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Abstract. The three–dimensional (3–D) unsteady creeping motion, corresponding to

Stokes flow, of a non–conductive colloidal suspension of ferromagnetic particles, which

are embedded within an otherwise electrically conducting, viscous and incompressible,

carrier liquid, is considered in this contribution. This group of micropolar conducting

ferrofluids comprises a novel class of engineering materials that respond in the pres-

ence of a general externally applied magnetic field, which is arbitrarily orientated in the

three–dimensional domain of practical interest. Therein, an induced magnetic field of

minor importance is created, while the effective viscosity of the fluid is increasing and

an additional magnetic pressure appears. In order to be compatible with the principles

of both ferrohydrodynamics and magnetohydrodynamics, we readily include the mag-

netization and the electrical conductivity of the magnetic fluid, respectively into the

governing partial differential equations of the particular physical system. Employing the

potential representation theory, we fabricate a new integro–differential general solution

for the situation under investigation, which provides the time–dependent velocity and

total pressure fields in a 3–D spaced closed form and in terms of easy–to–find potentials,

via a semi–analytical shape. This generalized representation is proved to be complete,

whilst it is valid for any non–axisymmetric geometry. We demonstrate the applicability

of our analytical approach, by introducing a basic degenerate case of the aforementioned

method to simulate the time–dependent creeping flow of a micropolar fluid with conduc-

tive properties inside a circular duct.

1. Introduction. Mechanical systems involving the motion of aggregates of small

solid ferromagnetic nanoparticles relative to viscous magnetic fluids such as water, blood,

hydrocarbons and many other liquids, either conducting or not, in which they are im-

mersed, covers a wide range of heat and mass transfer areas of invaluable importance
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in physical and mathematical applications [1]. This class of ferrofluids, as they are

named, exhibit a number of interesting behaviors when subjected to spatially varying

or oscillating magnetic fields, where these characteristics can be readily utilized in nu-

merous technological and biomechanical applications [1]–[3]. Modeling purposes permit

the assumption of spherical magnetic particles, due to their small size and volumetric

concentration in the generally Newtonian conductive carrier liquid. The Brownian mo-

tion of the particles is the mechanism that controls the stability of the suspension and

the micro–particles act like rigid magnetic dipoles [1] that can respond to any applied

magnetic field, which perturbs the flow and affects the phenomenon by preventing the ro-

tation of each small particle, increasing the effective viscosity and causing the emergence

of an additional magnetic pressure term. The induced magnetic field, which is produced

by the electric current in the ferrofluid, can be neglected in several applications. How-

ever, in the general consideration, the total magnetic field (referred to as magnetic field)

comprises the superposition of both the applied and the induced fields.

The system of partial differential equations for micropolar magnetic fluids flow [1]–[3]

includes the equations of momentum (Navier–Stokes), continuity, Maxwell, energy (when

thermomechanics of magnetic fluids [2] is considered), angular momentum and magneti-

zation, all coupled with each other and expressed in terms of the velocity, the pressure

and the magnetic field, as well as several constant hydrodynamic and magnetic parame-

ters. To this end, principles of both ferrohydrodynamics and of magnetohydrodynamics

serve as platforms, where the first one is concerned with the mechanics of motion of

the micropolar fluids that is influenced by strong forces of magnetic polarization, while

the latter deals with the current distribution of the electrically conductive carrier liq-

uid. However, the necessity for analytical and theoretical models with fitting in real–life

physical regimes, demand the simplification of the above system of equations in terms

of practical explanations. For instance, a very important limiting case is based on the

assumption of the creeping magnetic flow for small Reynolds numbers [4], leading to

Stokes magnetic equations [5] with many important applications. On the other hand,

the angular momentum equation can be readily manipulated [1], [5] and absorbed into

the already simplified momentum equation, while the generalized form of the equation

of magnetization [1], [5] is reduced to a collinear relation with the magnetic field, which

is actually true as a fair approximation of nil relaxation time for magnetization and very

slow motion [5]. Consequently, the combination of the hydrodynamic flow [4] with the

properties of such micropolar conducting fluids [1]–[3], [5], illuminated by a magnetic

field, provides us with the most appropriate tools for developing and solving boundary

value magnetohydrodynamic and ferrohydrodynamic problems that are equipped with

high mathematical and technical complexity, especially when time is encapsulated.

Those situations strongly require the development of analytical and mathematical

techniques, which capture the essential features of the transport or fluid process under

consideration in an analytical formula (before implementing a possibly inevitable numeri-

cal code) that incorporates properly the geometrical and physical characteristics with the

minimum of simplifications. The general idea arises from the question of how far an an-

alytical modeling of a physical problem may go. Since the cross–line of such applications

is the retaining or the omission of the convection terms in the Navier–Stokes equations
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for magnetic fluids, we wish to push this line to the limit, where analytical procedures are

not enough and the introduction of computational analysis becomes necessary. Within

this precise aspect, the potential representation theory for the Stokes flow, which has

evolved rapidly during the past [6]–[11], offers the perfect environment for tackling with

analytical models, incorporating solutions in the form of differential representations for

Stokes flows, which provide the velocity and the total pressure fields in terms of easy–

to–handle potentials. Beyond the aim of pure hydrodynamic perspective, recently [12], a

semi–analytical approach for the steady and incompressible flow of a Newtonian, as well

as an electrically conducting carrier liquid, including a small concentration of magnetic

particles, under the effect of an applied magnetic field, has been studied, which was the

improvement of a first attempt in [5], where there the magnetization was hypothesized

by the constant saturation expression.

Our main purpose is to extend further the analytical method highlighted in [12] and

develop a quite comprehensive semi–analytical general solution of the magnetic ferrofluid

flow equations, where the introduction of the catholic time–dependence inherits the nov-

elty to this work. Although differential solutions of the unsteady homogeneous or non–

homogeneous hydrodynamic Stokes flows have already appeared in the literature [13],

[14], in this paper we imply magnetic ferrofluids that react in the presence of an arbi-

trarily orientated 3–D time–varying magnetic field, taking under consideration both the

magnetization and the Lorentz forces (that correspond to the electric currents) in the

momentum equation. Then, we construct a reliable time–dependent model independent

of any geometry, which provides us with the flow fields in ready–to–use elegant form, in

view of known potentials, comprising solutions of inhomogeneous diffusive equations. To

accomplish that, we are working in the applied mathematical analysis framework using

classical bibliography [15], [16] and we prove the completeness of this integro–differential

representation of the flow fields for the aforementioned physical system, which can allow

for further computational handling regarding the resulting integral formations [17]. In the

absence of a magnetic field or in the case of a non–magnetic normal fluid, our solution

reduces to the already known differential general solution for unsteady hydrodynamic

Stokes flow [13].

The analytical section of this manuscript is followed by the application of the obtained

representation to the computation of the velocity and total pressure fields of the creeping

flow within a duct of circular cross–section in three (3–D) dimensions, simulating a

micropolar liquid with electrically conducting nature, where the flow fields suppose easily

amenable integral equations.

