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Abstract. We study in this work convolution groups generated by completely mono-
tone sequences related to the ubiquitous time-delay memory effect in physics and en-
gineering. In the first part, we give an accurate description of the convolution inverse
of a completely monotone sequence and show that the deconvolution with a completely
monotone kernel is stable. In the second part, we study a discrete fractional calcu-
lus defined by the convolution group generated by the completely monotone sequence
D = (1,1,1,...), and show the consistency with time-continuous Riemann-Liouville
calculus, which may be suitable for modeling memory kernels in discrete time series.

1. Introduction. Many models have been proposed for the ubiquitous time-delay
memory effect in physics and engineering: the generalized Langevin equation model for
particles in heat bath ([7[18]), linear viscoelasticity models for soft matter ([2l[12]), linear
dielectric susceptibility model [IL[15] for polarization to name a few. In these models, the
response due to memory is given by the one-side convolution f(f g(t — s)v(s) ds following
linearity, time-translation invariance and causality [I1, Chap. 1], where g is the memory
kernel and v is the source of memory. Causality means that the output cannot precede
the input so that ¢g(t) = 0 for ¢ < 0. The Tichmarsh’s theorem states that the Fourier
transform G(w) of g is analytic in the upper half plane, and that the real and imaginary
parts of G satisfy the Kramers-Kronig relation [IIL[16]. Based on the principle of the
fading memory [12], we consider g to be completely monotone, which by the Bernstein
theorem can be expressed as the superposition of (may be infinitely many) decaying
exponentials (see [14,[17] for more details). If the kernel g is given by the algebraically

decaying completely monotone kernels g = %ﬂ’l where 6(t) is the Heaviside step
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function and v € (0,1), we are then led to the fractional integrals and the corresponding
fractional derivatives, which have already been used widely in engineering for modeling
memory effects [4].

In practice, the data we collect are at discrete times and we have the one-sided discrete
convolution a*c (see equation (2.2))). The convolution kernel ¢ is a completely monotone
sequence (see Definition ) if it is the value of g at the discrete times [I7]. If c is
completely monotone, it is shown in [I0] that there exist ¢ r e R, such that ¢ xc®) =
c+9) and ¢M) = ¢, i.e. there exists a convolution group generated by the completely
monotone sequence. If 0 < 7 < 1, ¢() is completely monotone. Further, ¢(9) = §; :=
(1,0,0,...), is the convolution identity. The most interesting sequence is =V the
convolution inverse, which can be used for deconvolution. Since the data are discrete, it
would also be interesting to define discrete fractional calculus using the one-sided discrete
convolution.

In this short note, we first investigate the convolution inverse of a completely mono-
tone sequence c in Section[2l We show that the ¢; norm is bounded and the deconvolution
is stable in any ¢P space. Based on this, some preliminary ideas are explored for deconvo-
lution. In Section [B] we define a discrete fractional calculus using a discrete convolution
group generated by the completely monotone sequence ¢(!) = (1,1,1,...) and show that
it is consistent with the time-continuous Riemann-Liouville calculus (see (81))).

2. Deconvolution for a completely monotone kernel. In this section, we in-
vestigate the property of convolution inverse of a completely monotone sequence and
deconvolution with completely monotone sequences.

DEFINITION 2.1. A sequence ¢ = {cj}$2, is completely monotone if (I — S)icy > 0
for any j > 0,k > 0 where Sc¢; = ¢j41.

A sequence is completely monotone if and only if it is the moment sequence of a
Hausdorff measure (a finite nonnegative measure on [0,1]) ([I7]). Another description is
given as follows ([T0,13]):

LEMMA 2.2. A sequence c is completely monotone if and only if the generating function
Fo(z2) =352, ¢;jz7 is a Pick function that is analytic and nonnegative on (—oo, 1).

