A NOTE ON DECONVOLUTION WITH COMPLETELY MONOTONE SEQUENCES AND DISCRETE FRACTIONAL CALCULUS

By
LEI LI (Department of Mathematics, Duke University, Durham, NC 27708)
AND
JIAN-GUO LIU (Departments of Physics and Mathematics, Duke University, Durham, NC 27708)

Abstract

We study in this work convolution groups generated by completely monotone sequences related to the ubiquitous time-delay memory effect in physics and engineering. In the first part, we give an accurate description of the convolution inverse of a completely monotone sequence and show that the deconvolution with a completely monotone kernel is stable. In the second part, we study a discrete fractional calculus defined by the convolution group generated by the completely monotone sequence $c^{(1)}=(1,1,1, \ldots)$, and show the consistency with time-continuous Riemann-Liouville calculus, which may be suitable for modeling memory kernels in discrete time series.

1. Introduction. Many models have been proposed for the ubiquitous time-delay memory effect in physics and engineering: the generalized Langevin equation model for particles in heat bath ($[7,18]$), linear viscoelasticity models for soft matter ((2, [12]), linear dielectric susceptibility model [1, 15] for polarization to name a few. In these models, the response due to memory is given by the one-side convolution $\int_{0}^{t} g(t-s) v(s) d s$ following linearity, time-translation invariance and causality [11, Chap. 1], where g is the memory kernel and v is the source of memory. Causality means that the output cannot precede the input so that $g(t)=0$ for $t<0$. The Tichmarsh's theorem states that the Fourier transform $G(\omega)$ of g is analytic in the upper half plane, and that the real and imaginary parts of G satisfy the Kramers-Kronig relation [11,16]. Based on the principle of the fading memory [12], we consider g to be completely monotone, which by the Bernstein theorem can be expressed as the superposition of (may be infinitely many) decaying exponentials (see [14, 17] for more details). If the kernel g is given by the algebraically decaying completely monotone kernels $g=\frac{\theta(t)}{\Gamma(\gamma)} t^{\gamma-1}$ where $\theta(t)$ is the Heaviside step

[^0]function and $\gamma \in(0,1)$, we are then led to the fractional integrals and the corresponding fractional derivatives, which have already been used widely in engineering for modeling memory effects [4.

In practice, the data we collect are at discrete times and we have the one-sided discrete convolution $a * c$ (see equation (2.2)). The convolution kernel c is a completely monotone sequence (see Definition [2.1) if it is the value of g at the discrete times [17]. If c is completely monotone, it is shown in [10] that there exist $c^{(r)}, r \in \mathbb{R}$, such that $c^{(r)} * c^{(s)}=$ $c^{(r+s)}$ and $c^{(1)}=c$, i.e. there exists a convolution group generated by the completely monotone sequence. If $0 \leqslant r \leqslant 1, c^{(r)}$ is completely monotone. Further, $c^{(0)}=\delta_{d}:=$ $(1,0,0, \ldots)$, is the convolution identity. The most interesting sequence is $c^{(-1)}$, the convolution inverse, which can be used for deconvolution. Since the data are discrete, it would also be interesting to define discrete fractional calculus using the one-sided discrete convolution.

In this short note, we first investigate the convolution inverse of a completely monotone sequence c in Section 2. We show that the ℓ_{1} norm is bounded and the deconvolution is stable in any ℓ^{p} space. Based on this, some preliminary ideas are explored for deconvolution. In Section 3, we define a discrete fractional calculus using a discrete convolution group generated by the completely monotone sequence $c^{(1)}=(1,1,1, \ldots)$ and show that it is consistent with the time-continuous Riemann-Liouville calculus (see (3.1)).
2. Deconvolution for a completely monotone kernel. In this section, we investigate the property of convolution inverse of a completely monotone sequence and deconvolution with completely monotone sequences.

Definition 2.1. A sequence $c=\left\{c_{k}\right\}_{k=0}^{\infty}$ is completely monotone if $(I-S)^{j} c_{k} \geqslant 0$ for any $j \geqslant 0, k \geqslant 0$ where $S c_{j}=c_{j+1}$.

A sequence is completely monotone if and only if it is the moment sequence of a Hausdorff measure (a finite nonnegative measure on $[0,1]$) (17). Another description is given as follows ([10, 13]):

Lemma 2.2. A sequence c is completely monotone if and only if the generating function $F_{c}(z)=\sum_{j=0}^{\infty} c_{j} z^{j}$ is a Pick function that is analytic and nonnegative on $(-\infty, 1)$.