2. Physical and mathematical formulation. Practical physical applications of

mathematical nature in engineering technology and biomechanics involve the low–

Reynolds number flow of micropolar conducting ferrofluids under the effect of magnetic

fields. In order to encounter such applications, we assume the time–dependent creeping

flow of a viscous (constant dynamic viscosity η) and incompressible (constant mass den-

sity ρ) Newtonian magnetic fluid of kinematic viscosity ν = η/ρ within a smooth three–

dimensional environment V (R3) ≡ V , which could be either bounded with surrounding

boundary surface ∂V (R3) ≡ S or unbounded, taking as S → +∞, when the case might
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be. However, problems in two dimensions R2 are also considered and treated in the same

sense. The ferromagnetic particles of the micropolar colloidal fluid–solution are consid-

ered spherical, due to their small size, with radius rp and density ρp, while the conductive

carrier liquid possesses a constant electric conductivity σ. Henceforth, since the proceed-

ing method is independent of the geometry of the 3–D flow, every field quantity is written

in terms of the spatial position vector r = x1x̂1+x2x̂2+x3x̂3, expressed via the Cartesian

basis x̂j for j = 1, 2, 3 in Cartesian coordinates (x1, x2, x3) and the time variable t > t0,

t0 being an initial observation point, where dependence (r, t) is omitted for writing con-

venience. The Brownian motion controls the stability of the suspension and the particles

act like rigid magnetic dipoles, whose rotation is prevented under the application of an

arbitrary external 3–D magnetic field H (of measure H = |H|), increasing the effective

viscosity of the magnetic fluid and introducing a magnetic pressure, which affects the to-

tal pressure. Practically, the field H is given by the summation of the applied magnetic

and the demagnetizing field in the ferrofluid, where the latter is frequently neglected

in several applications, permitting H to stand for the applied magnetic field thereafter,

where in general, it depends on time as well.

Based on the fundamentals of both ferrohydrodynamics and magnetohydrodynamics,

the governing equation that relates the velocity field v (giving v = |v|) with the total

pressure field P = Pt+ρgh (Pt denoting the thermodynamic pressure, whereas g = −gĥ

defines the gravity acceleration of measure g and ρgh referring to the hydrostatic pressure

force, which corresponds to a basic height of reference h in the ĥ direction) for Reynolds

number Re � 1, resulting in the vanishing of the convection terms ρv · (∇ ⊗ v), is

appropriately given in terms of the time derivative ∂/∂t ≡ ∂t, the invariant gradient ∇
and Laplacian Δ differential operators. Otherwise, it is conveyed via the time-dependent

momentum equation [1]–[3], [5]

ρ
∂v

∂t
= η(1 + δ)Δv −∇P + μ0(∇⊗H) ·M+ j×B (1)

for a micropolar electrically conducting ferrofluid. On the other hand, the continuity

equation [4]

∇ · v = 0 (2)

secures the mass conservation of the incompressible magnetic fluid. Once the velocity

field is obtained, the vorticity field Ω (of measure Ω = |Ω|) is defined as Ω = ∇×v. The

dyadic symbol “⊗” stands for a juxtaposition connection between vectors (Ĩ yielding the

unit dyadic), while as it is demonstrated in [5],

ηf ≡ ηδ =
τBμ0M0H

4[1 + (τS/I)τBμ0M0H]
, where M0 = nm(coth ξ − ξ−1) with ξ =

mμ0H

KT
,

(3)

defines the additional effective viscosity caused by the interaction between the magnetic

particles and the applied magnetic field (note δ = δ(H)), while M0 = M0(H) is the equi-

librium magnetization, reading in terms of the Langevin function [1], where m specifies
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the magnetic moment of a particle. Providing some useful notation, τS = r2pρp/15η0 is the

relaxation time of a single particle rotation (η0 corresponding to the rotational viscosity),

I = 8πr5pρpn/15 comprises the sum of moments of inertia of the spherical–type ferro-

magnetic particles per unit volume (n being the number of particles per unit volume and

φ = (4/3)πr3pn referring to the volumetric concentration of particles), τB = 4πηr3p/KT

is the relaxation time of Brownian rotation (K being the Boltzmann’s constant and T

denoting the constant temperature for our isothermal problem) and μ0 is the magnetic

permeability of the free space (vacuum). The rest of the fields implicated in (1) are

as follows. The magnetic induction B of measure B = |B| is summed by the applied

and the induced one, caused by the ferromagnetic material, while the magnetization

M (measure M = |M|) refers to the total magnetization of both the colloidal suspen-

sion of particles and the carrier liquid, which in fact does not have substantial magnetic

properties. For a linear, homogeneous and isotropic medium of magnetic permeability

μ = μ(H) (zero magnetization relaxation time is presumed), both are formulated by the

proceeding constitutive and linearly dependent relationships [1]

B = μ0(H+M) = μH with μ = μ0

(
1 +

M0

H

)
, since M =

M0

H
H (for Re � 1 then ΩτB � 1),

(4)

where [5] reveals all the logical steps to obtain a collinear relation of M and H, due

to slow motion. Additionally, j is the conduction current density of the carrier fluid,

satisfying the continuity equation ∇ · j = 0 (the contribution of the electrical currents

of the ferromagnetic particles is considered small, due to their small concentration),

where Maxwell’s equations, which are reduced in a simpler form for the case where the

displacement currents are absent and no electric field is present, supplement (1)–(4) and

they are rendered by the Ohm’s law and the Gauss’s magnetism law [5], i.e.

j = σ(v ×B) and ∇ ·B = 0. (5)

Obviously in (1), η(1 + δ)Δv corresponds to the viscous terms, since 1 + δ = (η +

ηδ)/η = (η + ηf )η is the ratio of the viscosity of the micropolar fluid in the presence

of magnetic particles over the viscosity of the fluid in the absence of them, ∇Pf ≡
−μ0(∇ ⊗ H) · M yields the additional pressure ferromagnetic force gradient, leading

to an apparent total pressure field of gradient ∇P − μ0(∇ ⊗ H) · M and the Lorentz

force of the conductive fluid is exhibited by the term j × B. If there exist no magnetic

particles and the fluid is non–conducting, we arrive at the well–known Stokes equations

(for creeping hydrodynamic flow), which is the same result we attain in the case of zero

applied magnetic field.

The system of the momentum equation (1), accompanied by (3) and (4), the con-

tinuity equation (2) and the Maxwell’s equations (5) constitute a complete system for

solving general ferrohydrodynamic problems of micropolar electrically conducting fluids,

assuming the unsteady Stokes flow restriction and imposing the proper boundary and

initial conditions, depending on the requirements of the physical problem.
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3. Integro–differential general solution – Completeness. A semi–analytical

differential solution, interfered with integral equations, of the ferromagnetic Stokes equa-

tions of conducting liquids is displayed and provides the three–dimensional time–

dependent flow fields, which occupy any non–axisymmetric area, perturbed by an arbi-

trarily orientated 3–D magnetic field. It is given in an integral–type closed form in terms

of differential operators acting on potential functions, which are solutions of amenable

diffusion partial differential equations and contains the applied magnetic field, the effec-

tive viscosity, the magnetic pressure and several constant characteristic parameters of

the particular flow. To this aim, we introduce the main theorem of this article.

