
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXVI, NUMBER 1

MARCH 2018, PAGES 153–188

http://dx.doi.org/10.1090/qam/1478

Article electronically published on August 1, 2017

OSCILLATORY TRAVELING WAVE SOLUTIONS

FOR COAGULATION EQUATIONS

By

B. NIETHAMMER (Institute of Applied Mathematics, University of Bonn, Endenicher Allee 60,
53115 Bonn, Germany)

and
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Abstract. We consider Smoluchowski’s coagulation equation with kernels of homo-

geneity one of the form Kε(ξ, η) =
(
ξ1−ε + η1−ε

)(
ξη

) ε
2 . Heuristically, in suitable expo-

nential variables, one can argue that in this case the long-time behaviour of solutions is

similar to the inviscid Burgers equation and that for Riemann data solutions converge

to a traveling wave for large times. Numerical simulations in a work by Herrmann and

the authors indeed support this conjecture, but also reveal that the traveling waves are

oscillatory and the oscillations become stronger with smaller ε. The goal of this paper is

to construct such oscillatory traveling wave solutions and provide details of their shape

via formal matched asymptotic expansions.

1. Introduction.

1.1. The coagulation equation. The classical Smoluchowski coagulation equation is

given by

∂tf(t, ξ) =
1
2

∫ ξ

0

K(ξ−η, η)f(t, ξ−η)f(t, η) dη − f(t, ξ)

∫ ∞

0

K(ξ, η)f(t, η) dη , (1.1)

where f(t, ξ) denotes the number density of clusters of size ξ ∈ (0,∞) at time t > 0 and it

describes the formation of larger clusters by binary coagulation of smaller ones. The rate

kernel K is a nonnegative, symmetric function that contains all the information about

the microscopic details of the coagulation process. For example, in [12] Smoluchowski

derived the kernel K(ξ, η) =
(
ξ1/3+η1/3

)(
ξ−1/3+η−1/3

)
for clusters that move according
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to Brownian motion and merge if they come close to each other. Various other kernels

from different application areas can be found in the survey articles [6], [1] and [3].

Most kernels that one encounters in applications are homogeneous and we will assume

this from now on. It is well known that for kernels of homogeneity larger than one

gelation occurs, that is, the loss of mass at finite time, while for kernels of homogeneity

smaller than or equal to one, solutions conserve the mass if it is initially finite. A topic of

particular interest in this latter case is whether the large-time behaviour is described by

self-similar solutions. While this issue is well understood for the constant and the additive

kernel [10], for other kernels only few results are available. In the case of kernels with

homogeneity strictly smaller than one, existence results for self-similar solutions have

been established for a large class of kernels [5], [4], while uniqueness and convergence to

self-similar form has only recently been proved for some special cases [11], [8].

1.2. Kernels with homogeneity one. In this article we are going to consider kernels

with homogeneity one. Van Dongen and Ernst [13] already noticed that one needs to

distinguish two cases. In the first case, called class II kernels in [13], one has K(ξ, 1) →
c0 > 0 as ξ → 0. The most prominent example is the additive kernel K(ξ, η) = ξ + η,

where it is possible to solve the equation with the Laplace transform. In fact, for the

additive kernel there exists a whole family of self-similar solutions with finite mass [10].

One of them has exponential decay, the others decay like a power law in a way such that

the second moment is infinite. Recently, as the first mathematical result for nonsolvable

kernels with homogeneity one, existence of self-similar solutions for a range of class II

kernels has been obtained in [2].

On the other hand, kernels that satisfy limξ→0 K(ξ, 1) = 0, are called class-I kernels

in [13] and we also sometimes call them diagonally dominant. In this case it is known

that self-similar solutions with finite mass cannot exist, but a suitable change of variables

reveals that one can expect that the long-time behaviour of solutions is similar as in the

case of the inviscid Burgers equation. To explain the idea it is useful to rewrite (1.1) in

conservative form, that is, as

∂t
(
ξf

)
+ ∂ξ

( ∫ ξ

0

∫ ∞

ξ−η

K(η, ρ)ηf(η)f(ρ) dρ dη
)
= 0 . (1.2)

Then we make the change of variables

ξ = ex and u(t, x) = ξ2f(t, ξ) (1.3)

such that (1.2) becomes

∂tu(t, x) = −∂x

( ∫ x

−∞
dy

∫ ∞

x+ln(1−ey−x)

dz K(ey−z, 1)u(t, y)u(t, z)
)
. (1.4)

Notice also that
∫
∞ ξf(t, ξ) dξ =

∫
R
u(t, x) dx. Hence, mass conserving solutions to (1.1)

correspond to nonnegative integrable solutions of (1.4) with conserved L1-norm.
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As in [7], we consider the rescaled function uε(τ, x̃) =
1
εu(

τ
ε2 ,

x̃
ε ), where 0 < ε � 1, to

understand the large-time behaviour of solutions to (1.4). We find

∂τuε(τ, x̃) = −∂x̃

( 1

ε2

∫ x̃

−∞

∫ ∞

x̃+ε ln
(
1−e

y−x̃
ε

) K(
e

y−z
ε , 1

)
uε(τ, y)uε(τ, z) dz dy

)

= −∂x̃

( 1

ε2

∫ 0

−∞

∫ ∞

ε ln
(
1−e

y
ε

) K(
e

y−z
ε , 1

)
uε(τ, x̃+ y)uε(τ, x̃+ z) dz dy

)

≈ −c0∂x̃
(
uε(τ, x̃)

2
)

(1.5)

with c0 =
∫ 0

−∞
∫ ∞
ln(1−ey)

K
(
ey−z, 1

)
dy dz < ∞. Hence, we conclude that uε approxi-

mately solves the Burgers equation. Notice that in the second step in (1.5) we have

used the translation invariance of the integral which is specific to the property that the

kernel has homogeneity one. Recall that for integrable nonnegative data with mass M

the solutions to the Burgers equation ∂tu+∂x
(
u2

)
= 0 converge in the long-time limit to

an N -wave with the same mass, i.e. u(t, x) ∼ 1√
t
N(x/

√
t) with N(x) = x

2χ[0,2
√
M ]. On

the other hand, if one starts with data such that u0(x) → b > 0 as x → −∞ the solution

converges to a traveling wave with height b and speed related to b.

In order to investigate, whether the long-time behaviour of solutions to (1.4) is indeed

the same as for the Burgers equation we performed in [7] numerical simulations of (1.4)

for a family of kernels

Kα(ξ, η) = cα
(
ξ + η)1−2αξαηα , α > 0, (1.6)

with a suitable normalization constant cα > 0. Figure 1 shows the simulations for several

values of α for smooth initial data with compact support.
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Fig. 1. Convergence to the N-wave for α = 2 (top), α = 1.2 (middle)
and α = 0.6 (bottom).
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We see that solutions indeed converge to an N -wave in the long-time limit, but that

the transition at the shock front is oscillatory, with oscillations becoming stronger when

α becomes smaller. One expects that the transition at the shock front is given by a

rescaled traveling wave profile and simulations of (1.4) for Riemann data (see Figure 2)

indeed confirm that the traveling wave profiles are oscillatory for small α.

It is the purpose of this paper to establish the existence of such a traveling wave and

compute details of its shape via formal matched asymptotic expansions. We will do this

for kernels of the form

Kε(ξ, η) =
(
ξ1−ε + η1−ε

)(
ξη

) ε
2 , (1.7)

where ε > 0 is a small parameter. We choose to consider kernels of the form (1.7) since

the computations become slightly simpler. For small ε and α we do not expect that the

solutions for kernels as in (1.6) and (1.7) respectively behave very differently.

25 500

1.0
�=21.0

25 500

1.2
�=2.00

25 500

2.6
�=0.01

Fig. 2. The shape of the traveling wave for different values of α (u
against x).

Before we proceed to an informal description of construction of oscillatory traveling

waves, we also mention that we discuss in [7] in detail also the situation for large α.

While for sufficiently large α, the traveling wave appears to be monotone, in this case

the constant solution is unstable which leads to additional phenomena; we refer to [7] for

details.

1.3. Traveling waves for small ε. The goal of this paper is to construct traveling wave

solutions of (1.4). The ansatz u(t, x) = bG(x− bt) indeed leads to the equation

G(x) =

∫ x

−∞
dy

∫ ∞

x+ln(1−ey−x)

dzK
(
ey−z, 1

)
G(y)G(z) (1.8)

for the profile G with the boundary condition G(x) → 0 as x → ∞. Such solutions G(x)

of (1.8) correspond to special solutions f of (1.2) of the form ξ2f(t, ξ) = bG(ln ξ − bt),

hence to traveling waves in the variable ln ξ.

1.3.1. Basic considerations. We recall that for ε = 0 in (1.7) we obtain the additive

kernel, for which a whole family of mass conserving self-similar solutions exist. One of

them with exponential decay in the self-similar variable ζ = e−btξ, the other ones with

power law decay ζ−(2+ρ) as x → ∞ for ρ ∈ (0, 1) [10]. In the variables (1.3) this means

that G(x) ∼ e−ρx as x → ∞. We also have that G(x) → 0 as x → −∞ with the

asymptotics e−
ρ

1+ρx.

In contrast, solutions to (1.8) with diagonally dominant kernel must satisfy

lim
x→−∞

G(x) = G∞ > 0,
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hence, the integral of G cannot be finite. This is the reason that self-similar solutions

with finite mass cannot exist in this case. Nevertheless, nonnegative solutions to (1.8)

in the case of diagonally dominant kernels are relevant as well, since we expect that

they describe the long-time behaviour of solutions if one starts with Riemann data in the

variable x, and they describe the transition at the shock front of the N -wave that appears

if the initial data are integrable. Notice also, that by varying the parameter b, we can

change the step height of the traveling wave. For the following analysis it is convenient

to normalize b = 1. The numerical simulations on the other hand were carried out by

normalizing G such that G(x) → 1 as x → −∞.

Our goal in this paper is to study how solutions G to (1.8) behave for kernels as in

(1.7) in the regime ε � 1.

1.3.2. Construction of a traveling wave by shooting. We now describe in an informal

way the main strategy of our construction of a traveling wave solution.

Shooting from −∞. We try to obtain the solution by a shooting argument starting

at x → −∞. In Sections 2.1-2.3 we obtain that as x → −∞ a solution G of (1.8) is

oscillatory with

G(x) ∼ G∞ +Re
(
Leiϕeμ

+x
)
+Ψ

(
x;L,ϕ

)
+ C∗e

μ∗x as x → −∞ (1.9)

and

G∞ ≈ ε2

4
, μ+ ≈ ε2

8
+ i

ε

2
and μ∗ ≈ 1− ε

2
as ε → 0 .

The constants L > 0, ϕ ∈ [0, 2π) and C∗ ∈ R can be chosen freely, while the func-

tion Ψ(X;L,ϕ) yields the contribution of the nonlinear terms induced by the term

Re(Leiϕeμ
+x) which are larger than the contribution due to the term C∗e

μ∗x. As we

will explain in detail in the end of Section 2.3 we can restrict ourselves, due to the

translation invariance of (1.8), to ϕ = 0 and L ∈ [1, e
πε
2 ). Then (1.9) still describes a

two-dimensional manifold. It turns out that the solution that we are seeking lies close

to the submanifold given by C∗ = 0. The reason is that otherwise instabilities kick in,

the solution becomes negative and is not a nonnegative solution of (1.8) with the correct

behaviour as x → ∞.

We remark here that our strategy is similar to our construction of self-similar solutions

to the coagulation equation with kernel K(ξ, η) = (ξη)λ with λ ∈ (0, 1/2) in [9]. Also

in this case the solution develops oscillations that become more extreme with smaller λ.

However, the details are somewhat different and in particular, there we do not have the

additional term C∗e
μ∗x in (1.9), but instead can do the shooting in a one-dimensional

manifold.

Reformulation as a Volterra-type system. For simplicity of the argument assume

for the moment that the terms with C∗ can be neglected and that we can use L as a

single shooting parameter. The main technical difficulty in the analysis of equation (1.8)

is to control the nonlocal integral terms. A key idea in our approach is to reformulate

equation (1.8) as a Volterra-type system of equations for which the solution at ‘time’

x depends only on values y ≤ x. Of course, not every solution to this Volterra-type

system corresponds to a nonnegative solution of (1.8). We have to choose the shooting
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parameter L in such a way such that the corresponding G remains positive and converges

to zero as x → ∞.

The next key insight is, that as long as G � 1 we can approximate the Volterra-type

system by a nonlinear ODE system that is a perturbation of a Lotka-Volterra system; see

Section 2.4. We use an adiabatic approximation to compute the increase of an associated

energy E along the trajectories. This approximation is valid as along as E � 1
ε . When

E ∼ 1
ε we enter what we call the intermediate regime; see Section 2.5. In this regime G

develops on intervals of length of order O(ln 1
ε ) peaks of height of order one that can be

approximated by self-similar solutions to the coagulation equation with additive kernel;

see Section 2.5.2. These peaks are connected by regions of length O(ε−2) in which G is of

order O(e−
1
ε ). In the regime where G is small we can again approximate by simple ODE

systems. Still, we have to distinguish three different regimes that have to be coupled

appropriately as described in Sections 2.5.4-2.5.7. A key result in order to justify the

approximation by ODEs is Lemma 2.4 in Section 2.5.3 that allows us to control, if G is

small and in a certain sense regular, the nonlocal terms by pointwise estimates.