Note that a function $f: \mathbb{C}_{+} \mapsto \mathbb{C}$ (where \mathbb{C}_{+}denotes the upper half plane, not including the real line) is Pick if it is analytic such that $\operatorname{Im}(z)>0 \Rightarrow \operatorname{Im}(f(z)) \geqslant 0$.

Consider the one-sided convolution equation

$$
\begin{equation*}
a * c=f \tag{2.1}
\end{equation*}
$$

where the convolution kernel c is a completely monotone sequence and $c_{0}>0$. The discrete convolution is defined as

$$
\begin{equation*}
(a * c)_{k}=\sum_{n_{1} \geqslant 0, n_{2} \geqslant 0} \delta_{k}^{n_{1}+n_{2}} a_{n_{1}} c_{n_{2}}, \tag{2.2}
\end{equation*}
$$

and δ_{m}^{n} is the Kronecker delta. This convolution is associative and commutative. Let $F_{c}(z)$ be the generating function of c :

$$
\begin{equation*}
F_{c}(z)=\sum_{n=0}^{\infty} c_{n} z^{n} . \tag{2.3}
\end{equation*}
$$

Then, $F_{a * c}(z)=F_{a}(z) F_{c}(z)$. Given c, the convolution inverse $c^{(-1)}$ is the sequence that satisfies $c * c^{(-1)}=c^{(-1)} * c=\delta_{d}:=(1,0,0, \ldots)$. The generating function of the convolution inverse $c^{(-1)}$ is $1 / F_{c}(z)$. If we find the convolution inverse of c, the convolution equation (2.1) can be solved.
2.1. The convolution inverse. Now, we present our results about the convolution inverse:

Theorem 2.3. Suppose c is completely monotone and $c_{0}>0$. Let $c^{(-1)}$ be its convolution inverse. Then, $F_{c^{(-1)}}$ is analytic on the open unit disk, and thus the radius of convergence of its power series around $z=0$ is at least 1. $c_{0}^{(-1)}=1 / c_{0}$ and the sequence $\left(-c_{1}^{(-1)},-c_{2}^{(-1)}, \ldots\right)$ is completely monotone. Furthermore, $0 \leqslant-\sum_{k=1}^{\infty} c_{k}^{(-1)} \leqslant \frac{1}{c_{0}}$.

Proof. The first claim follows from that $F_{c}(z)$ has no zeros in the unit disk [10].
By Lemma [2.2, $F_{c}(z)$ is Pick and it is positive on $(-\infty, 1) . \quad F_{c}(-\infty)=0$ if the corresponding Hausdorff measure does not have an atom at 0 (i.e. the sequence c is minimal. See [17, Chap. IV. Sec. 14] for the definition). Since $F_{c}(-\infty)$ could be zero, we consider

$$
G_{\epsilon}(z)=\frac{1}{\epsilon}-\frac{1}{\epsilon+F_{c}(z)}, \epsilon>0
$$

It is easy to verify that G_{ϵ} is a Pick function, analytic and nonnegative on $(-\infty, 1)$.
Suppose G_{ϵ} is the generating function of $d=\left(d_{0}^{\epsilon}, d_{1}^{\epsilon}, \ldots\right)$. By Lemma 2.2, this sequence is completely monotone. Then,

$$
H_{\epsilon}(z)=\frac{1}{z}\left[G_{\epsilon}(z)-G_{\epsilon}(0)\right]=\frac{F_{c}(z)-F_{c}(0)}{z\left(\epsilon+F_{c}(0)\right)\left(\epsilon+F_{c}(z)\right)},
$$

is the generating function of the shifted sequence $\left(d_{1}^{\epsilon}, \ldots\right)$, which is completely monotone. Hence, H_{ϵ} is also a Pick function, nonnegative and analytic on $(-\infty, 1)$.

Taking the pointwise limit of H_{ϵ} as $\epsilon \rightarrow 0$, we find the limit function

$$
\begin{equation*}
H(z)=\frac{F_{c}(z)-F_{c}(0)}{z F_{c}(0) F_{c}(z)} \tag{2.4}
\end{equation*}
$$

to be nonnegative on $(-\infty, 1)$. By the expression of H, it is also analytic since $F_{c}(z)$ is never zero on $\mathbb{C} \backslash[1, \infty)$. Finally, since $\operatorname{Im}\left(H_{\epsilon}(z)\right) \geqslant 0$ for $\operatorname{Im}(z)>0$, then $\operatorname{Im}(H(z))$, as the limit, is nonnegative. It follows that the sequence corresponding to H is also completely monotone. If c is in $\ell^{1}, 0<H(1)=\frac{F_{c}(1)-F_{c}(0)}{F_{c}(0) F_{c}(1)}<\frac{1}{c_{0}}$. If $F_{c}(1)=\|c\|_{1}=\infty$, we fix $z_{0} \in(0,1)$, and then for any $z \in\left(z_{0}, 1\right)$, we have $0<H(z) \leqslant \frac{F_{c}(z)}{z F_{c}(0) F_{c}(z)}=\frac{1}{z_{0} c_{0}}$. $H(z)$ is increasing in z since the sequence corresponding to H is completely monotone and therefore nonnegative. Letting $z \rightarrow 1^{-}$, by the monotone convergence theorem, we have $H(1) \leqslant \frac{1}{z_{0} c_{0}}$. Taking $z_{0} \rightarrow 1, H(1) \leqslant \frac{1}{c_{0}}$.

Further，$H(z)$ is the generating function of $-\left(c_{1}^{(-1)}, c_{2}^{(-1)}, \ldots\right)$ since $1 / F_{c}(z)$ is the generating function of $c^{(-1)}=\left(c_{0}^{(-1)}, c_{1}^{(-1)}, \ldots\right)$ ．The second claim therefore follows．

As a corollary of Theorem 2.3 we find that the deconvolution with a completely monotone sequence is stable：

Corollary 2．4．Equation（2．1）can be solved stably．In particular，$\forall f \in \ell^{p}$ ，there exists a unique $a \in \ell^{p}$ such that $a * c=f$ and $\|a\|_{p} \leqslant \frac{2}{c_{0}}\|f\|_{p}$ ．

The claim follows directly from the fact that $\left\|c^{-1}\right\|_{1} \leqslant 2 / c_{0}$ and Young＇s inequality． We omit the proof．

2．2．Computing convolution inverse and deconvolution．To solve the convolution equa－ tion（2．1），we can use the algorithm in［10 to find the convolution group $c^{(r)}$ ．Then，the solution is computed as $a=c^{(-1)} * f$ ．The algorithm for $c^{(r)}$ reads
－Determine the canonical sequence b that satisfies $(n+1) c_{n+1}=\sum_{k=0}^{n} c_{n-k} b_{k}$ ．
－Compute $c^{(r)}$ by $(n+1) c_{n+1}^{(r)}=r \sum_{k=0}^{n} c_{n-k}^{(r)} b_{k}$ ．
For a completely monotone sequence，the canonical sequence satisfies $b_{k} \geqslant 0$（［5］）．If $c_{0}=1$ ，computing the canonical sequence is straightforward

$$
\begin{equation*}
b_{n}=(n+1) c_{n+1}-\sum_{k=0}^{n-1} c_{n-k} b_{k} \tag{2.5}
\end{equation*}
$$

Note that $F_{b}(z)=F_{c}^{\prime}(z) / F_{c}(z)$ ．If $c_{0}=1, c_{0}^{(-1)}=1$ and $\left|c_{n+1}^{(-1)}\right| \leqslant \frac{1}{n+1} \sum_{k=0}^{n}\left|c_{n-1}^{(-1)}\right| b_{k}$ ． It＇s clear by induction that $\left|c_{n+1}^{(-1)}\right| \leqslant c_{n+1}$ ．For general c_{0} ，we can apply the above argument to c / c_{0} and have the pointwise bound：$\left|c_{k}^{(-1)}\right| \leqslant \frac{1}{c_{0}^{2}}\left|c_{k}\right|$ ．

Now，let us show a simple example to illustrate the deconvolution with completely monotone sequences．Every completely monotone sequence is the moment sequence of a Hausdorff measure．Fix M as a big integer and denote $h=1 / M . x_{i}=(i-1 / 2) h$ ． Consider the discrete measures

$$
\begin{equation*}
\mathcal{C}_{M}=\left\{\mu: \mu=h \sum_{i=1}^{M} \lambda_{i} \delta\left(x-x_{i}\right), \lambda_{i} \geqslant 0\right\} . \tag{2.6}
\end{equation*}
$$

The weak star closure $\left(\langle\mu, f\rangle=\int_{[0,1]} f d \mu\right.$ where $\left.f \in C[0,1]\right)$ of $\bigcup_{M \geqslant 1} \mathcal{C}_{M}$ is the set of all Hausdorff measures．Due to this fact，we can generate completely monotone sequences using

$$
\begin{equation*}
d_{n}=\sum_{i=1}^{M} h \lambda_{i} x_{i}^{n}, n=0,1,2, \ldots \tag{2.7}
\end{equation*}
$$

where $\lambda_{i}>0$ are generated randomly（for example uniformly from $[0,1]$ ）．
In Fig． 1 （a），we have a sequence which is of square shape；in Fig． 1 （b），we plot the convolution between the sequence in（a）and the completely monotone sequence obtained using（2．7）．Fig．$⿴ 囗 十 ⺝(c)$ shows the solution $a * c=f$ by convolving the sequence in Fig． （b）with $c^{(-1)}$ ．The original sequence is recovered accurately．

If the sequence c is no longer completely monotone，the generating function of $c^{(-1)}$ may have a small radius of convergence and an iterative method may be desired to

Fig. 1. A simple example of deconvolution
solve (2.1). Consider approximating the sequence c by a completely monotone sequence $d=\left\{d_{n}\right\}$ of the form in equation (2.7). Writing d in matrix form, we have

$$
\begin{equation*}
d=\frac{1}{m} A \lambda=A \eta, \tag{2.8}
\end{equation*}
$$

where $\eta=\frac{1}{m} \lambda$. A simple iterative method then reads:

$$
\begin{equation*}
a^{p+1}=f * d^{(-1)}-a^{p} *\left[(c-d) * d^{(-1)}\right], p=0,1,2, \ldots, \tag{2.9}
\end{equation*}
$$

where a^{0} is arbitrary. Clearly, the iteration converges if $\left\|(c-d) * d^{(-1)}\right\|_{1}<1$. A sufficient condition is therefore

$$
\begin{equation*}
\left\|d^{(-1)}\right\|_{1}\|c-d\|_{1} \leqslant \frac{2}{\|\eta\|_{1}}\|c-A \eta\|_{1}<1 \tag{2.10}
\end{equation*}
$$

because d is completely monotone and $d_{0}=\|\eta\|_{1}$. As long as we can find a solution η to this optimization problem, the iterative method can be applied to solve the convolution equation (2.1).
3. A discrete convolution group and discrete fractional calculus. In this section, we introduce a special discrete convolution group generated by a completely monotone sequence and define discrete fractional calculus. We show that the discrete fractional calculus is consistent with the Riemann-Liouville fractional calculus ([4, 6, 8]) with appropriate time scaling. The discrete convolution group proposed may be suitable for modeling memory effects in discrete time series.

The traditional Riemann-Liouville fractional calculus for a function in $C^{1}[0, T), T>0$ with index $|\alpha| \leqslant 1$ is defined as

$$
\left(J_{\alpha} f\right)(t)= \begin{cases}\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s) d s, & \alpha>0 \tag{3.1}\\ f(t), & \alpha=0, \\ \frac{1}{\Gamma(1+\alpha)} \frac{d}{d t} \int_{0}^{t} \frac{f(s)}{(t-s)^{|\alpha|}} d s, & \alpha \in(-1,0), \\ f^{\prime}(t), & \alpha=-1 .\end{cases}
$$

In [8], a slightly different Riemann-Liouville calculus is proposed. The new definition introduces some singularities at $t=0$ such that the resulted Riemann-Liouville calculus forms a group. However, for $t>0$, the modified definition of a smooth function agrees with the traditional definition.

To motivate the discrete fractional calculus, we take a grid $t_{i}=i k: i=0,1,2, \ldots$ where k is the step size. Evaluating f at the grid points yields a sequence $a=\left\{a_{i}\right\}_{i=0}^{\infty}$, $a_{i}=f(i k)$. Using numerical approximations (9) for the fractional calculus, we find the following sequence for fractional integral $J_{\gamma}, 0<\gamma \leqslant 1$:

$$
\left(c_{\gamma}\right)_{j}=\frac{1}{\gamma \Gamma(\gamma)}\left((j+1)^{\gamma}-j^{\gamma}\right)
$$

Then, $J_{\gamma} f \approx k^{\gamma} c_{\gamma} * a$. The sequences $\left\{c_{\gamma}\right\}$ do not form a convolution semi-group. However, each sequence generates a convolution group. Let $\left\{c_{\gamma}^{(\alpha)}: \alpha \in \mathbb{R}\right\}$ be the group generated by c_{γ}, with $c_{\gamma}^{(\gamma)}=c_{\gamma}$. It is desirable that $\left\{c_{\gamma}^{(\alpha)}: \alpha \in \mathbb{R}\right\}$ can be used to define discrete fractional calculus.

