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Abstract. The results in this paper extend those of a 2014 work of the first author,

Jang and Velázquez. Instead of considering absorbing boundary data, we treat the

general inflow boundary conditions and obtain the well–posedness, regularity up to the

singular set, and asymptotic behavior of solutions to the Fokker–Planck equation in an

interval with the inflow boundary conditions.

1. Introduction. We consider the Fokker–Planck (FP) equation in an interval with

general inflow boundary data

ft + vfx = fvv, (1)

f(x, v, 0) = f0(x, v), (2)

f(0, v, t) = h0(v, t), for v > 0, t > 0, (3)

f(1, v, t) = h1(v, t), for v < 0, t > 0, (4)

where f(x, v, t) ≥ 0 is the distribution of particles at position x, velocity t, and time t for

(x, v, t) ∈ [0, 1]× R× R+, f0(x, v) ≥ 0 is the initial charge distribution, and hj(v, t) ≥ 0

for j = 0, 1 are the given incoming data.

The Fokker-Planck equation with inflow boundary conditions describes the probability

distribution of an ensemble of particles in a confined domain with the assumption that

each particle is affected by a white noise random force in velocity and particles are

prescribed to flow inward at the wall. The FP equation is a degenerate parabolic equation

since the diffusion operator ∂vv occurs only in the v variable not in the x variable.

However, the transport term, v∂x, spreads the diffusion effect from the v variable to the
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x variable which is referred to as hypoelliptic; see [5]. The existence of the fundamental

solutions in a general form has also been shown in [7, 10]. The smoothing effect of the

Vlasov–Poisson–Fokker–Planck equation was observed by Bouchut [2].

When we consider a boundary value problem even for the linear FP equations, to our

knowledge, there are only a few results available on the existence and regularity theory. In

the classical solution framework, even for the one-dimensional interval case, the theory

has been established only recently by Hwang, Jang, and Velázquez [6] in which they

proved the well-posedness, regularity and time decay with absorbing boundary conditions

where h0 = h1 ≡ 0. The main difficulty lies in that there might be some singularity near

the boundary.

In this paper, we extend the result of [6] to the case of general inflow boundary

conditions with nonzero h0 and h1. This generalization requires some nontrivial technical

modifications. Among others, we need to estimate carefully the mass coming from the

boundary data which alters the whole structure of mass in a nontrivial way. For the L1

estimate, we introduce a new type of change of variables from the space variables to the

time variables which plays a key role in the estimation. We also need to develop new

proofs in many lemmas such as minimum principles (Lemma 18) and the uniform bounds

for the L1 norm (Lemma 20).

The paper is organized as follows. We introduce the notation and state the main

results of the paper in Section 2 and we prove the well–posedness of the FP equation

with inflow boundary conditions (1)–(4) in Section 3. Then we show the regularity of

solutions of (1)–(4) in Section 4. Finally, we derive the decay rate of solutions of (1)–(4)

to vacuum solutions in Section 5.

2. Notation and main results. In this section, we introduce some notation and

state our main results. First, we give some notation for the domains and boundaries.

We define

Ω := {(x, v) ∈ (0, 1)× R}, Ut := Ω× (0, t), U∞ := Ω× (0,∞),

ν−t := (−∞, 0)× (0, t), ν+t := (0,∞)× (0, t).

In addition, the incoming, outgoing, and grazing boundary of Ut are denoted by

γ−
t :=

[
{x = 0} × ν+t

]
∪
[
{x = 1} × ν−t

]
,

γ+
t :=

[
{x = 0} × ν−t

]
∪
[
{x = 1} × ν+t

]
,

γ0
t := [{x = 0} × {v = 0} × (0, t)] ∪ [{x = 0} × {v = 0} × (0, t)] .

We also introduce the functional spaces L1
v(ν

−
t ) and L1

v(ν
+
t ). Here L1

v(ν
−
t ) and L1

v(ν
+
t )

stand for the sets of all measurable functions g(v, t) such that vg(v, t) belongs to L1(ν−t )

and L1(ν+t ) respectively.

Now, we state the notion of a weak solution to (1)–(4).