Theorem. The integro–differential representation of solutions for (1) and (2) with (3)–

(5), assuming

v = ∇×(rA)+∇×∇×(rB) and P = P0−nKT ln
eξ

sinh ξ
−η(1+δ)(ϕ−Ψ−r·∇Ψ) (6)

is complete, where P0 is a constant reference pressure, while the scalar potentials A and

B satisfy the following non–homogeneous diffusive equations, in terms of the harmonic

potential Ψ, those being

(Δ− ν−1∂t)A = χ and (Δ− ν−1∂t)B = ψ +Ψ with ΔΨ = 0 (7)

with ∂/∂t ≡ ∂t. The functions χ and ψ are provided as solutions of the partial differential

equations

Lχ = −r · ∇ × f and Lψ = −r · (f −∇ϕ), (8)

where L is the dimensionless transverse part of the Laplacian operator and if E(r, r′)
is the Laplace’s fundamental solution with prime denoting definition with respect to
position r′, then the integral–type function ϕ admits

ϕ =

∫∫∫
V
E(r, r′)(∇′·f ′) dV ′ with f =

1

η(1 + δ)

[ ∇δ

1 + δ

(
P+nKT ln

eξ

sinh ξ

)
+σμ2H2

(
Ĩ− H⊗H

H2

)
· v

]
.

(9)

Proof. Our first task will be the simplification of (1), with the aid of (3)–(5), so as to

appear in a more elegant form for further analytically mathematical processing. Bearing

this in mind, we perform some calculations, based on vector analysis and we expand H

and M in the Cartesian system, to obtain

μ0(∇⊗H) ·M = μ0

3∑
i,j=1

(∇Hi)⊗ x̂i ·Mjx̂j = μ0

3∑
j=1

Mj∇Hj

= μ0
M0

H

3∑
j=1

Hj∇Hj = μ0M0∇

√√√√ 3∑
j=1

H2
j = μ0M0∇H

= nKT

(
coth ξ − 1

ξ

)
∇ξ = −∇Pf , where Pf = nKT ln

eξ

sinh ξ
and ξ =

mμ0H

KT
,

(10)
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where the additional pressure term Pf , due to the magnetic particles, has been recovered,

while the Lorentz forces yield

j×B = σ(v ×B)×B = −σμ2H× (v ×H) = −σμ2(H2v − (v ·H)H)

= −σμ2H2v ·
(
Ĩ− H⊗H

H2

)

= −η(1 + δ)v · S̃, where S̃ = S̃
T =

σμ2H2

η(1 + δ)

(
Ĩ− H⊗H

H2

)
,

(11)

projecting the velocity field on the plane that is perpendicular to the direction of the

magnetic field. The symbol “T” denotes transposition that provides an inverted symmet-

ric (v · S̃ = S̃ · v) dyadic. Finally, straightforward application of a trivial vector identity,

implicating the gradient operator, leads to

∇(P + Pf )

η(1 + δ)
= ∇

[
P + Pf

η(1 + δ)

]
− (P + Pf )∇

[
1

η(1 + δ)

]

= ∇
[
P + Pf

η(1 + δ)

]
+

P + Pf

η(1 + δ)
∇ [ln(η(1 + δ))]

= ∇p+ sp, where p =
P + Pf

η(1 + δ)
and s = ∇ [ln(η(1 + δ))] ,

(12)

which manages efficiently the pressure terms. Collecting the outcomes (10)–(12) with

definition (3), we substitute them within (1), arriving at

1

ν(1 + δ)
∂tv ∼= ν−1∂tv = Δv−Δp−f , where f = sp+v·S̃, provided that ∇·v = 0, (13)

which is the unsteady Stokes ferrohydrodynamic and magnetohydrodynamic equation

for the creeping motion and it is accompanied by the necessary continuity equation (2).

The first approximate equality in (13) rises from the fact that the left–hand side of it is

not affected by the increase of the effective viscosity in comparison with the rest of the

terms, i.e. the viscous ones. Yet, function f contains the two fields under computation

(velocity and pressure) in an algebraic fashion for further elaboration.

At this stage we shall work within the framework of the spherical geometry [16] to

simplify the steps of our proof, but the final result will be independent of the geometry,

as stated in (6)–(9), hence the generality of the theorem is kept untouched. In spherical

coordinates, the transverse part of Laplacian operator excluding the factor 1/r2 is L =

[r2Δ− ∂r(r
2∂r)], in terms of the spherical radial r = |r|, when ∂/∂r ≡ ∂r. By virtue of

the amenable expression (13) and since f is sufficiently smooth on the bounded simply

connected domain V , we adopt the technique from [13] to express this function as

f = ∇ϕ+∇× (rχ) +∇×∇× (rψ), (14)
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where φ, χ and ψ are the given scalar functions, which are solutions of the trivial system

(see [10])

Δϕ = ∇·f ,
[
r2Δ− ∂r(r

2∂r)
]
χ = −r·∇×(f−∇ϕ) and

[
r2Δ− ∂r(r

2∂r)
]
ψ = −r·(f−∇ϕ),

(15)

respectively, Such decomposition has been proved in [10] for bounded domains with

the aid of the principal reference [6] and has been extended to unbounded regions, as

demonstrated in [11], [13]. Since the solutions for functions χ and ψ depend on the

ϕ potential that satisfies a Poisson’s partial differential equation, then we may use the

fundamental solution of the Laplace’s operator

E(r, r′) = − 1

4π

1

|r− r′| for r, r
′ ∈ V (R3) or E(r, r′) = − 1

2π
ln

1

|r− r′| for r, r
′ ∈ V (R2),

(16)

providing ΔE(r, r′) = δ(r− r′) according to the delta function, in order to reveal that

ϕ =

∫∫∫
V

E(r, r′)(∇′ · f ′)dV ′, where ∇′ ≡ ∇r′ , dV
′ ≡ dV (r′) and f ≡ f(r′, t), (17)

the same notation being followed in the sequel for any r′ ∈ V with r 
= r′, much as if V

is unbounded (S → +∞) and f vanishes sufficiently fast at infinity.

Inserting (14) into (13), we render

(Δ− ν−1∂t)v = ∇(p+ ϕ) +∇× (rχ) +∇×∇× (rψ) with ∇ · v = 0, (18)

while operating divergence on (18), commuting properly and using condition (2), we are

concluding to

Δ(p+ ϕ) = 0, (19)

which implies that function p+ ϕ is harmonic, i.e.,

p+ ϕ = Φ or p = −ϕ+Φ, where ΔΦ = 0. (20)

Herein, let us recall that ϕ satisfies (17), while p includes the total pressure field under

calculation through the definition (12), utilizing (10), which completes our proof for P ,

given within (6)–(9), where Φ admits a specific form, as will be shown next. That way

we accomplished the decoupling of the velocity field from the total pressure, where the

latter is proved to satisfy (20). We proceed by substituting p + ϕ from (20) into the

equation (18), which reads as

(Δ− ν−1∂t)v = ∇Φ+∇× (rχ) +∇×∇× (rψ) with ∇ · v = 0. (21)

The key method to our work is based on the manipulation of (21) in order to recover

the velocity v. To this end we recall the theorem developed in [6] and since v is a

divergence–free (∇ · v = 0) vector field that possesses partial derivatives of orders up to

two, which are Hölder continuous on V , there exist scalar functions A and B, such that

v = ∇× (rA) +∇×∇× (rB), (22)

which satisfy the partial differential equations

[r2Δ− ∂r(r
2∂r)]A = −r · ∇ × v and [r2Δ− ∂r(r

2∂r)]B = −r · v. (23)
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The aforementioned theorem is valid for a bounded V but its proof has been diversified

for solenoidal fields in an infinite domain [11], hence it is general. Our aim is to find

these scalar potentials A and B that are solutions of (23), by making use of (21)–(22).