Note that a function f : C; +— C (where C; denotes the upper half plane, not
including the real line) is Pick if it is analytic such that Im(z) > 0 = Im(f(z)) > 0.
Consider the one-sided convolution equation

axc=f, (2.1)

where the convolution kernel ¢ is a completely monotone sequence and ¢y > 0. The
discrete convolution is defined as

(a*c), = Z St a,, (2.2)

n120,m220



DECONVOLUTION AND DISCRETE FRACTIONAL CALCULUS 191

and 97, is the Kronecker delta. This convolution is associative and commutative. Let
F.(z) be the generating function of ¢:

F.(z) = Z cnz". (2.3)
n=0

Then, Fo..(z) = Fu(2)F.(z). Given ¢, the convolution inverse c¢(~!) is the sequence
that satisfies ¢ * ¢ = ¢V x ¢ = §4 := (1,0,0,...). The generating function of
the convolution inverse ¢~ is 1/F.(z). If we find the convolution inverse of ¢, the
convolution equation (ZI]) can be solved.

2.1. The convolution inverse. Now, we present our results about the convolution in-
verse:

THEOREM 2.3. Suppose ¢ is completely monotone and c¢o > 0. Let ¢{~1) be its convo-
lution inverse. Then, F. 1) is analytic on the open unit disk, and thus the radius of

convergence of its power series around z = 0 is at least 1. =1 /co and the sequence

(—cgfl), —cgfl), ...) is completely monotone. Furthermore, 0 < — 7, c,(;l) < %

Proof. The first claim follows from that F.(z) has no zeros in the unit disk [I0].

By Lemma 22 F.(z) is Pick and it is positive on (—o0,1). F.(—oc0) = 0 if the
corresponding Hausdorff measure does not have an atom at 0 (i.e. the sequence c is
minimal. See [I7, Chap. IV. Sec. 14] for the definition). Since F.(—oc) could be zero,
we consider

1 1
G(z)=—-————, €>0.
() € e+ F.(2) ‘
It is easy to verify that G, is a Pick function, analytic and nonnegative on (—oo, 1).
Suppose G, is the generating function of d = (d§, dS, . ..). By Lemmal[ZZ] this sequence

is completely monotone. Then,

1 o)l = F.(2) — F.(0)
z 2(e + F.(0))(e + F.(2))’

is the generating function of the shifted sequence (dS, .. .), which is completely monotone.
Hence, H. is also a Pick function, nonnegative and analytic on (—oo,1).
Taking the pointwise limit of H, as € — 0, we find the limit function

FC(Z) B FC(O)

H(z) = 2F,(0)Fu(2)

(2.4)
to be nonnegative on (—oo, 1). By the expression of H, it is also analytic since F,(z) is
never zero on C\ [1,00). Finally, since Im(H.(z)) > 0 for Im(z) > 0, then Im(H (z)),
as the limit, is nonnegative. It follows that the sequence corresponding to H is also

completely monotone. If ¢ is in £}, 0 < H(1) = % < % If F.(1) = ||c|l1 = oo,
F.(z) _ 1

we fix zp € (0,1), and then for any z € (zp,1), we have 0 < H(z) < TFOFRGE = e
H(z) is increasing in z since the sequence corresponding to H is completely monotone

and therefore nonnegative. Letting z — 17, by the monotone convergence theorem, we
have H(1) < ﬁ Taking zg — 1, H(1) < %
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Further, H(z) is the generating function of —(0(71),0(71), ...) since 1/F.(z) is the

generating function of ¢(~1) = (c((fl), cgfl), ...). The second claim therefore follows. [
As a corollary of Theorem 23] we find that the deconvolution with a completely

monotone sequence is stable:

COROLLARY 2.4. Equation ([2]) can be solved stably. In particular, Vf € €7, there exists
a unique a € P such that a * ¢ = f and |jal|, < %Hpr

The claim follows directly from the fact that |[c!||; < 2/co and Young’s inequality.
We omit the proof.

2.2. Computing convolution inverse and deconvolution. To solve the convolution equa-
tion (2I)), we can use the algorithm in [I0] to find the convolution group ¢(™). Then, the
solution is computed as a = ¢(=1) % f. The algorithm for ¢(") reads

e Determine the canonical sequence b that satisfies (n 4+ 1)cpt1 = Y 1o Cn—kbi-

e Compute c") by (n + 1)0521 =r> cglrzkbk.
For a completely monotone sequence, the canonical sequence satisfies b, > 0 ([5]). If
co = 1, computing the canonical sequence is straightforward

n—1
bp = (n+ Depg1 — Z Cr— 1k (2.5)
k=0

Note that Fy(z) = F/(2)/F.(z). Ifco =1, ¢\ =1 and |c£;rll)| < 7 ko 1S by
It’s clear by induction that |c£L_+11)| < ¢py1. For general ¢y, we can apply the above
argument to ¢/co and have the pointwise bound: |c§€_1)| < %|Ck|.

Now, let us show a simple example to illustrate the deconvolution with completely
monotone sequences. Every completely monotone sequence is the moment sequence of

a Hausdorff measure. Fix M as a big integer and denote h = 1/M. x; = (i — 1/2)h.
Consider the discrete measures

M
CM={u:uthAié(x—xi),)\i2O}. (2.6)
i=1

The weak star closure ({u, ) = f[O,l] fdu where f € C[0,1]) of Uy, Car is the set of all
Hausdorff measures. Due to this fact, we can generate completely monotone sequences
using
M
dy =Y h\a}, n=0,1,2,..., (2.7)
i=1
where \; > 0 are generated randomly (for example uniformly from [0, 1]).

In Fig. [ (a), we have a sequence which is of square shape; in Fig. [ (b), we plot the
convolution between the sequence in (a) and the completely monotone sequence obtained
using (2.7). Fig. [ (c) shows the solution a * ¢ = f by convolving the sequence in Fig.
I(b) with ¢(=1 . The original sequence is recovered accurately.

If the sequence ¢ is no longer completely monotone, the generating function of ¢{(~1)
may have a small radius of convergence and an iterative method may be desired to
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FiG. 1. A simple example of deconvolution

solve (2I). Consider approximating the sequence ¢ by a completely monotone sequence
d = {d} of the form in equation ([27). Writing d in matrix form, we have

1
d=—A\= An, (2.8)
m
where 1 = %)\. A simple iterative method then reads:
aPtt = fadY —aP s [(c—d)xdV], p=0,1,2,..., (2.9)
where a° is arbitrary. Clearly, the iteration converges if ||(c—d)*d(~V|; < 1. A sufficient
condition is therefore
_ 2
14D 1 fle = dlh < WHC_ Anll <1, (2.10)
because d is completely monotone and dy = ||n||1. As long as we can find a solution 7 to

this optimization problem, the iterative method can be applied to solve the convolution

equation (21)).

3. A discrete convolution group and discrete fractional calculus. In this
section, we introduce a special discrete convolution group generated by a completely
monotone sequence and define discrete fractional calculus. We show that the discrete
fractional calculus is consistent with the Riemann-Liouville fractional calculus ([41618])
with appropriate time scaling. The discrete convolution group proposed may be suitable
for modeling memory effects in discrete time series.

The traditional Riemann-Liouville fractional calculus for a function in C*[0,T),7 > 0
with index |a| < 1 is defined as

ﬁ fot(t —5)*"Lf(s)ds, a>0,

f(t)a o = 0,

(Jaf)(t) = . (3.1)
F(lia) % fOt (tfi))\al dSa a € (_1a O),
f/(t)a a=—1.

In [§], a slightly different Riemann-Liouville calculus is proposed. The new definition
introduces some singularities at ¢t = 0 such that the resulted Riemann-Liouville calculus
forms a group. However, for ¢ > 0, the modified definition of a smooth function agrees
with the traditional definition.
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To motivate the discrete fractional calculus, we take a grid ¢; = ik : i = 0,1,2,...
where k is the step size. Evaluating f at the grid points yields a sequence a = {a;}$2,,
a; = f(ik). Using numerical approximations ([9]) for the fractional calculus, we find the
following sequence for fractional integral J,, 0 <y < 1:

1 y Y _ 57
(cy)j = WF—(W)((‘HD 37

Then, J,f ~ kcy * a. The sequences {c,} do not form a convolution semi-group.
However, each sequence generates a convolution group. Let {c(ya) : a € R} be the group
generated by c,, with c,(ﬂ) = c4. It is desirable that {c(ﬁ) : a € R} can be used to define
discrete fractional calculus.

We focus on the case v = 1 and we have ¢V := ci‘” = (1,1,...), with generating
function Fy(z) = (1 — 2z)~'. The convolution group generated by c¢!) is denoted by
) = cga) : o € R and the generating function is F,(z) = (1 — 2)~*,Va € R. ¢(®,0 <
a < 1 are completely monotone.

DEFINITION 3.1. For a sequence a = (ag,as,...), we define the discrete fractional
operators I, : RN —» RN as a — Tya = ) x q.

Clearly, {I, : @ € R} form a group.

3.1. Consistency with the time continuous fractional calculus. In this subsection, we
show that the discrete fractional calculus is consistent with Riemann-Liouville fractional
calculus if |a| < 1.

Given a function time-continuous function f(t), we pick a time step k& > 0 and define
the sequence a with a; = f(ik) (i =0,1,2,...). We consider

Tof = k%I ,a. (3.2)
We now show that for ¢ > 0 (T, f), converges to J, f(t) as k =t/n — 0*:

THEOREM 3.2. Suppose f € C?[0,00). Fix ¢t > 0, and define k = t/n. Then, |(Taf)n —
(Jof)(t)] = 0 as n — oo for |a] < 1.

We first introduce some useful lemmas and then prove this theorem. The following is
from [3]:

LEMMA 3.3. The m-th term of ¢{®) has the following asymptotic behavior as m — oco:

a—1
(@ M (j ale-1) 51 3.3
dw ~ s (1425 o). (33)
fora #£0,—-1,-2,....

LEMMA 3.4. For |a| <1, let A, =37, CEO‘) be the partial sum of ¢(* and R be the
convolution between ¢(® and (1,2,...). Then, as m — oo, we have:

_m—a i :m m—ic(.a): mlte l
A, = Tt a) (1+O(m)), R, ;( )¢ Teta) <1+0(m)>, (3.4)

Proof. o = 0 is trivial. Suppose @ # 0. A = {A,,}55_, is the convolution between
¢l and ¢ and A = ¢(®*Y) by the group property. Similarly, since ¢?) = (1,2,3,...),
R:={R,,}5_, = c(®*t2) . Applying Lemma B3] yields the claims. O
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Proof of Theorem 3.2l Below, we only show the consistency and we are not trying to
find the best estimate for the convergence rate.

a=0, (Tof)n = f(t) and the claim is trivial.

CasE 1 (@ > 0). If o = 1, (Tuf)n = dom_okf(t — mk). It is well known that
|(Taf)n = [y £(s)ds| = O(k).

Consider 0 < o < 1. Let n > 1, 1 <« M < n and t)y = (M — 1)k. We break the
summation for (T, f), at m = M and apply Lemma B3 for the terms with m > M:

M-1 n

(Tof)n =k Y D f((n—m)k) + k> >

m=0 m=M

mozfl

T(a)

Since f((n —m)k) = f(t) = f/(€)mk and f(t —s5) = f(t) — f'()s, by Lemma 5,

f((n—m)k) + O(M*>1Ek*).