We focus on the case $\gamma=1$ and we have $c^{(1)}:=c_{1}^{(\alpha)}=(1,1, \ldots)$, with generating function $F_{1}(z)=(1-z)^{-1}$. The convolution group generated by $c^{(1)}$ is denoted by $c^{(\alpha)}:=c_{1}^{(\alpha)}: \alpha \in \mathbb{R}$ and the generating function is $F_{\alpha}(z)=(1-z)^{-\alpha}, \forall \alpha \in \mathbb{R} . c^{(\alpha)}, 0<$ $\alpha \leqslant 1$ are completely monotone.

Definition 3.1. For a sequence $a=\left(a_{0}, a_{1}, \ldots\right)$, we define the discrete fractional operators $I_{\alpha}: \mathbb{R}^{\mathbb{N}} \mapsto \mathbb{R}^{\mathbb{N}}$ as $a \mapsto I_{\alpha} a:=c^{(\alpha)} * a$.

Clearly, $\left\{I_{\alpha}: \alpha \in \mathbb{R}\right\}$ form a group.
3.1. Consistency with the time continuous fractional calculus. In this subsection, we show that the discrete fractional calculus is consistent with Riemann-Liouville fractional calculus if $|\alpha| \leqslant 1$.

Given a function time-continuous function $f(t)$, we pick a time step $k>0$ and define the sequence a with $a_{i}=f(i k)(i=0,1,2, \ldots)$. We consider

$$
\begin{equation*}
T_{\alpha} f=k^{\alpha} I_{\alpha} a \tag{3.2}
\end{equation*}
$$

We now show that for $t>0\left(T_{\alpha} f\right)_{n}$ converges to $J_{\alpha} f(t)$ as $k=t / n \rightarrow 0^{+}$:
Theorem 3.2. Suppose $f \in C^{2}[0, \infty)$. Fix $t>0$, and define $k=t / n$. Then, $\mid\left(T_{\alpha} f\right)_{n}-$ $\left(J_{\alpha} f\right)(t) \mid \rightarrow 0$ as $n \rightarrow \infty$ for $|\alpha| \leqslant 1$.

We first introduce some useful lemmas and then prove this theorem. The following is from (3):
Lemma 3.3. The m-th term of $c^{(\alpha)}$ has the following asymptotic behavior as $m \rightarrow \infty$:

$$
\begin{equation*}
c_{m}^{(\alpha)} \sim \frac{m^{\alpha-1}}{\Gamma(\alpha)}\left(1+\frac{\alpha(\alpha-1)}{2 m}+O\left(\frac{1}{m^{2}}\right)\right) \tag{3.3}
\end{equation*}
$$

for $\alpha \neq 0,-1,-2, \ldots$.
Lemma 3.4. For $|\alpha|<1$, let $A_{m}=\sum_{i=0}^{m} c_{i}^{(\alpha)}$ be the partial sum of $c^{(\alpha)}$ and R be the convolution between $c^{(\alpha)}$ and $(1,2, \ldots)$. Then, as $m \rightarrow \infty$, we have:

$$
\begin{equation*}
A_{m}=\frac{m^{\alpha}}{\Gamma(1+\alpha)}\left(1+O\left(\frac{1}{m}\right)\right), R_{m}=\sum_{i=0}^{m}(m-i) c_{i}^{(\alpha)}=\frac{m^{1+\alpha}}{\Gamma(2+\alpha)}\left(1+O\left(\frac{1}{m}\right)\right) \tag{3.4}
\end{equation*}
$$

Proof. $\alpha=0$ is trivial. Suppose $\alpha \neq 0 . A=\left\{A_{m}\right\}_{m=0}^{\infty}$ is the convolution between $c^{(\alpha)}$ and $c^{(1)}$ and $A=c^{(\alpha+1)}$ by the group property. Similarly, since $c^{(2)}=(1,2,3, \ldots)$, $R:=\left\{R_{m}\right\}_{m=0}^{\infty}=c^{(\alpha+2)}$. Applying Lemma 3.3 yields the claims.

Proof of Theorem 3.2. Below, we only show the consistency and we are not trying to find the best estimate for the convergence rate.
$\alpha=0,\left(T_{0} f\right)_{n}=f(t)$ and the claim is trivial.
CASE $1(\alpha>0)$. If $\alpha=1,\left(T_{\alpha} f\right)_{n}=\sum_{m=0}^{n} k f(t-m k)$. It is well known that $\left|\left(T_{\alpha} f\right)_{n}-\int_{0}^{t} f(s) d s\right|=O(k)$.