Primarily, we have to withdraw a note following a lemma from [9], which addresses the

fact that the operators Δ, [r2Δ − ∂r(r
2∂r)] and ∂t commute. In that sense, following

similar steps as those in [13] for the inhomogeneous unsteady hydrodynamic Stokes flow,

we work as follows. Initially, we concentrate on B, hence we operate Δ(Δ − ν−1∂t) on

both sides of the second relationship of (23), we use the above comment and we calculate

[r2Δ−∂r(r
2∂r)]{Δ(Δ− ν−1∂t)B} = −Δ(Δ− ν−1∂t)(r ·v) = −r ·Δ(Δ− ν−1∂t)v, (24)

in view of the identities Δ(r · v) = r · Δv (note that Δr = 0, (∇ ⊗ r)T : ∇ ⊗ v =

Ĩ : ∇ ⊗ v = ∇ · v = 0) and Δ2(r · v) = r · Δ2v, since ∂tr = 0. On the other hand,

aiming to expunge v from (24), we apply the Laplace’s operator Δ on (21), we consider

the harmonic character of Φ from (20) and we execute some analytical calculations with

identities of vector differential analysis such as above (e.g. Δr = 0,∇× r = 0, ∇ · r = 3

and ∇⊗ r = Ĩ) to obtain

Δ(Δ− ν−1∂t)v = ∇×Δ(rχ) +∇×∇×Δ(rψ)

= ∇× (rΔχ+ 2∇χ) +∇×∇× (rΔψ + 2∇ψ)

= ∇× (rΔχ) +∇×∇× (rΔψ) = ∇(Δχ)× r+∇∇ · (rΔψ)−Δ(rΔψ)

= ∇(Δχ)× r+∇[3Δψ + r · ∇(Δψ)]− rΔ2ψ − 2∇(Δψ)

= ∇(Δχ)× r+∇[Δψ + r∂r(Δψ)]− rΔ2ψ, (25)

where the alternation of the differential operators ∇,∇·,∇× and ∇ × ∇× has been

extensively used, while r·∇ = r∂r. We invoke (25) into (24)and attaining r·∇(Δχ)×r = 0

and r · r = r2, we end up with

[r2Δ− ∂r(r
2∂r)]{Δ(Δ− ν−1∂t)B} = −r · {∇[Δψ + r∂r(Δψ)]− rΔ2ψ}

= −r∂r[Δψ + r∂r(Δψ)] + {∂r(r2∂r) + [r2Δ− ∂r(r
2∂r)]}(Δψ)

= [r2Δ− ∂r(r
2∂r)](Δψ)

(26)

or similarly

[r2Δ− ∂r(r
2∂r)]{Δ(Δ− ν−1∂t)B−Δψ} = 0 ⇒ Δ[(Δ− ν−1∂t)B−ψ] = f(r) ≡ 0, (27)

where f comprises an arbitrary function of r, which has been taken equal to zero without

loss of generality of the method (see [9] for the proof). Therein, partial differential

equation (27) enjoys

(Δ− ν−1∂t)B − ψ = Ψ or (Δ− ν−1∂t)B = ψ +Ψ, where ΔΨ = 0, (28)

which is an inhomogeneous diffusive equation for the unknown function B. Similarly, we

handle the case for evaluating function A, by acting henceforth as follows. We reinforce

a direct application of (Δ − ν−1∂t) on the first part of equation (23), we commute the

corresponding operators [9], we use the previous techniques and results, adding that
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∇ · ∇ × v = 0 and we take the rotation on (18), to reach

[r2Δ− ∂r(r
2∂r)]{(Δ− ν−1∂t)A} =−(Δ− ν−1∂t)(r · ∇ × v) = −r · (Δ− ν−1∂t)(∇× v)

= −r · [∇×∇× (rχ) +∇×∇×∇× (rψ)]

= −r · [∇∇ · (rχ)−Δ(rχ)] + r · ∇ × [rΔψ + 2∇ψ]

= −r · [∇(3χ+ r · ∇χ)− rΔχ− 2∇χ]

= −r∂r(χ+ r∂rχ) + {∂r(r2∂r) + [r2Δ− ∂r(r
2∂r)]}χ

= [r2Δ− ∂r(r
2∂r)]χ (29)

or equivalently

[r2Δ− ∂r(r
2∂r)]{(Δ− ν−1∂t)A− χ} = 0 ⇒ (Δ− ν−1∂t)A− χ = g(r) ≡ 0, (30)

where for the same reason as sketched above the arbitrary function g(r) is set to nil [9].

Therefore,

(Δ− ν−1∂t)A− χ = 0 or (Δ− ν−1∂t)A = χ, (31)

which stands for an inhomogeneous diffusive equation with respect to the unknown func-

tion A. Hence, we were able to obtain the potentials A and B in a diffusive fashion

from (28) and (31), respectively, when functions ϕ, χ and ψ are retrieved from (15) if

[r2Δ−∂r(r
2∂r)] = L. Then, the velocity field is provided through (22) and, consequently,

we ended up with the completeness for v, summarized in (6)–(9)

To complete our proof we are obliged to put together the analytical tools in (21),

use decomposition (22) and non–homogeneous diffusion equations (28) and (31) so as

to derive an interrelation between the harmonic potentials Φ and Ψ, appearing within

(20) and (28), respectively. This is doable, since acting this way and performing similar

analytical assumptions as previously, we find

∇Φ = (Δ− ν−1∂t)[∇× (rA) +∇×∇× (rB)]−∇× (rχ)−∇×∇× (rψ)

= ∇× {r[(Δ− ν−1∂t)A− χ] + 2∇A}+∇×∇× {r[(Δ− ν−1∂t)B − ψ] + 2∇B}
= ∇×∇× (rΨ) = ∇∇ · (rΨ)−Δ(rΨ) = ∇(Ψ + r · ∇Ψ)

(32)

so that, in terms of a constant c ∈ R,

Φ = (Ψ + r · ∇Ψ) + c, where ΔΦ = 0 and ΔΨ = 0. (33)

Result (33) is actually a compatibility relation between Φ and Ψ, which is immediately

verified if we practice the Laplacian operator onto (33), but it also secures the validity

of our general representation. In addition, relationship (33) allows us to use only the

harmonic potential Ψ in our solution, since Φ is related to Ψ. Consequently, if we use

(33) into (20) and apply the replacement P0 = η(1 + δ)c, which stands for a constant

pressure of reference, chosen accordingly to the physical problem, then we obtain the

pressure field in (6) of our theorem. The integro–differential representation (6)–(9) is

proved then to be complete and independent of any orthogonal curvilinear geometry,

since the final formulae that are depicted, utilize invariant operators. This terminates

the proof of the theorem.
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The essence of the general semi–analytical solution (6)–(9) has assimilated into a mixed

type integro–differential form with respect to function f . There exist several ways to solve

this system, involving either analytical or numerical methods [17], in view of an initial

properly adjusted guess for v and P . For instance, an analytical way to deal with (6)–

(9) is to pursue a solution of the integral equation (9) such as the Nyström or Neumann

series method. On the contrary, if there is no field (H = 0) or in the case of absence of

magnetic particles (φ = 0) and non–conducting fluid (σ = 0), our representation (6)–(9)

reduces to the already known general unsteady Stokes flow solution [13].