M-1 tav
@ A f((n—m)k) — L — 8)s* lds
i 3 A= m) - | ra=ssta

< [f(@)]

M—1 4

Jas (a) _ ¢‘
Z Cm (14 «)
m=0

M-1 tar
+ sup | f/|ME>T? Z @) 4 C’sup|f’|/ s%ds
0

m=0

< C(Maflka 4 M1+ak1+a)'

Finally, by the error for rectangle rule for quadrature,

« . ma—l K f(t B S) a—1
k WLEZ:K mf((n - m)k) — . Ws ds
< Ck sup i(f(t —5)s*™ 1) < C(Mk)*?k.
s€(tar,t) @S

Choosing M ~ k=12 we find Mo 1k ~ E0+)/2 (ME)He ~ g0+)/2 and Mo—2ke—1
~ k®/2. Then, as k — 0,

‘(Taf)n - ﬁ /Ot(t — ) 1 f(s)ds| < C(KT/2 1 k2/2) 0.

CaASE 2 (-1 <a<0). Ifa=—1,c® =(1,-1,0,0,...). It is then clear that:
(T—1f)n = k7 (f(nk) = f((n = k) = f'(nk) + O(k) = J_1f(t) + O(k).

Consider that « € (—1,0) and v = |a|. The continuous Riemann-Liouville fraction
derivative ([B1) equals

IO 1T
(S /)(t) = -y tra—qy /0 (t - s)vds

_ f{t—k/b) 1 L) "flt—s)
= + [/tk/b(t_s),yds—y/k/b o dS],

k F(1-7)
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where b is chosen such that b7 =T'(1 — v) = —I'(—y) > 1. Since

V() — k7 f(t—k/b) = O(k'™7)

and
‘ fl(s) _ 11—~
/t—k/b (t— S)Vds = O,
we find
(T f)n — (T ) ()] (3.5)
1 . (- i RAGL) s 1=y
< \kz P =R + =y, T s O ),

We first show that the right hand side of (X)) goes to zero for constant and linear
functions. By the first equation of ([B4]) in Lemma B4] and noting 7 = —~I'(—7), we
have

o Z = (=5 -1) 0 () ~ 7 /k/b Ferds + (k)
(3.6)

Hence, the right hand side of B3] goes to zero for constant functions. Similarly, by the
second equation of B4, k=7 Y"1, S (n—i)k— ﬁ f,:/b L=5ds = O((k/b)' ), and
then

n t

- (=) 1 -
k A’ZCi Zk—m/k S ’YdS

i=1 /b

=t x O(k) + O((k/b)! ™) = O(kK*™7).  (3.7)

The right hand side of ([B5]) goes to zero for linear functions. Combining ([B.6]) and B,
we can assume without loss of generality that f(¢) = f'(¢) = 0 in equation 1)) (actually,
one can consider the function f(s) = f(s) — f(t) — f'(t)(s —t)).

Choose M such that 1 < M < n and set t); = (M — 1)k again.

We first estimate the integral for s € (k/b,tpr) and the summation from 1 to M — 1.
Since f(t) = f'(t) = 0, one has |f(t — s)] < Cs?, and hence

th
<C s17ds < C(Mk)*7.
k/b

f(t — s)

S’Y"rl

ds

k/b

Similarly, since f(nk) = f'(nk) =0 and CE_’Y) is negative for ¢ > 1,

M—-1 M—-1 M—-1
KN T f (- k)| < R Y e < OMERTY | Y il | < O(M k)2
i=1 i=1 =1

Note that ([B.7) also implies | Zf\ifl ic§_7)| = O(M'~7), which has been used for the last
inequality.
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Now, we move onto the summation from M to n, and s € (tp,t). By LemmaB.3] and
applying the error analysis for rectangle rule of quadrature,

Ky (- k) - t/ s

BV ] . (t—2)
‘%kWE:r«wﬂ«”‘” o, S

Taking M = k—ﬁ—éi—l for some small € > 0, (Mk)™2"7k, (Mk)>~7 and M~177k~7 all
tend to zero as k — 0. Hence, the right hand side of (B.5)) goes to zero for all C?[0, 00)
functions. O

REMARK 3.5. In the case @« = —1 and f(0) # 0, (Taf)o = @. This actually
approximates the singular term 6(¢)f(0) in the modified Riemann-Liouville derivative

Jflf in [8}
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