For each L ∈ [1, e
πε
2 ) we can construct in this way a solution to (1.8). However,

in general they become negative. By a continuity argument, explained in Section 2.6,

we show that there exists a parameter L such that the corresponding solution satisfies

G(x) → 0 as x → ∞ with the asymptotics as given in (2.62) of Lemma 2.5.

Solution stays close to sub-manifold with C∗ = 0. In Section 3 we then address the

additional parameter C∗. We are going to show that C∗ must be very small and carefully

chosen in order to obtain a nonnegative solution to (1.8) that tends to zero as x → ∞.

More precisely, we consider the different regions explained above separately and show

that if the term associated with C∗ becomes of a size comparable to the solution of the

Volterra-like problem, the corresponding solution will not be admissible as a solution to

the coagulation equation.

General remark on techniques. We emphasize that the construction of our solution

is based on a matched asymptotic expansion. However, since we deal with an integral

equation we can in general not use standard tools for asymptotic problems in ODEs, but

have to estimate carefully the nonlocal terms corresponding to the integrals.

1.3.3. The main result. For completeness we now briefly summarize the main proper-

ties of the solution that we construct. We obtain a solution G to (1.8) which satisfies

G(x) ∼ ε2

4
+ L∗e

ε2

8 x cos
(εx
2

)
+ h.o.t as x → −∞ , (1.10)

where L∗ is chosen such that G remains positive and satisfies G(x) → 0 as x → ∞.

The approximation (1.10) is valid, as long as an associated energy E (see (2.28))

satisfies E � 1
ε . The intermediate regime starts when E ∼ 1

ε and is characterized by

well-separated peaks of increasing height. More precisely, G develops peaks of increasing

height (but of order one in ε), with width of order O
(
ln 1

ε

)
. These peaks can be described

by fat-tailed solutions of the coagulation equation with additive kernel. The peaks are

separated by regions of length O
(
1
ε

)
in which G is very small, that is, O

(
e−

1
ε

)
(see also

Figure 3).
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G

x

1

ε2

4

exp(−1/ε)

O(ln 1/ε)

O(1/ε2)

Fig. 3. Sketch of the traveling wave profile.

Finally, G enters the last regime where it converges to zero like a double exponential

(see (2.62) for detailed asymptotics).

2. Construction of an oscillatory traveling wave.

2.1. The behaviour for x → −∞. As a first step we derive the asymptotics of a solution

as x → −∞. For this we note

Kε

(
ey, 1

)
=

(
e(1−ε)y + 1

)
e

εy
2 = e(1−

ε
2 )y + e

εy
2

and it follows that
∫ 0

−∞ dy
∫ ∞
ln(1−ey)

Kε

(
ey−z, 1

)
dz < ∞. We are interested in the asymp-

totics of the solution of (1.8) satisfying limx→−∞ G(x) = G∞ where G∞ is given by

G∞

∫ 0

−∞
dy

∫ ∞

ln(1−ey)

dzKε

(
ey−z, 1

)
= 1 . (2.1)

A simple explicit computation givesG∞ =
(1− ε

2 )
ε
2

Γ(1− ε
2 )Γ(

ε
2 )

and using the asymptotics Γ(z)z →
1 as z → 0 we also find

G∞ =
ε2

4

(
1− ε

2
+O(ε2)

)
as ε → 0 . (2.2)

2.2. Reformulation as a Volterra-like problem. Suppose that G(·) is a solution of (1.8).

We rewrite this equation as

G(x) =

∫ 0

−∞
dy

∫ ∞

0

dz
(
e(1−

ε
2 )(y−z) + e

ε
2 (y−z)

)
G(y + x)G(z + x)

+

∫ 0

−∞
dy

∫ 0

ln(1−ey)

dz
(
e(1−

ε
2 )(y−z) + e

ε
2 (y−z)

)
G(y + x)G(z + x) (2.3)
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and define the following functions:

A(x) =
1

2

∫ 0

−∞
G(y + x)e

ε
2ydy , B(x) =

1

2

∫ ∞

0

e−
ε
2 zG(z + x)dz , (2.4)

P (x) =

∫ 0

−∞
G(y + x)e(1−

ε
2 )ydy , Q(x) =

∫ ∞

0

e−(1− ε
2 )zG(z + x)dz , (2.5)

J [G](x) =

∫ 0

−∞
dY

∫ 0

ln(1−ey)

dz
(
e(1−

ε
2 )(y−z) + e

ε
2 (y−z)

)
G(y + x)G(z + x) .

Then

dA(x)

dx
= −ε

2
A(x) +

1

2
G(x) ,

dB(x)

dx
=

ε

2
B(x)− 1

2
G(x) , (2.6)

dP (x)

dx
= −

(
1− ε

2

)
P (x) +G(x) ,

dQ(x)

dx
=

(
1− ε

2

)
Q(x)−G(x) , (2.7)

and rewrite (2.3) as

G(x) = 4A(x)B(x) + P (x)Q(x) + J [G](x) . (2.8)

Notice that J [G](x) is determined by the values of G(y) with y ≤ x and the functions

A,B, P and Q solve the ODEs in (2.6) and (2.7). Hence, we will call (2.6)-(2.8) a

Volterra-like problem since the values of the functions A,B, P,Q and G at x depend only

on the values of these functions for y ≤ x.

A solution of (2.6)-(2.8) is however not necessarily a solution of (1.8). More precisely,

suppose that G is a global solution of (2.6)-(2.8). Then, the differential equations for

B and Q in (2.6) and (2.7) suggest that the functions B and Q behave as CBe
εx
2 and

CQe
(1− ε

2 )x respectively as x → ∞. However, the formulas for B(x) and Q(x) in (2.4)

and (2.5) imply that these two functions are bounded for large x if G is bounded. This

suggests that some suitable shooting parameters need to be adjusted in order to obtain

bounded solutions of (2.6)-(2.8).

2.3. Linearization of the Volterra-like problem as x → −∞.. We begin by constructing

solutions of (2.6)-(2.8) for x ≤ −x0 with sufficiently large x0 > 0. These solutions depend

on two parameters and satisfy

G(x) → G∞ ∼ ε2

4
as x → −∞ (2.9)

where G∞ > 0 is as in (2.1). Moreover, we also assume that

A(x) → A∞ =
G∞
ε

∼ ε

4
, B(x) → B∞ =

G∞
ε

∼ ε

4
,

P (x) → P∞ =
2G∞
2− ε

∼ ε2

4
, Q(x) → Q∞ =

2G∞
2− ε

∼ ε2

4
,

(2.10)

as x → −∞. We now look for solutions that behave asymptotically as

(G,A,B, P,Q) =
(
G∞, A∞, B∞, P∞, Q∞

)
+

(
G1

∞, A1
∞, B1

∞, P 1
∞, Q1

∞
)
eμx as x → −∞ .

We linearize in (2.6)-(2.8), to obtain after some rearrangements that

A1
∞ =

1

2

G1
∞

(μ+ ε
2 )

, B1
∞ =

1

2

G1
∞(

ε
2 − μ

) , P 1
∞ =

G1
∞(

μ+ 1− ε
2

) , Q1
∞ =

G1
∞(

1− ε
2 − μ

) ,
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and

G1
∞ =

2G∞
ε

G1
∞(

ε
2 − μ

) +
2G∞
ε

G1
∞(

μ+ ε
2

) +
2G∞
(2− ε)

G1
∞(

1− ε
2 − μ

)

+
2G∞
(2− ε)

G1
∞(

μ+ 1− ε
2

) +G∞G1
∞J(μ, ε)

with

J(μ, ε) :=

∫ 0

−∞
dy

∫ 0

ln(1−ey)

dz
(
e(1−

ε
2 )(y−z) + e

ε
2 (y−z)

)(
eμy + eμz

)
. (2.11)

We are looking for solutions with Re(μ) ≥ 0. Then G1
∞ �= 0 since otherwise Re(μ) < 0

or A1
∞ = B1

∞ = P 1
∞ = Q1

∞ = 0. Then, if G1
∞ �= 0 we obtain after some lengthy but

elementary rearrangements and integrations by parts, that

Γ
(
1− ε

2

)
Γ
(
ε
2

)
Γ(1 + μ)

(1− ε
2 )

ε
2

= Γ
(
1− ε

2
+ μ

)
Γ
(ε

2

) (1− μ)

(1− ε
2 )(

ε
2 − μ)

+ Γ
(ε

2
+ μ

)
Γ
(
1− ε

2

) (1− μ)
ε
2

(
1− ε

2 − μ
) .

(2.12)

We state here a result about the roots of (2.12), whose proof is given in the Appendix.

Lemma 2.1. Equation (2.12) has exactly three roots with Re(μ) ≥ 0, denoted by μ± and

μ∗ respectively. Their asymptotics are given by

μ± =
ε2

8
± i

(ε
2
+

ε2

8

)
+O

(
ε3

)
and μ∗ � 1− ε

2
as ε → 0 . (2.13)

The linearization of the problem (2.6)-(2.8) suggests that there exists a three-dimen-

sional family of solutions which indeed can be characterized by the asymptotics (1.9)

with free constants L > 0, ϕ ∈ [0, 2π) and C∗ ∈ R.

For any choice of ϕ,L and C∗ the solution of (2.6)-(2.8) is uniquely determined. In

order to find a traveling wave solution to our original problem, we need to find ϕ,L and

C∗ such that B(x) → 0 and Q(x) → 0 as x → ∞. However, due to the translation

invariance of (1.8) we have for any a ∈ R that G̃a(x) := G(x+a) gives the same solution

up to translations, such that, denoting μ+ = μ1 + iμ2,

G̃a(x) ∼ G∞ +Re
(
Leμ1aei(ϕ+μ2a)eμ+x

)
+ ψ̃(x) + C∗e

μ∗aeμ∗x as x → −∞ .

Hence, we can identify solutions of (2.6)-(2.8) up to translations with the set of real

numbers contained between two consecutive intersections of the spiral {Leμ+a | a ∈ R}
with the real axis. If L = 1, the next larger point on the real axis is e

2πμ1
μ2 . Therefore

we can assume that ϕ = 0 and L ∈
[
1, e

2πμ1
μ2

)
≈ [1, e

πε
2 ). Notice that if the value of L is

modified from L to Le
2πμ1
μ2 the value of C∗ is modified to C∗e

2πμ∗
μ2 .

Thus, finding a nonnegative solution G(x) to the original problem (1.8) with G(x) → 0

as x → ∞ is equivalent to finding a solution to (2.6)-(2.8) with the asymptotics (1.9)

with ϕ = 0, L ∈ [1, e
2πμ1
μ2 ) and C∗ ∈ R such that B(x), Q(x) → 0 as x → ∞.

Notice that in the formula (1.9) the second term changes on scales of order 1
ε , whereas

the last term changes on scales of order one. This is a consequence of the fact that the
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characteristic length scales in the equations for A and B in (2.6) are different from the

ones for P and Q in (2.7). In particular, the equation for the variable Q indicates that Q

separates in scales of order one from G. This has the consequence that C∗ must be very

small, because otherwise the fast growth of Q will produce a change of sign either for Q

or B as we will see later. Even though C∗ is very small it must be tuned in a careful

way because otherwise the above-mentioned instability in (2.7) will cause the solution to

change sign.

We will postpone the detailed analysis of the effect of the term C∗e
μ∗x to Section 3

and consider now solutions to (2.6) and (2.7) with (1− ε
2 )Q(x) ≈ G(x). This reduces the

two-dimensional shooting problem to a one-dimensional one with shooting parameter L.

2.4. The Lotka-Volterra regime. It is possible to derive an ODE approximation of (1.8)

which is valid as long as G remains much smaller than one. Since G∞ is of order ε2 we

introduce the following rescaling:

G = G∞g, A = A∞a, B = B∞b, P = P∞p, Q = Q∞q,

x =
u

ε
, y =

v

ε
, z =

w

ε
,

(2.14)

where A∞, B∞, P∞ and Q∞ are as in (2.10). Then (2.6)-(2.8) become

da

du
=

1

2
(a+ g) ,

db

du
=

1

2
(b− g), (2.15)

dp

du
=

(1

ε
− 1

2

)
(−p+ g) ,

dq

du
=

(1

ε
− 1

2

)
(q − g), (2.16)

and

g =
4G∞
ε2

ab+
4G∞

(2− ε)2
pq +

G∞
ε2

J̄ [g](u) , (2.17)

where

J̄ [g](u) =

∫ 0

−∞
dv

∫ 0

ε ln(1−e
v
ε )

dw
(
e(

1
ε−

1
2 )(v−w) + e

1
2 (v−w)

)
g(v + u)g(w + u). (2.18)

Lemma 2.2. Under the assumption that g → 1 as u → −∞ and

|a(u)−1|+ |b(u)−1|+ |p(u)−1|+ |q(u)−1| ≤ C‖g−1‖u ,
∣∣∣dg
du

∣∣∣ ≤ C‖g−1‖u, (2.19)

where ‖f‖u := sups≤u |f(s)|, we can rewrite (2.17) as the system of ODEs (2.15) together

with

g(u) = a(u)b(u)− ε

2

(
a(u)b(u)− 1

)
+

ε

2

(
g(u)a(u)− 1

)
+R(u) (2.20)

with |R(u)| ≤ Cε2
(
1 + ‖g‖u

)
‖g − 1‖u.