Definition 1. A function f ∈ L∞([0, T ];L1∩L∞(Ω)) is called a weak solution to the

Fokker–Planck equation with inflow boundary conditions (1)–(4) if it is weak continuous,

which means that the function

t �→
∫
Ω

f(x, v, t)ψ(x, v, t) dxdv
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is continuous on [0, T ] for every test function ψ(x, v, s) ∈ C1,2,1
x,v,s(ŪT ) such that

supp(ψ(·, ·, s)) ⊂ [0, 1]× [−R,R] for some R > 0 and ψ|γ+
T
= 0; and if it satisfies∫

Ut

f(x, v, s)[ψt(x, v, s) + vψx(x, v, s) + ψvv(x, v, s)] dxdvds

=

∫
Ω

f(x, v, t)ψ(x, v, t) dxdv −
∫
Ω

f0(x, v)ψ(x, v, 0) dxdv

−
∫
ν+
t

vh0(v, s)ψ(0, v, s) dsdv +

∫
ν−
t

vh1(v, s)ψ(1, v, s) dsdv,

for any t ∈ [0, T ] and every test function ψ(x, v, s) ∈ C1,2,1
x,v,s(Ūt) such that supp(ψ(·, ·, s)) ⊂

[0, 1]× [−R,R] for some R > 0 and ψ|γ+
t
= 0.

The first result of this paper concerns the existence and uniqueness of weak solutions

to (1)–(4).

Theorem 2. For any T > 0, f0 ∈ L1 ∩ L∞(Ω), h0 ∈ L1
v ∩ L∞(ν+T ), h1 ∈ L1

v ∩ L∞(ν−T )

with f0, h0, h1 ≥ 0, there exists a unique weak solution f ∈ L∞([0, T ];L1∩L∞(Ω)) to the

Fokker–Planck equation with inflow boundary conditions (1)–(4). Moreover, the weak

solution f(t) satisfies

‖f(t)‖L∞(Ω) ≤ max
{
‖f0‖L∞(Ω) , ‖h0‖L∞(ν+

t ) , ‖h1‖L∞(ν−
t )

}
,

‖f(t)‖L1(Ω) ≤ ‖f0‖L1(Ω) + ‖h0‖L1
v(ν

+
t ) + ‖h1‖L1

v(ν
−
t ) ,

and the positivity f(x, v, t) ≥ 0 up to a measure zero set.

Remark 3. The requirement that h0 ∈ L1
v(ν

+
T ) can be replaced by h0 ∈ L1((0,∞);

L∞(0, T )). So for the stable inflow data h0(v, t) = h̄0(v) ∈ L1(0,∞), the above result is

also valid. A similar claim applies to h1. See more details in the remark after Lemma

11.

The next theorem concerns the regularity of weak solutions to (1)–(4). As a conse-

quence of the Sobolev embedding theorem, at each positive time, the weak solution is

smooth away from the grazing set.

Theorem 4. Let f0 ∈ L1∩L∞(Ω), h0 ∈ L1
v∩L∞(ν+T ), h1 ∈ L1

v∩L∞(ν−T ) with f0, h0, h1 ≥
0, and let f ∈ L∞([0, T ];L1 ∩L∞(Ω)) be the unique weak solution to the Fokker–Planck

equation with inflow boundary conditions (1)–(4). Then for each t > 0 and for any

k,m ∈ N, we have f(t) ∈ Hk,m
loc (Ω̄\{(0, 0), (1, 0)}), where Hk,m = Hk,m

x,v .

Finally, we obtain the exponential decay to the vacuum of a strong solution to the

Fokker–Planck equation assuming that the inflow data vanish exponentially. The decay

norms which will be treated are L1 and L∞ norms.

Theorem 5. Let f0 ∈ L1∩L∞(Ω), h0 ∈ L1
v∩L∞(ν+T ), h1 ∈ L1

v∩L∞(ν−T ) with f0, h0, h1 ≥
0, and let f ≥ 0 be a strong solution to the Fokker–Planck equation with inflow boundary

conditions (1)–(4). Then the following holds:

(1) Assume that there exists λ0 > 0 and C0 > 0 such that

sup
0≤t<∞

eλ0t
(
‖h0‖L1

v(ν
+
t ) + ‖h1‖L1

v(ν
−
t )

)
≤ C0; (5)
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then there exists λ ∈ (0, λ0] such that

‖f(t)‖L1(Ω) ≤ (‖f0‖L1(Ω) + C0) exp(−λt).

(2) Assume that there exists λ0 > 0 and C0 > 0 such that

sup
0≤t<∞

eλ0t max
{
(‖h0‖L∞

v (ν+
t ) , ‖h1‖L∞

v (ν−
t )

}
≤ C0; (6)

then there exists λ ∈ (0, λ0] such that

‖f(t)‖L∞(Ω) ≤ C exp(−λt),

where the constant C > 0 depends only on ‖f0‖L1(Ω), ‖f0‖L∞(Ω), and C0.

