the

normal derivative of the field on the surface ∂D.

In all cases, the direct exterior boundary value problem consists of the determination

of the field u(x) outside D when boundary data (i.e. the function f) and geometry (i.e.

the shape of ∂D) are given. In fact, in most applications, we are interested in determining

the remote pattern of this field far away from the bounded domain D. For example, in

the case of the BVP (2.7)-(2.9) in three dimensions, it would be sufficient to determine

the far-field pattern u∞(x̂; k̂) participating in the representation (2.10) if we deal with

an application in which we do not have access near the domain D.

The inverse exterior boundary value problem aims at determining the shape of the

surface ∂D when the boundary data is known and the remote pattern is measured.

Equivalently, instead of considering as data the measured remote field, it is usual to

have at hand the Dirichlet to Neumann (DtN) operator on a sphere - or part of it -

surrounding8 the domain D. In other words a large class of interesting inverse boundary

value problems is based on data incorporating both the measured field along with its

normal derivative on a given surface belonging to the near field region.9

The investigation of the above-mentioned direct and inverse boundary value problems

will be accomplished in the forthcoming sections via stochastic calculus for two specific

differential operators: a) the Laplace operator and b) the Helmholtz operator in the

low-frequency realm where the wave number k is small compared with the geometric

characteristics of the problem. In the present work the differential operator L is taken to

be at most a small perturbation of the Laplace operator and the stochastic analysis will

be built on the structure of the Laplace operator itself. The forthcoming section offers

the basic prerequisite material concerning the bridge between the stochastic calculus and

the classical theory of boundary value problems mainly referred to as interior domains.

3. The stochastic representation for exterior boundary value problems.

3.1. The construction of conditioned stochastic processes for Laplace operators. In the

stochastic framework under discussion, we encountered the first exit time τD from the

open set D. At that time the stochastic process Xt, obeying equation (A.2) with X0 = x

and very large T , “hits” the boundary ∂D. This particular exit process brings to light

the boundary itself and a crucial connection is established between the solution of the

differential equation and the points of the boundary on which data are given. It is

questionable how this situation could be exploitable in the service of the direct and (or)

inverse boundary value problem.

We start by studying the stochastic formulation of the direct static problem (2.4)-(2.6),

which is defined on the unbounded open domain De := Rn\D̄. The first idea is to evoke

the stochastic process, whose infinitesimal generator is exactly the Laplace operator Δ,

8This is rather connected with the form (2.1)-(2.3) of the boundary value problem and especially
with the condition Mu(x) = 0.

9Pertaining to the Helmholtz operator, we refer to [3] (section 3.2) as an excellent reference relevant
to the construction of the DtN mapping.
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participating in the boundary value problem (2.4)-(2.6). This is exactly the Brownian

motion and the crucial point is that this random walk takes place in the unbounded

domain De. So even if the starting point x of the process Xt is very close to the boundary

∂De = ∂D and even if we work in R2 it is not guaranteed that the process hits, in finite

time, the boundary. A different idea has been implemented in the present work inspired

by [10] and involving the concept of conditioning stochastic processes to have a specific

directivity. More precisely, we select a point ξ inside the bounded component D. This

point could be the coordinate origin O or could be selected according to the specific

features of the problem. Let x ∈ De be once again the initial point of the stochastic

process under construction or equivalently the point at which the solution of the B.V.P.

(2.4)-(2.6) is sought. We consider the unit vector n̂x,ξ := x−ξ
|x−ξ| . For simplicity we denote

n̂x,ξ as n̂ since the points x, ξ are assumed as fixed parameters, though the same procedure

might be profitable if applied for several pairs (x, ξ). We introduce now a family of

harmonic functions that have singular behavior at y = 0: For the two-dimensional case

we select the harmonic functions hm(y) := 1
|y|m+1 cos

(
(m+ 1) cos−1(n̂ · y/|y|)

)
, m =

0, 1, 2, ..., where the range of cos−1 is selected to be [−π
2 ,

π
2 ]. In R3 we evoke the well-

known Legendre polynomial functions10 Pm(cos θ) and introduce the family of singular

at origin harmonic functions hm(y) = Pm(n̂·y/|y|)
|y|m+1 , m = 0, 1, 2, ... . We consider the

stochastic processes Xt, Yt where Xt = Yt + ξ and

dYt =
∇hm(Yt)

hm(Yt)
dt+ dBt, 0 ≤ t ≤ T, Y0 = x− ξ, (3.1)

or equivalently

dXt(= dYt) =
∇hm(Xt − ξ)

hm(Xt − ξ)
dt+ dBt, 0 ≤ t ≤ T, X0 = x. (3.2)

Both processesXt, Yt depend on the adopted member hm of the family {hj , j = 0, 1, 2, ...}
but this dependence is ignored in the symbolism, for simplicity. The existence and unique-

ness of the process Xt will be examined further later but these issues are expected to be

easily established before the process enters the domain D since the point ξ is isolated

from the trajectory of Xt and the usual Lipschitz requirements are satisfied, at least

locally near the starting point of the process.

To face uniformly both dimensions n = 2, 3, we put

hm(y) :=
1

|y|m+1
Qm(n̂ · y/|y|), (3.3)

where

Qm(n̂ · y/|y|) =
{

cos
(
(m+ 1) cos−1(n̂ · y/|y|)

)
, n = 2

Pm(n̂ · y/|y|), n = 3
, m = 0, 1, 2, .... (3.4)

We put also Θ := cos−1(n̂ · y/|y|), representing the azimuthal coordinate ϕ in case of the

two-dimensional space (where the x positive semi-axis starts from ξ and points to x) and

the polar coordinate θ in the three-dimensional case (where the pair (ξ, x) defines now

in the same manner the z−axis of the coordinate system). In y-terminology, the origin

of the coordinates coincides with the point ξ.

10It is essential to select the normalization condition Pm(1) = 1.
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We are likely to determine the behavior of the distance |Xt − ξ| = |Yt| as time passes

or more generally the expected values of the power |Yt|k for a general integer k.

Lemma 1. For every integer k ∈ N , it holds that

d|Yt|k =
k

2
(k + n− 2m− 4)|Yt|k−2dt+ k|Yt|k−2Yt · dBt. (3.5)

Proof. We apply the Itô formula (A.4) to the function F (t, ω) = f(Yt(ω)) = |Yt(ω)|k
and obtain in tensor form

d|Yt|k = ∇|Yt|k · dYt +
1

2
∇∇|Yt|k : dYtdYt. (3.6)

We find that ∇|Yt|k = k|Yt|k−2Yt and ∇∇|Yt|k = k(k− 2)|Yt|k−4YtYt + k|Yt|k−2I, where

I is the n× n identity tensor. Consequently, equation (3.6) becomes

d|Yt|k = k|Yt|k−2Yt · dYt +
1

2

[
k(k − 2)|Yt|k−4YtYt + k|Yt|k−2I

]
: dYtdYt

= k|Yt|k−2(Yt · dYt) +
1

2

[
k(k − 2)|Yt|k−4(Yt · dYt)

2 + k|Yt|k−2(dYt · dYt)
]
. (3.7)

The products (Yt · dYt) and (dYt · dYt) must be determined via the stochastic differential

equation (3.1). The drift term of the process Yt can be written as

∇hm(Yt)

hm(Yt)
=

(
−(m+ 1)

Yt

|Yt|m+3
Qm(cos(Θt)) +∇Qm(cos(Θt))

1

|Yt|m+1

)

× |Yt|m+1

Qm(cos(Θt))
. (3.8)

Clearly ∇Qm(cos(Θt)) =
Θ̂t

|Yt|
∂

∂Θt
Qm(cos(Θt)), where Θ̂t is a unit vector always perpen-

dicular to the polar unit vector Yt

|Yt| . Consequently

Yt · dYt = Yt ·
(
∇hm(Yt)

hm(Yt)
dt+ dBt

)
= −(m+ 1)dt+ Yt · dBt, (3.9)

dYt · dYt =

(
∇hm(Yt)

hm(Yt)
dt+ dBt

)
·
(
∇hm(Yt)

hm(Yt)
dt+ dBt

)
= ndt, and (3.10)

(Yt · dYt)
2
= (−(m+ 1)dt+ Yt · dBt)(−(m+ 1)dt+ Yt · dBt) = |Yt|2dt, (3.11)

after using the basic infinitesimal product relations of Itô calculus. As a result, equation

(3.7) after some straightforward manipulations, becomes

d|Yt|k =
k

2
(k + n− 2m− 4)|Yt|k−2dt+ k|Yt|k−2Yt · dBt. (3.12)

�
The aforementioned regime of stochastic calculus will be exploited accordingly after

returning to the postponed issue of investigating the existence and uniqueness of the

process Yt (or Xt) as well as the determination of the active domain of the process.

These subjects are influenced drastically by the specific singular form of the driving force
∇hm

hm
. Two sources of singularity arise. The first one has been already mentioned and

concerns the (m+1)-order pole of hm at zero. However, this singularity is activated only

after the process Xt leaves the unbounded domain De and so does not cause harm to the
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regularity of the process before the - potential - entrance of Xt inD. The second source of

singularity stems from the zeros of hm, i.e. the zeros of the function Qm(cosΘ). Denoting

h̃m(|y|,Θ) = hm(y), we easily remark that h̃m(|y|, 0) = 1
|y|m+1 > 0, for both cases

n = 2, 3. In the two-dimensional case the harmonic function hm sustains its positiveness

for ϕ ∈ Im = (− π
2(m+1) ,

π
2(m+1) ), while vanishes on the lines ∂Km ∩ De, where Km =

{y ∈ R2 : ϕ ∈ Im}. Similarly, in the three-dimensional case, we see that hm > 0 inside

the cone Km = {y ∈ R3 : θ ∈ [0, θm,1)}, where χm,1 = cos(θm,1) is the closest root of

Pm(χ) to the right endpoint of its domain [−1, 1]. Again, touching the boundary ∂Km

leads to explosion of 1
hm

. For both dimensions, we remark that the cone Km becomes

narrower as the parameter m increases. We consider the corresponding cones with vertex

at ξ, i.e. the sets Km = ξ + Km. So in physical terms the process Xt is generated in

Km ∩De - at the point x - and is attracted by the singularity ξ at the same time that

it is repelled by the boundary ∂Km ∩De. This descriptive allegation must of course be

justified rigorously.

Theorem 2. There exists only one stochastic process Xt satisfying strongly the S.D.E.

(3.2). This process enters the domain D through the portion ∂D ∩ Km of the surface

∂D in finite time, almost surely. The expectation of the first exit time (from the exterior

space De) is bounded above by |x−ξ|2
(2m+2−n) .

Proof. We select an increasing sequence {De
m,l} of open bounded subsets of Km ∩De

such that De
m,l ⊂ Km ∩De and

⋃∞
l=1D

e
m,l = Km ∩De. More precisely, we select a very

small positive number η and an increasing unbounded sequence ηl - whose particular

form will be selected later - so that a sequence of cones Km,l = ξ +Km,l, where Km,l =

{y ∈ R2 : ϕ ∈ (− π
2(m+1) +

η
ηl
, π
2(m+1) −

η
ηl
)} in the two-dimensional case and Km,l = {y ∈

R3 : θ ∈ [0, θm,1 − η
ηl
)} in the three-dimensional case is formatted. Then we construct

the aforementioned nested sequence as De
m,l = De ∩Km,l ∩{z ∈ Rn : |z− ξ| ≤ 2l|x− ξ|}.

For each l, the equation (3.2) can be solved (strongly) for t < τDe
m,l

. This gives in a

natural way a solution for t < τ := liml→∞τDe
m,l

. Let us consider equation (3.12) with

k = 2 and integrate over the time interval (0, σr), where σr = min(r, τDe
m,l

). We obtain

|Yσr
|2 = |x− ξ|2 − (2m+ 2− n)σr + 2

∫ σr

0

Yt · dBt. (3.13)

Taking expectation values to both sides, we obtain

Ex[|Xσr
− ξ|2] = |x− ξ|2 − (2m+ 2− n)Ex[σr] + 2Ex[

∫ σr

0

Yt · dBt]. (3.14)

The last Itô integral encountered in equation (3.13) can be written
∫ r

0
X{τDe

m,l
≥t}Yt · dBt.