Consider $0<\alpha<1$. Let $n \gg 1,1 \ll M \ll n$ and $t_{M}=(M-1) k$. We break the summation for $\left(T_{\alpha} f\right)_{n}$ at $m=M$ and apply Lemma 3.3 for the terms with $m \geqslant M$:

$$
\left(T_{\alpha} f\right)_{n}=k^{\alpha} \sum_{m=0}^{M-1} c_{m}^{(\alpha)} f((n-m) k)+k^{\alpha} \sum_{m=M}^{n} \frac{m^{\alpha-1}}{\Gamma(\alpha)} f((n-m) k)+O\left(M^{\alpha-1} k^{\alpha}\right)
$$

Since $f((n-m) k)=f(t)-f^{\prime}(\xi) m k$ and $f(t-s)=f(t)-f^{\prime}(\tilde{\xi}) s$, by Lemma3.4

$$
\begin{aligned}
& \left|k^{\alpha} \sum_{i=0}^{M-1} c_{m}^{(\alpha)} f((n-m) k)-\frac{1}{\Gamma(\alpha)} \int_{0}^{t_{M}} f(t-s) s^{\alpha-1} d s\right| \\
& \quad \leqslant|f(t)|\left|k^{\alpha} \sum_{m=0}^{M-1} c_{m}^{(\alpha)}-\frac{t_{M}^{\alpha}}{\Gamma(1+\alpha)}\right| \\
& \quad+\sup \left|f^{\prime}\right| M k^{\alpha+1} \sum_{m=0}^{M-1} c_{m}^{(\alpha)}+C \sup \left|f^{\prime}\right| \int_{0}^{t_{M}} s^{\alpha} d s \\
& \quad \leqslant C\left(M^{\alpha-1} k^{\alpha}+M^{1+\alpha} k^{1+\alpha}\right) .
\end{aligned}
$$

Finally, by the error for rectangle rule for quadrature,

$$
\begin{aligned}
& \left|k^{\alpha} \sum_{m=K}^{n} \frac{m^{\alpha-1}}{\Gamma(\alpha)} f((n-m) k)-\int_{t_{M}}^{t} \frac{f(t-s)}{\Gamma(\alpha)} s^{\alpha-1} d s\right| \\
& \quad \leqslant C k \sup _{s \in\left(t_{M}, t\right)} \frac{d}{d s}\left(f(t-s) s^{\alpha-1}\right) \leqslant C(M k)^{\alpha-2} k .
\end{aligned}
$$

Choosing $M \sim k^{-1 / 2}$, we find $M^{\alpha-1} k^{\alpha} \sim k^{(1+\alpha) / 2},(M k)^{1+\alpha} \sim k^{(1+\alpha) / 2}$ and $M^{\alpha-2} k^{\alpha-1}$ $\sim k^{\alpha / 2}$. Then, as $k \rightarrow 0$,

$$
\left|\left(T_{\alpha} f\right)_{n}-\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s) d s\right| \leqslant C\left(k^{(1+\alpha) / 2}+k^{\alpha / 2}\right) \rightarrow 0
$$

CASE $2(-1 \leqslant \alpha<0)$. If $\alpha=-1, c^{(\alpha)}=(1,-1,0,0, \ldots)$. It is then clear that:

$$
\left(T_{-1} f\right)_{n}=k^{-1}(f(n k)-f((n-1) k))=f^{\prime}(n k)+O(k)=J_{-1} f(t)+O(k)
$$

Consider that $\alpha \in(-1,0)$ and $\gamma=|\alpha|$. The continuous Riemann-Liouville fraction derivative (3.1) equals

$$
\begin{aligned}
& \left(J_{-\gamma} f\right)(t)=\frac{f(0)}{\Gamma(1-\gamma)} t^{-\gamma}+\frac{1}{\Gamma(1-\gamma)} \int_{0}^{t} \frac{f^{\prime}(s)}{(t-s)^{\gamma}} d s \\
& \quad=\frac{f(t-k / b)}{k^{\gamma}}+\frac{1}{\Gamma(1-\gamma)}\left[\int_{t-k / b}^{t} \frac{f^{\prime}(s)}{(t-s)^{\gamma}} d s-\gamma \int_{k / b}^{t} \frac{f(t-s)}{s^{\gamma+1}} d s\right]
\end{aligned}
$$

where b is chosen such that $b^{\gamma}=\Gamma(1-\gamma)=-\gamma \Gamma(-\gamma) \geqslant 1$. Since

$$
k^{-\gamma} f(t)-k^{-\gamma} f(t-k / b)=O\left(k^{1-\gamma}\right)
$$

and

$$
\int_{t-k / b}^{t} \frac{f^{\prime}(s)}{(t-s)^{\gamma}} d s=O\left(k^{1-\gamma}\right)
$$