Proof. To approximate g we use (2.4) and (2.1) in (2.17) to find

g(u) =a(u)b(u) +
(4G∞

ε2
− 1

)(
a(u)b(u)− 1

)
+

4G∞
(2− ε)2

(
p(u)q(u)− 1

)

+
G∞
ε2

∫ 0

−∞
dv

∫ 0

ε ln(1−e
v
ε )

dw
(
e(

1
ε−

1
2 )(v−w) + e

1
2 (v−w)

)(
g(v + u)g(w + u)− 1

)

=: a(u)b(u) + (I) + (II) + (III)a + (III)b .



OSCILLATORY TRAVELING WAVE SOLUTIONS 163

We first note that ∣∣g(v + u)g(w + u)− 1
∣∣ ≤ C

(
1 + ‖g‖u

)
‖g − 1‖u . (2.21)

With the assumption (2.19) we have |(II)| ≤ Cε2
(
1 + ‖g‖u

)
‖g − 1‖u. Furthermore,

recalling (2.2), we have G∞
ε2 − 1

4 = − ε
8 + (ε2), whence as a consequence we find

(I) = −ε

2

(
a(u)b(u)− 1

)
+O

(
ε2‖g − 1‖u

(
1 + ‖g‖u

))
.

In addition we can estimate

|(III)b| ≤ C
(
1 + ‖g‖u

)
‖g − 1‖u

∫ 0

−∞
dv

∫ 0

ε ln(1−e
v
ε )

dwe
1
2 (v−w)

= Cε2
(
1 + ‖g‖u

)
‖g − 1‖u

∫ 0

−∞
dv

∫ 0

ln(1−ev)

dwe
ε
2 (v−w)

≤ Cε2
(
1 + ‖g‖u

)
‖g − 1‖u

since
∫ 0

−∞ dv
∫ 0

ln(1−ev)
dwe

ε
2 (v−w) =

∫ 1

0
dyy

ε
2−1

∫ 1

1−y
dzz−(1+ ε

2 ) ≤ C.

We finally claim that

(III)a =
ε

2

(
ga− 1

)
+O

(
ε2

(
1 + ‖g‖u

)
‖g − 1‖u

)
. (2.22)

Indeed, after changing the order of integration we obtain

(III)a =
G∞
ε2

∫ 0

−∞
dw

∫ 0

ε ln(1−e
w
ε )

dve(
1
ε−

1
2 )(v−w)

(
g(v + u)g(w + u)− 1

)
.

In the region w ≥ −ε we use (2.21) and the fact that
∫ 0

−ε
dw

∫ 0

ε ln(1−e
w
ε )

dve(
1
ε−

1
2 )(v−w) ≤

Cε2 which follows from scaling. Therefore we can replace the integral
∫ 0

−∞ dw by
∫ −ε

−∞ dw

introducing an error of order Cε2
(
1 + ‖g‖u

)
‖g − 1‖u.

Furthermore, in the remaining integral, we can, due to (2.2), replace the prefactor G∞
ε2

by 1
4 and this yields an error of order Cε2

(
1 + ‖g‖u

)
‖g − 1‖u since∫ −ε

−∞ dw
∫ 0

ε ln(1−ew/ε)
dve(

1
ε−

1
2 )(v−w) ≤ Cε.

In the remaining integral we can also replace e(
1
ε−

1
2 )(v−w) by e−( 1

ε−
1
2 )w, using −ε ≤

v ≤ 0, Taylor expansion and the fact that
∫ −ε

−∞
∫ 0

ε ln(1−ew/ε)
|v|e−( 1

ε−
1
2 )w ≤ Cε3. This

gives an additional error of the order Cε3
(
1 + ‖g‖u

)
‖g − 1‖u. Finally, due to (2.19)

we have |g(u + v) − g(u)| ≤ C‖g − 1‖u|v|, such that we can replace g(u + v) by g(u)

introducing another error of the order Cε3
(
1 + ‖g‖u

)
‖g − 1‖u. Thus, we have found

(III)a =
1

4

∫ −ε

−∞
dw

∫ 0

ε ln(1−ew/ε)

dve−( 1
ε−

1
2 )w(g(u)g(w+u)−1)+O(ε2

(
1+‖g‖u

)
‖g−1‖u

)
.

We can now integrate over v and use −e−
w
ε ln(1− e

w
ε ) = 1 +O(e

w
ε ) for w ≤ −ε to find

(III)a =
ε

4

∫ −ε

−∞
dwe

w
2

(
g(u)g(u+ w)− 1

)
+ O(ε2

(
1 + ‖g‖u

)
‖g − 1‖u

)

=
ε

4

∫ 0

−∞
dwe

w
2

(
g(u)g(u+ w)− 1

)
+O(ε2

(
1 + ‖g‖u

)
‖g − 1‖u

)
.
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Since g → 1 as u → −∞ and since a is bounded, we find a(u) = 1
2

∫ 0

−∞ dwe
w
2 g(u + w)

and the claim (2.22) follows from the previous formula. �
Lemma 2.2 suggests to approximate problem (2.15)-(2.17) by the system of ODEs

da

du
=

1

2

(
− a+ ab− ε

2
ab(1− a)

)
, (2.23)

db

du
=

1

2

(
b− ab+

ε

2
ab(1− a)

)
, (2.24)

dp

du
=

(1

ε
− 1

2

)(
− p+ ab− ε

2
ab(1− a)

)
, (2.25)

dq

du
=

(1

ε
− 1

2

)(
q − ab+

ε

2
ab(1− a)

)
. (2.26)

Linearizing this system around the solution a = b = p = q = 1 we find a three-dimensional

unstable manifold characterized by the eigenvalues ± i
2 +ε

(
1
8 ±

i
2

)
and

(
1
ε −

1
2

)
. Recalling

the rescaling (2.14), this agrees with the results of Lemma 2.1.

Notice that the third eigenvalue is much larger than the other two, which is related

to the fact, that the solutions to (2.25) and (2.26) change on a faster scale. As discussed

before, we restrict ourselves for the moment to solutions for which p = g + O(ε) and

q = g +O(ε). In particular this implies, that p and q satisfy the assumptions of Lemma

2.2 if a and b do so. Therefore we consider for the moment solutions of (2.23) and (2.24).

2.4.1. Adiabatic increase of the amplitude. We have seen that with increasing u the

trajectories follow almost ellipses, but spiral outwards in each round. This property does

not only hold for a and b close to one, but also when |a− 1|+ |b− 1| = O(1).

We compute the increase of the amplitude of the spiral by using an adiabatic ap-

proximation. More precisely, we recall that the leading order of the system (2.23)-(2.24)

is
da

du
= −a

2
+

ab

2
=

a

2
(b− 1) ,

db

du
=

b

2
− ab

2
=

b

2
(1− a), (2.27)

and the energy

E = a+ b− ln(ab)− 2 (2.28)

is conserved by (2.27).

We compute now the change of energy for the perturbed problem. We have dE
du =

−
(

1−a
a

)
da
du +

(
1−b
b

)
db
du and using (2.23) and (2.24) we obtain

dE

du
=

ε

4
(b− a)(1− a) .

We need to estimate the change of energy in a cycle where we use the approximation

(2.27). The change of the energy in a period is given by ε
4D(E) where

D(E) =

∫ T (E)

0

(b− a)(1− a)du = 2

∫
C(E)

(b− a)
db

b
, (2.29)

where we used that (1 − a)du = 2
bdb and where C(E) denotes the contour in the plane

(a, b) associated to the trajectory with energy E. We can parameterize it by two curves



OSCILLATORY TRAVELING WAVE SOLUTIONS 165

{(a+(b), b) : b ∈ (bmax(E), bmin(E))} ∪ {(a−(b), b) : b ∈ (bmin(E), bmax(E))}. Then

D(E) = −2

∫ bmax(E)

bmin(E)

(b− a+(b))
db

b
+ 2

∫ bmax(E)

bmin(E)

(b− a−(b))
db

b

= 2

∫ bmax(E)

bmin(E)

(a+(b)− a−(b))
db

b
.

Since a+(b) > a−(b) for any b ∈ (bmin(E), bmax(E)) we find D(E) > 0 and the energy

increases. We now compute the asymptotics of the solutions as E → 0 and E → ∞. We

recall that the contours C(E) are defined by (2.28).

We first consider the limit E → 0. In this regime we obtain the asymptotics a+(b) ∼
1 +

√
2E − (b− 1)2 and a−(b) ∼ 1 −

√
2E − (b− 1)2, as well as bmin(E) ∼ 1 −

√
2E

and bmax(E) ∼ 1 +
√
2E. Furthermore we obtain a+(b) − a−(b) ∼ 2

√
2E − (b− 1)2.

Therefore

D(E) = 2

∫ bmax(E)

bmin(E)

(a+(b)− a−(b))
db

b
∼ 4

∫ bmax(E)

bmin(E)

√
2E − (b− 1)2db

∼ 4

∫ √
2E

−
√
2E

√
2E − x2dx = 8E

∫ 1

−1

√
1− x2dx = 4πE

since
∫ 1

−1

√
1− x2dx = 1

2π. Notice that we thus recover the increase of the amplitude of

the oscillations for a and b that follow from (1.9) and (2.13).

To examine the limit E → ∞, we will use the expression (2.29) and estimate the

different regions of C(E) separately. This ensures, that the energy does not change too

much during the cycle of length T (E).

We first consider the region where b ≤ 1 and a ∈ (a∗, E) with 1 � a∗ � E. We

denote by b∗ the value of b such that a+(b∗) = a∗. Since in this region E ≈ a∗ − ln b∗
this yields b∗ ≈ ea∗−E . Then the contribution to D(E) in this region is

2

∫ b∗

1

(b− a)
db

b
= 2

∫ 1

b∗

(a− b)
db

b
≈ 2

∫ 1

b∗

a

b
db ≈ 2

∫ 1

b∗

E + ln b

b
db ≈ 2

∫ 1

b∗

ln b

b
db ≈ E2

as E → ∞. We claim that this gives the main contribution to the change of the energy

and are going to show that the remaining regions give smaller contributions as E → ∞.

Indeed, consider now the part where a ∈ (1, a∗). In this region E ≈ a− ln b and if we

denote by b̂ the value of b on the cycle that corresponds to a = 1 we have b ≈ e−E . Then

2

∫ b̂

b∗

(b− a)
db

b
≤ C

∫ b∗

b̂

a

b
db ≤ Ca∗ ln b̂ ≤ a∗E � E2 .
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If both a and b are small, then E ≈ ln a + ln b and the contribution of the rate of

change of energy is estimated by

C

∫ 1

bmin

db

b
≤ C ln bmin ≤ CE � E2 .

If b ≥ 1 and if a is small, then the contribution of the change of the energy on the

other hand is estimated by

2

∫ bmax

1

(b− a)
db

b
≤ Cbmax ≤ CE .

Finally, we consider the regime where a, b ≥ 1, such that E ≈ a+ b. The corresponding

part of D(E) is given by

∫ 1

E

(b− a)
2

b
db ≈ 2

∫ 1

E

(2b− E)
db

b
≈ E lnE as E → ∞ .

Hence we have derived the approximation

En+1 − En ∼ ε

4
(En)

2 if |En| → ∞ . (2.30)

This approximation is valid as long as εE � 1, that is, a+ b � 1
ε and a+ b � e−

1
ε .

2.5. Intermediate regime. The intermediate regime is characterized by the energy E

becoming of order 1
ε . The energy, as defined in (2.28), is given in terms of A and B as

E = A
A∞

+ B
B∞

− ln(AB) + ln(A∞B∞) − 2. Since A∞ = O(ε) and B∞ = O(ε) (recall

(2.10)), the fact that the energy is of order 1
ε implies that either A = O(1), or B = O(1),

or AB � 1.

The intermediate regime will be split in four different regions. When A and B are of

order one, we can approximate the equation for G by (1.8) with K given by the additive

kernel K(ξ, η) = ξ + η. We call this the kinetic regime. If A is of order one, but B

small we can approximate the equation by a simple ODE system for A and B; see (2.47),

that gives an explicit expression for G. If both, A and B are small, we approximate

again by the Lotka-Volterra equation (2.27), while if B is of order one, but A small, we

approximate by another simple ODE system; see (2.58).

2.5.1. Overview of different regimes. If we make a plot of the solution in the A-B-

plane (see Figure 4 for a graph), it turns out that also in the regime where E = O( 1ε )

the curve A(x), B(x) continues to spiral around the point (A∞, B∞) with increasing

amplitude in the clockwise sense for increasing x. This curve intersects the line A = A∞
and B = B∞ at consecutive points x = xn and x = x̄n where B(xn) and A(x̄n) are of

order one, respectively.

In the interval (xn, x̄n) the solution can be approximated by a solution to the kinetic

equation with additive kernel. In the interval (x̄n, xn+1) the solution will be approxi-

mated by solutions of certain ODEs. We will see that the length of these intervals is

|xn − x̄n| = O(ln 1
ε ), while |x̄n − xn+1| = O( 1

ε2 ).



OSCILLATORY TRAVELING WAVE SOLUTIONS 167

Fig. 4. Sketch of the solution in the A−B-plane.