Remark 6. By a strong solution f to (1)–(4), we mean that f ∈ C1,2,1
x,v,t (U∞)∩C(Ū∞)

satisfies f = f i + f b. Here f i ∈ C1,2,1
x,v,t (U∞) ∩ C(Ū∞) is a solution of (1) with initial

condition f i(0) = f0 and boundary conditions f i|γ− = 0; and f b ∈ C1,2,1
x,v,t (U∞)∩C(Ū∞) is

a solution of (1) with initial condition f b(0) = 0 and boundary conditions f b|γ−(0, ., .) =

h0, f
b|γ−(1, ., .) = h1.

Remark 7. A steady state f̄ is a solution of the problem:⎧⎪⎪⎨
⎪⎪⎩
vf̄x = f̄vv,

f̄(0, v) = h̄0(v), for v > 0,

f̄(1, v) = h̄1(v), for v > 0.

As a consequence to Theorem 5, if the inflow data h0(v, t) and h1(v, t) converge expo-

nentially to h̄0 and h̄1, then the solution f(t) to (1)–(4) will converge exponentially to

the steady state f̄ as t → ∞.

3. The existence and uniqueness of solutions.

3.1. The approximate problems. To study the well–posedness of weak solutions to the

Fokker–Planck equation with inflow boundary conditions, we first study the approxi-

mated problems. The solutions of these problems will turn out to converge to a weak

solution of the Fokker–Planck equation with inflow boundary conditions in weak sense.

First, we introduce some cut–off functions βε(v) ∈ C∞(−∞,∞), ηε(x) ∈ C∞(0, 1)

with |η′ε(x)| ≤ 2/ε, and ξ(ζ) ∈ C∞
c (−∞,∞) such that

βε(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if |v| < ε2,

∈ (0, v), if ε2 ≤ v ≤ 2ε2,

∈ (v, 0), if − 2ε2 ≤ v ≤ −ε2,

v, if |v| > 2ε2,

ηε(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x < ε or x > 1− ε,

∈ [0, 1], if ε ≤ x ≤ 2ε or 1− 2ε ≤ x ≤ 1− ε,

1, if 2ε < x < 1− 2ε,

and ∫ ∞

−∞
ξ(ζ) dζ = 1,

∫ ∞

−∞
ζξ(ζ) dζ = 0,

∫ ∞

−∞
ζ2ξ(ζ) dζ = 1.
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For each ε > 0, the corresponding approximate problem to (1)–(4) has this form

fε
t + [βε(v) + (v − βε(v))ηε(x)]f

ε
x = Qε[fε], (7)

fε(x, v, 0) = f0(x, v), (8)

fε(0, v, t) = h0(v, t), for v > 0, t > 0, (9)

fε(1, v, t) = h1(v, t), for v < 0, t > 0, (10)

where

Qε[g](x, v, t) :=
2

ε2

∫ ∞

∞
[g(x, v + εζ, t)− g(x, v, t)]ζ(t) dζ.

The characteristic system to (7) is

dX(s;x, v, t)

ds
= βε(v) + (v − βε)ηε(X(s;x, v, t)),

X(t;x, v, t) = x,

V (s;x, v, t) = v.

For simplicity, we use X(s) instead of X(s;x, v, t). Now we define

t0 = t0(x, v, t) = sup({0} ∪ {s : X(s) = 0}), if v ≥ 0,

t0 = t0(x, v, t) = sup({0} ∪ {s : X(s) = 1}), if v < 0,

t1 = t1(x, v, t) = inf({t} ∪ {s : X(s) = 1}), if v ≥ 0,

t1 = t1(x, v, t) = inf({t} ∪ {s : X(s) = 0}), if v < 0.

Based on [6], we have the following estimation for Jacobian J(s; t) of the transforma-

tion (x, v) �→ (X(s), v).

Lemma 8. For any s, t, we have the following estimates:

1−Θ(ε, |t− s|) ≤ |J(s; t)| =
∣∣∣∣∂X(s)

∂x

∣∣∣∣ ≤ 1 + Θ(ε, |t− s|),

where Θ(ε, δ) := εCδeεCδ with the constant C > 0 independent of ε and δ.

Proof. See [6, Lemma 1]. �
Now, we give the definition of weak solutions of the approximate problem.