Given that |Yt| is bounded for t ∈ (0, σr), one of the fundamental properties of the Itô

integral is that the expectation of the last integral of the equation above attains zero

value (see for example Theorem 3.2.1 of [7]). The physical explanation of this is based

on the independence of X{τDe
m,l

≥t}Yt and dBt and to the zero mean value of the increment

dBt. Consequently equation (3.14) gives easily that

Ex[σr] ≤
|x− ξ|2

(2m+ 2− n)
for all r. (3.15)
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So letting r → ∞ we conclude that τDe
m,l

= limσr < ∞ a.s. and

Ex[τDe
m,l

] ≤ |x− ξ|2
(2m+ 2− n)

. (3.16)

Consequently taking the limit l → ∞, we obtain

Ex[τ ] ≤ |x− ξ|2
(2m+ 2− n)

, (3.17)

from where we infer that τ < ∞ a.s.

The crucial question is what happens to the process Xt as t → τ . To answer this ques-

tion, we determine the infinitesimal generator of the process Xt. We use the harmonicity

of hm and we find that

Af =
∇hm

hm
· ∇f +

1

2
Δf =

hmΔf + 2∇f · ∇hm + fΔhm

2hm
=

Δ(fhm)

2hm
. (3.18)

Working in the bounded set De
m,l, we adopt as f the C2-function 1

hm
and obtain that

A( 1
hm

) = 0. We apply the Dynkin’s formula (A.5) to obtain

Ex

[
1

hm(XτDe
m,l

)

]
=

1

hm(x)
. (3.19)

The process Xt is a continuous function of t and we focus now on the limit limt→τ Xt.

equation (3.19) implies that P [limt→τ Xt ∈ ∂Km ∩De] = 0, given that the function hm

vanishes on the lateral surface of the cone Km. In addition limt→τ Xt cannot escape to

infinity. Indeed, let us consider the auxiliary relation (3.12) with k = 2m + 4 − n. We

integrate in the time interval (0, τDe
m,l

) and take the expectation value. As before, the

Itô integral gives zero contribution to the final result and we finally obtain

Ex
[
|XτDe

m,l
− ξ|2m+4−n

]
= |x− ξ|2m+4−n. (3.20)

We deduce easily that

R2m+4−n P
[
|XτDe

m,l
− ξ| > R

]
≤ Ex

[
|XτDe

m,l
− ξ|2m+4−n

]

⇒ P
[
|XτDe

m,l
− ξ| > R

]
≤
(
|x− ξ|

R

)2m+4−n

, (3.21)

for every large radius R. Consequently

P

[
| lim
l→∞

XτDe
m,l

− ξ| ≥ R

]
≤
(
|x− ξ|

R

)2m+4−n

⇒ P
[
| lim
t→τ

Xt − ξ| ≥ R
]
≤
(
|x− ξ|

R

)2m+4−n

. (3.22)

We infer that

P
[
| lim
t→τ

Xt| < ∞
]
= 1. (3.23)

So the almost sure escape of Xt from the unbounded set De∩Km takes place exclusively

from the surface portion ∂D ∩ Km. �
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We determined an upper bound for the mean value of the exit time τ via relation

(3.17). We are in position to estimate the covariance in the estimation of the exit time.

Proposition 3. It holds that

Ex
[
(τ − Ex[τ ])2

]
≤ |x− ξ|4

(2m+ 2− n)2
. (3.24)

Proof. We begin by applying the Schwartz inequality and using equation (3.20) to

obtain

Ex
[
|XτDe

m,l
− ξ|q

]
≤
(
Ex

[
|XτDe

m,l
− ξ|2m+4−n

]) q
2m+4−n

= |x− ξ|q, q ∈ N. (3.25)

We consider equation (3.12) for k = 4 and integrate over the time interval (0, τDe
m,l

). We

obtain

|YτDe
m,l

|4 = |x− ξ|4 − 2(2m− n)

∫ τDe
m,l

0

|Ys|2ds+ 4

∫ τDe
m,l

0

|Ys|2Ys · dBs. (3.26)

We have

|Ys|2 = |x− ξ|2 − (2m+ 2− n)s+ 2

∫ s

0

Ys′ · dBs′ (3.27)

with s ≤ τDe
m,l

. Inserting this expression into equation (3.26), we find

|YτDe
m,l

|4 = |x− ξ|4 − 2(2m− n)|x− ξ|2τDe
m,l

+ (2m− n)(2m+ 2− n)(τDe
m,l

)2

−4(2m− n)

∫ τDe
m,l

0

(

∫ s

0

Ys′ · dBs′)ds+ 4

∫ τDe
m,l

0

|Ys|2Ys · dBs. (3.28)

We take expectation values on both sides of the equation above. Following the argument

stated after equation (3.14) we prove that Ex
[∫ τDe

m,l

0 |Ys|2Ys · dBs

]
= 0. The same is

valid for the double time integral since∫ τDe
m,l

0

(

∫ s

0

Ys′ · dBs′)ds =

∫ τDe
m,l

0

(τDe
m,l

− s′)Ys′ · dBs′ . (3.29)

We conclude

Ex[|YτDe
m,l

|4] = |x− ξ|4 − 2(2m− n)|x− ξ|2Ex[τDe
m,l

]

+(2m− n)(2m+ 2− n)Ex[(τDe
m,l

)2]. (3.30)

Combining the last result with the bound (3.25) (for q = 4), we obtain

Ex[(τDe
m,l

)2] ≤ 2

(2m+ 2− n)
|x− ξ|2Ex[τDe

m,l
]. (3.31)

The covariance of the exit time is

Ex
[
(τDe

m,l
− Ex[τDe

m,l
])2
]
= Ex[(τDe

m,l
)2]− (Ex[τDe

m,l
])2, (3.32)

which due to the inequality (3.31) provides that

Ex
[
(τDe

m,l
− Ex[τDe

m,l
])2
]
≤ 2

(2m+ 2− n)
|x− ξ|2Ex[τDe

m,l
]− (Ex[τDe

m,l
])2. (3.33)
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Using equation (3.16), we are in position to determine an upper bound for the covariance:

Ex
[
(τDe

m,l
− Ex[τDe

m,l
])2
]
≤ |x− ξ|4

(2m+ 2− n)2

and taking the limit l → ∞ we acquire the estimation (3.24). �
We have presented some crucial characteristics of the exit time τ . Its expectation

value is proportional, as is typical in diffusion processes, to the square of a characteristic

distance of the problem. This is the distance of the observation point x and the artificial

point ξ, which lies in the bounded component D and forces, as an attractor, the process

Xt to escape the exterior domain through a specific small portion of the boundary ∂D.

The larger the parameter m (and the oscillating behavior of hm) is, the smaller is the

expected time of boundary hitting of the stochastic process and the narrower is the surface

portion of escaping. It becomes clear that when the time-parameter t0 := |x−ξ|2
(2m+2−n) is

small enough the stochastic process hits the boundary rapidly at the expected time t0
with covariance equal to t20. The process Xt constructed above is very helpful for the

stochastic representation of the solution of boundary value problems of the type (2.4)-

(2.6).

3.2. On the stochastic representation of the solution of the exterior Dirichlet problem

for Laplace operators. After having constructed the appropriate stochastic process in the

previous section, we shall proceed to obtain the suitable stochastic representation for the

solution of the exterior boundary value problem pertaining to the Laplace operator. A

primitive approach is to apply the Dynkin’s formula one more time in the domain De
m,l

- where everything is regular - to the function f(x) = u(x)
hm(x−ξ) . Following the same

arguments as those leading to equation (3.19) and just exploiting that the function u(x)

satisfies the Laplace equation in De, we obtain that

Af =
∇hm

hm
· ∇f +

1

2
Δf =

hmΔf + 2∇f · ∇hm + fΔhm

2hm

=
Δ(fhm)

2hm
=

Δu

2hm
= 0

and so

u(x)

hm(x− ξ)
= Ex

[
u(XτDe

m,l
)

hm(XτDe
m,l

− ξ)

]
, x ∈ De

m,l. (3.34)

The representation of u(x) given by equation (3.34) seems a priori promising since it is

based on the expectation of f(.) = u(.)
hm(.−ξ) restricted on exit points from De

m,l.

Two separate methodologies having different strategies in orientating the trajectories

in the exterior domain will be exposed in the sequel. In both approaches, the interior cone

Km,int, which constitutes a protective cloak excluding the proximity with the exterior

main cone, is selected to be a fixed cone. In cases that the parameter m is large enough

- and this will be the case mainly in the second approach - this interior cone will be

selected as the cone Km+1 that keeps a considerable closeness with the lateral surface of

De ∩ Km and offers some very useful advantages to the underlying analysis.11 In case

11The new cone is constructed on the basis of the function Qm+1.
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that m is selected to be a small integer - situation adapting mainly to the first approach

- then this interior cone Km,int will be chosen as a fixed member of the family Km,l. In

any case, the exterior space in which the trajectories are confined will be denoted as the

region De
m,int := De ∩ Km,int ∩ {z ∈ Rn : |z − ξ| ≤ T |x − ξ|}, where T (> 1) is a fixed

parameter12 serving to define the spherical cup of the domain of the paths.13

3.2.1. The mildly conditioned stochastic method for the solution of harmonic exterior

boundary value problems. The first suggested method is based on the representation

(3.34) adapted to the fixed domain De
m,int instead of the sequence of domains De

m,l,

l = 1, 2, 3, ..., which is written again in the form

u(x) =
1

|x− ξ|m+1E
x

[
u(XτDe

m,int
)

hm(XτDe
m,int

− ξ)

]
, x ∈ De

m,int, (3.35)

given that hm(x− ξ) = 1
|x−ξ|m+1 .

The name of the method will be completely justified later but the nomination is due

to the fact that the crucial parameter m, which expresses the grade of conditioning of the

underlying stochastic processes, is kept small in this approach and so the trajectories obey

a moderate driving status. The method under presentation is based on the fundamental

concept of the Monte Carlo [17] methodology according to which the expectation E[g(Z)]

of a known function g of a random variable Z can be approximated by the average
1
N

∑N
i=1 g(zi), where zi, i = 1, 2, ..., N represent N independent outcomes concerning the

random variable Z. Taking a larger number of experiments N leads to better accuracy

of the approximation E[g(Z)] ≈ 1
N

∑N
i=1 g(zi).

Adapting this cornerstone concept to our framework, the main idea is to perform a

large number N of experiments, each one of which (with label i, i = 1, 2, ..., N) consists

of the construction of the path obeying the non-linear system of stochastic differential

equations (3.1) (or 3.2) and offers as outcome the first exit time τi and mainly the

position Xi = Yi + ξ of escaping the region De
m,int. Based on all these exit positions,

we form the average 1
N

∑N
i=1

u(Xi)
hm(Yi)

, which according to formula (3.35) must be a very

good approximation of u(x)|x− ξ|m+1 in case that N is large and the experiments are

independent. The number of experimentsN can be decomposed asN∂D+N∂Km,int
+Ncup

with evident terminology. Only the N∂D incidences offer terms in the Monte Carlo

summation involving known values of u(Xi) (points of the surface where data are given).

The crucial idea is that if the numbers N∂Km,int
, Ncup are significantly smaller than

N∂D, then a promising perspective emerges permitting the formulation of the following

theorem.

12We stabilize the position of the cup in accordance with the specification of the protective interior
cone.

13We simply denote Scup = De
m,int ∩ {z ∈ Rn : |z − ξ| = T |x− ξ|}.
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Theorem 4. We consider the boundary value problem

Δu(x) = 0, x ∈ De ⊂ Rn, n = 2, 3,

lim
x→y

x∈Rn\D̄
u(x) = φ(y), y ∈ ∂D,

u(x) = O(|x|−1), r = |x| → ∞.

We perform N independent experiments consisting of generations of trajectories satisfy-

ing the system of stochastic differential equations (3.1) and terminating on the boundary

of the region De
m,int defined above on the basis of the surface ∂D, the interior cone Km,int

(with polar angle θm,int) and the parameter T > 1. Depending on the region of first eva-

sion, the number of the experiments is divided as follows: N = N∂D +N∂Km,int
+Ncup.

The parameter m ∈ N is selected to be greater than 3n−5
2 . Let us assume there exists a

real γ ∈ (
n
2 −1

2m+4−n ,
1
2 ) such that the fraction

N∂Km,int

N is less than or equal to the bound
1

T (m+3−n
2

+γ(3m+5−n))
. Then the unique solution u(x) of the problem stated above is given

by the following representation:

u(x) =
1

|x− ξ|m+1E
x
∂D∩Km,int

[
φ(Xτ∂D

)|Yτ∂D
|m+1

Qm(cos(Θτ∂D
))

]
+ B(x) (3.36)

where the residual B(x) is bounded above as follows:

|B(x)| ≤ 2
L

Qm(cos(θm,int))

1

T 1−n
2 +γ(2m+4−n)

, (3.37)

where L is a constant dependent on the data of the boundary value problem.