2.5.2. A,B of order one: The kinetic regime. We now consider equation (2.6)-(2.8)

for ε = 0, that is,

dA(x)

dx
=

1

2
G(x) ,

dB(x)

dx
= −1

2
G(x), (2.31)

dP (x)

dx
= −P (x) +G(x) ,

dQ(x)

dx
= Q(x)−G(x), (2.32)

and

G(x) = 4A(x)B(x) + P (x)Q(x) + J [G](x) , (2.33)

with J [G](x) =
∫ 0

−∞ dy
∫ 0

ln(1−ey)
dzey−zG(y + x)G(z + x).

Lemma 2.3. For any ρ ∈ (0, 2) there exists a continuous solution (Aρ, Bρ, Pρ, Qρ) to

(2.31)-(2.33) such that the corresponding Gρ satisfies for ρ ∈ (0, 2), ρ �= 1, the asymp-

totics

Gρ(x) ∼
ρ

1 + ρ

sin
(

πρ
1+ρ

)
Γ
(

1
1+ρ

)
π(1 + ρ)

e
ρ

1+ρx as x → −∞ (2.34)

and

Gρ(x) ∼
ρ

1 + ρ

Γ(1 + ρ) sin(π(1− ρ))

π
e−ρx as x → ∞ . (2.35)

For ρ ∈ (0, 1] the solution is positive. Furthermore, for ρ = 1, the solution is explicit

G1(x) =
1
2

1√
2π

e
x
2 e−

ex

2 . (2.36)

For these solutions we also have that Mρ :=
∫ ∞
−∞ Gρ(x) dx = ρ

1+ρ . Moreover it holds

Aρ(x) =
1

2

∫ x

−∞
Gρ(y) dy and Bρ(x) =

1

2

∫ ∞

x

Gρ(y) dy. (2.37)
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We also have the representation formulas

Pρ(x) =

∫ x

−∞
Gρ(y)e

y−xdy and Qρ(x) =

∫ ∞

x

Gρ(y)e
x−ydy . (2.38)

The above result was proved in [10] for ρ ∈ (0, 1]. However, inspection of the formula

for the Laplace transform of the solutions, given in [10], reveals that the result also holds

for ρ ∈ (1, 2). It was proved in [10] that the functions Gρ(x) are nonnegative for ρ ∈ (0, 1],

while the asymptotics (2.35) imply that Gρ(x) < 0 for large x if ρ ∈ (1, 2). We also note

that M1 = 1
2 while Mρ → 2

3 as ρ → 2.

We now explain how to use the solutions from Lemma 2.3 to approximate the function

G in the intervals (xn, x̄n). Due to (2.37) we define Mn = 2B(xn) and approximate the

solution in the interval (xn, x̄n) by G(x) = Gρn
(x − x̂n), where Mn = ρn

1+ρn
. The point

x̂n is determined by the condition

1

2

sin
(

πρ
1+ρn

)
Γ
(

1
1+ρn

)
π(1 + ρn)

e
ρn

1+ρn
(xn−x̂n) = A∞ ≈ ε

4
. (2.39)

This condition is obtained by matching the asymptotics of Gρn
(x − x̂n), see (2.34), for

x < x̂n, |x − x̂n| � 1 with A(xn) = A∞, compare (2.37). Using a similar matching

argument in the region x− x̄n � 1, we find

B(x̄n − x̂n) =
1

2

1

1 + ρn

Γ(1 + ρn) sin(π(1− ρn))

π
e−ρn(x̄n−x̂n) = B∞ =

ε

4
. (2.40)

Notice that the two matching conditions (2.39) and (2.40) determine x̄n as a function of

xn. We also see that |xn − x̄n| = O(ln 1
ε ). Furthermore we remark that (2.37) implies

that A(x̄n) =
Mn

2 . This is not immediately obvious but follows a posteriori from the fact

that the peaks have distance of order 1
ε2 , hence, to leading order A sees only the mass of

the last peak.

2.5.3. An approximation for G if one of A or B is small. We now derive the follow-

ing key lemma, that, under certain regularity assumptions, controls the nonlocal effects

by pointwise estimates, which in particular will allow us to approximate (2.6)-(2.8) by

systems of ODEs in regions where G is small and where the kinetic approximation with

ε = 0 fails.

Lemma 2.4. Suppose that A,B, P and Q are solutions to (2.6) and (2.7) and G satisfies

(2.9). Furthermore, assume that for some constants k1, k2 and k3 with k1 ∈ (0, 1−2δ],

for some δ > 0, the function G satisfies

ln(G(x+ y))− ln(G(x)) ≤ k1|y|+ k2 , for all y ≤ −1 ,∣∣ ln(G(x+ y))− ln(G(x))
∣∣ ≤ k3|y| , for all y ∈ (−1, 0) ,

(2.41)

then ∣∣G(x)−
(
4A(x)B(x) + P (x)Q(x) + 2G(x)A(x)

)∣∣ ≤ CδG(x)2 . (2.42)

If furthermore

|P (x)| ≤ 2|G(x)| and |Q(x)| ≤ 2|G(x)|, (2.43)

then we have ∣∣G(x)−
(
4A(x)B(x) + 2G(x)A(x)

)∣∣ ≤ CδG(x)2 . (2.44)
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Proof. We rewrite (2.8) as

G(x) = 4A(x)B(x) + P (x)Q(x) + L1[G](x) + L2[G](x) ,

with

L1[G](x) =

∫ 0

−∞
dy

∫ 0

ln 1−ey)

dze(1−
ε
2 )(y−z)G(y + x)G(z + x) ,

L2[G](x) =

∫ 0

−∞
dy

∫ 0

ln(1−ey)

dze
ε
2 (y−z)G(y + x)G(z + x) .

We first show that |L2[G]| ≤ CδG(x)2. Using assumption (2.41) we obtain

L2[G](x) =

∫ 0

−∞
dzG(x+ z)

∫ 0

ln(1−ez)

dY G(x+ y)e
ε
2 (y−z)

≤ CG(x)2
(∫ −1

−∞
dze−(k1+

ε
2 )z

∫ 0

ln(1−ez)

dye−k3y

+

∫ 0

−1

dze−(k3+
ε
2 )z

( ∫ −1

ln(1−ez)

dye−(k1− ε
2 )y + 1

))

≤ CG(x)2
(∫ −1

−∞
dze−(1−δ)z

∫ 0

ln(1−ez)

dye−k3y

+

∫ 0

−1

dze−(k3+
ε
2 )z

( ∫ −1

ln(1−ez)

dye−(1−δ)y + 1
))

≤ CδG(x)2.

With R(x, z) :=
∫ 0

ln(1−ez)
dyG(x+y)

G(x) e(1−
ε
2 )y we rewrite L1[G](x) as follows:

L1[G](x) = G(x)

∫ 0

−∞
dzG(x+ z)e−(1− ε

2 )z

∫ 0

ln(1−ez)

dy
G(x+ y)

G(x)
e(1−

ε
2 )y

= G(x)

∫ −1

−∞
dzG(x+ z)e−(1− ε

2 )zR(x, z) +G(x)

∫ 0

−1

dzG(x+ z)e−(1− ε
2 )zR(x, z)

=: L1,1[G](x) + L1,2[G](x) .

Using (2.41) we obtain |R(x, z)| ≤ Q(x, 0) ≤ Cδ and then also that |L1,2[G](x)| ≤
CδG(x)2.

To compute L1,1[G] note first that since z ≤ −1, we have y ∈ (−1, 0) in the integral

for R. Hence, due to the second estimate in (2.41) we have |R(x, z)− ez| ≤ Ce2z. Thus

we find, using again (2.41), that

∣∣∣L1,1[G](x)−G(x)

∫ −1

−∞
G(x+ z)e

ε
2 z

∣∣∣ ≤ CδG(x)2.

In the previous formula we can replace the integral
∫ −1

−∞ by
∫ 0

−∞, which introduces, due

to (2.41), an error of order G(x)2. Since G satisfies (2.9), it turns out that the solution to

the first equation in (2.6) is given by the first formula in (2.4). Thus, the above estimate

implies (2.42). Estimate (2.44) follows then from (2.42) and the additional assumption

(2.43). �
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Lemma 2.4 implies that, as long as assumptions (2.41) and (2.43) of the lemma are

satisfied, we have
∣∣∣dA
dx

+
ε

2
A− 2AB

1− 2A

∣∣∣ ≤ C
G2

1− 2A
,

∣∣∣dB
dx

− ε

2
B +

2AB

1− 2A

∣∣∣ ≤ C
G2

1− 2A
. (2.45)

In particular, we can use the result of Lemma 2.4 to approximate (2.6)-(2.8) by the

system of ODEs

dA

dx
=

2AB

1− 2A
− ε

2
A ,

dB

dx
=

ε

2
B − 2AB

1− 2A
, (2.46)

for any value of x such that G(x) is small. To make the argument self-consistent, we will

have to check afterwards that the solutions of these approximations satisfy the assump-

tions of Lemma 2.4.

2.5.4. ODE regime 1: B small. We consider now the region where x = x̄n + O(1).

From the results of Section 2.5.2 we have that A(x̄n) =
Mn

2 = ρn

2(1+ρn)
< 1

4 and B = O(ε).

Due to (2.35) the assumption (2.41) of Lemma 2.2 holds with k = ρn and we can use the

approximation (2.46).

It turns out that A and B change on different scales. Notice that A increases as long

as 2B
1−2A > ε

2 and decreases for 2B
1−2A < ε

2 . As long as A is of order one we obtain that B

decreases exponentially on the time scale for which x is of order one while A changes very

slowly. Initially the term 2AB
1−2A is relevant. However as soon as B becomes significantly

smaller than ε we obtain that A changes via the equation dA
dx = − ε

2A.

Without loss of generality we can assume, due to the translation invariance of the

equation, that x̄n = 0. This assumption is made for notational convenience throughout

this and the following Subsections 2.5.5-2.5.7. For the same reason we will also drop the

index n in ρn and Mn respectively.

Hence we can assume 2B(0)
1−2A(0) = ε

2 . Notice that A is very close to M as long as

x � 1
ε . Given that B decreases for x of order one and A changes very little, we obtain

the approximate equations

dA

dx
= −ε

2
A ,

dB

dx
= − 2AB

1− 2A
, (2.47)

whence

A(x) =
M

2
exp

(
− ε

2
x
)
. (2.48)

Since∫ x

0

2A(u)du

1− 2A(u)
= −2

ε

∫ M exp(− ε
2x)

M

dt

1− t
=

2

ε

(
ln(1−M exp(−ε

2
x))− ln(1−M)

)

we obtain for B

B(x) =
ε

4

(1−M)(1−M)
2
ε

(1−M exp(− ε
2x))

2
ε

. (2.49)

Since G is small, we can use the approximation G = 4AB
1−2A . We need to check that G

satisfies assumption (2.41) of Lemma 2.2. With the above computations

G(x) =
2MB(0)

1−Me−
ε
2x

exp
(
− ε

2
x−

∫ x

0

Me−
ε
2 ξ

1−Me−
ε
2 ξ

dξ
)

(2.50)
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such that

∣∣ lnG(x+ y)− lnG(x)
∣∣ ≤ Cε|y|+ ε

2
|y|+

∫ x+y

x

Me−
ε
2 ξ

1−Me−
ε
2 ξ

dξ

≤ Cε|y|+ M

1−M
|y| ≤ k1|y| ,

where we can choose k1 < 1 since due to M < 1
2 we have M

1−M < 1. Hence assumption

(2.41) of Lemma 2.4 is satisfied at least for y > −x. If y ≤ −x we can use the asymptotics

of the solutions in the kinetic regime, see (2.35), which gives (2.41) since ρ < 1.

2.5.5. A,B small: Matching ODE 1 regime with Lotka-Volterra. We now consider the

matching between the solutions of the previous subsection and the regime where A and

B are small, and hence the solution behaves as a solution to the Lotka-Volterra system

(2.27). For this purpose recall the relation between A,B and a, b; see (2.14).

We enter the Lotka-Volterra regime if a becomes of order one, i.e. A of order ε. In

this range b is very small. We define x̃ to be the time when a becomes one, i.e. by
M
2 exp(− ε

2 x̃) =
2G∞
ε ∼ ε

2 and then introduce the new variable t = ε
(
x− x̃

)
. Using (2.48)

we then find

a(t) =
ε

2G∞
A(x) ∼ εM

4G∞
exp(−ε

2
x) =

εM

4G∞
exp(−ε

2
x̃) exp(− t

2
) = exp(− t

2
)

as t → −∞, which gives the matching condition

a(t) ∼ exp(− t

2
) as t → −∞ . (2.51)

In order to compute the asymptotics of b(t) we use

b(t) =
ε

2G∞
B(x) =

ε2

8G∞

(1−M)
2
ε+1

(1−M exp(− ε
2 x̃) exp(−

t
2 ))

2
ε

≈ 1

2

(1−M)
2
ε+1

(1− 2G∞
ε exp(− t

2 ))
2
ε

.

In the limit ε → 0 we obtain the approximation for large t < 0 (but of order one)

1

(1− 2G∞
ε exp(− t

2 ))
2
ε

= exp
(
− 2

ε
ln

(
1− 2G∞

ε
exp

(
− t

2

)))

≈ exp
(2

ε

2G∞
ε

exp
(
− t

2

))
≈ exp

(
exp

(
− t

2

))
,

which implies the matching condition

b(t) ∼ 1

2
(1−M)

2
ε+1 exp

(
exp

(
− t

2

))
as t → −∞ . (2.52)

We recall that due to (2.45) and (2.14) the equations in this region are approximated

to leading order by (2.27) which has the conserved energy E = a + b − ln(ab) − 2. We

obtain that in the matching region, given the smallness of b and the fact that a is large

E ∼ a− ln b, whence

E ∼ exp
(
− t

2

)
− 2

ε
ln(1−M)− exp

(
− t

2

)
= −2

ε
ln(1−M) . (2.53)
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2.5.6. Lotka-Volterra; transition time. In the region where a + b = O(1) we approxi-

mate the dynamics of (2.6)-(2.8) by the Lotka-Volterra system (2.27) together with the

matching conditions (2.51) and (2.52).

We need to estimate the time that the trajectory spends in the region where a, b =

O(1). Due to the invariance of the Lotka-Volterra equation under the transformation

(a, b, t) → (b, a,−t) it suffices to compute the time that the trajectory needs to arrive

to the line {a = b}. The key simplification is that in all the time required to bring the

trajectory from the asymptotics (2.51), (2.52) to the line {a = b} we have b � 1. Then,

we have the approximations da
dt = −a

2 and db
dt = b(1−a)

2 such that a(t) = exp
(
− t

2

)
.

On the other hand the Lotka-Volterra equations and (2.53) imply

a− ln(a)− ln(b) = −2

ε
ln(1−M) (2.54)

and if a = b this implies a− 2 ln a = − 2
ε ln(1−M). As a consequence we obtain for a at

the line {a = b} the following asymptotics a = (1−M)
1
ε .

This implies that a reaches an extremely small value. Using a(t) = exp
(
− t

2

)
we

obtain for the time t̂ to arrive to the line {a = b} can be approximated as

t̂ =
2

ε
ln

( 1

1−M

)
. (2.55)

Due to (2.45), the original equation (2.6)-(2.8) can be approximated by the Lotka-

Volterra equation with an error on the right-hand side of the order εab. Therefore it

follows that dE
dt = O

(
ε(a+ b)

)
. Since b < a, and a(t) = e−

t
2 , b = O(e−

C
ε ) it follows from

(2.54) that the change of the energy until t̂ is of order ε and since the energy is of order
1
ε we can assume that the energy is approximately constant.

We can now compute the asymptotics of the solution when t− t̂ � 1 in order to obtain

the matching condition with the next region. Neglecting also the term ln b compared to

b we obtain, if b � 1, the approximation a ∼ e−Eeb and using (2.54) it follows that

a ∼ (1−M)
2
ε eb , b � 1 . (2.56)

In this range of values of a, b we can use the approximation db
dt = b

2 , hence b(t) = Ce
t
2 .

Since b(t̂) = a(t̂) = e−
t̂
2 we have

b(t) = e
t−2t̂

2 . (2.57)

Notice, that the assumption (2.41) of Lemma 2.4 is satisfied, since the function lnG(·)
is a function of t and hence the derivative of this function with respect to x is of order ε.

2.5.7. ODE regime 2: A small. We now describe the region where A is small and B

increases up to values of order one.

We recall (2.45) and given that in this region A � ε is small and B � ε we obtain

dA

dx
= AB ,

dB

dx
=

ε

2
B, (2.58)

which implies B = C0e
εx
2 , where C0 has to be determined by matching with (2.56) and

(2.57) . This gives dA
dx = C0e

εx
2 A and hence A(x) = C1 exp

(
2C0

ε e
εx
2

)
. To determine C0

and C1 we recall (2.14), G∞ ≈ ε2

4 , the definition x = x̃+ t
ε and denote x∗ = x̃+ 2t̂

ε . We
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obtain up to exponential accuracy that B(x) ∼ ε
2e

ε(x−x∗)
2 and

A(x) ∼ ε

2
(1−M)

2
ε exp

(
e

ε(x−x∗)
2

)
=

ε

2
(1−M)

2
ε exp

(2

ε
B(x)

)
. (2.59)

Due to (2.46) the asymptotics above is valid as long as A � ε
2 . We denote by xn+1

the point when A(xn+1) = A∞ ≈ ε
2 . Notice that B(xn+1) is maximal and decreases

afterwards. Using (2.59) simple rearrangements give that in the limit ε → 0 we obtain

B(xn+1) = − ln(1−M). (2.60)

This formula yields the desired iterative condition for the masses. Starting with the mass

M we reach after one cycle the new value of the mass ln( 1
1−M ) > M .

Notice also that the first inequality in (2.41) is satisfied since G is increasing in the

region that we consider in this section. The second inequality follows from

∣∣ lnG(x+ y)− lnG(x)
∣∣ ≤ 2

ε

∣∣∣B(x)
(
e

ε
2 y − 1

)∣∣∣ + ε

2
|y| ≤

(
B(xn+1) +

ε

2

)
|y| .

The analysis of this subsection is similar to the one in Subsection 2.5.4. However,

there A was of order one, while here it is small. As a consequence the value B(xn+1) of

B at the end of this region is different from A(0) = A(xn) in Subsection 2.5.4. Due to

this fact, the amplitude of the oscillations in the A-B-plane is increasing.

2.5.8. Summary of the intermediate regime. We have identified successive points xn,

x̄n and xn+1 such that A(xn) = A(xn+1) = A∞ ≈ ε
2 and B(x̄n) = B∞ ≈ ε

2 . We found

that x̄n−xn = O(ln 1
ε ) and xn+1− x̄n = O( 1

ε2 ). In [xn, x̄n] the solution G is of order one

and is of leading order given by a solution to the kinetic equation (2.31)-(2.33) given in

Lemma 2.3 with ρn such that 2B(xn) = Mn = ρn

1+ρn
. In [x̄n, xn+1], where G is small, the

solution can be approximated by three different simple ODE systems. The key finding in

the previous subsections is a formula for the increase of the amplitude of the oscillations

in the A-B-plane characterized by the numbers Mn for which, due to (2.60), we have the

recursive formula

Mn+1 = ln
1

1−Mn
. (2.61)

We emphasize, that the value of M does not change during the kinetic regime nor the

Lotka-Volterra regime, but that the change is due to the asymmetry in the equations

that describe ODE regime 1 and ODE regime 2 respectively.

In the limit Mn → 0, formula (2.61) implies Mn+1 −Mn ∼ 1
2M

2
n. On the other hand,

we have in this regime that E ∼ 4
ε (A+B) ∼ 4B

ε ∼ 2
εM . Hence, (2.61) agrees with (2.30)

in the limit Mn → 0.

2.6. Shooting argument. We will argue in Section 3 that the constant C∗ in (1.9) can

be chosen such that no fast instabilities develop for any finite x. We will show now that

under the assumption that no such ‘dormant’ instability occurs, the constant L can be

selected in the interval [1, e
πε
2 ) in such a way that the resulting function G(x) is globally



174 B. NIETHAMMER AND J. J. L. VELÁZQUEZ

positive and satisfies G(x) → 0 as x → ∞. More precisely we obtain

Lemma 2.5. There exists a value L∗ ∈ [1, e
πε
2 ) and x̂n ∈ R such that the corresponding

G satisfies

G(x) ∼
( 1

2
√
2
e

x−x̂n
2 +

ε

4
ex−x̂n

)
e−

e(x−x̂n)

2 (2.62)

for x � x̂n.

Proof. Due to (2.61) it follows that Mn becomes larger than 1
2 for sufficiently large

n. By making a translation of the variable x in (1.9) if needed, we can assume that for

some values of L ∈ [1, e
πε
2 ) the corresponding value of Mn is larger than 1

2 and for other

values L ∈ [1, e
πε
2 ) we have Mn < 1

2 .

We recall that if Mn < 1
2 we can approximate G(x) arguing as in Subsections 2.5.4-

2.5.7. Then A(x), B(x) converge to values where A(x) = A∞ and B(x) is of order one

for x = xn+1. On the other hand if Mn > 1
2 Lemma 2.3 implies that B(x) changes

sign at some finite x. Given that the solutions of (2.6)-(2.8) depend continuously on

the parameter L in (1.9) we have the existence of L = L∗ ∈ [1, e
πε
2 ) for which the

corresponding solution of (2.6)-(2.8) neither changes sign nor arrives to values of A(x) =

A∞ with B(x) of order one. We will argue that for L∗ we have G(x) → 0 as well as

(A(x), B(x)) → (0, 0) as x → ∞.

To see this we first remark that due to the arguments above, Mn must take the value
1
2 or is close to it for small ε. Then during the kinetic regime G(x) is approximated by

G1(x) (cf. Lemma 2.3) and at the end of that phase the asymptotics of G(x) is given

by the right-hand side of (2.36). Then G(x) cannot be approximated by ODEs as in

the case for Mn < 1
2 , but we will approximate G(x) by a suitable integral equation. For

notational simplicity we assume for the moment that x̂n = 0 and introduce the variables

ξ = ex, η = ey, ζ = ez, ξ2h(ξ) = G(x), ā(ξ) = A(x), b̄(ξ) = B(x), p̄(ξ) = P (x) and

q̄(ξ) = Q(x). Then (2.6)-(2.8) becomes

ξ
dā

dξ
= −ε

2
ā+

1

2
ξ2h , ξ

db̄

dξ
=

ε

2
b̄− 1

2
ξ2h , (2.63)

ξ
dp̄

dξ
= −(1− ε

2
)p̄+ ξ2h , ξ

dq̄

dξ
=

(
1− ε

2

)
q̄ − ξ2h , (2.64)

ξ2h = 4āb̄+ p̄q̄ + J [h] , (2.65)

where

J [h](ξ) =

∫ ξ

0

ηh(η)dη

∫ ξ

ξ−η

h(ζ)(ηζ)
ε
2

(
η1−ε + ζ1−ε

)
dζ. (2.66)

On the other hand, since G(x) behaves like the right-hand side of (2.36) we obtain

h(ξ) ∼ 1

2
√
2π

e−
ξ
2

ξ
3
2

for ξε ∼ 1 , i.e. ln ξ ∼ 1

ε
. (2.67)

We remark that in the set of values ξ for which the approximation (2.67) holds we have

that ā is of order one, p̄ is of order 1
ξ and b̄, q̄ are of order e−

ξ
2√
ξ
. Therefore, the terms 4āb̄

and p̄q̄ in (2.65) can be neglected and (2.65) can be approximated by

ξ2h = J [h] . (2.68)
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We now use the approximation (2.68) to describe how the asymptotics (2.67) is modi-

fied if ξε becomes of order one or larger. To this end we will look for solutions of (2.68) of

the form h(ξ) = r(ξ)e−
ξ
2 , where we assume that r(ξ) contains only functions that change

algebraically for large ξ, i.e. r(ξ + 1) � r(ξ). Then (2.68) becomes

ξ2r(ξ) =

∫ ξ

0

r(ζ)dζ

∫ ξ

ξ−ζ

ηr(η)(ηζ)
ε
2 (η1−ε + ζ1−ε)e

1
2 (ξ−η−ζ)dη

=

∫ ξ

0

r(ζ)dζ

∫ ζ

0

(ξ−ζ+θ)Q(ξ−ζ+θ)((ξ − ζ + θ)ζ)
ε
2

(
(ξ − ζ + θ)1−ε + ζ1−ε

)
e−

1
2 θdθ .

(2.69)

For large values of ξ the function r(ξ − ζ + θ) changes more slowly than e−
1
2 θ such

that

ξ2r(ξ) =

∫ ξ

0

r(ζ)dζ

∫ ζ

0

(ξ − ζ)r(ξ − ζ)((ξ − ζ)ζ)
ε
2

(
(ξ − ζ)1−ε + ζ1−ε

)
e−

1
2 θdθ

= 2

∫ ξ

0

r(ζ)(ξ − ζ)r(ξ − ζ)((ξ − ζ)ζ)
ε
2

(
(ξ − ζ)1−ε + ζ1−ε

)(
1− e−

1
2 ζ

)
dζ .

(2.70)

For large values of ξ and small values of ξ the main contribution to the integral in (2.70)

is due to the values of ζ satisfying ζ ≤ δξ, for δ small. This will be checked later “a

posteriori”. Thus, if ζ ≤ δξ we have the approximations (ξ− ζ)1+
ε
2 ∼ ξ1+

ε
2 , (ξ− ζ)1−ε+

ζ1−ε ∼ ξ1−ε such that

r(ξ) = 2ξ−
ε
2

∫ δξ

0

r(ζ)r(ξ − ζ)
(
1− e−

1
2 ζ

)
ζ

ε
2 dζ . (2.71)

We recall that (2.67) yields a valid approximate solution of (2.71) if ξε ∼ 1. For these

ξ we have

r(ξ) ∼ 1

2
√
2π

1

ξ
3
2

. (2.72)

Indeed, plugging (2.72) into (2.71) and using r(ξ − ζ) ≈ r(ξ) for large ξ we readily

obtain that (2.71) reduces to checking the identity

1 ≈ 2ξ−
ε
2

2
√
2π

∫ δξ

0

(
1− e−

1
2 ζ

)
ζ

ε
2−

3
2 dζ ≈ ξ−

ε
2

√
2π

∫ ∞

0

(
1− e−

1
2 ζ

)
ζ

ε
2−

3
2 dζ .

Using that
∫ ∞
0

(1−e−
1
2 ζ)ζ−

3
2 dζ =

√
2π this approximation follows due to the assumption

ξε ∼ 1. For ξε � 1 a scaling argument suggests the asymptotics r(ξ) ∼ C̄
ξ for some

C̄ > 0. Plugging this into (2.71) and using also that r(ξ − ζ) ≈ r(ξ) we reduce (2.71)

to 1 ≈ 2C̄ξ−
ε
2

∫ δξ

0

(
1 − e−

1
2 ζ

)
ζ

ε
2−1dζ ≈ 4C̄

ε , such that C̄ = ε
4 . For ξε � 1 we have thus

obtained

r(ξ) ∼ ε

4ξ
. (2.73)

Notice that the contributions due to the part of the integrals with ζ > δξ which have

been neglected in (2.70) in order to derive (2.71) give a small contribution if ξ is large

and ε small for both solutions (2.72) and (2.73).
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We can now combine the solutions (2.72) and (2.73) to obtain a global solution of

(2.71) that is valid for arbitrarily large values of ξ. Indeed, it is easy to check that

r(ξ) ∼ 1

2
√
2π

1

ξ
3
2

+
ε

4ξ
(2.74)

satisfies (2.71) approximately for arbitrary values of ξ and ε.

In order to check the consistency of the approximation (2.74) we must check that

the terms 4āb̄ and p̄q̄ in (2.65) are negligible. It follows from integrating (2.63)-(2.64),

using the definition of r and (2.74), that ā(ξ) ≤ C

ξ
ε
2
, b̄(ξ) ≤ Cξh(ξ), p̄(ξ) ≤ C

ξ1−
ε
2

and

q̄(ξ) ≤ Cξh(ξ). Therefore 4āb̄ + p̄q̄ � ξ2h for large ξ and the self-consistency of the

argument follows. It is important to remark, however, that although the term 4āb̄ can

be neglected in (2.65), the equation for b̄(ξ) in (2.63) shows that for some solutions of

(2.6)-(2.8) the function B(x) can start an exponential growth taking place in lengths of x

of order 1
ε . In other words, the solutions of (2.6)-(2.8) might contain dormant instabilities

that result either in a change of sign of B or in B becoming large enough and thus the

solution entering another cycle in the (A,B)-plane. Thus, this instability corroborates

the fact that the desired solution is obtained by a shooting argument and appears as

the transition between the ODE behaviour described in Subsections 2.5.4-2.5.7 and B

changing sign.

Finally, amending for the fact that we had assumed that x̂n = 0, we obtain from (2.74)

the result (2.62). �

3. Fast dynamics. We have seen in the asymptotics of the function G in (1.9) that

the term C∗e
μ∗x changes much faster than the other terms in the formula (1.9) due to

the exponentially growing mode for Q in (2.7). If C∗ is of order one, the instability

will appear for x of order one. However, if C∗ is very small, the exponentially growing

instability will only become visible for large values of x.

For the solution computed in Section 2 the following holds. In all the regions where the

solution can be approximated by ODEs the function G(x) changes in length scales much

larger than one and in particular, in all those regions we have |Q−G| � Q. However, if

C∗ is sufficiently small, there exists an x∗ � 1

Q(x) = G(x∗)
(
1± ex−x∗

)
+ ... (3.1)

for x < x∗ and |x − x∗| � 1. In this case the instability is triggered in x = x∗. We

can obtain both, the positive and the negative sign in (3.1) by choosing |C∗| in (1.9)

sufficiently large and positive or negative respectively. Moreover, modifying the value of

C∗ we can tune the value of x∗. It turns out that if the instability is triggered in any

region where the solution of (2.6)-(2.8) can be approximated by an ODE, then either Q,

if the sign in (3.1) is minus, or B if otherwise, become negative and hence the solution

cannot represent an admissible solution to the coagulation equation (cf. Sections 3.1 and

3.2.2).

It is also possible to choose the value of C∗ such that the instability is triggered in the

kinetic regime, described in Section 2.5.2. In this regime |Q−G| is not small compared

to G anymore. Here we have to take into account that the Volterra problem (2.6)-(2.8)
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with ε = 0 has more solutions than those given by Lemma 2.3. The general solution

has the form Qα
ρ (x) with Qα

ρ (x) − Qρ(x) ∼ αex as x → −∞ with arbitrary α and we

denote by Gα
ρ the corresponding function G. Recall that for our special solutions we have

G(x) ∼ Gρ(x−x̂n) for |x−x̄n| of order one. However, the difference Gρ − Gα
ρ differs by

an exponentially small amount for x < x̂n and |x−x̂n| � 1, hence there is a priori no

reason to choose Gρ instead of Gα
ρ . We will see later, however, in Section 3.2.3 that if

α �= 0, then either Q or B become negative and again we do not obtain an admissible

solution.

Therefore, adjusting the value of C∗ we can obtain a solution for which no instability

is triggered either in the ODE regime, or in the kinetic regime.

3.1. Fast instabilities appearing during the Lotka-Volterra regime. We first assume

that the instability is triggered in the Lotka-Volterra regime, see Section 2.4; that is, the

regime with energy E � 1
ε .

Suppose that the instability appears at a given x∗, for which the ODE approximation

is still valid. This would mean that the asymptotics (3.1) holds for x < x∗ and 1
ε �

|x− x∗| � 1.

If (3.1) holds with a minus sign, we can approximate (2.6)-(2.8) as follows. Lemma

2.4 implies that J [G] ≤ C(G2 +GA). In the Lotka-Volterra regime we have G � 1 and

A � 1 and hence J [G] can be neglected in (2.8). As long as G remains approximately

constant, we can approximate Q by

dQ

dx
=

(
1− ε

2

)
Q−G , Q(x) = G(x∗)

(
1− e(1−

ε
2 )(x−x∗)

)
, (3.2)

hence Q becomes negative for x = x∗. Since Q is decreasing, the term PQ in (2.8)

remains negligible, the other variables essentially do not change and the approximation

is self-consistent.

If (3.1) holds with a plus sign, the function Q becomes of order one if x ∼ x1 where

G(x∗)e
(x1−x∗) = 1 . (3.3)

Since G(x∗) can be very small if the energy E is large, it might happen that |x1−x∗| → ∞
as ε → 0. During this part of the evolution the variables a and b are described by (2.27)

and hence if |x1 − x∗| is large, we might have that the difference between (a(x1), b(x1))

and (a(x∗), b(x∗)) is large. This phenomenon can be particularly relevant if E ∼ 1
ε ln 1

ε

and E ≈ a + b, since then the characteristic scale in the Lotka-Volterra regime is of

order one up to logarithmic corrections. Therefore |x1 − x∗| might be much larger than

this scale. However, we will prove an estimate that shows that the change of (a, b) in

the interval [x∗, x1] is negligible in the part of the Lotka-Volterra cycle contained in

{a ≤ 1} ∪ {b ≤ 1}. Indeed, the first equation (2.27) implies that da
dx ≥ −εa and hence,

using (3.3), G(x∗) ≈ ε2

4 a(x∗)b(x∗) and a(x∗)b(x∗) ≥ Ce−E , we find

a(x1) ≥ a(x∗)e
ε lnG(x∗) = a(x∗)G(x∗)

ε ≥ a(x∗)e
ε ln(Cε2)e−εE ≥ 1

2
a(x∗) .

Similarly, since a(x∗), b(x∗) ≤ 2E, it follows that b(x1) ≤ 2b(x∗). In particular a and b

cannot make more than one cycle in the Lotka-Volterra phase plane.
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In order to describe the regime when Q becomes of order one, we introduce the new

variable t = x− x1. Then equation (3.1) implies the matching condition

Q(t) = et as t → −∞ . (3.4)

Denote by A1 := A(x1), B1 := B(x1) and P1 := 4A1B1 and define A = A1â, B = B1b̂

and P = P1p̂. Then we obtain

dâ

dt
= −ε

2
â+

1

2

(
4B1

(
âb̂+ p̂Q

)
+

J [G]

A1

)
, (3.5)

db̂

dt
=

ε

2
b̂− 1

2

(
4A1

(
âb̂+ p̂Q

)
+

J [G]

B1

)
, (3.6)

dp̂

dt
= −�+

(
âb̂+ p̂Q+

J [G]

P1

)
, (3.7)

dQ

dt
= Q−

(
P1

(
âb̂+ p̂Q

)
+ J [G]

)
. (3.8)

Using Lemma 2.4 we can check that the terms involving J [G] can be neglected in (3.5)-

(3.8). Since furthermore A1, B1 and P1 are small, we obtain for t of order one the

following approximation of (3.5)-(3.8):

dâ

dt
=

db̂

dt
= 0 ,

dp̂

dt
= −p̂+ âb̂+ p̂Q and

dQ

dt
= Q . (3.9)

Using the matching condition (3.4) we obtain â ≡ 1, b̂ ≡ 1,

p̂ = eQ(t)−t
(
1− e−Q(t)

)
and Q(t) = et . (3.10)

Assume now that for large t we have that p̂Q � âb̂. We can then approximate (3.5) and

(3.7), assuming for the moment that the nonlocal terms can still be neglected, by

dâ

dt
= −ε

2
â+ 2B1p̂Q ,

db̂

dt
=

ε

2
b̂− 2A1p̂Q and

dp̂

dt
= p̂(Q− 1) . (3.11)

The equation for b̂ in (3.11) implies that

b̂(t) = e
ε
2 t − 2A1

∫ t

0

e
ε
2 (t−s)(p̂Q)(s) dx ≈ e

ε
2 t − 2A1

∫ t

0

ee
s

ds ≈ e
ε
2 t − 2A1e

−tee
t

.

Then b̂(tε) = 0 with tε as

ee
tε
e−tε ∼ 1

2A1
, that is, tε ∼ ln

(
ln

( 1

2A1

))
. (3.12)

Since A1 ≥ Ce−E we also have tε ≤ lnE ≤ ln
(
1
ε

)
. Notice that this justifies a posteriori

that one can neglect the term ε
2 b̂ in the equation for b even though A1 might be very

small.

We now check that the assumption âb̂ � p̂Q indeed holds for all t ∈ [0, tε), which is

not clear a priori given that B1 could be much larger than A1 and this could produce

a large growth of â in this interval. Due to the first equation in (3.11) we have â(t) ≤
1 + 2B1

∫ t

0
(p̂Q)(s) ds and the third equation in (3.11) give p̂(t) = eQ(t)−t. This gives

â(t) ≤ CB1p̂(t), whence, since b̂ is bounded, â(t)b̂(t) ≤ CB1p̂(t). Since Q(t) ≥ 1 and

since B1 � 1 we indeed obtain âb̂ � p̂Q.
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In order to show the consistency of the whole approximation, it remains to check

that the nonlocal term J [G] remains small. This is feasible, but requires some tedious

estimates. In order not to interrupt too much the flow of the argument, we just state the

main result.

The key remark in order to compute the variations of J [G] is that εp̂Q can be approx-

imated by a mollification of the Dirac mass as follows:

2A1p̂Q ≈ 2A1e
Q(t)

(
1− e−Q(t)

)
≈ 2A1e

et

= 2A1e
etεet−tε

= 2A1e
etε [et−tε−1]ee

tε ≈ 1

δε
e

1
δε

(t−tε)
(3.13)

where we used the definition of tε in (3.12) and where δε =
1
etε ≈ ln 1

2A1
.

By estimating carefully all the terms in J [G] and using the previously obtained asymp-

totics we can obtain by lengthy but otherwise rather straightforward estimates that for

sufficiently large R > 0

J [G](x) ≤ B1

(
A1 +

e
1
δε

ex−x1−tε

δε
χ{tε−R≤x−x1≤tε}

)
for x1 ≤ x ≤ x1 + tε . (3.14)

We need to compare the size of this nonlocal term with the main terms in the equations

(3.5)-(3.8) and check that the contribution of this nonlocal term is small. This requires

the inequalities:

J [G]

A1
� B1p̂Q ,

J [G]

B1
� A1p̂Q ,

J [G]

P1
� p̂Q (3.15)

which are all equivalent. Moreover, the same inequality implies also that the term J [G] in

(3.8) gives a negligible contribution compared with P1p̂Q and it is possible to approximate

this equation by an ODE.

In order to derive (3.15) we notice that (3.10) and (3.13) imply

2A1p̂Q ≥ C1

(
A1 +

e
1
δε

ex−x1−tε

δε
χ{tε−R≤x−x1≤tε}

)

for some C1 > 0 and for x1 ≤ x ≤ x1 + tε. Then (3.15) follows from (3.14).

We also remark that in the estimates of J [G] we do not use Lemma 2.4 due to the

fast growth of G that implies that the second inequality in (2.41) fails.

3.2. Instability is triggered for values of x such that E ∼ 1
ε . We now consider the case

in which the instability is triggered at times in which the energy E defined in (2.28) is

of order 1
ε . We recall that for these values of E there are some values of x for which we

describe the solution G,A,B, P,Q by solutions of the integro-differential equation (2.6)-

(2.8) with ε = 0 (cf. Subsection 2.5.2), while for other values (2.6)-(2.8) is approximated

by a system of ODEs (cf. Subsections 2.5.4, 2.5.5 and 2.5.7). We will denote the first

set of values of x, where G is of order one, as values of Type I and the second set, where

G � 1, as values of Type II. For x of Type II the values of the functions G,A,B, P,Q

change in a scale much longer than one. Then, the triggering of the instabilities at some

x = x∗ can be described by the asymptotic behaviour for x < x∗ and |x− x∗| � 1. For

values x of Type I the characteristic length scale for the development of the instability

given by the equation for Q in (2.7) is the same as for the variation of G. Then we cannot
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obtain a definition like (3.1) for the value of x∗ in which the instability is triggered. In this

case we need to study in detail the solutions of the Volterra-like problem with additive

kernel (2.31)-(2.33).

3.2.1. Additional solutions of problem (2.31)-(2.33). In Lemma 2.3 we obtained a fam-

ily of solutions to (2.31)-(2.33), that correspond to solutions of the coagulation equation.

These are however not the only solutions and in the following proposition, which is

proved in the Appendix, we construct additional solutions with different higher order

asymptotics as x → −∞.

Proposition 3.1. Suppose that for ρ ∈ (0, 2] we denote by Aρ, Bρ, Pρ, Qρ and Gρ the

solution in Lemma 2.3 that are characterized by the asymptotics (2.34). For any α ∈ R

we define

Gα
ρ (x) = Gρ(x)e

αex (3.16)

and, with B∞ := Bρ(−∞),

Aα
ρ (x) =

1

2

∫ x

−∞
Gα

ρ (y) dy , Bα
ρ (x) = B∞ − 1

2

∫ 0

−∞
Gα

ρ (y) dy,

Pα
ρ (x) =

∫ x

−∞
Gα

ρ (y)e
y−x dy , Qα

ρ (x) = Qρ(x)e
αex + αex

(
1−

∫ x

−∞
eαe

y

Qρ(y) dy
)
.

(3.17)

Then Aα
ρ , . . . , G

α
ρ solve (2.31)-(2.33).

Furthermore, for ρ ∈ (0, 1], if α < 0, we obtain that Qα
ρ (x) becomes negative for some

x ∈ R, while if α > 0, then Bα
ρ becomes negative for some x ∈ R.

Remark 3.2. The solutions constructed in Proposition 3.1 are the only solutions

of (2.31)-(2.33) with the asymptotics G(x) → 0 as x → −∞. Indeed, suppose that

G > 0, G(x) ∼ eβx and B(x) → B∞ as x → −∞. We can assume that B∞ > 0 since

otherwise A → ∞ and then also G → ∞ as x → −∞. The equations in (2.32) imply that

Q ≤ Ceβx, P ≤ Ceβx and J [G](x) ≤ Ce2βx. Then (2.33) implies that G(x) ∼ 4B∞A(x)

and (2.31) implies that A(x) = c1e
2B∞x as x → −∞. Thus, G(x) ∼ k1e

2B∞x as x → −∞
with β = 2B∞. Using this asymptotic formula we can compute also the asymptotics of

A,B, P,Q and J [G] as x → −∞ to obtain G(x) ∼ K1e
βx + k2e

2βx + · · ·+ kmemβx + · · ·
as x → −∞ with mβ ≤ 1 + β < (m + 1)β. (In some resonance cases the terms ekβx

might have to be replaced by xekβx.)

However, computing the next order in this asymptotics we can include an additional

parameter k̄ from the second equation in (2.32), since we have Q(x) = ν1e
βx + ν2e

2βx +

· · ·+ νmemβx + k̄ex as x → −∞. Plugging this into (2.33) gives

G(x) ∼ k1e
βx + k2e

2βx + · · ·+ kmemβx + Ck̄e(1+β)x + · · · as x → −∞ (3.18)

with the free parameters k1 and k̄, such by varying α in Proposition 3.1 one indeed

obtains all solutions.

Proposition 3.1 implies that we must have α = 0 at the beginning of each of the ranges

of x for which the solutions of (2.6)-(2.8) are approximately described by the solutions

of (2.31)-(2.33).
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3.2.2. ODE regimes with E ≈ 1
ε .. We now examine the case in which the instability

for Q in the second equation of (2.7) is triggered for values of x for which E is of order
1
ε but G is small. For those ranges of x the dynamics of G(x) is described, before the

instability is triggered, as in Subsections 2.5.4, 2.5.5 and 2.5.7. In all those cases the

functions A,B, P,Q and G are approximated by ODEs. Given that the characteristic

time scale for all these functions is much larger than one and the instability associated

to Q(x) is triggered in times of order one, we can describe the triggering by (3.1). We

can describe the evolution after the instability is triggered similarly as in Subsection 3.1.

By assumption G(x∗) is small and due to Lemma 2.4 we can approximate (2.6)-(2.8)

by a system of ODEs. Moreover, as long as G(x) remains small we can neglect the

contribution of the term P (x)Q(x) in (2.8). Then, we can approximate the evolution

of the functions A,B and G using the ODEs in Subsections 2.5.4, 2.5.5 and 2.5.7. This

approximation is valid as long as P (x)Q(x) is small compared to G(x) and the evolution

of P (x) and Q(x) is described by (2.7). If the sign in (3.1) is a minus, we can then

conclude exactly as in Subsection 3.1 that Q becomes negative.

Suppose now that the sign in (3.1) is a plus sign. Using the same arguments as above,

it follows that as long as P (x)Q(x) � G(x) we can approximate Q(x) as G(x∗)(1 +

e(1−
ε
2 )(x−x∗)). We then define x1 by (3.3). Notice that as with the fast instability

described in Subsection 3.1 we might have that x1 − x∗ is very large and therefore we

might have relevant changes of the values of A and B during this phase. However, as

long as we can use the ODE approximations in Subsections 2.5.4, 2.5.5 and 2.5.7 we can

deduce, arguing as in Subsection 3.1, that either a(x1) ≥ a(x∗)
2 or b(x1) ≤ 2b(x∗) and

conclude the argument as before.

3.2.3. Fast instability in the kinetic regime. A difference to the argument in Subsection

3.1 is that in principle it might be possible for G(x) to reach values of order one during

the interval [x∗, x1]. Then we recall the definition of the sequence {x̂n} in Subsection

2.5.2 and that those are the characteristic times for which we have the approximation

G(x) � G(x − x̂n). For x < x̂n and |x − x̂n| � 1 we can match the asymptotics of the

solutions for x− x∗ � 1. With t = x− x̂n we have the approximation

Q � G(x∗)e
(1− ε

2 )(x−x∗) = G(x∗)e
(1− ε

2 )(x̂n−x∗)e(1−
ε
2 )(x−x̂n) = G(x∗)e

(1− ε
2 )(x̂n−x∗)e(1−

ε
2 )t

for t < 0 and |t| � 1. By assumption G(x∗)e
(1− ε

2 )(x̂n−x∗) is at most of order one. If we

have that G(x∗)e
(1− ε

2 )(x̂n−x∗) is of order one we would have that G can be approximated

for t < 0, |t| large by a solution of the Volterra-like problem for the additive kernel

(cf. (2.31)-(2.33)) with matching condition G(t) ∼ Gα
ρn
(t) as t → −∞ where α =

G(x∗)e
(1− ε

2 )(x̂n−x∗). If α > 0 is of order one it then follows that Bα
ρn
(x) becomes negative

for a finite value. Alternatively, we might have α → 0. In that case we can approximate

A(x), B(x), P (x), Q(x) and G(x) using the functions Aα
ρn
, . . . , Gα

ρn
with small α. Notice

that for t of order one we cannot approximate any longer Q by the second equation in

(3.2) but Q is close to Qρn
(t) for t of order one. However, using (3.17) as well as the fact

that x = et we obtain the following asymptotics for α → 0 and then t � 1:

Q ∼ Qρn
(t) + α

(
1−

∫ ∞

−∞
Qρn

(y)
)
et ∼ Gρn

(t) + α(1−M)et , (3.19)
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where we use the fact that for large t we have Qρn
(t) ∼ Gρn

(t) and that
∫ ∞
−∞ Qρn

(y)dy =∫ ∞
−∞ Gρn

(y)dy = ρn

1+ρn
< 1. Notice that (3.19) yields an interesting connection condition

for the coefficient describing the exponential separation of Q from G. Indeed, during the

kinetic regime this separation takes place according to αet for t → −∞ and it becomes

α(1−M)et as t → ∞. For sufficiently large t the term α(1−M)et becomes larger than

Gρn
(t). Using the asymptotics of Gρn

(t) (cf. (2.35)) it follows that this happens for

e(1+ρn)t ≈ 1
α and Gρn

(t) is of order α
ρn

1+ρn . For large t we enter the regime where G

is described as in Subsection 2.5.4. In particular 2A(t) approaches M for large t and

arguing as in Subsection 2.5.1 it follows that A cannot decrease to values smaller than
M
4 without arriving to values of x = x1 where (3.3) takes place. We can then argue as

in the rest of Subsection 2.5.1 to show that B changes sign. Indeed, the arguments used

there only require that E is bounded by C
ε .

It is relevant to remark that the amplitude of the exponentially growing perturbation

implicitly contained in the equation for Q (cf. (2.7)) cannot become arbitrarily small

as x → ∞ in spite of the fact that it is reduced by a factor (1−M) each time that the

solution passes by one of the intervals [xn, x̄n] where it is described by the solutions

described in Lemma 2.3. Indeed, during the intervals (x̄n, xn+1) in which the function

G(x) is described by means of the ODE approximations described in Subsections 2.5.4-

2.5.7 the perturbation of Q−G would continue growing exponentially and the length of

the intervals (x̄n, xn+1) is very large of order 1
ε . This growth is much larger than the

decrease by the factor (1−M) during the kinetic regime.

3.3. Summary of the analysis of the instabilities. We have seen, using formal argu-

ments, that an instability for Q yields a change of sign, either of Q or of B. To this end

we have considered several cases. Initially the Volterra-like problem can be approximated

by a Lotka-Volterra equation. In such a case, ODE arguments show that instabilities for

Q yield changes of sign, either for Q or B.

It is possible to compute explicit formulas for the solutions of the Volterra-like problem

associated to the additive kernel. The final conclusion is the same. We can put an

additional parameter α in the solution as x → −∞. If α < 0 we obtain that Q changes

sign and it vanishes for finite s. If α > 0 we obtain that B becomes negative for finite x.

The most delicate case corresponds to the ODE regimes in the case when the energy

is large. In that case there are different possibilities. In some cases B or Q change sign

quickly, because the integral terms are irrelevant and the problem can be approximated

by an integral equation. In other cases the solutions must be approximated by the

solutions of the additive kernel (the Volterra-like problem) discussed before.

4. Appendix.

4.1. Proof of Lemma 2.1. We assume from now on that ε ≤ ε0 for sufficiently small

ε0. Then we claim that there exists R ≥ 3 that is independent of ε such that all solutions

of (2.12) are contained in the set BR(0) ∩ {Re(μ) ≥ 0}.
Indeed, if |μ| ≥ R and Re(μ) > 0 we have, using Stirling’s formula,

∣∣∣Γ(1−
ε
2 + μ)

Γ(1 + μ)

∣∣∣ ≤ 2
∣∣∣
(
1− ε

2 + μ
)(1− ε

2+μ)

(1 + μ)(1+μ)

∣∣∣ =: 2 exp
(
T (μ, ε)

)
. (4.1)
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where

T (μ, ε) = Re
(
(1− ε

2
+ μ)

(
ln(|1− ε

2
+ μ|) + i arg(1− ε

2
+ μ)

))

− Re
(
(1 + μ)

(
ln(|1 + μ|) + i arg(1 + μ)

))
.

Using that |μ| ≥ R ≥ 3 we obtain

T (μ, ε) ≤ Re
(
(1 + μ)

(
ln(|1− ε

2
+ μ|) + i arg(1− ε

2
+ μ)

))

− Re
(
(1 + μ)

(
ln(|1 + μ|) + i arg(1 + μ)

))

− Re
(
(1 + μ) ln(|1 + μ|)

)
− Re

(
i
(
1 + μ) arg(1 + μ)

)

= Re
(
(1 + μ) ln(

|1− ε
2 + μ|

|1 + μ| )
)
+Re

(
i(1 + μ)

(
arg(1− ε

2
+ μ)− arg(1 + μ)

))
.

(4.2)

We have

ln
( |1− ε

2 + μ|
|1 + μ|

)
≤ 2

∣∣∣
∣∣∣1−

ε
2 + μ

1 + μ

∣∣∣ − 1
∣∣∣ ≤ 2ε

|1 + μ|
and choosing arg(·) ∈ (−π, π) we obtain

∣∣ arg(1− ε

2
+ μ)− arg(1 + μ)

∣∣ =
∣∣∣ arg (

1− ε

2

1

1 + μ

)∣∣∣ ≤ ε

|1 + μ| .

Combining these last two inequalities with (4.2) we find T (μ, ε) ≤ 3ε
|1+μ| |1 + μ| ≤ 3ε

whence, using (4.1), it follows that
∣∣Γ(1− ε

2+μ)

Γ(1+μ)

∣∣ ≤ 3. Similarly we obtain
∣∣Γ( ε

2+μ)

Γ(1+μ)

∣∣ ≤ 3.

Thus, if μ solves (2.12), we have

Γ(1− ε
2 )

(1− ε
2 )

ε
2

=
Γ(1− ε

2 + μ)

Γ(1 + μ)

(1− μ)

(1− ε
2 )(

ε
2 − μ)

+
Γ( ε2 + μ)

Γ(1 + μ)
Γ
(
1− ε

2

) (1− μ)

Γ( ε2 )
ε
2 (1−

ε
2 − μ)

and using the above inequalities and the fact that limz→0 Γ(z)z = 1 we obtain that for

any root μ of (2.12) we have

Γ(1− ε
2 )

(1− ε
2 )

ε
2

≤ 3
∣∣∣ (1− μ)

(1− ε
2 )(

ε
2 − μ)

∣∣∣ + 4Γ
(
1− ε

2

)∣∣∣ (1− μ)

(1− ε
2 − μ)

∣∣∣ .
The right-hand side of this inequality is bounded by a constant independent of ε if

|μ| ≥ R ≥ 3. However, the left-hand side diverges as ε → 0. This gives a contradiction.

Therefore, all solutions of (2.12) satisfy |μ| < R.

We now rewrite (2.12) as

0 = −
Γ(1− ε

2 )Γ(1 + μ)

(1− ε
2 )

ε
2

+
Γ(1− ε

2 + μ)(1− μ)

(1− ε
2 )(

ε
2 − μ)

+
Γ( ε2 + μ)Γ(1− ε

2 )(1− μ)

Γ( ε2 )
ε
2 (1−

ε
2 − μ)

=: ω(μ, ε).

(4.3)

Using that Γ( ε2 )
ε
2 → 1 as ε → 0 it follows that the right-hand side of (4.3) is bounded

in the set {Re(μ) ≥ 0, |μ| ≤ R, min{|μ − 1|, |μ|} ≥ δ} for each δ > 0 if we take ε

sufficiently small (depending on δ). However, since |Γ(1 + μ)| ≥ C∗ > 0 in the set

{Re(μ) ≥ 0, |μ| ≤ R} it follows that the left-hand side tends to infinity as ε → 0

uniformly in this set. Then, all roots of (2.12) in {Re(μ) ≥ 0} are contained in the
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set {Re(μ) ≥ 0, |μ| ≤ R, min{|μ − 1|, |μ|} < δ}. We can compute the asymptotics of

the roots of (2.12) approximating ω(μ, ε) in (4.3) by suitable comparison functions and

Rouche’s theorem.

In the region |μ| ≤ δ with small δ, we use as the comparison function ω1(μ, ε) := − 2
ε +

ε

( ε2

4 −μ2)
+ μ

( ε
2−μ) , while in the region |μ− 1| ≤ δ we use ω2(μ, ε) := − 2

ε +(1−μ)
ε
2+μ

(1− ε
2−μ) .

Using the asymptotics of the function Γ(z) for z ∼ 1 and z ∼ 0 we obtain (2.13).

4.2. Proof of Proposition 3.1. We first state the following auxiliary lemma.

Lemma 4.1. Suppose that F,W ∈ L1(0, R) satisfy

W (ξ)− λ

∫ ξ

0

W (η)dη = F (ξ) a.e. in (0, R)

for some λ ∈ R. Then

W (ξ) = AF (ξ) := λeλξ
∫ ξ

0

e−ληF (η)dη + F (ξ) a.e. in (0, R) . (4.4)

Proof. We define H(ξ) =
∫ ξ

0
W (η)dη. The function H is absolutely continuous and

satisfies dH(η)
dη − λH(η) = F (η) and H(0) = 0. Therefore H(ξ) = eλξ

∫ ξ

0
e−ληF (η)dη for

ξ ∈ (0, R), whence (4.4) follows. �
For the proof of Proposition 3.1 it is convenient to go over to the variable ξ = ex. For

notational convenience we neglect the index ρ throughout this proof.

We first define functions a, b, p, q and h for ξ > 0 by

a(ξ) = A(x) , b(ξ) = B(x) , p(ξ) = P (x) , q(ξ) = Q(x) , ξ2h(ξ) = G(x) . (4.5)

We then define functions aα, bα, pα, qα and Gα as

hα(ξ) = h(ξ)eαξ , pα(ξ) =
1

ξ

∫ ξ

0

η2hα(η)dη,

aα(ξ) =
1

2

∫ ξ

0

ηhα(η)dη , bα(ξ) = B∞ − 1

2

∫ ξ

0

ηhα(η)dη,

qα(ξ) = q(ξ)eαξ + αξ
(
1−

∫ ξ

0

eαη
q(η)

η
dη

)
.

(4.6)

Then it holds

Aα(x) = aα(ξ) , Bα(x) = bα(ξ) , Pα(x) = pα(ξ) ,

Qα(x) = qα(ξ) , Gα(x) = ξ2hα(ξ) ,
(4.7)

with Aα, · · · , Gα as in (3.17).

Notice that the asymptotics of the functions A, · · · , G in Lemma 2.3 imply that all the

integrals appearing in (4.6) are well defined. In particular notice that 0 ≤ h(ξ) ≤ Cξb−2

and 0 ≤ q(ξ)
ξ ≤ Cξb−1 for ξ ≤ 1 with b > 0. This implies that all the integrals appearing

on the right-hand side of (4.6) are convergent. One slight complication is due to the fact

that h(ξ) is not integrable and thus we cannot write directly q(ξ)
ξ = −

∫ ξ

0
h(η)dη. The

singularity of h(ξ) is like 1
ξ2−σ with σ > 0 such that q(ξ)

ξ is integrable and q(ξ) ∼ ξb as

ξ → 0.
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It is worth noticing that the last equation in (4.6) can due to Lemma 4.1 be inverted

to obtain

q(ξ) = nα(ξ)e−αξ + αξ

∫ ξ

0

qα(η)

η
e−αηdη − α. (4.8)

Using the change of variables ξ = ex and (4.5) in (2.31)-(2.33) we obtain that the

functions a, b, p, q and h solve

da

dξ
=

1

2
ξh(ξ) ,

db

dξ
= −1

2
ξh(ξ) , (4.9)

d

dx
(ξp(ξ)) = ξ2h(ξ) ,

d

dξ

(q(ξ)

ξ

)
= −h(ξ) , (4.10)

ξ2h(ξ) = 4a(ξ)b(ξ) + p(ξ)q(ξ) + j[h](ξ) , (4.11)

with j[h](ξ) =
∫ ξ

0
ηh(η)dη

∫ ξ

ξ−η
h(ζ)(η + ζ)dζ.

Moreover, the definition of aα and bα in (4.6) implies that these two functions solve

(4.9) with h = hα. Similarly pα and hα solve the first equation of (4.10). It remains

to check that hα and qα satisfy the second equation of (4.10) and (4.11). In order to

simplify the notation we define the functions ϕ(ξ) = q(ξ)
ξ and ϕα(ξ) = qα(ξ)

ξ . Using (4.8)

we obtain

ϕ(ξ) = ϕα(ξ)e−αξ + α

∫ ξ

0

ϕα(η)e−αη dη − α (4.12)

and it is straightforward to check that qα and hα solve the second equation of (4.10).

We now check that (4.11) holds. To this end we first transform the equation to a more

convenient form. Notice that both sets of functions a, . . . , h, as well as aα, . . . , hα satisfy

b(ξ) = B∞ −
∫ ξ

0
ηh(η)dη and p(ξ) = 1

ξ

∫ ξ

0
η2h(η)dη. Then (4.11) can be rewritten as

ξ2h(ξ) = B∞

∫ ξ

0

ηh(η)dη −
∫ ξ

0

ηh(η)dη

∫ ξ−η

0

ζh(ζ)dζ +
q(ξ)

ξ

∫ ξ

0

η2h(η)dη (4.13)

+

∫ ξ

0

η2h(η)dη

∫ η

ξ−η

h(ζ)dζ .

We now rewrite the last term, using the second equation of (4.10), as

∫ ξ

0

η2h(η)dη

∫ ξ

ξ−η

h(ζ) dζ = −
∫ ξ

0

η2h(η)
(q(ξ)

ξ
− q(ξ − η)

ξ − η

)
dη .

Plugging this in (4.13) we find, after some simplifications, and using the definition of the

function ϕ(ξ) = q(ξ)
ξ that

ξ2h(ξ) = B∞

∫ ξ

0

ηh(η)dη −
∫ ξ

0

ηh(η)dη

∫ ξ−η

0

ζh(ζ)dζ +

∫ ξ

0

η2h(η)ϕ(ξ − η)dη . (4.14)

Thus, (4.9)-(4.11) is equivalent to (4.9), (4.10), (4.14).
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We will now check that, if ϕ and h solve (4.14), we have the same for ϕα and hα.

Using the definitions in (4.6) we obtain

ξ2hα(xi)e−αξ + α

∫ xi

0

η2hα(η)e−αηdη

= B∞

∫ ξ

0

ηhα(η)e−αηdη −
∫ ξ

0

ηhα(η)e−αηdη

∫ ξ−η

0

ζhα(ζ)e−αζdζ

+ e−αξ

∫ ξ

0

η2hα(η)ϕα(ξ − η)dη + α

∫ ξ

0

η2hα(η)e−αηdη

∫ ξ−η

0

ϕα(ζ)e−αζdζ .

(4.15)

We can now apply Lemma 4.1 with W (ξ) = ξ2hα(ξ)e−αξ to obtain

ξ2hα(ξ)e−αξ = B∞AF1(ξ)−AF2(ξ) +AF3(ξ) + αAF4(ξ) , (4.16)

where A is the operator defined in (4.4) with λ = −α and

F1(ξ) =

∫ ξ

0

ηhα(η)e−αη dη , F2(ξ) =

∫ ξ

0

yhα(η)e−αη dη

∫ ξ−η

0

ζhα(ζ)e−αζ dζ ,

F3(ξ) = e−αξ

∫ ξ

0

η2hα(η)ϕα(ξ − η)dη, F4(ξ) =

∫ ξ

0

η2hα(η)e−αηdη

∫ ξ−η

0

ϕα(ζ)e−αζ dζ .

We then have

AF1(ξ) =

∫ ξ

0

ηhα(η)e−αη − αe−αξ

∫ ξ

0

eαηdη
( ∫ η

0

ζhα(ζ)e−αζ dζ
)

=

∫ ξ

0

ηhα(η)e−αηdη − αe−αξ

∫ ξ

0

ζhα(ζ)e−αζdζ

∫ ξ

ζ

eαηdη

=

∫ ξ

0

ηhα(η)e−αη dη − e−αξ

∫ ξ

0

ζhα(ζ)e−αζ
(
eαξ − eαζ

)
dζ = e−αξ

∫ ξ

0

ζhα(ζ) dζ

(4.17)

and similarly

AF2(ξ) = e−αξ

∫ ξ

0

ηhα(η) dη

∫ ξ−η

0

ζhα(ζ) dζ , (4.18)

AF3(ξ) = e−αξ

∫ ξ

0

η2hα(η)ϕα(ξ − η)dη − αe−αξ

∫ ξ

0

ζ2hα(ζ) dζ

∫ ξ−ζ

0

ϕα(η) dη (4.19)

and

AF4(ξ) = e−αξ

∫ ξ

0

η2hα(η)dη

∫ ξ−η

0

ϕα(ζ)dζ . (4.20)

Plugging (4.17)-(4.20) into (4.16) we obtain after some rearrangements that hα and

ϕα solve (4.14) and thus the first statement of Proposition 3.1 follows by elementary

computations.

We now compute for ρ ∈ (0, 1] the asymptotics of the solutions constructed above.

Suppose first that α < 0.

We recall that 2B∞ =
∫ ∞
0

ηhρ(η)dη = ρ
1+ρ < 1. Since 0 < hα < h we obtain that bα is

decreasing and bα(ξ) > bα(∞) > 0. Since α < 0 we have
∫ ξ

0
q(η)
η eαηdη <

∫ ∞
0

q(η)
η eαηdη <∫ ∞

0
q(η)
η dη = 2B∞ < 1. Therefore, if α < 0 we have αξ

(
1 −

∫ ξ

0
q(η)
η eαηdη

)
→ −∞ as
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ξ → ∞ and thus, since qρ(ξ) is bounded, we have that qα vanishes for some ξ > 0 if

C∞ < 0 while all the other functions remain positive.

We now consider the case α > 0. Then hα increases exponentially and therefore bα

vanishes for some ξ > 0. This is obvious for all functions but qα. To show that qα remains

positive we rewrite the formula for qα in (4.6). Integrating by parts in the last term we

obtain, using also that d
dξ

( q(ξ)
ξ

)
= −h(ξ), we obtain after some rearrangements qα(ξ) =

αξ + q(ξ)− ξ
∫ ξ

0
h(η)

(
eαη − 1

)
dη. On the other hand bα(ξ) = B∞ − 1

2

∫ ξ

0
ηh(η)eαη dη.

We now use the inequality eαη − 1 ≤ αηeαη for η ≥ 0. Then
∫ ξ

0
h(η)

(
eαη−1

)
dη ≤

α
∫ ξ

0
h(η)eαηdη, whence

qα(ξ) ≥ αξ + q(ξ)− αξ

∫ ξ

0

h(η)ηeαηdη > αξ
(
1−

∫ ξ

0

h(η)ηeαηdη
)
≥ 2αξbα(ξ),

where we used that 2B∞ < 1. Thus, bα vanishes before qα.
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Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 1, 99–125, DOI 10.1016/j.anihpc.2004.06.001.
MR2114413
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