4. Application and demonstration of the integro-differential representa-

tion. In order to illustrate our semi–analytical integro–differential solution (6)–(9), we

address a particular boundary value problem, which is drawn from the library with

physical problems in hydrodynamics. In detail, we consider the unsteady and creeping

micropolar flow of a conducting ferrofluid in a straight circular cylindrical tube, which is

perturbed by a time–dependent magnetic field and we formulate the problem with respect

to an infinite circular cylinder of a fixed radius α. In terms of the cylindrical variables

ρ ∈ [0,+∞) (actually it is ρ ∈ [0, α) in our case), ϕ ∈ [0, 2π) and z ∈ (−∞,+∞), we

define the implemented to our application (for any t > t0) circular cylindrical coordinate

system via

r =

3∑
j=1

xjx̂j = zx̂1 + ρ cosϕx̂2 + ρ sin ϕx̂3 = ρρ̂+ zẑ, (34)

where the unit normal coordinate vectors of this system ρ̂, ϕ̂, ẑ, as written to denote the

(ρ, ϕ, z) right–handed system, assume the form

ρ̂ = −∂ϕ̂

∂ϕ
= cosϕx̂2 + sinϕx̂3, ϕ̂ =

∂ρ̂

∂ϕ
= − sin ϕx̂2 + cosϕx̂3 and ẑ = x̂1, (35)

respectively. The gradient and the Laplacian differential operators yield

∇ =

3∑
j=1

x̂j
∂

∂xj
= ρ̂

∂

∂ρ
+

ϕ̂

ρ

∂

∂ϕ
+ ẑ

∂

∂z
and Δ =

3∑
j=1

∂2

∂x2
j

=
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2
,

(36)

while it can be easily verified that

∇⊗ ρ̂ =
1

ρ
ϕ̂⊗ ϕ̂,∇⊗ ϕ̂ = −1

ρ
ϕ̂⊗ ρ̂ and ∇⊗ ẑ = 0̃, (37)

whereas 0̃ stands for the zero dyadic, while in this geometry, the unit dyadic admits

∇⊗ r = Ĩ =
3∑

j=1

x̂j ⊗ x̂j = ρ̂⊗ ρ̂+ ϕ̂⊗ ϕ̂+ ẑ ⊗ ẑ. (38)

The physical problem that we are about to solve, is mathematically adjusted to this type

of circular cylindrical geometry, where the x1–axis is the axis of symmetry of an infinite

circular cylinder and the other two axes are located properly so as to obtain the (ρ, ϕ, z)

clockwise system. All the information described in (34)–(38) is trivial and can be found

among other details in [16], but we inserted it here just to make this work complete

and independent. Next and during the forthcoming analysis every field is defined for
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(r, t) ≡ (ρ, ϕ, z, t) in V (R3) ≡ W = {(ρ, ϕ, z) : ρ ∈ [0, α), ϕ ∈ [0, 2π), z ∈ (−∞,+∞)} for

any t > 0. Nevertheless, in practice, the area of observation is delimited for z ∈ (0, �),

where � could be the length of the duct, where the magnetic field is applied.

The boundary value problem for the evaluation of the flow fields v and P is supple-

mented by the appropriate boundary conditions fixed on the boundaries of the cylinder

and the initial condition at the beginning of the phenomenon, where we assume that

coincides with t = t0 ≡ 0. Correspondingly, those are the non–slip conditions on the wall

of the duct,

v(r, t) = 0 at ρ = α for ϕ ∈ [0, 2π), z ∈ (−∞,+∞) and t > 0, (39)

as well as the requirement that the velocity field at the supposed infinite inlet and outlet of

the duct, where there exists no magnetic field, obtains the fully developed 1–D parabolic

profile in the classical hydrodynamics, where components perpendicular to the main flow

vanish (ρ̂ · v(r, t) = ϕ̂ · v(r, t) = 0), while

ẑ · v(r, t) = ẑ · vP(ρ) at z → ±∞ for ρ ∈ [0, α), ϕ ∈ [0, 2π) and t > 0, (40)

where the pair (vp(ρ), PP(z)) for every ρ ∈ [0, α) and z ∈ (−∞,+∞), which is given by

lim
z→±∞

v(r, t)≡vP(ρ) =
A

4η
(α2−ρ2)ẑ with

dPP(z)

dz
=−A, resulting in PP(z)=−Az+PP,0

(41)

correspond to the classical Poiseuille flow that satisfies the system of the well–known

steady Stokes equations ηΔvP(ρ) = ∇PP(z) and ∇ · vP(ρ) = 0 in the case where the

magnetic field is absent. Here, the term −A ≡ dPP/dz < 0 is the constant axial pressure

gradient of the known Poiseuille flow, while the arbitrary constant of integration PP,0 is

chosen as much to obtain consistency at infinity. Though it does not affect the uniqueness

of the solution, sine pressure field enters momentum equation (1) under the gradient

operation. Finally, the initial condition that actually allows us to initiate the procedure

of the flow mechanism at t > 0, is set at some point when the fluid is assumed to be

moving as a Poiseuille fluid and just before the magnetic field is activated, declaring that

v(r, t) = vP(ρ) for t = 0 with ρ ∈ [0, α), ϕ ∈ [0, 2π) and z ∈ (−∞,+∞), (42)

which concludes a well–posed problem.

Before we proceed to the imposition of the derived general solution (6)–(9) and attach

it to the conditions (39)–(40) and (42), we can further manipulate the physical state.

Primarily, we decompose suitably the velocity and the total pressure as

v(r, t) = vP(ρ) + vg(r, t) and P (r, t) = PP(z) + Pg(r, t) (43)

in terms of vP(ρ) and PP(z) (see (41)), where the velocity vg(r, t) and the total pressure

Pg(r, t) encounter the unknown fields that must be retrieved via our complete and general

integro–differential representation (6)–(9). The reason for this splitting lies on the fact

that at the limit when the length of the cylinder tends to infinity z → ±∞, we presume

condition (40), which now is converted to

lim
z→±∞

vg(r, t) = 0 with lim
z→±∞

Pg(r, t) = 0 for ρ ∈ [0, α), ϕ ∈ [0, 2π) and t > 0, (44)
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a condition that must be automatically satisfied as soon as the flow fields (vg, Pg) are

calculated via the basic theorem (6)–(9).