Proof. Due to its technical nature, the proof is given in Appendix B. �
Remark 5. A rephrase of the previous result, adapted to the Monte Carlo simulation

terminology, is that the solution u(x) can be calculated as follows:

u(x) ≈ 1

|x− ξ|m+1

1

N

N∂D∑
i=1

φ(Xi)|Yi|m+1

Qm(cos(Θi))
. (3.38)

The points Xi are the hitting points of the trajectories on the portion of the surface ∂D,

which is captured inside N∂Km,int
. In addition Yi = Xi − ξ has the polar angle Θi.

Remark 6. The previous theorem offers the possibility to determine the solution of

the boundary value problem via a representation with a residual term that accumulates

all the “fails” of the experiment, i.e. all the trajectories that escape from the domain

except at the surface of the domain D. The method is useful if the term B can become

small enough. It is logical to assume that this residual term can be suppressed as much

as possible if the outcome of Theorem 2 is exploited. More precisely, selecting the interior

cone Km,int to be very close to the repulsive original cone Km, the crossings of the paths

with this auxiliary lateral surface drastically diminish. Furthermore, choosing a very

large T makes escaping from the cup Scup almost impossible. Then everything seems

at first sight amenable and feasible at handling the behavior of the residual term B.
However, the choice of an interior cone just being a slight perturbation of the original

cone has some other disadvantages. Indeed the function of the polar coordinate Qm
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appearing in the denominator of equation (3.37) is defined on the specific argument

cos(θm,int). The closer the interior cone selected to the original cone is, the closer is the

argument cos(θm,int) located to the root χm,1 = cos(θm,1) of the function Qm. So there

is a tug of war between the terms appearing in the residual term B as the interior cone or

the cup change position. The forthcoming numerical results designate all these features.

What is necessary to state is that this first method can be characterized as a method of

a posteriori type. This means that the method can be employed after making a selection

of the appropriate geometry on which the Monte Carlo experiments take place with the

main concern ensuring the validity of the criterion
N∂Km,int

N ≤ 1

T (m+3−n
2

+γ(3m+5−n))
as

stated in the previous theorem.

Remark 7. The efficiency of the method is expected a priori in a specific asymptotic

range of physical and geometrical parameters. More precisely, when m is small, the two

coaxial cones of the structure are thick and then the most part of the trajectories, which

begin their journey from points on the axis of the cones far apart from the lateral walls,

do not reach the surface of the interior cone before meeting ∂D since there exists enough

space for the draw from the attractor ξ to overwhelm the randomness of the Brownian

motion. This is obviously comprehensive in case that we are looking to determine the

near field at points x close to the surface ∂D: The trajectories are expected to leave the

exterior space through ∂D in short times and the crossings on the wall of the interior

cone are going to be rare.

Remark 8. At first sight, the representation (3.38) mystifies some readers, who might

expect a result of the form14 u(x) ≈ A
|x−ξ| +O( 1

|x−ξ|2 ), which constitutes a paraphrase of

harmonic expansions in exterior regions for n = 3. First, this consensus is not violated

in the near field region where the ratio |Yi|
|x−ξ| is slightly less than 1 and its (m+1)-power

provides no negligible contribution. Even when x comes away from D, the auxiliary

attractor ξ, which also has the freedom to pull away,15 is responsible for keeping the ratio
|Yi|
|x−ξ| in the vicinity of unity. As far as the last assertion according to the remoteness of

ξ is concerned, it is worthwhile to mention that in the regime of the mildly conditioned

stochastic method, the pair of coaxial cones must be thick16 and centered at a distant

point ξ so that the whole conical structure embodies globally the region D. Then all the

points of the surface ∂D have the opportunity to contribute to the mean value (3.38)

as the well posedness of the direct B.V.P. dictates. Finally the role of Qm(cos(Θi)) in

the denominator of (3.38) must not be underestimated since, for crossings on ∂D close

to the cone walls, the function 1
Qm

might take large values balancing the smallness of

( |Yi|
|x−ξ| )

m+1
.

14A absorbs dependence of the remaining coordinates except for the radial distance in a coordinate
system centered at ξ.

15In case that the attractor point is taken in the exterior domain of the problem, the cones structure
must be supplied with a small spherical cup encountering and excluding the vertex ξ to belong to the
excursion field of the trajectories in order for all the good properties guaranteeing the unique solution
of the stochastic differential system to hold.

16Not only to avoid lateral crossings as mentioned before.
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3.2.2. The strongly conditioned stochastic method for the solution of harmonic exterior

boundary value problems. The cornerstone consideration of the mildly conditioned sto-

chastic method was the avoidance of crossings of the stochastic process along the lateral

surface of the protective cone. The starting point of the second method is the formulation

of a model not sensitive to the incidences of the trajectories on the lateral surface. We

will describe the methodology for three-dimensional problems (n = 3), although identical

results hold in two dimensions. The first step of the method is to select as the interior

cone the conical surface corresponding to the parameter m+ 1, i.e. the cone Km+1. We

have already stated that the strongly conditioned stochastic method works efficiently for

large values of m and so the system of cones involves closely adjacent surfaces. The sec-

ond selection - in accordance with the first one - concerns the function which is going to

be subject to the application of Dynkin’s formula. We chose f(x) := |x−ξ|u(x)hm+1(x−ξ)
hm(x−ξ)

as the candidate function with the crucial property of vanishing on the wall of Km+1.

Thus, the conical surface offers zero contribution to the stochastic expectation under

construction. There are more intrinsic advantageous properties of this particular f that

will be revealed later on. The parameter T defining the cup will be selected to be a con-

siderably large constant, just to assure that the domain De
m,int of our experiments is not

infinite. To apply Dynkin’s formula (A.5) to f in the domain De
m,int we first calculate

Af using the harmonicity of hm:

Af(x) =
∇hm(x) · ∇f(x)

hm(x)
+

1

2
Δf(x) =

Δ(f(x)hm(x))

2hm(x)

=
Δ(|x− ξ|u(x)hm+1(x− ξ))

2hm(x)
. (3.39)

Then we find easily that

u(x) = Ex

[
u(XτDe

m,int
)
Pm+1(ΘτDe

m,int
)

Pm(ΘτDe
m,int

)

]

−Ex

[∫ τDe
m,int

0

(
Δ(u(Xs)|Xs − ξ|hm+1(Xs − ξ))

2hm(Xs − ξ)

)
ds

]
. (3.40)

Thus, an immediate consequence of our choice for f is the appearance of an expectation

term involving time integrals along the trajectories of the stochastic process. Our main

effort is to investigate this term. Before doing so let us notice that the expectation value

Ex

[
u(XτDe

m,int
)
Pm+1(ΘτDe

m,int
)

Pm(ΘτDe
m,int

)

]

is practically equal to

Ex
∂D∩Km+1

[
φ(XτDe

m,int
)
Pm+1(ΘτDe

m,int
)

Pm(ΘτDe
m,int

)

]

given that the conical surface does not provide a contribution as mentioned before, while

the participation of the cup is negligible for large T thanks to relation (3.21) and the
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asymptotic condition at infinity:∣∣∣∣∣Ex
Scup

[
u(XτDe

m,int
)
Pm+1(ΘτDe

m,int
)

Pm(ΘτDe
m,int

)

]∣∣∣∣∣ ≤ C

Pm(χm+1,1)

1

|x− ξ|T 2m+2
, (3.41)

where C is proportional to the capacity of the field.

The first result is really striking although it refers to the simplest possible geometry

and stimulation. Actually this pilot problem has a well-known solution for which we

do not need the stochastic calculus but can be used as a benchmark example for our

purposes.

Proposition 9. Let the regionD be a sphere of radius a and center the coordinate origin

O. Let us suppose that the attractor point ξ is situated at the center of the sphere. Let

De
m+1 = De ∩ Km+1 be the portion of the exterior space confined by the cone17 Km+1.

Then the well-known solution of the exterior boundary value problem

Δu(x) = 0, x ∈ De ⊂ R3, (3.42)

lim
x→y

x∈R3\D̄
u(x) = 1, y ∈ ∂D, (3.43)

u(x) = O(|x|−1), r = |x| → ∞, (3.44)

which is given by the spherical symmetric function u(x) = a
|x| has the following exact

stochastic representation:

a

|x| = Ex
∂D

[
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
, x ∈ De. (3.45)

This result is valid for every possible parameter m ∈ N.

Proof. The first exit time for every bounded set De
m,int = De

m+1 ∩ GT (with GT =

{z ∈ R3 : |z| ≤ T |x − ξ|}) is finite and less than the first exit time τDe
m
, which has

been investigated in Theorem 2 and proved to have finite expectation value. We apply

the Dynkin’s formula (3.40) in De
m,int and make the crucial remark that for this simple

harmonic field u(x) = a
|x| , we have

Δ (u(Xs)|Xs − ξ|hm+1(Xs − ξ)) = Δ (ahm+1(Xs)) = 0, (3.46)

due to the harmonicity of hm+1. The formula (3.40) becomes

u(x) = Ex

[
u(XτDe

m,int
)
Pm+1(ΘτDe

m,int
)

Pm(ΘτDe
m,int

)

]

= Ex
∂D

[
Pm+1(ΘτDe

m,int
)

Pm(ΘτDe
m,int

)

]
+ Ex

Scup

[
u(XτDe

m,int
)
Pm+1(ΘτDe

m,int
)

Pm(ΘτDe
m,int

)

]
.

Using equation (3.41) and taking the limit as T → ∞ we obtain the stated result. �

17Adapted as usual to the axis formatted by the attractor ξ ≡ O and the point of observation x.
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Remark 10. This result reveals an interesting harmonic field that can be generated by

the conditioned expectation value of the ratio of two Legendre polynomials of consecutive

order with driving term generated by the denominator and conical surface pertaining to

the numerator. This fraction is positive and always less than unity since the argument of

the Legendre polynomials lies in the interval (χm+1,1, 1]. Only when the starting point

x falls18 on the surface ∂D, the expectation value is trivially equal to one, in accordance

with the boundary condition. For a starting point x ∈ De, several trajectories will cross

the conical surface but this is no longer a problem. Only the successful escapes via the

surface ∂D offer quantitative contributions to (3.45) and the fails are just responsible

for the reduction of the field as x moves away from the surface ∂D, given that the non-

contributing fails increase. This can be expressed in the Monte Carlo terminology via

the expression a
|x| = limN→∞

1
N

∑N∂D

i=1
Pm+1(cos(Θi))
Pm(cos(Θi))

.

Let us return to the case of a general body D. We state the next main outcome of

this paragraph along with the next theorems and propositions without presenting their

proofs since they are very technical, involved and rather elongated. So in order not to

disorientate the reader, we have placed the proofs of all the subsequent statements of

this paragraph in Appendix B.

Theorem 11. We consider the C2-solution u(x) of the Dirichlet problem

Δu(x) = 0, x ∈ De = R3\D,

lim
x→y

x∈R3\D̄
u(x) = φ(y) y ∈ ∂D,

u(x) = O(|x|−1
), r = |x| → ∞.

Let bξ = dist{ξ, ∂D ∩ Km+1} ≥ 1. Then the field u(x) obtains the representation

u(x) = Ex
∂D

[
φ(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
− E(x), (3.47)

with

|E(x)| ≤ C
1

|x− ξ|2
(in large distances |x− ξ|)

and

|E(x)| ≤
(

1

bξ|x− ξ| −
1

|x− ξ|2

)
,

in the near field.

The constant C depends only on the domain D and the data φ. In both cases |x| → ∞
and x → ∂D, the residual satisfies the asymptotic relation |x− ξ||E(x)| → 0.

So far, we faced exclusively the Dirichlet problem. However the Neumann exterior

boundary value problem can be handled in the same manner. We state the following

theorem.

18Remaining on the axis connecting ξ, x.



86 ANTONIOS CHARALAMBOPOULOS AND LEONIDAS N. GERGIDIS

Theorem 12. We consider the C2-solution u(x) of the Neumann problem

Δu(x) = 0, x ∈ De = R3\D,

∂u

∂n
(y) = g(y) y ∈ ∂D,

u(x) = O(|x|−1), r = |x| → ∞.

The axis n̂x,ξ of the cone Km+1 is now selected to be parallel to the exterior unit normal

vector n̂yξ
on ∂D at the point yξ, which is the intersection of the conical axis with the

surface ∂D. Then the following representation holds:

u(x) = −Ex
∂D

[
|YτDe

m+1
|g(XτDe

m+1
) cos(ΘτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
(3.48)

+O
(

1

|x− ξ|2
+

sin(θm+1,1)

|x− ξ|

)
.

The results obtained so far obey the asymptotic rateO( 1
|x−ξ|2 ) and the arising question

is whether it is possible to improve the rate of convergence. The following proposition

ameliorates in some aspect the rigorousness of the previous theorem.

Proposition 13. Adopting the same assumptions made in Theorem 11 about the exte-

rior boundary value problem under consideration, we state that

2u(x) + (x− ξ) · ∇u(x) = Ex
∂D

[
2u(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]

+Ex
∂D

[
YτDe

m+1
· ∇u(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
− Ẽ(x), (3.49)

with |Ẽ(x)| ≤ 1
|x−ξ|3 for |x| → ∞.

The result presented in Proposition 13 is not exploitable at first glance since it consists

of a representation involving simultaneously boundary values of the field u|∂D and its

gradient ∇u|∂D. However, this is exactly the property that discloses the advantages of

the formula by offering the possibility to produce a stochastic characterization of the

Dirichlet to Neumann mapping.

Theorem 14. Let u be the exterior solution of the Laplace operator, obeying the as-

ymptotic relation u(x) = O( 1
|x−ξ| ). The parameter m is selected suitably large so that

sin(θm+1,1) <
1

|x−ξ| . The cone axis n̂x,ξ is chosen parallel to the normal vector n̂yξ
at the

intersection point yξ of the surface ∂D and the cone. Then the Dirichlet to Neumann
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map Λ : u|∂D → ∂u
∂n

∣∣
∂D obtains the stochastic representation

A0 = |x− ξ|Ex
∂D

[
2u(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]

+ |x− ξ|Ex
∂D

[
|YτDe

m+1
|(Λu)(XτDe

m+1
) cos(ΘτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
(3.50)

+O(
1

|x− ξ|2
), |x− ξ| → ∞.

Remark 15. The theorem above gives merely a local character to the DtN mapping

given that only a small portion ∂D ∩ Km+1 of the surface ∂D is participating every

time in the stochastic calculus. This is a quantitative advantage of the current approach

given that the non-locality of the operator Λ is one of the cornerstone difficulties in the

framework of integral equation methodology.

3.3. Stochastic calculus and low-frequency scattering processes. The low-frequency

scattering problem merits special interest in case that the geometric characteristics of the

problem are significantly smaller than the wavelength of the acoustic stimulation. The

three-dimensional case is handled here again, given that this is the suitable cradle for

the low-frequency theory. We examine the plane wave excitation problem presented via

equation (2.7)-(2.9). The stochastic technique in the regime of the strongly conditioned

stochastic process applies again leading to the following theorem:

Theorem 16. Let bξ = dist{ξ, ∂D∩Km+1} ≥ 1 and u(x) be the classical solution of the

boundary value problem

(Δ + k2)u(x) = 0, x ∈ De ⊂ R3, (3.51)

u(x)(= g(x, kk̂)) = − exp(ikk̂ · x), x ∈ ∂D, (3.52)

limr→∞
1

r

(
∂u(x)

∂r
− iku(x)

)
= 0. (3.53)

Then

e−ik|x−ξ|u(x) = −Ex
∂D

[
e
−ikk̂·XτDe

m+1 e
−ik|YτDe

m+1
| Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
− E(x), (3.54)

with

|E(x)| ≤ C
1

|x− ξ| min

(
1

|x− ξ| ,
(

1

bξ
− 1

|x− ξ|

))
+O(kbξ). (3.55)

Proof. We evoke the Atkinson-Wilcox expansion for the scattering field with respect

to the suitable spherical coordinate system (rξ, θ, φ) centered at ξ, which is valid outside

a sphere circumscribing the region D,

ũ =
eikrξ

rξ

∞∑
n=0

Fn(θ, φ, k, k̂)

rnξ
. (3.56)
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We apply Dynkin’s formula to the function f(x) := |x−ξ|e−ik|x−ξ|u(x)hm+1(x−ξ)
hm(x−ξ) . After

extended manipulations we find that

1

2hm
Δ
(
ũe−ikrξrξhm+1

)
(3.57)

= −(m+ 1)

[
ũ

r2ξ
+

1

rξ

∂ũ

∂rξ
− ik

ũ

rξ

]
e−ikrξ

Pm+1

Pm
− ik

[
∂ũ

∂rξ
− ikũ

]
e−ikrξ

Pm+1

Pm

+

[
1

rξ2
Dũ · DPm+1

Pm

]
e−ikrξ .

We easily obtain the estimate∣∣∣∣∣
[
ũ

r2ξ
+

1

rξ

∂ũ

∂rξ
− ik

ũ

rξ

]
e−ikrξ

∣∣∣∣∣ ≤ C

rξ4
. (3.58)

Exploiting the integral representation of the far-field pattern F0, we find that19

θ̂ · DF0(θ, φ, k, k̂) = − ik

4π
θ̂ ·
∫
∂D

ũ(y)n̂ye
−ikx̂ξ·ydsy +

ik

4π
θ̂ ·
∫
∂D

∂ũ

∂ny
(y) ye−ikx̂ξ·ydsy

= ik[(A cos(φ) + B sin(φ)) cos(θ) + C sin(θ)] +O(k2). (3.59)

So the interesting term of
[

1
rξ2

Dũ·DPm+1

Pm

]
e−ikrξ as far as the formation of expectation

values is concerned obtains an upper bound:∣∣∣∣
[

1

rξ2
Dũ · DPm+1

Pm

]
e−ikrξ

∣∣∣∣ ≤ C
k

rξ3
sin2(θ)P ′

m+1(cos(θ))

Pm(cos(θ))
+O(k2). (3.60)

So the residual term E(x) in the current setting20 obtains the estimate

|E(x)| ≤ C(m+ 1)Ex

[∫ τDe
m,int

0

1

|Ys|4
ds

]
+ C(m+ 1)kEx

[∫ τDe
m,int

0

1

|Ys|3
ds

]

+ kEx

[∫ τDe
m,int

0

∣∣∣∣∂ũ(Ys)

∂|Ys|
− ikũ(Ys)

∣∣∣∣ ds
]
. (3.61)

The first term of the right hand side of equation (3.61) has already been estimated.

Furthermore, it is proved that

(m+ 1)kEx

[∫ τDe
m,int

0

1

|Ys|3
ds

]
= k

(
Ex

[
1

|YDe
m,int

|

]
− 1

|x− ξ|

)

≤ k

⎛
⎝
(
Ex

[
1

|YDe
m,int

|2

]) 1
2

− 1

|x− ξ|

⎞
⎠ ≤ kBm min

(
1

|x− ξ| , (
1

bξ
− 1

|x− ξ|)
)
, (3.62)

19We set x̂ξ = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)).
20After recalling the Ys-terminology.
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where Bm is a bounded constant. In addition it holds that

Ex

[∫ τDe
m+1

0

∣∣∣∣∂ũ(Ys)

∂|Ys|
− ikũ(Ys)

∣∣∣∣ ds
]

≤ Ex

⎡
⎣(∫ τDe

m+1

0

∣∣∣∣∂ũ(Ys)

∂|Ys|
− ikũ(Ys)

∣∣∣∣
2

ds

) 1
2(∫ τDe

m+1

0

1ds

) 1
2

⎤
⎦

≤ CEx

⎡
⎣(∫ τDe

m+1

0

1

|Ys|4
ds

) 1
2(

τDe
m+1

) 1
2

⎤
⎦

≤ C

(
Ex

[(∫ τDe
m+1

0

1

|Ys|4
ds

)]) 1
2(

Ex
[
τDe

m+1

]) 1
2

≤ C

√
|x− ξ|√

(m+ 1)(2m− 1)
min

(
1√

|x− ξ|
,

(
1

bξ
− 1

|x− ξ|

) 1
2

)
. (3.63)

Consequently the Dynkin’s formula applied to f leads to

e−ik|x−ξ|u(x) = −Ex
∂D

[
e
−ikk̂·XτDe

m+1 e
−ik|YτDe

m+1
| Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
− E(x), (3.64)

with

|E(x)| ≤ C
1

|x− ξ| min

(
1

|x− ξ| ,
(

1

bξ
− 1

|x− ξ|

))

+ C(kbξ)
1

bξ
min

(
1

|x− ξ| , (
1

bξ
− 1

|x− ξ|)
)

+ C
(kbξ)√

(m+ 1)(2m− 1)
min

(
1

bξ
,
1

bξ

(
|x− ξ|
bξ

− 1

) 1
2

)
. (3.65)

Taking a sufficiently large m ≈ |x− ξ|2 we obtain the stated result. �
The following corollary gives the adequate stochastic characterization of the far-field

pattern.

Corollary 17. The far-field pattern F0(θ, φ, k, k̂) of the exterior scattering problem

obtains the low-frequency stochastic representation

F0(θ, φ, k, k̂) = −|x− ξ|Ex
∂D

[
e
−ikk̂·XτDe

m+1 e
−ik|YτDe

m+1
| Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]

+O
(
(kbξ) +

1

|x− ξ|

)
. (3.66)

4. Numerical implementation of the two conditioned stochastic methods.

The methods presented so far constitute two different approaches revealing their efficiency

in complementary areas of interest. The mildly conditioned stochastic method is an exact

representation, as far as the Dynkin’s formula is concerned, but is based on throwing away

the contributions of the escaping points belonging on the lateral conical surface. So the
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validity of the method relies on the assumption that most parts of the trajectories cross

the boundary instead of the lateral surface of the cone and this demands an attentive

setting of the geometric features of the trajectory domain. This prerequisite has as an

immediate consequence the selection of spacious cones averting the frequency of lateral

escapes. As a result this method aims better at the solution of the direct problem given

that the cone encloses the domain D.

The strongly conditioned stochastic method is by nature an approximated Dynkin’s

formula, which is exact in omitting the indifferent lateral escapes. But in order to control

the error of the approximation, it is necessary to work with narrow cones corresponding to

large values of the parameter m. These narrow cones excise a small part of the domain D

or its boundary ∂D and are more appropriate to give results in the service of the inverse

problem.

In both approaches, the first step is the numerical solution of the stochastic ordinary

differential equations (3.1). These equations lead - after some simple manipulations - to

the discretized Euler scheme

Y0 = (Y
(1)
0 , Y

(2)
0 , Y

(3)
0 ) = x,

Y
(i)
n+1 = Y (i)

n − (2m+ 1)

|Yn|2
Y (i)
n Δtn −

P ′
m−1(cos θn)

Pm(cos θn)

1

|Yn|2
Y (i)
n Δtn +ΔB(i)

n , i = 1, 2,

Y
(3)
n+1 = Y (3)

n − (2m+ 1)

|Yn|2
Y (3)
n Δtn +

mPm−1(cos θn)

cos θnPm(cos θn)

1

|Yn|2
Y (3)
n Δtn +ΔB(3)

n . (4.1)

This scheme is relatively sufficient in the case of spacious cones. But when the parameter

m increases, the space of evolution of the trajectories becomes restricted and approaching

the lateral walls brings into the light significant terms of higher order that have been

ignored on the basis of selecting the Euler approximation. The more adequate approach

is to apply the so-called [20] order 1.5 strong Taylor scheme, which is proved to be very

efficient since it includes terms involving interference between the time increment Δtn and

the vector Wiener increments Wn = (ΔB
(1)
n ,ΔB

(2)
n ,ΔB

(3)
n ). Extended manipulations

lead to the following corrections of the discretized scheme:

Y
(i)
n+1 = Y

(i),Euler
n+1 + 2

P ′
m+1(cos θn)

Pm(cos θn)

1

|Yn|4
(Yn ·Wn)Y

(i)
n Δtn

− P ′
m+1(cos θn)

Pm(cos θn)

1

|Yn|2
W (i)

n Δtn

+ cos θn

[
2
P ′
m+1(cos θn)

Pm(cos θn)
−
(
(m+ 1)

Pm+1(cos θn)

cos θnPm(cos θn)
+ (m+ 1)2

)

− sin2 θn

(
P ′
m(cos θn)

Pm(cos θn)

)2]

· 1

|Yn|3
Y

(i)
n

sin θn
(θ̂n ·Wn)Δtn, i = 1, 2 (4.2)
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Y
(3)
n+1 = Y

(3),Euler
n+1 +

[
P ′
m+1(cos θn)

Pm(cos θn)
+ (m+ 1)

Pm+1(cos θn)

cos θnPm(cos θn)

]
1

|Yn|4
(Yn ·Wn)Y

(3)
n Δtn

−
P ′
m+1(cos θn)

Pm(cos θn)

1

|Yn|2
W (3)

n Δtn

−
[
P ′
m+1(cos θn)

Pm(cos θn)
− (m+ 1)2 − sin2 θn

(
P ′
m(cos θn)

Pm(cos θn)

)2
]

· 1

|Yn|3
sin θnY

(3)
n

cos θn
(θ̂n ·Wn)Δtn. (4.3)

The total time of flight of the trajectories is estimated by the value |x−ξ|2
2m−1 as the

theoretical analysis brought out and the time step h = Δtn is an important parameter

of the scheme. The adopted scheme provides an accuracy of order O(h1.5), which means

that the expectation value of the distance between the real trajectory paths and the

numerically constructed ones is controlled by the estimate Ch1.5. In principle, this time

step is diminished when we approach the lateral surface of the cone, where the driving

term becomes large enough but alternatively it is possible to design uniform time steps

influencing though the rapidity of the numerical experiments. In any case the stability

of the method must be investigated by sensitivity analysis with respect to the time step

size.

4.1. On solving direct exterior boundary value problems via the mildly conditioned

stochastic method. The pilot exterior problem is the potential or low-frequency exterior

problem referring to the corresponding processes outside two spheres of unequal radii R1

and R2. The analytic solution of this problem can be found in [18] and is based on the

exploitation of the bispherical system of coordinates. We select here a pair of spheres

with radii R1 = 1 and R2 = 2 while the distance of their centers, located on the axis at

the points z1 = −1.625 and z2 = 2.375, is chosen to be equal to d = 4 (length units).

We introduce the bispherical system [18] of coordinates (ζ, θ, φ), which on the basis of

our assumptions disposes as focii distance the length 2a = 2 × 1.28 = 2.56. The small

sphere is assigned to the coordinate value ζ1 = −1.067, while the large sphere defines the

surface ζ2 = 0.603. We use the result presented in [18] for the Rayleigh approximation

of the exterior field satisfying the problem (3.51)-(3.53).

The first component of the low-frequency expansion u0 has the exact representation

[18]

u0(ζ, θ) = −1 +
√
cosh ζ − cos θ

∞∑
n=0

In(ζ)Pn(cos θ), (4.4)

with

In(ζ) =
√
2

[
e−(n+ 1

2 )|ζ| − e(2n+1)ζ1 − 1

e(2n+1)(ζ1+ζ2) − 1
e(n+

1
2 )ζ

− e(2n+1)ζ2 − 1

e(2n+1)(ζ1+ζ2) − 1
e−(n+ 1

2 )ζ

]
. (4.5)
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Fig. 1. Solving the direct exterior boundary value problem outside
two spheres of unequal radii.

We define a set of observation points of interest on which we would like to test the mildly

conditioned stochastic method. In Figure 1 we depict two points of observation: The first

one x1 is situated on the axis connecting the centers of the two spheres (with coordinates21

ζ(x1) = 0.55, θ(x1) = 0). The associated attractor point ξ = ξ1 for this experiment

is located at the position (0, 0,−3.5). The second observation point is located at the

eccentric position22 ζ(x2) = 0.33, θ(x2) =
π
3 and φ(x2) =

7π
6 and its dual attractor point

is placed at the opposite direction position ξ2 = −4x2. Additional observation points

have been considered, revealing the special behavior of this specific geometric structure.

We focus on the point x3 situated almost23 at the coordinate origin O = (0, 0, 0) with

corresponding attractor point ξ3 = (0, 0,−7). The representation (3.38) is used to exploit

the stochastic experiments and all the calculations have been performed on the basis of

the selection m = 2 or m = 3. The cone Km+1 presented in Figure 1 is selected to

be alternatively a slight perturbation of Km in the context of the approach followed

in the mildly conditioned stochastic method or just the cone corresponding to the next

Legendre parameter level, as occurs definitely in the strongly conditioned stochastic case.

The deviation of the results due to the cone selection has been proved uniformly negligible

in all cases that the measurement point is located at the axis of the cones. The results

have also only slight differences between the cases m = 2 and m = 3 and are presented in

Table 1 in comparison with the exact theoretical outcomes. In all cases the percentage of

the trajectories crossing the conical surface is very small and confined to represent just

0.5% of the total number of trajectories.

21In cartesian terms x
(1)
1 = x

(2)
1 = 0, x

(3)
1 = 4.77.

22Corresponding to the cartesian representation (−1.73,−1, 0.78).
23We select θ = π but ζ = 0.001 and not zero to avoid convergence instability of formula (4.4).
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Table 1. Testing the mildly conditioned stochastic method via the
Rayleigh approximation of the low-frequency scattering problem by

two spheres.

Observation The attractor The exact The mild

point point analytic field stochastic field

(0, 0, 4.77) (0, 0,−3.5) −0.839 −0.85

(−1.73,−1, 0.78) (6.92, 4,−3.12) −0.828 −0.81

(0, 0, 0) (0, 0,−7) −0.966 −0.95

(10.3, 0, 20.4) (−2.06, 0,−4.08) −0.107 −0.095

(0, 0, 8.6) (0, 0,−8) −0.338 −0.312

(0, 0, 6.49) (0, 0,−8) −0.502 −0.54

(2.175, 0, 2.14) (0, 0,−8) −0.922 −0.94

4.2. On solving direct and inverse exterior boundary value problems via the strongly

conditioned stochastic method.

4.2.1. The exact spherical case. The first task of this section is of course the numerical

verification of the exact representation (3.45), solving the specific exterior harmonic

problem (3.42)-(3.44) outside a spherical body of radius a. We perform experiments

with cones of different thickness and observation points in the near and far-field.24 The

main results are tabulated in Table 2 and reveal the exactness of the stochastic model

in assuring the validity of the relation (3.45). Actually only cases corresponding to

large values of m are displayed since these results are orientated to be exploited in the

inverse problem realm where the localization of the points of ∂D requires narrow cones.

The number of experiments N is confined to thousands of paths and stability of the

results is fulfilled uniformly for most of the cases. It is worthwhile to notice that when

the parameter m increases so that only a small portion of the body ∂D participates in

the stochastic calculus, then the Euler scheme becomes poor while the order 1.5 strong

Taylor scheme (4.3) displays robustness in ensuring stable results. This happens since

the majority of the trajectories move closely to the lateral conical surface and in this

region the additional terms of the scheme (4.3) obtain comparable size to the terms

of the Euler scheme. It is worthwhile to mention that the first and the last cases of

Table 2 present some faint deviation between theoretical and stochastic results. In all

the other cases the starting point x has been slightly moved from the conical axis and

then the exact result has been acquired. This behavior is not isolated and leads to

the conclusion that when the trajectories stem from points of the conical axis, then

the driving term of the stochastic process has a prominent role in comparison with

the Brownian evolution and the trajectories reveal a more deterministic behavior by

collapsing abruptly on surface ∂D. In addition the Brownian dynamics do not have the

space and the suitable time to be regularly unfolded. This is justified if the formulae

(4.1) are taken into consideration and in particular the fact that the perpendicular to

the axis movements of the trajectories are strongly suppressed for large m, in case that

24The attractor is stabilized in the center of the sphere in this case, while the cone Km+1 corresponds
definitely to the first root of the Legendre polynomial Pm+1.
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Fig. 2. The strong stochastic solution for the spherical case.

the starting point x lies on the axis. Transferring slightly25 the position the generation

point x offers to the Brownian dynamics the possibility to play its role in the short time

of the movement of every trajectory.

Furthermore, the comparison of the cases 2 and 3 verifies the expected principle of

the corresponding states, since a simple rescaling of all the characteristic lengths of the

problem does not of course alter the result.

Table 2. The strong stochastic solution for the spherical case.

Case radius a observation parameter exact

point m field 1
N

∑N∂D

i=1
Pm+1(cos(Θi))
Pm(cos(Θi))

1 1 (0, 0, 2) 80 0.5 0.55

2 1 (0.059, 0, 1.999) 80 0.5 0.51

3 2 (0.118, 0, 3.998) 80 0.5 0, 51

4 2 (0, 0.118, 3.998) 90 0.5 0, 49

5 1 (0.089, 0, 2.998) 80 0.33 0.34

6 1 (0, 0.089, 2.998) 80 0.33 0.34

7 1 (0, 0, 3) 80 0.33 0.39

25Slightly in comparison to the geometric dimensions of the conical structure but considerably with
respect to the Brownian step

√
Δtn.
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4.2.2. The inverse problem in the framework of the strongly conditioned stochastic

methodology. Let us consider the low-frequency problem (3.51)-(3.53). Assume that the

scatterer is a star-shaped body with respect to the interior coordinate origin O and that

the far-field is measured at several points of a surface which encircles the region Ω in

which the scatterer D is searched. Every observation point xn is connected with the

origin or an interior point of the scatterer in order to form an axis for one of the cones

serving at the solution of the inverse problem. This axis is terminated at one of the

attractor points of the problem ξn, which is supposed to have a distance bξn from the

unknown scatterer, greater than one. The cones are considered to be narrow enough so

that their intersection with the surface ∂D specifies a very definite small region of the

scatterer’s surface. The value of the involved fields at the central point z of this small

piece of surface - the intersection of the cone axis with the scatterer - is representative

for the mean value of the contribution of all the points on it. For every triple (x, z, ξ) we

calculate the expectation value of the right hand side of equation (3.66) via Monte Carlo

mean value as follows:

|x− ξ|Ex
∂D

[
e
−ikk̂·XτDe

m+1 e
−ik|YτDe

m+1
|Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]

≈ |x− ξ| 1
N

N∂D∑
j=1

e−ikk̂·Xje−ik|Yj |Pm+1(θj)

Pm(θi)

≈ |x− ξ|e−ikk̂·ze−ik|z−ξ| 1

N

N∂D∑
j=1

Pm+1(θj)

Pm(θj)
. (4.6)

We define the functional

J(z̃; k, k̂, ξ̃) =

Mp∑
n=1

∣∣∣F0(x̂n, k, k̂) + |xn − ξn|Gn(zn, k, k̂, ξn)
∣∣∣2 (4.7)

where Mp is the number of the observation points, ξ̃ gathers all the attractors ξn while

z̃ assembles all the intersection points of the axis of the cones with the scatterer. In

addition

Gn(zn, k, k̂, ξn) := e−ikk̂·zne−ik|zn−ξn| 1

N (n)

N
(n)
∂D∑

j=1

Pm+1(θj,n)

Pm(θj,n)
. (4.8)

The minimization of J(ξ̃; k, k̂, ξ̃) over all the selections z̃ with |zn − ξn| ≥ bξ ≥ 1, in

case that the residual term of Corollary 17 is small, leads to the determination of all the

structural points zn of the surface of the scatterer and so offers a reconstruction of the

body D. Actually even in the case of restricted data, a portion of the surface can be built

on the basis of exploitation of a part of the measurements F0(x̂n, k, k̂). The situation

becomes more enriched in information in case that we consider several incidences k̂j .

The form of the function Gn and the previous analysis about the exact spherical case

are very tempting to the adoption of the reasonable formula 1
N(n)

∑N
(n)
∂D

j=1
Pm+1(θj,n)
Pm(θj,n)

≈
|zn−ξn|
|xn−ξn| leading to the result |xn− ξn|Gn(zn, k, k̂, ξn) ≈ e−ikk̂·zne−ik|zn−ξn|, detouring the
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Fig. 3. The narrow cones in the service of the inverse low-frequency
scattering problem.

necessity to calculate Monte Carlo estimations in order to construct the functional under

consideration. However, this is not the case as Figure 4 clarifies: The intersection of the

measurement cone with the surface ∂D generates a central point z, around which the

surface portion Em := ∂D∩Km+1 has a local mean curvature κz = 1
Rz

, by means of which

a new cone can be constructed with a vertex at the center of the spherical surface fitting

locally to the small surface element Em. Only if the measurement cone coincided with

the curvature cone - and the attractor point ξ with the center ζz of the locally perfectly

fitting sphere - we could evoke the formula 1
N

∑N
j=1

Pm+1(θj)
Pm(θj)

≈ |z−ζz |
|xz−ζz | . But this is

only accidental and cannot be designed in the framework of the inverse boundary value

problem, where the curvature cones are unknown.26 So the Monte Carlo simulations are

indispensable for the formation of the particular terms of the functional J(z̃; k, k̂, ξ̃).

These concepts have been applied to the calculation of the low-frequency Rayleigh

component of the scattered field outside an ellipsoidal scatterer ([21], [22]) with semiaxes

a1 = 3, a2 = 2, a3 = 1. The Rayleigh field obtains the closed form u0(ρ) = − I1
0 (ρ)

I1
0 (a1)

,

where I10 (ρ) stands for a well-known elliptic integral [22] depending on ρ, which is the

first of the three ellipsoidal coordinates (ρ, μ, ν). The surface of the scatterer is given by

the equation ρ = a1. Using this formula for the synthetic data of the inverse problem

26In the realm of the direct problem, the curvature cones are known and can be used to give the
solutions at the points xz but in this work we insist on the efficiency of the mildly conditioned stochastic
approach to the solution of the direct problem, due to its global character.
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Fig. 4. Every surface point induces a specific cone adapted to the lo-
cal curvature, which differs from the actual cone of the measurement
process.

and being restricted27 at the meridian level x(1) = 0, we apply the strongly conditioned

stochastic method by minimizing the functional J(z̃; k, k̂, ξ̃). We work with Mp = 180

observation points xn, n = 1, 2, ...,Mp, distributed uniformly on the portion of the circle

r =

√
(x(2))

2
+ (x(3))

2
= 5 belonging to the quadrant x(2) ≥ 0, x(3) ≥ 0. All these

observation points are connected with the same attractor located at the coordinate origin

to create a number of Mp = 180 narrow cones Km+1,n, n = 1, 2, ...,Mp corresponding

all to the parameter m = 80. The minimization of J(z̃; k, k̂, ξ̃) consists of assembling

the values of this functional for arguments zn, n = 1, 2, ...,Mp belonging (each one of

zn) correspondingly to the cone Km+1,n and to the circular annulus |zn| ∈ [0.4, 3], which

is considered as an a priori information about the hosting region Ω. For every cone

we apply a different Monte Carlo simulation but all these experiments are executed in

parallel and are of course independent. Interpolating and coloring the level sets of this

assembling process, we acquire Figure 5, where the small values of the functional define

the intersection of the scatterer with the plane x(1) = 0. So we obtain some kind of

a plane tomography of the scatterer, which predicts the anticipated curve accurately.

The lack of sharpness in defining the curve (x(2))
2

4 + (x(3))
2
= 1 reflects the well-known

fact that the potential inversion (or the low-frequency inversion) disposes an intrinsic

27We denote here the cartesian coordinates as x(i), i = 1, 2, 3.
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vagueness in the determination of the exact shape of the interface. Furthermore, we

recall a slight underestimation of the axis a2 = 2, but this is mainly due to the fact

that the measurement surface radius r = 5 is not so remote to the particular portion of

the surface near the x(2)-axis, as it should be in order for the asymptotic terms of the

stochastic analysis to offer small contributions.

The inverse problem presented herein is of course a very primitive application of

the general concept supported by the implemented stochastic analysis. There are several

degrees of freedom that could be exploited in order to ameliorate the numerical treatment.

As an example the assumption to take a common attractor for all the cones should be

reconsidered on the basis of a multi-parametric analysis. Actually, the idea of a common

attractor is expected to give reasonable results in case of star-shaped connected scatterers,

while in a different case the flexibility of choosing several suitably distributed attractors

seems to be necessary.

Fig. 5. The reconstruction of the intersection of the ellipsoidal scat-
terer with the plane x(1) = 0.

Furthermore, the concept to confine the minimization process in 2-D planes inter-

secting the scatterer is justified by the purpose to restrict the numerical burden of the

underlying Monte Carlo processes as far as possible but leads to partial results of re-

construction although this cannot be considered as a drawback but as a structural char-

acteristic in the framework of the local methodologies under discussion. In the present

work the aim is to give the primitive approach to the topic. It is expected that working

with the Helmholtz operator in the resonance region - with wave numbers k of significant

value - will reveal the special features of the direct and inverse boundary value problem

[23], which are anticipated to be strongly connected with the wave number of the process.
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Appendix A. The stochastic calculus in the service of differential equa-

tions.

A.1. Basic preliminaries of stochastic processes. The aim of this section is not to

cover of course the very extended area of stochastic differential equations but to give

the necessary notions that are indispensable in the stochastic analysis. The introductory

features of this section are mainly inspired by a very instructive book [7] and some

references cited therein.

Given a set Ω and a σ-algebra F constructed by subsets of Ω, we consider the probabil-

ity space (Ω,F , P ) consisting of the measurable space (Ω,F) and a probability measure

P defined on it. A random variable X is an F-measurable function X : Ω → Rn. Every

random variable induces a probability measure μX on Rn, called the distribution of X

and defined by

μX(B) = P (X−1(B)),

for every Borel set B, a member of the Borel σ-algebra B on Rn.

If
∫
Ω
|X(ω)|dP (ω) < ∞, then the number

E[X] :=

∫
Ω

X(ω)dP (ω) =

∫
Rn

xdμX(x)

is called the expectation of X (w.r.t P ). This relation is generalized for every Borel

measurable function f : Rn → R as follows:

E[f(X)] :=

∫
Ω

f(X(ω))dP (ω) =

∫
Rn

f(x)dμX(x)

provided that
∫
Ω
|f(X(ω))|dP (ω) is bounded.

The σ-algebra HX generated by X is defined to be the smallest σ-algebra on Ω con-

taining all the sets X−1(U), with U ∈ Rn open. (Actually, restriction of U ’s on the

Borel sets B ∈ B is sufficient.) The random variable X is clearly HX -measurable

and no smaller σ-algebra exists with this property. A collection of random variables

Xi; i = 1, 2, ..., n is characterized as independent if the collection of the corresponding

generated σ-algebras HXi
is independent. If two random variables X,Y are independent,

then E[XY ] = E[X]E[Y ], provided that E[|X|] and E[|Y |] are bounded.

A stochastic process is a parametrized collection of random variables {Xt}t∈T , defined

on a probability space (Ω,F , P ) and assuming values in Rn. T is usually the halfline

[0,∞) or an interval in this halfline, or the non-negative integers, etc. For every specific

time t, the family {Xt}t∈T just offers the concrete random variable ω → Xt(ω); ω ∈ Ω.

For every specific sapling element ω ∈ Ω, the family {Xt}t∈T provides the function

t → Xt(ω); t ∈ T , which is called a path of Xt. Intuitively, t is conceived as “time”

and each ω as an individual “experiment”. Sometimes we write X(t, ω) instead of Xt(ω)

considering the process as a function from T × Ω into Rn. The process {Xt}t∈T gives

birth to the so-called finite-dimensional distributions of the process, which coincide with

the measures μt1,...tk defined on Rnk, k = 1, 2, ..., by

μt1,...tk (F1 × F2 × ...× Fk) = P [Xt1 ∈ F1, ..., Xtk ∈ Fk]; ti ∈ T. (A.1)

The family of all finite-dimensional distributions generally gives rich information about

the process although not exhausting. The converse problem is very important: Given the
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probability measures νt1,...tk find a probability space (Ω,F , P ) and a stochastic process

{Xt} such that equation (A.1) is satisfied (where μ is replaced by ν). The Kolmogorov’s

extension theorem asserts the existence of the probability space and the corresponding

process under some natural consistency conditions for νt1,...tk [8]. It is the application

of the last theorem to a specific family of probability measures νt1,...tk , consistent with

consecutive gaussian transitions starting from an initial point x, that establishes the

existence of a probability space (Ω,F , P x) and the well-known accompanying Brownian

motion Bt (starting at x) disposing the same finite-dimensional distributions with the

given measures (we mention here that P x(B0 = x) = 1). The Brownian motion is not

unique in the sense that several quadruples (Bt,Ω,F , P x) exist referring to the same

probability measures ν. However we are always able to adopt the canonical Brownian

motion, which is just the space C([0,∞), Rn) equipped with certain probability measures

P x as described above. Under the law P x, the Brownian motion merits interesting

qualitative and quantitative properties. We mention here that Ex[Bt] = x, for all t ≥ 0,

Ex[(Bt −Bs)
2] = n(t− s), for t ≥ s and that Bt has independent increments Bt1 ,Bt2 −

Bt1 ,...,Btk −Btk−1
for all 0 ≤ t1 < t2 < ... < tk.

In addition we define Ft = F (n)
t to be the σ-algebra generated by the random variables

{Bi(s)}1≤i≤n;0≤s≤t. We can think of Ft as “the history of Bs up to time t.” It is clear

that {Ft} is increasing and that Ft ⊂ F . In addition, mainly due to independence of

increments, the Brownian motion Bt is proved to be a martingale w.r.t. the (increasing)

σ-algebras Ft [7]. This property reflects the reasonable characteristic of the Brownian

motion that the conditional expectation of the Brownian motion at a future time s(> t)

given the past information till the present time t is just the random variable Bt. For every

increasing family of σ-algebras {Nt} of subsets of Ω, a process g(t, ω) : [0,∞)×Ω → Rn

is called {Nt}-adapted if for each t ≥ 0, the function ω → g(t, ω) is {Nt}-measurable. By

construction the Brownian motion is of course {Ft}-adapted. Furthermore, a function

τ : Ω → [0,∞) is called a stopping time w.r.t. {Nt} if {ω; τ (ω) ≤ t} ∈ Nt, for all t ≥ 0.

As an example the first exit time τU := inf{t > 0;Bt /∈ U} of a Brownian motion from

an open set U ⊂ Rn is a stopping time w.r.t. {Ft}.
In the core of the present work lies the stochastic differential equation of the type

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T, X0 = Z. (A.2)

In the equation above, T > 0 while b(., .) : [0,∞)×Rn → Rn and σ(., .) : [0,∞)×Rn →
Rn×m are measurable functions. The Brownian motion is m-dimensional while the initial

state random variable Z is independent of the σ-algebra F (m)
∞ generated by the Brownian

motion at all times. It is proved in [7] that under certain strict conditions on b and σ, the

stochastic differential equation (A.2) has a unique t-continuous solution Xt(ω), which is

adapted to the filtration (increasing family) FZ
t generated by Z and Bs; s ≤ t. In addition

E[
∫ T

0
|Xt|2dt < ∞]. We may integrate obtaining

Xt = X0 +

∫ T

0

b(t,Xt)dt+

∫ T

0

σ(t,Xt)dBt (A.3)

where we recognize [7] the Itô integral
∫ T

0
σ(t,Xt)dBt, which is well defined given that

the solution Xt involving the integrand is FZ
t -adapted. The strict conditions mentioned
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above impose at most linear growth and Lipschitz behavior of the coefficients both in

terms of the second spatial argument, uniformly over time.

The unique solution Xt, generated by the arguments above, is called a strong solution,

because the version Bt of the Brownian motion is given in advance and the solution

constructed from it is FZ
t -adapted. The price we pay to obtain such a good and unique

solution is the restriction on the coefficients b and σ. In general terms, the linear growth

excludes the appearance of explosive solutions while the Lipschitz condition establishes

uniqueness. However it is fruitful to consider a more general class of solutions of equation

(A.2), which allows more general forms of the coefficients b and σ. More precisely,

suppose that we are only given the functions b(t, x) and σ(t, x). We ask for a pair of

processes ((X̃t, B̃t),Ht) on a probability space (Ω,F , P ) with the following properties: i)

Ht is an increasing family of σ-algebras such that X̃t is Ht-adapted, ii)B̃t is a Brownian

motion and simultaneously a martingale w.r.t. Ht and iii) equation (A.2) is satisfied

with (X̃t, B̃t) in place of (Xt, Bt). Then the pair (X̃t, B̃t) is called a weak solution of the

stochastic differential equation (A.2). We mention that the martingale property permits

us to define the Itô integral on the right hand side of equation (A.3) exactly as before,

even though X̃t need not be FZ
t -adapted.

The uniqueness mentioned in the framework of strong solutions is called strong or

path-wise uniqueness and has a very clear interpretation. There is also the notion of

weak uniqueness according to which any two solutions (weak or strong) are identical by

law.

The time homogeneous Itô diffusions Xt are of special importance and obey the rule

(A.2) with time homogeneous coefficients b(Xt) and σ(Xt). The coefficient b(Xt) is known

as the drift of the process. In the absence of the random term, the drift is exclusively

responsible for the evolution of the dynamical system Xt and so “drives” the vector Xt.

It clearly retains this basic property in case of small randomness, induced by small σ(Xt),

and the trajectory of the process keeps its orientation, while obtaining a fluctuating mor-

phology due of course to the randomness. It is an issue of great importance to investigate

the behavior of composite functions of the form F (t, ω) = f(t,Xt) = f(t,X(t)), where

f(t, x) = (f1(t, x), f2(t, x), ..., fp(t, x)) is a C2 map from [0,∞)×Rn into Rp. The method

for this effort is provided by the well-known multi-dimensional Itô formula, according to

which F (t, ω) is again an Itô process with components Fk, k = 1, 2, ..., p, satisfying

dFk =
∂Fk

∂t
(t,X)dt+

∑
i

∂Fk

∂xi
(t,X)dXi +

1

2

∑
i,j

∂2Fk

∂xi∂xj
(t,X)dXidXj (A.4)

where the relations dBidBj = δijdt, dBidt = dtdBi = 0 span the calculus of products

between infinitesimals.