we find

$$
\begin{align*}
& \left|\left(T_{-\gamma} f\right)_{n}-\left(J_{-\gamma} f\right)(t)\right| \tag{3.5}\\
& \quad \leqslant\left|\frac{1}{k^{\gamma}} \sum_{i=1}^{n} c_{i}^{(-\gamma)} f((n-i) k)+\frac{\gamma}{\Gamma(1-\gamma)} \int_{k / b}^{t} \frac{f(t-s)}{s^{\gamma+1}} d s\right|+O\left(k^{1-\gamma}\right)
\end{align*}
$$

We first show that the right hand side of (3.5) goes to zero for constant and linear functions. By the first equation of (3.4) in Lemma 3.4 and noting $b^{\gamma}=-\gamma \Gamma(-\gamma)$, we have

$$
\begin{equation*}
k^{-\gamma} \sum_{i=1}^{n} c_{i}^{(-\gamma)}=k^{-\gamma}\left(\frac{n^{-\gamma}}{\Gamma(1-\gamma)}-1\right)+O\left(\frac{1}{(n k)^{\gamma} n}\right)=\frac{1}{\Gamma(-\gamma)} \int_{k / b}^{t} \frac{1}{s^{\gamma+1}} d s+O(k) \tag{3.6}
\end{equation*}
$$

Hence, the right hand side of (3.5) goes to zero for constant functions. Similarly, by the second equation of (3.4), $k^{-\gamma} \sum_{i=1}^{n} c_{i}^{(-\gamma)}(n-i) k-\frac{1}{\Gamma(-\gamma)} \int_{k / b}^{t} \frac{t-s}{s^{\gamma+1}} d s=O\left((k / b)^{1-\gamma}\right)$, and then

$$
\begin{equation*}
\left|k^{-\gamma} \sum_{i=1}^{n} c_{i}^{(-\gamma)} i k-\frac{1}{\Gamma(-\gamma)} \int_{k / b}^{t} s^{-\gamma} d s\right|=t \times O(k)+O\left((k / b)^{1-\gamma}\right)=O\left(k^{1-\gamma}\right) \tag{3.7}
\end{equation*}
$$

The right hand side of (3.5) goes to zero for linear functions. Combining (3.6) and (3.7), we can assume without loss of generality that $f(t)=f^{\prime}(t)=0$ in equation (3.5) (actually, one can consider the function $\left.\tilde{f}(s)=f(s)-f(t)-f^{\prime}(t)(s-t)\right)$.

Choose M such that $1 \ll M \ll n$ and set $t_{M}=(M-1) k$ again.
We first estimate the integral for $s \in\left(k / b, t_{M}\right)$ and the summation from 1 to $M-1$. Since $f(t)=f^{\prime}(t)=0$, one has $|f(t-s)| \leqslant C s^{2}$, and hence

$$
\left|\int_{k / b}^{t_{M}} \frac{f(t-s)}{s^{\gamma+1}} d s\right| \leqslant C \int_{k / b}^{t_{M}} s^{1-\gamma} d s \leqslant C(M k)^{2-\gamma}
$$

Similarly, since $f(n k)=f^{\prime}(n k)=0$ and $c_{i}^{(-\gamma)}$ is negative for $i \geqslant 1$,

$$
\left|k^{-\gamma} \sum_{i=1}^{M-1} c_{i}^{(-\gamma)} f((n-i) k)\right| \leqslant C k^{2-\gamma} \sum_{i=1}^{M-1} i^{2}\left|c_{i}^{-\gamma}\right| \leqslant C M k^{2-\gamma}\left|\sum_{i=1}^{M-1} i c_{i}^{(-\gamma)}\right| \leqslant C(M k)^{2-\gamma}
$$

Note that (3.7) also implies $\left|\sum_{i=1}^{M-1} i c_{i}^{(-\gamma)}\right|=O\left(M^{1-\gamma}\right)$, which has been used for the last inequality.