Summarizing all of the above, we have to construct the velocity and the total pressure

fields (43), given (6)–(9), accompanied by the appropriate boundary (39)–(40) and initial

(42) conditions, whereas the conducting micropolar fluid is excited by a hypothesized

constant and generally time–dependent uniform magnetic field

Hc(t) =

3∑
j=1

Hj,c(t)x̂j with measure Hc(t) =

√√√√ 3∑
j=1

H2
j,c(t), (45)

as is taken for simplicity, which is known and agrees with the imposed restrictions in
section 2. Its form implies

δ(t) =
τBμ0M0,c(t)Hc(t)

4η
(
1 + τS

I
τBμ0M0,c(t)Hc(t)

) , where M0,c(t) = nm

(
coth

mμ0Hc(t)

KT
− KT

mμ0Hc(t)

)
,

(46)
which is definition (3) for the present illumination, yielding ∇δ(t) = 0. Therefore,
function f(r, t;vg) within (9) (see also (4) and (11)) is affected such as

f(r, t;vg) = vg(r, t)·S̃(t) = S̃(t)·vg(r, t) with S̃(t)=
σμ2

0(Hc(t) +M0,c(t))
2

η(1 + δ(t))

(̃
I−Hc(t)⊗Hc(t)

H2
c (t)

)
,

(47)

while, for this dependence, the magnetic pressure entering (6) assumes

Pf (t) ≡ nKT ln
eξ

sinh ξ
= nKT

(
1 + ln

mμ0Hc(t)

KT sinhmμ0Hc(t)
KT

)
(48)

and those are the terms appearing in our theorem that include the applied magnetic field

(45).

Another crucial factor is the determination of the potential functions ϕ(r, t;vg) and

Ψ(r) (actually it is independent of the time), which are required in the generalized

representation. As far as ϕ(r, t;vg) is concerned and since we work within a three–

dimensional environment, we make use of the 3–D fundamental solution of Laplace’s

operator from (16), i.e.

E(r, r′)=− 1

4π

1

|r− r′| with |r−r′|=
√

ρ2+ρ′2 − 2ρρ′cos(ϕ− ϕ′)+(z − z′)2 for r 
=r′∈W

(49)

and with the aim of (9) and (47) (see also (36)) it holds

ϕ(r, t,vg) =

∫∫∫
W

E(r, r′)[∇r′ · f(r′, t;vg(r
′, t))]dW (r′) with ∇r′ ≡ ∇|r→r′ , (50)

which defines this Poisson’s potential in an integral form. On the other hand, Ψ(r)

is harmonic and since it belongs to the kernel space of Δ, it could be written in the
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cylindrical coordinate system in terms of the Bessel Jn(μρ) [16] and basic trigonometric

and hyperbolic functions as

Ψ(r)=

∞∑
n=0

∫ ∑
μ

Jn(μρ)[cosnϕ(α
μ
ncosh(μz)+bμnsinh(μz))+sinnϕ(cμncosh(μz)+dμnsinh(μz))],

(51)

where the parameter μ ∈ R, comes from the method of separation of variables of Laplace’s

equation and the unknown constant coefficients aμn, b
μ
n, c

μ
n and dμn for n ≥ 0 must be deter-

mined from the imposed conditions. Since our case involves an interior flow problem, we

use regular solutions on the axis of symmetry (ρ = 0), which means that the Neumann

functions Nn(μρ) [16] are excluded from the harmonic expansion (51). Moreover, the

introduced symbol “
∫ ∑

μ ...” denotes integration if μ takes continuous values or sum-

mation in the case where μ is a parameter with discrete values. For instance, if Ψ(r)

cancel at ρ = α, then we must set μ ≡ μm
n = rmn /α for n ≥ 0 and m ≥ 1, where rmn is

the m–root (m ≥ 1) of order n ≥ 0 of the Bessel function (Jn(r
m
n ) = 0). Consequently,

the defined symbol “
∫ ∑

μ . . .” is substituted by “
∑∞

m=1 . . .” inside (51), which stands

for the standard series symbol.

Once functions (47) and (50) are calculated, the second order partial differential equa-

tions (8) easily provide us with χ(r, t;vg) and ψ(r, t;vg). Indeed, since in the cylindrical

geometry.

L ≡ ρ2Δ− ρ
∂

∂ρ

(
ρ
∂

∂ρ

)
=

∂2

∂ϕ2
+ ρ2

∂2

∂z2
, (52)

then, in view of (36), we have to solve the inhomogeneous equations

∂2χ(r, t;vg)

∂ϕ2
+ ρ2

∂2χ(r, t;vg)

∂z2
= −r · ∇ × f(r, t;vg) with r = ρρ̂+ zẑ (53)

and

∂2ψ(r, t; vg)

∂ϕ2
+ ρ2

∂2ψ(r, t;vg)

∂z2
= −r · (f(r, t;vg)−∇ϕ(r, t;vg)) with r = ρρ̂+ zẑ, (54)

whose solutions can be derived with several methods (e.g. method of separation of

variables).

The basic potentials A(r, t;vg) and B(r, t;vg) admit the solutions of the non–

homogenous diffusive partial differential equations (7), as long as χ(r, t;vg), ψ(r, t;vg)

and Ψ(r) are sketched. Here, we choose to deploy them, by accounting the corresponding

fundamental solution

G(r, r′, t, t′)=
e
− |r−r′|2

4ν(t−t′)√
ν[4π(t− t′)]3

with |r−r′|2=ρ2+ρ′2−2ρρ′cos(ϕ−ϕ′)+(z−z′)2, t>t′>0

(55)

and therefore

A(r, t;vg) =

∫ t

0

∫∫∫
W

G(r, r′, t, t′)χ(r′, t′;vg(r
′, t′))dW (r′) dt′, (56)
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while

B(r, t;vg)=

∫ t

0

∫∫∫
W

G(r, r′, t, t′)[ψ(r′, t′;vg(r
′, t′))+Ψ(r′)] dW (r′) dt′, where ΔΨ(r)=0,

(57)

which are integral representations of the unknown velocity vg(r, t).

Now, we are ready to obtain the set (vg(r, t), Pg(r, t)) of flow fields from our integro–

differential representation (6), considering (56) and (57) with (55), given all information

in between (45)–(54). For the velocity (see proof steps of the main theorem for more

technical details of vector analysis) we obtain

vg(r, t) = ∇× (rA(r, t;vg)) +∇×∇× (rB(r, t;vg))

= ∇A(r, t;vg)× r+∇∇ · (rB(r, t;vg))−Δ(rB(r, t;vg))

= −r×∇A(r, t;vg) +∇[B(r, t;vg) + r · ∇B(r, t;vg)]− rΔB(r, t;vg)

= −r×∇A(r, t;vg) + 2∇B(r, t;vg) + r · ∇ ⊗∇B(r, t;vg)− rΔB(r, t;vg)

(58)

and for the corresponding total pressure

Pg(r, t) = P0 − Pf (t)− η(1 + δ(t))[ϕ(r, t;vg)−Ψ(r)− r · ∇Ψ(r)], (59)

where all functions have been defined. Our final task is to put all these analytical tools

together into the primary relation for the flow fields (43) and satisfy all conditions,

bearing in mind the Poiseuille flow (41). Hence, substituting (56) and (57) into (58) we

arrive at the velocity field of the fluid

v(r, t) = vP(ρ)−
∫ t

0

∫∫∫
W

{
χ(r′, t′;v(r′, t′)− vP(ρ

′))r×∇G(r, r′, t, t′)

+ [ψ(r′, t′;v(r′, t′)−vP(ρ
′))+Ψ(r′)+Ψ(r′)](2∇+r · ∇⊗∇−rΔ)G(r, r′, t, t′)

}
dW (r′) dt′,

(60)

whilst recalling (50), the total pressure field (59) of the solution assumes

P (r, t) = P0 + PP(z)− Pf (t)

− η(1 + δ(t))

{∫∫∫
W

E(r, r′)[∇r′ · f(r′, t;v(r′, t′)−vP(ρ
′))] dW (r′)−(1+r · ∇)Ψ(r)

}
,

(61)

where we may assimilate the two constant pressures appearing in (41) and (59) in a single

reference pressure Pc ≡ PP,0 + P0, while both expressions (60) and (61) are defined for

any r ∈ W and t > 0.