For every Itô diffusion Xt in Rn, the infinitesimal generator A is defined by Af(x) =

limt↓0
Ex[f(Xt)]−f(x)

t , x ∈ Rn and has a domain DA including C2
0 (R

n). More precisely,

every f ∈ C2
0 (R

n) belongs to DA and satisfies

Af(x) =
∑
i

bi(x)
∂f

∂xi
+

1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj
.
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The infinitesimal generator offers the link between the stochastic processes and the partial

differential equations.

A.2. Stochastic processes and interior boundary value problems. The well-known

Dynkin’s formula [7] connects the infinitesimal operator A with expectation values of

suitable stochastic processes. Indeed, let f ∈ C2
0 (R

n) and suppose that τ is a stopping

time with Ex[τ ] < ∞. Then

Ex[f(Xτ )] = f(x) + Ex

[∫ τ

0

Af(Xs)ds

]
. (A.5)

The existence of a compact support for the functions f is not necessary if τ is the first

exit time of a bounded set. The Dynkin’s formula is very helpful in obtaining stochastic

representations of boundary value problem solutions. Indeed, let D be a bounded domain

in Rn and φ a bounded function on ∂D, while u ∈ C2(D) is supposed to be a solution

of the boundary value problem

Lu(x) = 0 x ∈ D, (A.6)

lim
x→y

x∈D

u(x) = φ(y) y ∈ ∂D, (A.7)

where L is the second order elliptic partial differential operator given by L =
∑

i bi(x)
∂

∂xi

+ 1
2

∑
i,j aij(x)

∂2

∂xi∂xj
. The concept of interrelating a stochastic process with the bound-

ary value problem above begins with the selection of a matrix σ(x) ∈ Rn×n such that
1
2σ(x)σ

T (x) = [aij(x)] and goes on by considering the Itô diffusion Xt, satisfying the sto-

chastic differential equation (A.2) with X0 = x (and m = n). The infinitesimal generator

A of this process has the same expression as the differential operator L under discussion.

To simplify the current presentation, suppose that τD < ∞ a.s. P x for all x. Then the

Dynkin’s formula imposes necessarily the stochastic representation

u(x) = Ex[φ(XτD)] (A.8)

for the smooth solution of the boundary value problem, implying alternatively the well-

known uniqueness result for the Dirichlet problem. The last outcome (A.8) opens up the

possibility to exploit the stochastic calculus in the service of the solution of boundary

value problems. Several special issues, concerning the characteristics of the constructed

Itô diffusion, arise that cannot of course be examined here extensively. As a matter of

fact, the aforementioned Lipschitz conditions for the coefficients of the operator A are

sufficient in order to ensure the strong uniqueness of the process Xt and then to give clear

sense to equation (A.8). However, as discussed in the previous section, a weak uniqueness

result would be enough since two equivalent processes, in probabilistic law, lead to equal

expectation values. So there are interesting cases of general (even singular) coefficients

bi, aij with very interesting applications. A second issue is the crucial condition τD < ∞.

As an example the Brownian motion itself is well known to be recurrent in R2 (i.e.

P x(τD < ∞) = 1) but transient in R3 (i.e. P x(τD < ∞) < 1). So in R3, a pure

Brownian motion could ramble endlessly without hitting the boundary. However, the

drift term is often responsible to guide the process toward the exit from the set D.

Another crucial issue is that especially in applications involving processes in exterior

domains, the requirement of the boundedness of the domain is no longer respected. It is
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expected that the drift term must dispose a very “attractive” character in order to force

the stochastic process reaching the boundary of an unbounded domain. This is realized

if the drift has a suitable singularity outside the domain. In the present work, special

attention has been devoted to the investigation of specific type singular drift coefficients

and to their influence in the interrelation between stochastic processes and boundary

value problems.

Appendix B. The technical proofs of most of the results concerning exte-

rior stochastic representations.

Proof of Theorem 4. By partitioning the expectation values, we transform equation

(3.35) into the form

u(x) =
1

|x− ξ|m+1E
x
∂D∩Km,int

[
φ(Xτ∂D

)|Yτ∂D
|m+1

Qm(cos(Θτ∂D
))

]

+
1

|x− ξ|m+1E
x
∂Km,int∩{|Yτ |<s|x−ξ|}

[
u(Xτ∂Km,int

)|Yτ∂Km,int
|m+1

Qm(cos(Θτ∂Km,int
))

]

+
1

|x− ξ|m+1E
x
∂Km,int∩{|Yτ |≥s|x−ξ|}

[
u(Xτ∂Km,int

)|Yτ∂Km,int
|m+1

Qm(cos(Θτ∂Km,int
))

]

+
1

|x− ξ|m+1E
x
Scup

[
u(XτScup

)|YτScup
|m+1

Qm(cos(ΘτScup
))

]
, (B.1)

where s = T
1
2+ε and ε ∈ (0, 12 ).

The last two terms of representation (B.1) can be compressed as follows:

w(x) :=
1

|x− ξ|m+1E
x
∂Km,int∩{|Yτ |≥s|x−ξ|}

[
u(Xτ∂Km,int

)|Yτ∂Km,int
|m+1

Qm(cos(Θτ∂Km,int
))

]

+
1

|x− ξ|m+1E
x
Scup

[
u(XτScup

)|YτScup
|m+1

Qm(cos(ΘτScup
))

]

=
1

|x− ξ|m+1E
x
∂De

m,int∩{T |x−ξ|≥|Yτ |≥s|x−ξ|}

⎡
⎣u(Xτ∂De

m,int
)|Yτ∂De

m,int
|m+1

Qm(cos(Θτ∂De
m,int

))

⎤
⎦ .

Thanks to the maximum principle for boundary value problems involving the Laplace

operator, we have that supz∈De |u(z)| ≤ L := maxζ∈∂D|φ(ζ)|. Taking also into account

that the function Q attains its positive minimum at θ = θm,int, we easily find that

|w(x)| ≤ LTm+1

Qm(cos(θm,int))
Ex

∂De
m,int∩{T |x−ξ|≥|Yτ |≥s|x−ξ|}[1]. (B.2)

The last expectation value of unity is less than the probability measure of the set {|Yτ | ≥
s|x − ξ|}, which according28 to equation (3.21) is further majorized suitably, implying

28After just replacing De
m,l with De

m,int.
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that

|w(x)| ≤ LTm+1

Qm(cos(θm,int))
P (|Yτ | ≥ s|x− ξ|) ≤ LTm+1

Qm(cos(θm,int))

1

s2m+4−n

=
L

Qm(cos(θm,int))

1

T 1−n
2 +ε(2m+4−n)

. (B.3)

It is necessary that ε >
n
2 −1

2m+4−n in order to guarantee lessening of |w(x)| as the parameter

T increases.29 What remains is to handle the second term v(x) of the sum of the r.h.s.

of the representation (B.1). It is immediate to obtain that

|v(x)| ≤ Lsm+1

Qm(cos(θm,int))
Ex

∂Km,int∩{|Yτ |<s|x−ξ|}[1].

The expectation value Ex
∂Km,int∩{|Yτ |<s|x−ξ|}[1], appearing in the last inequality can be

estimated via the aforementioned Monte Carlo approach and obviously represents - for a

large number of independent experiments - the portion of the lateral surface30 crossings

among the total number of exits from the domain under investigation De
m,int. This

percentage is then maximized by the ratio
N∂Km,int

N and consequently we obtain

|v(x)| ≤ LT ( 1
2+ε)(m+1)

Qm(cos(θm,int))

N∂Km,int

N
. (B.4)

Thus, the difference B(x) := u(x)− u∂D(x) between the solution of the boundary value

problem u(x) and the contribution

u∂D(x) :=
1

|x− ξ|m+1E
x
∂D∩Km,int

[
φ(Xτ∂D

)|Yτ∂D
|m+1

Qm(cos(Θτ∂D
))

]

from the trajectories escaping region De
m,int exclusively from the surface ∂D, is bounded

above by the bounds appearing in the r.h.s. of equations (B.3) and (B.4). We summarize

that

|B(x)| ≤ L

Qm(cos(θm,int))

(
1

T 1−n
2 +ε(2m+4−n)

+ T ( 1
2+ε)(m+1)N∂Km,int

N

)
. (B.5)

Let ε be selected to be the particular parameter γ for which the following balancing

N∂Km,int

N
≤ 1

T (m+3−n
2 +γ(3m+5−n))

, (B.6)

of the trajectories is assured.31 Equation (B.5) based on equation (B.6) becomes

|B(x)| ≤ 2
L

Qm(cos(θm,int))

1

T 1−n
2 +γ(2m+4−n)

. (B.7)

�

29This condition does not violate the relation ε < 1
2
since m > 3n−5

2
.

30The additional restriction that |Yτ | < s|x− ξ| is of course valid.

31This condition provides a necessary measure on the smallness of the fraction
N∂Km,int

N
in conjunc-

tion with T .
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Proof of Theorem 11. We consider the representation (3.40) and handle the time in-

tegral term

E(x) := Ex

[∫ τDe
m,int

0

(
Δ(u(Xs)|Xs − ξ|hm+1(Xs − ξ))

2hm(Xs − ξ)

)
ds

]
. (B.8)

The treatment of the term Δ(u(Xs)|Xs − ξ|hm+1(Xs − ξ)) can be simplified after ex-

pressing everything in terms of the variable Ys, leading to the form Δ(ũ(Ys)|Ys|hm+1(Ys)),

where ũ(Ys) := u(Xs). Setting rξ = |Ys| and ∇ = r̂ξ
∂

∂rξ
+ 1

rξ
D, we easily obtain

1

2
Δ (ũ|Ys|hm+1) = (

1

rξ
ũ+

∂ũ

∂rξ
)hm+1 + rξ∇ũ · ∇hm+1 + ũ

∂hm+1

∂rξ

= −(m+ 1)(
1

rξ
ũ+

∂ũ

∂rξ
)hm+1 +

1

rξ
Dũ · Dhm+1. (B.9)

Consequently,

E(x) = Ex

[∫ τDe
m,int

0

{
− (m+ 1)

|Ys|

(
1

|Ys|
ũ(Ys) +

∂ũ(Ys)

∂|Ys|

)

Pm+1(cos(Θs))

Pm(cos(Θs))

}
ds

]
+ Ex

[∫ τDe
m,int

0

1

|Ys|2
Dũ · DPm+1(cos(Θs))

Pm(cos(Θs))
ds

]
.

(B.10)

The harmonic field ũ can be expanded, in the exterior of a sphere, superscribing region

D and centered at ξ, in a uniformly convergent series of inverse powers of the distance

|Ys|, as follows:32

ũ(Ys) =
A0

|Ys|
+

f1(Θs,Φs)

|Ys|2
+

∞∑
j=3

fj(Θs,Φs)

|Ys|j+1
, (B.11)

where all the involved functions fn, n ∈ N are regular and infinitely differentiable func-

tions. It is straightforward to conclude that there is a constant C, independent of the

parameter m of the process and depending only on the region D and the data φ such

that33 ∣∣∣∣ 1

|Ys|
ũ(Ys) +

∂ũ(Ys)

∂|Ys|

∣∣∣∣ ≤ C

|Ys|3
, |Dũ| ≤ C

|Ys|2
. (B.12)

As a matter of fact, it can be assumed for our purposes that the active contribution of

the field ũ in the current stochastic analysis obeys the boundedness
∣∣∣ 1
sin(Θs)

Dũ
∣∣∣ ≤ C

|Ys|2
.

This is justified on the basis of the fact that f1(Θs,Φs) is necessarily a function of

the form (A cos(Φs) + B sin(Φs)) sin(Θs) + C cos(Θs) as is easily shown after making

32Here we encounter for the first time the azimuthal coordinate Φ, which is absent in the harmonic
functions hm, hm+1 but present of course as an argument of the field ũ itself.

33The forthcoming relations are quite reasonable for every |Ys| greater than the radius R1 of the sphere
circumscribing the - possibly disconnected - region D. Moreover, the regularity of the involved fields
allows us to find a constant C assuring the validity of the equations even in the bounded intermediate
region between D and the ball B(ξ, R1). Furthermore the condition bξ = dist{ξ, ∂D ∩ Km+1} ≥ 1
prevents the distance |Ys| to become smaller than unity, assuring a uniform validity of equations (B.11)
and (B.12) independent of the choice of ξ. The same assumption guarantees secure behavior of all the

involved stochastic integrals including powers of the ratio 1
|Ys| .
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asymptotics to the Green’s integral representation of the exterior harmonic function ũ.

The term (A cos(Φs)+B sin(Φs)) sin(Θs) does not preoccupy our analysis given that every

expectation value involving the azimuthal trigonometric linear combination (A cos(Φs)+

B sin(Φs)) offers zero contribution since the driving term of the stochastic process is

independent of Φs, while the domain of the evolution of the stochastic trajectories is

invariant to azimuthal rotations. Based on this fact, exploiting the recurrence formula

(1 − z2)P ′
m+1(z) = (m + 1)Pm(z) − (m + 1)zPm+1(z) and using that Pm+1

Pm
is less than

unity in the specific range of their argument, we find that

∣∣∣∣Dũ · DPm+1(cos(Θs))

Pm(cos(Θs))

∣∣∣∣ =
∣∣∣∣∣ 1

sin(Θs)

∂ũ

∂Θs

sin2(Θs)P
′
m+1(cos(Θs))

Pm(cos(Θs))

∣∣∣∣∣
≤ (m+ 1)

∣∣∣∣ 1

sin(Θs)

∂ũ

∂Θs

∣∣∣∣+ (m+ 1)

∣∣∣∣ 1

sin(Θs)

∂ũ

∂Θs

cos(Θs)Pm+1(cos(Θs))

Pm(cos(Θs))

∣∣∣∣
≤ (m+ 1)

C

|Ys|2
. (B.13)

As a result, equation (B.10) gives

|E(x)| ≤ C(m+ 1)Ex

[∫ τDe
m,int

0

1

|Ys|4
ds

]
. (B.14)

We evoke the fundamental relation (3.12) with k = −2 (and n = 3), integrate over time

in the interval (0, τDe
m,int

) and take expectation values, as before in this work, to find

that

Ex

[∫ τDe
m,int

0

1

|Ys|4
ds

]
=

1

(2m+ 3)

⎛
⎝Ex

⎡
⎣ 1

|YτDe
m,int

|2

⎤
⎦− 1

|x− ξ|2

⎞
⎠ . (B.15)

Based on equations (3.40), (B.8), (B.14), (B.15) and on the process T → ∞, described

in Proposition 9, we find that

u(x) = Ex
∂D

[
φ(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
− E(x), (B.16)

with

|E(x)| ≤ C
(m+ 1)

(2m+ 3)

⎛
⎝Ex

⎡
⎣ 1

|YτDe
m+1

|2

⎤
⎦− 1

|x− ξ|2

⎞
⎠ . (B.17)

To handle the term Ex

[
1

|YτDe
m+1

|2

]
, we apply the Girsanov theorem again to find that

Ex

⎡
⎣ 1

|YτDe
m+1

|2

⎤
⎦ = |x− ξ|m+1

Ex

⎡
⎣ 1

|Bτ̃De
m+1

− ξ|2
hm(Bτ̃De

m+1
− ξ)

⎤
⎦ . (B.18)
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We apply then the recurrent relation Pm(z) = 2m+3
m+1 zPm+1(z)− m+2

m+1Pm+2(z) to the last

formula and obtain

Ex

⎡
⎣ 1

|YτDe
m+1

|2

⎤
⎦

= |x− ξ|m+1 2m+ 3

m+ 1
Ex

⎡
⎣ 1

|Bτ̃De
m+1

− ξ|m+3 cos(Θτ̃De
m+1

)Pm+1(cos(Θτ̃De
m+1

))

⎤
⎦

− |x− ξ|m+1m+ 2

m+ 1
Ex

⎡
⎣ 1

|Bτ̃De
m+1

− ξ|m+3Pm+2(cos(Θτ̃De
m+1

))

⎤
⎦ . (B.19)

Exploiting the vanishing of Pm+1 on the lateral surface and Dynkin’s formula for har-

monic fields we find that

Ex

⎡
⎣ 1

|YτDe
m+1

|2

⎤
⎦

= |x− ξ|m+1 2m+ 3

m+ 1
Ex

∂D

⎡
⎣ 1

|Bτ̃De
m+1

− ξ|m+3 cos(Θτ̃De
m+1

)Pm+1(cos(Θτ̃De
m+1

))

⎤
⎦

− m+ 2

m+ 1

1

|x− ξ|2

≤ |x− ξ|m+1 1

bξ

2m+ 3

m+ 1
Ex

∂D

⎡
⎣ 1

|Bτ̃De
m+1

− ξ|m+2Pm+1(cos(Θτ̃De
m+1

))

⎤
⎦

− m+ 2

m+ 1

1

|x− ξ|2

≤ 2m+ 3

m+ 1

1

bξ

1

|x− ξ| −
m+ 2

m+ 1

1

|x− ξ|2

=
2m+ 3

m+ 1

1

|x− ξ|

(
1

bξ
− 1

|x− ξ|

)
+

1

|x− ξ|2
. (B.20)

Then the inequality (B.17) becomes

|E(x)| ≤ C
1

|x− ξ|

(
1

bξ
− 1

|x− ξ|

)
. (B.21)

This relation assures that the residual term becomes small in the near field region, given

that bξ and |x− ξ| become comparable, especially when the point ξ is pulled back.

In the far-field region, we need a different treatment of the function E(x). We define

Bξ = max{|ζ − ξ|, ζ ∈ ∂D ∩ Km+1}. We handle the first term

|x− ξ|m+1 2m+ 3

m+ 1
Ex

∂D

[
1

| · |m+3 zPm+1(z)

]
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of the right hand side of equation (B.20), applying once more the same recurrent formula

for Legendre functions and the Dynkin’s formula for harmonic functions to obtain that

|x− ξ|m+1 2m+ 3

m+ 1
Ex

∂D∩Km+1

[
1

| · |m+3 zPm+1(z)

]

≤ Bξ|x− ξ|m+1 2m+ 3

m+ 1

2m+ 5

m+ 2
Ex

∂D∩Km+2

[
1

| · |m+4 zPm+2(z)

]

−Bξ|x− ξ|m+1 2m+ 3

m+ 1

m+ 3

m+ 2
Ex

∂D∩Km+1

[
1

| · |m+4Pm+3(z)

]

≤ Bξ

bξ
|x− ξ|m+1 2m+ 3

m+ 1

2m+ 5

m+ 2
Ex

∂D∩Km+2

[
1

| · |m+3Pm+2(z)

]

−Bξ
2m+ 3

m+ 1

m+ 3

m+ 2

1

|x− ξ|3

=
Bξ

bξ

2m+ 3

m+ 1

2m+ 5

m+ 2

1

|x− ξ|2
−Bξ

2m+ 3

m+ 1

m+ 3

m+ 2

1

|x− ξ|3
. (B.22)

So

Ex

⎡
⎣ 1

|YτDe
m+1

|2

⎤
⎦ ≤ Bξ

bξ

2m+ 3

m+ 1

2m+ 5

m+ 2

1

|x− ξ|2

−Bξ
2m+ 3

m+ 1

m+ 3

m+ 2

1

|x− ξ|3
− 2m+ 3

m+ 1

1

|x− ξ|2
+

1

|x− ξ|2
. (B.23)

Combining equations (B.17)-(B.20) and (B.23) we find that

|E(x)| ≤ C

(
Bξ

bξ

[
2m+ 5

m+ 2
− m+ 3

m+ 2

bξ
|x− ξ|

]
− 1

)
1

|x− ξ|2
. (B.24)

For large values of m,
Bξ

bξ
∼= 1 and if we approach the boundary, then

Bξ

bξ

[
2m+ 5

m+ 2
− m+ 3

m+ 2

bξ
|x− ξ|

]
− 1 → 0.

In both cases |x| → ∞ and x → ∂D, we remark that |x− ξ||E(x)| → 0. �
Proof of Theorem 12. We apply Theorem 11 to the function34 w(x) = (x− ξ) · ∇u(x)

(instead of u itself), which satisfies the Laplace equation and behaves like 1
|x−ξ| in the

far-field region. In addition, using the expansion (B.11), we can show that the estimates

(B.12) are valid for the function w̃(Ys) as well. Then, according to the analysis from

before, we obtain

w(x) = Ex
∂D

[
w(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
− E(x)

⇒ (x− ξ) · ∇u(x) = Ex
∂D

[
YτDe

m+1
· ∇u(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
− E(x), (B.25)

34Giving birth to the function w̃(Ys) = Ys · ∇yũ(Ys).
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where E(x) has been characterized asymptotically in Theorem 11. Evoking the expansion

(B.11), we find that

w(x) = −u(x) +O(
1

|x− ξ|2
). (B.26)

In addition we have

YτDe
m+1

· ∇u(XτDe
m+1

) = YτDe
m+1

· n̂y
∂u

∂n
(XτDe

m+1
)

+ YτDe
m+1

· (I− n̂y ⊗ n̂y) · ∇u(XτDe
m+1

). (B.27)

The second term of the right hand side offers an expectation value that can be estimated

on the basis of the assumed regularity of the small region Km+1 ∩ ∂D and the essence of

Proposition 9:

Ex
∂D

[
YτDe

m+1
· (I− n̂y ⊗ n̂y) · ∇u(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
(B.28)

≤ sin(θm+1,1)E
x
∂D

[
|YτDe

m+1
||∇u(XτDe

m+1
)|
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
≤ sin(θm+1,1)

C

|x− ξ| .

Combining equations (B.25)-(B.28) the stated result comes out. Selecting m large

enough,35 we may control the residual to be of rate O( 1
|x−ξ|2 ). �

Proof of Proposition 13. The field v(x) = 2u(x) + (x − ξ) · ∇u(x) satisfies again the

Laplace equation and the asymptotic condition v(x) = O( 1
|x−ξ| ). Moreover, on the basis

of the expansion (B.11), it is easily deduced that the field ṽ(Ys) = v(Xs) obeys sharper

boundedness relations:∣∣∣∣ 1

|Ys|
ṽ(Ys) +

∂ṽ(Ys)

∂|Ys|

∣∣∣∣ ≤ C

|Ys|3
, |Dṽ| ≤ C

|Ys|3
. (B.29)

Then we apply equation (3.40) to v and notice that the new residual term (estimated

before by equation (B.14)) is controlled now as follows:∣∣∣Ẽ(x)∣∣∣ ≤ C(m+ 1)Ex

[∫ τDe
m,int

0

1

|Ys|5
ds

]
. (B.30)

We evoke the fundamental relation (3.12) with k = −3 (and n = 3), integrate over time

in the interval (0, τDe
m,int

) and take expectation values to find that

Ex

[∫ τDe
m,int

0

1

|Ys|5
ds

]
=

1

3(m+ 2)

⎛
⎝Ex

⎡
⎣ 1

|YτDe
m,int

|3

⎤
⎦− 1

|x− ξ|3

⎞
⎠ . (B.31)

Working36 as in Theorem 11 we show that

∣∣∣Ẽ(x)∣∣∣ ≤ C(m+ 1)

(m+ 2)

⎛
⎝Ex

⎡
⎣ 1

|YτDe
m,int

|3

⎤
⎦− 1

|x− ξ|3

⎞
⎠ = O(

1

|x− ξ|3
), |x| → ∞. (B.32)

35We recall that sin(θm+1,1) → 0 as m incerases.
36The working steps are quite similar, although more extensive, and are not going to be presented

here again.
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�
Proof of Theorem 14. The surface data f := u|∂D∩Km+1

and g := ∇u|∂D∩Km+1
are

connected via the stochastic rule

A0 = |x− ξ|Ex
∂D

[
2u(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]

+|x− ξ|Ex
∂D

[
YτDe

m+1
· ∇u(XτDe

m+1
)
Pm+1(ΘτDe

m+1
)

Pm(ΘτDe
m+1

)

]
+O(

1

|x− ξ|2
),

|x− ξ| → ∞ (B.33)

as easily deduced from Proposition 13.

On the basis of decomposition ∇u(y) = (I− n̂y ⊗ n̂y) · ∇u(y) + n̂yn̂y · ∇u(y), and via

the arguments encountered in the construction of formula (B.28) we obtain the stated

result. �

References

[1] W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press,
Cambridge, 2000. MR1742312

[2] R. Kress, Linear Integral Equations, Springer-Verlag Berlin Heidelberg, 1989
[3] F. Ihlenburg, Finite element analysis of acoustic scattering, Applied Mathematical Sciences,

vol. 132, Springer-Verlag, New York, 1998. MR1639879
[4] R. J. S. Rayleigh Fourth Baron, Life of John William Strutt, Third Baron Rayleigh, O.M., F.R.S,

An augmented edition with annotations by the author and foreword by John N. Howard, The
University of Wisconsin Press, Madison, Wis.-London, 1968. MR0224421
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