Definition 9. A function F ∈ C([0, T ];L1(Ω)) ∩ L∞([0, T ];L∞(Ω)) is called a weak

solution to the approximate problem (7)–(10) if it satisfies∫
Ut

F (x, v, s)[ψt(x, v, s) + ∂x([βε(v) + (v − βε(v))ηε(x)]ψ(x, v, s))] dxdvds

+
2

ε2

∫
Ut

F (x, v, s)

∫ ∞

−∞
[ψ(x, v − εζ, s)− ψ(x, v, s)]ξ(ζ) dζdxdvds

=

∫
Ω

F (x, v, t)ψ(x, v, t) dxdv −
∫
Ω

f0(x, v)ψ(x, v, 0) dxdv

−
∫
ν+
t

βε(v)h0(v, s)ψ(0, v, s) dvds+

∫
ν−
t

βε(v)h1(v, s)ψ(1, v, s) dvds

for any t ∈ [0, T ] and every test function ψ(x, v, s) ∈ C1,2,1
x,v,s(Ūt) such that supp(ψ(·, ·, s)) ⊂

[0, 1]× [−R,R] for some R > 0 and ψ|γ+
t
= 0.
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3.1.1. The existence of weak solutions to the approximated problems. In this part, we

will show the existence of weak solutions to the approximated problems (7)–(10). First,

we need the notion of a mild solution.

Definition 10. A function F ∈ C([0, T ];L1(Ω))∩L∞([0, T ];L∞(Ω)) is called a mild

solution to the approximated problem (7)–(10) if it satisfies for every t ∈ [0, T ],

F (x, v, t) = T [F ](x, v, t) := f̄0(X(t0), v) +

∫ t

t0

Qε[F ](X(s), v, s) ds, (11)

where f̄0(X(t0), v) = f0(X(0), v) if t0 = 0, f̄0(X(t0), v) = h0(v, t0) if t0 > 0 and v > 0,

and f̄0(X(t0), v) = h1(v, t0) if t0 > 0 and v < 0.

The existence of a mild solution to (7)–(10) is guaranteed in the following lemma.

Lemma 11. For any T > 0, f0 ∈ L1 ∩ L∞(Ω), h0 ∈ L1
v ∩ L∞(ν+T ), h1 ∈ L1

v ∩ L∞(ν−T )

with f0, h0, h1 ≥ 0, there exist δ ∈ (0, T ] independent of f0, h0, h1 and a unique mild

solution on [0, δ] to the approximate problem (7)–(10).

Proof. We fix δ ∈ (0, T ] such that Θ(ε, δ) < 1 (for the Jacobian J(s; t) not vanishing

in the time interval [0, t]) and will choose it later for the fixed point argument.

Let U be the set of all F ∈ C([0, δ];L1(Ω)) ∩ L∞([0, δ];L∞(Ω)) such that

sup
0≤t≤δ

‖F (t)‖L∞(Ω) ≤ 2max
{
‖f0‖L∞(Ω) , ‖h0‖L∞(ν+

T ) , ‖h1‖L∞(ν−
T )

}
and

sup
0≤t≤δ

‖F (t)‖L1(Ω) ≤ 2
(
‖f0‖L1(Ω) + ‖h0‖L1

v(ν
+
T ) + ‖h1‖L1

v(ν
−
T )

)
.

First, for s ∈ (t0, t), the definition of Qε yields

|Qε[F ](X(s), v, s)| ≤ 4

ε2
‖F (t)‖L∞(Ω)

≤ 8

ε2
max

{
‖f0‖L∞(Ω) , ‖h0‖L∞(ν+

T ) , ‖h1‖L∞(ν−
T )

}
.

(12)

Moreover,

‖f̄0(X(t0), v)‖L∞(Ω) ≤ max
{
‖f0‖L∞(Ω) , ‖h0‖L∞(ν+

T ) , ‖h1‖L∞(ν−
T )

}
.

So for 8δ
ε2 < 1, we get

sup
0≤t≤δ

‖T [F ](t)‖L∞(Ω) ≤ 2
(
‖f0‖L∞(Ω) + ‖h0‖L∞(ν+

T ) + ‖h1‖L∞(ν−
T )

)
.

Now, we define Ω1 as the set of all (x, v) ∈ Ω such that (x, v, t) connects with

(X(0), v, 0) through trajectory, Ω0
2 as the set of all (x, v) ∈ Ω such that (x, v, t) con-

nects with (0, v, t0), and Ω1
2 as the set of all (x, v) ∈ Ω such that (x, v, t) connects with

(1, v, t0). Therefore,∫
Ω

|T [F ](x, v, t)| dxdv ≤
∫
Ω1

f̄0(X(t0), v) dxdv +

∫
Ω0

2

f̄0(X(t0), v) dxdv

+

∫
Ω1

2

f̄0(X(t0), v) dxdv +

∫
Ω

∫ t

t0

|Qε[F ](X(s), v, s)| dsdxdv.

(13)
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It is clear that∫
Ω1

f̄0(X(t0), v) dxdv =

∫
Ω1

f0(X(0), v) dxdv

=

∫
Ω̃1

f0(X(0), v)|J(t; 0)| dX(0)dv

≤ (1 + Θ(ε, δ))

∫
Ω

f0(y, v) dydv

= (1 + