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Abstract. In the present work we provide a mathematical analysis that leads to

an algorithm which decides whether a set of magnetoencephalographic data represents

a single or a multiple simultaneous excitation of equivalent current dipoles. The very

special case where this identification is not possible is analyzed in detail.

1. Introduction. Magnetoencephalography is a brain imaging technique with a time

resolution of the order of 10−3 sec, which provides a very effective method for the study

of the functional brain. As it is generally accepted, any localized neuronal activity is

represented by an equivalent current dipole. Therefore, one of the important issues, for

the study of the brain, is to be able to identify whether any recorded excitation is due

to one, two, or more localized dipoles. This way we can identify the parts of the brain

that are simultaneously activated during any brain activity.

In the present work we demonstrate a mathematical technique that can discriminate

between a single and a multiple dipolar excitation.

It is important to state that, as it was proved in [4] the inverse electroencephalography

problem cannot recover more than 1/3 of any brain activity and the inverse magnetoen-

cephalography problem can recover no more of the 2/3 (which includes the 1/3 of the

electroencephalography) of any brain activity.
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Consequently, when we talk about these inverse brain imaging techniques for an arbi-

trary volume current distribution there are limits for the obtained results. However, as

we demonstrate in the present work, if the excitation is distributed in isolated equivalent

dipoles, then the inverse problems are solvable up to the radial components of the mo-

ments which, due to the existence of a cross product, are impossible to be identified. The

problem where the localized brain activity is represented by a small sphere supporting a

continuous distribution of dipoles is presented in [2]. In this case, although it is possible

to identify the center of the supporting sphere, it is impossible to estimate the radius of

the sphere, and this is in complete agreement with the theory.

The paper is organized as follows. Section 2 provides the minimum information needed

to state the inverse problem we are going to analyze. The algorithm that leads to the

inversion steps are given in Section 3 and a last Section 4 investigates the possibility that

our inversion algorithm can be misleading, that is, if there are two or more excitations

that are recognized as a single dipole. The corresponding problem for the electroen-

cephalographic modality has been reported in [3].

2. Statement of the direct problem. Assume a homogeneous spherical model D

of the brain, of radius a and conductivity σ, and let ∂D be its boundary. The non-

conductivity exterior to the brain region is denoted by Dc. Activation of a localized

region in the brain triggers a primary neuronal current generating an electric field E as

well as a magnetic induction field B. The neuronal current is represented by a single

equivalent dipole at the point r0 with moment Q which is sufficient when modeling small

cortical sources [5,6]. In the framework of the quasi-static theory of Maxwell’s equations

[1, 7], outside the conductor the magnetic field can be represented as the gradient of a

scalar harmonic function U given by

B(r, r0) = ∇U(r, r0). (2.1)

In order to evaluate the aforementioned magnetic potential U, Sarvas [8] integrated along

a ray, in the direction of r̂ from the observation position r all the way to infinity where

the potential vanishes as

U = O
(

1

r2

)
, r → ∞. (2.2)

Using appropriate transformations and employing the generating function of Legendre

polynomials it can be shown [1, 2] that

U(r, r0) =
μ0

4π
(Q× r0) · ∇r0

∞∑
n=1

1

n+ 1

rn0
rn+1

Pn(r̂, r̂0) (2.3)

for every r in Dc, where μ0 is the magnetic permeability of the brain tissue as well as

that of the ambient space.

In the case where there are N localized regions, represented by the N dipoles (ri,Qi),

i = 1, 2, . . . , N, the resulting magnetic potential can be written, via linearity, in the form

U(r, N) =
N∑
i=1

U(r, ri) =
μ0

4π

N∑
i=1

(Qi × ri · ∇ri)
∞∑
n=1

1

n+ 1

rni
rn+1

Pn(r̂, r̂i). (2.4)
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Note the action of the source depended directional derivatives in the direction of Qi × ri
and on the potentials rni Pn(r̂, r̂i). It is obvious that we can represent each term of the

expansions (2.3) and (2.4) in terms of homogeneous Cartesian harmonic polynomials

Rn(x1, x2, x3) of degree n. That is,

Rn(x1, x2, x3) =
∑

n1+n2+n3=n

An1n2n3
xn1
1 xn2

2 xn3
3 (2.5)

with n1, n2, n3 non-negative integers, where the coefficients An1n2n3
satisfy certain alge-

braic relations that secure the harmonicity of every polynomial Rn. Therefore, we also

have the Cartesian expansion

U(r) =
μ0

4π

∞∑
n=1

1

r2n+1
Rn(x1, x2, x3). (2.6)

The number of coefficients in the homogeneous sum (2.5) is equal to (n + 1)(n + 2)/2.

However, not all of them are independent, since Rn has to be harmonic, which means

that only 2n+ 1 of these coefficients are actually independent. Consequently, there will

be

(n+ 1)(n+ 2)

2
− (2n+ 1) =

n(n− 1)

2
(2.7)

relations that connect the coefficients An1n2n3
. It is trivial to find these relations. All

we have to do is to apply the Laplacian operator ∇2 on Rn, resulting in a homogeneous

polynomial Sn−2 of degree n− 2, and then equate to zero all its n(n− 1)/2 coefficients.

These are the harmonicity relations for the polynomial Rn.

3. The inverse problem. The question is now focused on the problem of identifying

the N dipoles from an assumed complete knowledge of the magnetic potential U(r, N).

Once we have the potential U we expand it in Cartesian harmonic polynomials as in

(2.6), where the coefficients An1n2n3
are now known. In general, if we know that there

are N dipoles (ri,Qi), i = 1, 2, . . . , N, which fire simultaneously, then we can identify

them if we have at least 6N coefficients An1n2n3
, that is, 3N for the identification of the

positions ri and 3N for the corresponding moments Qi, i = 1, 2, . . . , N. In other words,

we need to utilize the coefficients An1n2n3
, with n1+n2+n3 = n, where n is the smallest

integer for which

2 · 3
2

+
3 · 4
2

+
4 · 5
2

+ · · ·+ (n+ 1)(n+ 2)

2
≥ 6N (3.1)

or equivalently (
3

2

)
+

(
4

2

)
+

(
5

2

)
+ · · ·+

(
n+ 2

2

)
≥ 6N (3.2)

and in view of the identity

n∑
k=0

(
k + 2

2

)
=

(
n+ 3

3

)
(3.3)
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we arrive at the inequality (
n+ 3

3

)
≥ 6N + 1 (3.4)

or

n(n2 + 6n+ 11) ≥ 36N. (3.5)

Hence, for a single dipole, where N = 1 we need n = 2, that is, the 9 coefficients of the

polynomials R1(x1, x2, x3) and R2(x1, x2, x3), of which only 8 are independent because

there is a harmonicity condition that connects the coefficients of x2
1, x

2
2, x

2
3.

Actually, since every term of the expansion (2.4) involves the product Qi × ri the

radial components of Qi cannot be specified. Hence, we can only determine the 2N

components of the dipolar moments. In order to be more specific we analyze the case

of a single dipole at r0 = (x01, x02, x03) having the moment Q = (Q1, Q2, Q3) which

generates the magnetic potential

U(r, r0) =
μ0

4π

1

r3

3∑
i=1

Ai xi +
μ0

4π

1

r5

(
3∑

i=1

Bi x
2
i +B4 x1 x2 +B5 x2 x3 +B6 x1 x3

)

+O
(

1

r4

)
(3.6)

where

Ai =
1

2
(Q× r0) · x̂i, i = 1, 2, 3, (3.7)

B1 = x01(Q× r0) · x̂1, (3.8)

B2 = x02(Q× r0) · x̂2, (3.9)

B3 = x03(Q× r0) · x̂3, (3.10)

B4 = x01(Q× r0) · x̂2 − x02(Q× r0) · x̂1, (3.11)

B5 = x02(Q× r0) · x̂3 − x03(Q× r0) · x̂2, (3.12)

B6 = x01(Q× r0) · x̂3 − x03(Q× r0) · x̂1, (3.13)

and the harmonicity condition

B1 +B2 +B3 = 0 (3.14)

is needed.

The position r0 of the dipole is obtained immediately from (3.7)-(3.10) in the form

r0 =
1

2

(
B1

A1
,
B2

A2
,
B3

A3

)
. (3.15)

On the other hand, relations (3.7) give

2A1 = x03 Q2 − x02 Q3, (3.16)

2A2 = x01 Q3 − x03 Q1, (3.17)

2A3 = x02 Q1 − x01 Q2, (3.18)
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or, in view of (3.15)

4A1 =
B3

A3
Q2 −

B2

A2
Q3, (3.19)

4A2 =
B1

A1
Q3 −

B3

A3
Q1, (3.20)

4A3 =
B2

A2
Q1 −

B1

A1
Q2. (3.21)

The system (3.19)-(3.21) cannot be solved uniquely since its determinant vanishes, and

this fact reflects the inability to calculate the component of Q which is parallel to r0.

Hence, the system (3.19)-(3.21) can be used to find the component of Q which lies on

the plane normal to the direction of r0.

Note that the equations (3.11)-(3.13) have not been used for the determination of

(r0,Q), but if the excitation is really due to an isolated dipole, then the calculated data

(r0,Q), should verify (3.11)-(3.13) as well. Otherwise, our assumption for the existence

of one dipole is wrong and the recorded excitation is the result of multiple excitations.

More precisely, for a single dipole the following three compatibility conditions have to be

satisfied:

A1A2B4 = A2
1 B2 +A2

2 B1, (3.22)

A2A3B5 = A2
3 B2 +A2

2 B3, (3.23)

A3A1B6 = A2
3 B1 +A2

1 B3, (3.24)

where B1, B2, B3 satisfy condition (3.14).

The same procedure is extended to more than one dipole, where the crucial test

after we calculate the quantities (ri,Qi), i = 1, 2, . . . , N is to decide whether the unused

coefficients are compatible with the obtained values for (ri,Qi). This test will show if

the activation centers are exactly N or any other number.

Finally, the question of whether it is possible to be misled in our decision when we

use the above technique is investigated in the coming section.

4. Credibility. When is it possible to be deceived by the proposed analytic algo-

rithm? This actually can happen when the data (coefficients) received from one dipole

are identical with the data received from many dipoles. That is, when the right hand

side of equations (2.3) and (2.4) are identical. In this case, we obtain

(Q× r0 · ∇r0)
r0
r2

P1(r̂, r̂0) =

N∑
i=1

(Qi × ri · ∇ri)
ri
r2

P1(r̂, r̂i), (4.1)

(Q× r0 · ∇r0)
r20
r3

P2(r̂, r̂0) =
N∑
i=1

(Qi × ri · ∇ri)
r2i
r3

P2(r̂, r̂i), (4.2)
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and in general

(Q× r0 · ∇r0)
rn0

rn+1
Pn(r̂, r̂0) =

N∑
i=1

(Qi × ri · ∇ri)
rni

rn+1
Pn(r̂, r̂i), (4.3)

for any n ≥ 1.

Relation (4.1) is rewritten as

(Q× r0 · ∇r0)(r · r0) =
N∑
i=1

(Qi × ri · ∇ri)(r · ri) (4.4)

or

Q× r0 · r =
N∑
i=1

Qi × ri · r (4.5)

or (
Q× r0 −

N∑
i=1

Qi × ri

)
· r = 0 (4.6)

and since this has to be true for every |r| > a, it follows that

Q× r0 =
N∑
i=1

Qi × ri. (4.7)

Similarly, (4.2) is rewritten as

(Q× r0 · ∇r0)
(
3(r · r0)2 − r2r20

)
=

N∑
i=1

(Qi × ri · ∇ri)
(
3(r · ri)2 − r2r2i

)
(4.8)

or

r · (Q× r0)r0 · r = r ·
N∑
i=1

(Qi × ri)ri · r (4.9)

and finally

(Q× r0)r0 =

N∑
i=1

(Qi × ri)ri. (4.10)

Inserting (4.7) in (4.10) we obtain

N∑
i=1

(Qi × ri)(ri − r0) = 0. (4.11)

Condition (4.7) demands that the sum of the exterior products Qi × ri to be equal to

the product Q× r0. Of course, we exclude the case where all dipoles are radial, in which

case all the exterior products are zero. Condition (4.11) obviously holds true if all Qi are

radial, or if they are all located at the point r0 independently of orientation. However,

any other combination that satisfies (4.11) can also fool us. Moving to the next terms

for n = 3, 4, . . . will generate even more compatibility conditions.
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