Now, we move onto the summation from M to n, and $s \in\left(t_{M}, t\right)$. By Lemma 3.3 and applying the error analysis for rectangle rule of quadrature,

$$
\begin{aligned}
& \left|k^{-\gamma} \quad \sum_{i=M}^{n} c_{i}^{(-\gamma)} f((n-i) k)-\frac{1}{\Gamma(-\gamma)} \int_{t_{M}}^{t} \frac{f(t-s)}{s^{\gamma+1}} d s\right| \\
& \leqslant \\
& \leqslant\left|k^{-\gamma} \sum_{i=M}^{n}\left(c_{i}^{(-\gamma)}-\frac{i^{-1-\gamma}}{\Gamma(-\gamma)}\right) f((n-i) k)\right| \\
& \quad+\left\lvert\, k^{-\gamma} \sum_{i=M}^{n} \frac{i^{-1-\gamma}}{\Gamma(-\gamma)} f((n-i) k)-\frac{1}{\Gamma(-\gamma)} \int_{t_{M}}^{t} \frac{f(t-s)}{s^{\gamma+1} d s \mid}\right. \\
& \quad \leqslant C M^{-1-\gamma} k^{-\gamma}+(M k)^{-2-\gamma} k .
\end{aligned}
$$

Taking $M=k^{-\epsilon-\frac{1+\gamma}{2+\gamma}}$ for some small $\epsilon>0,(M k)^{-2-\gamma} k,(M k)^{2-\gamma}$ and $M^{-1-\gamma} k^{-\gamma}$ all tend to zero as $k \rightarrow 0$. Hence, the right hand side of (3.5) goes to zero for all $C^{2}[0, \infty)$ functions.

Remark 3.5. In the case $\alpha=-1$ and $f(0) \neq 0,\left(T_{\alpha} f\right)_{0}=\frac{f(0)}{k}$. This actually approximates the singular term $\delta(t) f(0)$ in the modified Riemann-Liouville derivative $J_{-1} f$ in [8.

Acknowledgments. The work of J.-G Liu was partially supported by KI-Net NSF RNMS11-07444 and NSF DMS-1514826.

References

[1] W. Cai, Computational methods for electromagnetic phenomena, Cambridge University Press, Cambridge, 2013. Electrostatics in solvation, scattering, and electron transport; With a foreword by Weng Cho Chew. MR 3027264
[2] B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Modern Phys. 33 (1961), 239-249, DOI 10.1103/RevModPhys.33.239. MR0158605
[3] P. Flajolet and R. Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009. MR2483235
[4] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics (Udine, 1996), CISM Courses and Lect., vol. 378, Springer, Vienna, 1997, pp. 223-276. MR1611585
[5] B. G. Hansen and F. W. Steutel, On moment sequences and infinitely divisible sequences, J. Math. Anal. Appl. 136 (1988), no. 1, 304-313, DOI 10.1016/0022-247X(88)90133-3. MR972601
[6] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. MR2218073
[7] R. Kubo, The fluctuation-dissipation theorem, Reports on progress in physics 29 (1966), no. 1, 255.
[8] L. Li and J.-G. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, arXiv Preprint arXiv:1612.05103v2 (2017).
[9] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), no. 2, 1533-1552, DOI 10.1016/j.jcp.2007.02.001. MR2349193
[10] J.-G. Liu and R. L. Pego, On generating functions of Hausdorff moment sequences, Trans. Amer. Math. Soc. 368 (2016), no. 12, 8499-8518, DOI 10.1090/tran/6618. MR3551579
[11] H. M. Nussenzveig, Causality and dispersion relations, Academic Press, New York-London, 1972. Mathematics in Science and Engineering, Vol. 95. MR0503032
[12] G. Del Piero and L. Deseri, On the concepts of state and free energy in linear viscoelasticity, Arch. Rational Mech. Anal. 138 (1997), no. 1, 1-35, DOI 10.1007/s002050050035. MR1463802
[13] S. Ruscheweyh, L. Salinas, and T. Sugawa, Completely monotone sequences and universally prestarlike functions, Israel J. Math. 171 (2009), 285-304, DOI 10.1007/s11856-009-0050-9. MR2520111
[14] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein functions, 2nd ed., De Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter \& Co., Berlin, 2012. Theory and applications. MR2978140
[15] O. Stenzel, The physics of thin film optical spectra, Springer, 2005.
[16] J. S. Toll, Causality and the dispersion relation: logical foundations, Phys. Rev. (2) 104 (1956), 1760-1770. MR0083623
[17] D. V. Widder, The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
[18] R. Zwanzig, Nonequilibrium statistical mechanics, Oxford University Press, New York, 2001. MR2012558

[^0]: Received July 3, 2017.
 2010 Mathematics Subject Classification. Primary 47D03.
 Key words and phrases. Convolution group, convolution inverse, completely monotone sequence, fractional calculus, Riemann-Liouville derivative.
 E-mail address: leili@math.duke.edu
 E-mail address: jliu@phy.duke.edu