In order to complete our solution we are obliged to satisfy all conditions inferred. An

immediate consequence of the kind of integral involved into (60) with respect to time,

is that for t = 0 it vanishes, hence the initial condition reading (42) is automatically

satisfied. Proceeding to the boundary conditions now, we observe that as z → ±∞.

the fundamental form G(r, r′, t, t′) goes to zero very fast, as an immediate result from

the exponential function. This behavior also does not change at all for the factors
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r×∇G(r, r′, t, t′) and (2∇+ r · ∇⊗∇− rΔ)G(r, r′, t, t) into the velocity (60), which are

set to zero as we move far away from the critical domain of magnetic reaction. Then,

the integral within (60) vanishes and we recover the limiting condition (40), which is

exactly the same result obtained via (44). On the contrary, things are not so easy when

we deal with the boundary condition (39) on the walls of the cylinder. Employing this

final condition to the velocity field (60) and accounting limiting condition (41), we get

∫ t

0

∫∫∫
W

{
χ(r′, t′;v(r′, t′)− vP(ρ

′))r×∇G(r, r′, t, t′)

+ [ψ(r′, t′;v(r′, t′)− vP(ρ
′)) + Ψ(r′)](2∇+ r · ∇ ⊗∇− rΔ)G(r, r′, t, t′)

}
dW (r′) dt′ = 0

(62)

at ρ = α with every ϕ ∈ [0, 2π), z ∈ (−∞,+∞) and t > 0, which comprises the three

different integral relations, which are needed to calculate the unknown constant coeffi-

cients and the Bessel parameter, appearing into the expansion (51), in a semi–analytical

fashion. Then, the resulting integral equations can be solved with standard methods such

as the Nyström or Neumann series method. However, since this is a very cumbersome

task with many analytical manipulations, it stands beyond the purpose of the present

article.

An alternative approach (we just explain the algorithm) would be the pure numerical

implementation of the flow as it is, regarding relation (60) with condition (62) and in view

of the harmonic–type function Ψ(r), where an iterative procedure for every k = 0, 1, 2, . . .

must be followed for the velocity field v(k)(r, t), which is based on a first suitable ansatz,

where a preferable estimation is the fully developed 1–D parabolic profile of the classical

Poiseuille flow (41), i.e. v(0)(r, t) = vP(ρ). The total pressure (61) is not involved with

this method, since the primary function (9) that embodies the fields under consideration,

contains only the velocity field for this particular application (see for example (47)).

Sketching the basic steps, one may solve numerically the Laplace’s equation ΔΨ(r) = 0,

using any of the classical ways in literature, e.g. the Gauss–Seidel method and applying

boundary condition (62) for evaluating numerically Ψ(α, ϕ, z) for every ϕ ∈ [0, 2π) and

z ∈ (−∞,+∞). The convergence criterion for this internal iterative solution is

∣∣∣∣Ψ(t+1)(r)−Ψ(l)(r)

Ψ(l+1)(r)

∣∣∣∣
L2

< ε for every ρ∈ [0, α), ϕ ∈ [0, 2π) and z∈(−∞,+∞), (63)

where l is the number of the internal iteration, | · |L2
is the Euclidean norm and ε �

1 is a very small number, required for achieving convergence, whose value depends

on the method. When a converged solution for the internal procedure has been ob-

tained, potential Ψ(r) is substituted into relationship (60), where using required infor-

mation through (45)–(54) and for v(0)(r, t) = vP(ρ), the new estimation for the velocity

v(1)(r, t) can be computed. This completes one iteration of the solution procedure, which

continues until convergence is reached. The convergence criterion for the overall proce-
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dure is therein∣∣∣∣v(k+1)(r, t)− v(k)(r, t)

v(k+1)(r, t)

∣∣∣∣
L2

< ε for every ρ ∈ [0, α), ϕ ∈ [0, 2π), z ∈ (−∞,+∞) and t > 0,

(64)

where k denotes the iteration number. When the numerical repeating procedure shows

convergence for the velocity field (60), the corresponding functions, attributed to the

particular number of iteration, are then inserted into the total pressure field (61) in

order to provide us with the solution.

Under the aim to partly validate the aforementioned numerical procedure, we special-

ize the type of the conducting ferrofluid of our application to be comprised by ferromag-

netic particles of iron oxides embedded in the carrier fluid of blood (organic solvent), so

as to compare the results with those from reference [12], wherein a very similar demon-

stration has been presented for steady state situations. To do that, we consider in our

case a very large time–scale, approximating t → +∞, whereas the applied magnetic field

(45), in view of (3) and (4), becomes independent of time, that is,

lim
t→+∞

Hc(t) = Hc,∞ =
Bc,∞
μ∞

with measure Hc,∞ =
Bc,∞
μ∞

(65)

where

μ∞ = μ0

(
1 +

M0,c,∞
Hc,∞

)
with M0,c,∞ =

3mφ

4πr3p

(
coth

mμ0Hc,∞
KT

− KT

mμ0Hc,∞

)
, (66)

approaching the case of the applied field used in [12]. The comparison between the

two cases is shown in Figure 1 depicting the radial variation of the axial velocity ẑ ·
lim

t→+∞
v(r, t) ≡ ẑ · v∞(r) = vz,∞(ρ, ϕ, z) for every ρ ∈ [0, α), ϕ ∈ [0, 2π) and z ∈

(−∞,+∞) from (60) with the corresponding velocity component from reference [12] for

various values of the applied magnetic induction field Bc,∞ in (65) (actually, such fields

are practically measured) that range between Bc,∞ = 0.0Tesla and Bc,∞ = 0.1Tesla.

For completeness, we share here the same implicated properties and conditions with

those presented in [12], which were used for our simulation purposes. Hence, we con-

sider a constant room temperature T = 311K, while the blood–fluid stands for the

conducting liquid of conductivity σ = 0.8S/m, density ρb = 1050kg/m3 and dynamic

viscosity η ∼= η0 = 3.2 × 10−3kg/ms. On the other hand, the iron oxide–type ferro-

magnetic particles have density ρp = 5240kg/m
3
and radius rp = 10−8m, occupying

a volumetric percentage φ = 10% of the mixed–fluid, so that the assumptions, made

for the derivation of Stokes equations are consistent. Then, the micropolar mixed–fluid

density is given proportionally by ρ = 0.9ρp = 1469kg/m3, the kinematic viscosity being

ν = 2.178×10−6m2/s, while the magnetic moment of each particle is m = 2×10−18Am2,

the magnetic permeability of the free space (classical vacuum) is μ0 = 4π × 10−7N/A
2

and the Boltzmann’s constant is K = 1.3807× 10−23J/K. Proceeding to the geometrical

characteristics that affect the magnetic flow, the circular cylindrical duct is assumed to

have a radius of α = 10−3m to simulate a blood artery and its length � is adequate enough

to provide a fully developed flow. Therefore, by definition of the characteristic velocity U

as the mean axial velocity vz = U = 0.125× 10−3m/s and in terms of the characteristic
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Fig. 1. Axial velocity distribution along the radial direction of the
duct for various magnetic field strengths as t → +∞, within relation
(60). Comparison with the results from reference [12].

diameter D = 2α = 2× 10−3m, the Reynolds number is then Re = ρUD
η = 0.115, which

confines the boundaries of the creeping flow and this result complies with the physics we

describe in our theory and this application. The final results depicted in Figure 1, reveal

complete accordance with those forms [12], even though we have used the limiting case

of infinite time observation, providing though a reliable tool of validating our theory via

the present application.

Concluding, the velocity and the total pressure fields (60) and (61) of the conducting

ferrofluid under the uniform effect of a known and only time–dependent magnetic field,

offer the semi–analytical form of a mixed solution, given in terms of integral representa-

tions in the three–dimensional space (3–D). For the reduced case in which either there is

no magnetic field (H = 0) or the magnetic particles are absent (φ = 0) and we deal with

a non–conducting fluid (σ = 0), the fluid fields (60) and (61) obey the unsteady Stokes

law situation in hydrodynamics, whereas the corresponding results [4] are recovered after

some trivial analytical reduction method.

5. Conclusions and discussion. In this paper, we examined analytically how a

3–D arbitrarily orientated magnetic field perturbs an unsteady three–dimensional creep-

ing motion (Stokes flow) of a viscous incompressible micropolar ferrofluid of generally

non–zero electrical conductivity, where the magnetization of the carrier liquid was ap-

proximated by its equilibrium expression, while Lorentz forces were also counted.

We employed a semi–analytical method to evaluate the velocity and the total pressure

fields for such flows. This technique was drawn from the classical potential representation

theory for hydrodynamic flows and was extended properly to our case by constructing a

novel and complete integro–differential representation of magnetic Stokes flow of conduct-

ing ferrofluids, valid for any non–axisymmetric geometry and provides in an analytical
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fashion the flow fields in terms of easy–to–find harmonic–type and diffusive–type poten-

tials. The general representation degenerates to the well–known differential solutions for

Stokes flow in the time–dependent regime, met in the literature.

We demonstrated the usefulness and the applicability of our integro–differential gen-

eral solution by considering a particular physical boundary value problem of the Stokes

flow of a micropolar fluid with electrically conducting properties, moving inside a circular

tube under the influence of an otherwise space constant but time–dependent magnetic

field. We computed the velocity and the total pressure fields in a closed analytical form

for the special case of a 3–D creeping flow, proceeding to an adequate presentation via

simple integral expressions. Future work involves intensive numerical implementation of

applications and meddling with more complicated geometries, where cumbersome ma-

nipulations are required.

References

[1] B. Berkovski and V. Bashtovoy, Magnetic Fluids and Applications Handbook, Begell House, New
York, 1996.

[2] V. G. Bashotovoy, B. M. Berkovski and A. N. Vislovich, Introduction to Thermomechanics of
Magnetic Fluids, Hemisphere Publishing Corporation, New York, 1988.

[3] R.E. Rosensweig, Ferrohydrodynamics, Dover Publications, New York, 1997.
[4] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice Hall: Englewood Cliffs,

NJ, 1965 and Martinus Nijholl Publishers: Dordrecht, 1986.
[5] P. M. Hatzikonstantinou and P. Vafeas, A general theoretical model for the magnetohydrodynamic

flow of micropolar magnetic fluids. Application to Stokes flow, Math. Methods Appl. Sci. 33 (2010),
no. 2, 233–248, DOI 10.1002/mma.1170. MR2597203

[6] P. Chadwick and E. A. Trowbridge, Elastic wave fields generated by scalar wave functions, Proc.
Cambridge Philos. Soc. 63 (1967), 1177–1187. MR0218047

[7] Xin Sheng Xu and Min Zhong Wang, General complete solutions of the equations of spatial and
axisymmetric Stokes flow, Quart. J. Mech. Appl. Math. 44 (1991), no. 4, 537–548, DOI 10.1093/qj-
mam/44.4.537. MR1144982

[8] D. Palaniappan, S. D. Nigam, T. Amaranath, and R. Usha, Lamb’s solution of Stokes’s equations: a
sphere theorem, Quart. J. Mech. Appl. Math. 45 (1992), no. 1, 47–56, DOI 10.1093/qjmam/45.1.47.
MR1154762

[9] B. S. Padmavathi, G. P. Raja Sekhar, and T. Amaranath, A note on complete general solutions
of Stokes equations, Quart. J. Mech. Appl. Math. 51 (1998), no. 3, 383–388, DOI 10.1093/qj-
mam/51.3.383. MR1639020

[10] G. D. McBain, Convection in a horizontally heated sphere, J. Fluid Mech. 438 (2001), 1–10, DOI
10.1017/S0022112001003913. MR1849873

[11] B. Sri Padmavati and T. Amaranath, A note on decomposition of solenoidal fields, Appl. Math.
Lett. 15 (2002), no. 7, 803–805, DOI 10.1016/S0893-9659(02)00045-9. MR1920978

[12] Panayiotis Vafeas, Polycarpos K. Papadopoulos, and Pavlos M. Hatzikonstantinou, Analytical
integro-differential representation of flow fields for the micropolar Stokes flow of a conducting fer-
rofluid, IMA J. Appl. Math. 80 (2015), no. 3, 839–864, DOI 10.1093/imamat/hxu016. MR3394306

[13] A. Venkatlaxmi, B. S. Padmavathi, and T. Amaranath, Unsteady Stokes equations: some com-
plete general solutions, Proc. Indian Acad. Sci. Math. Sci. 114 (2004), no. 2, 203–213, DOI
10.1007/BF02829854. MR2062400

[14] D. Palaniappan, On some general solutions of transient Stokes and Brinkman equations, Journal
of Theoretical and Applied Mechanics 52 (2014), 405–415.

[15] P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Volumes I and II, McGraw–Hill,
New York, 1953.

[16] E. W. Hobson, The theory of spherical and ellipsoidal harmonics, Chelsea Publishing Company,
New York, 1955. MR0064922

[17] L. M. Delves and J. Walsh, Numerical Solutions of Integral Equations, Clarendon, Oxford, 1974.

http://www.ams.org/mathscinet-getitem?mr=2597203
http://www.ams.org/mathscinet-getitem?mr=0218047
http://www.ams.org/mathscinet-getitem?mr=1144982
http://www.ams.org/mathscinet-getitem?mr=1154762
http://www.ams.org/mathscinet-getitem?mr=1639020
http://www.ams.org/mathscinet-getitem?mr=1849873
http://www.ams.org/mathscinet-getitem?mr=1920978
http://www.ams.org/mathscinet-getitem?mr=3394306
http://www.ams.org/mathscinet-getitem?mr=2062400
http://www.ams.org/mathscinet-getitem?mr=0064922

	1. Introduction
	2. Physical and mathematical formulation
	3. Integro–differential general solution –Completeness
	4. Application and demonstration of the integro-differential representation
	5. Conclusions and discussion
	References

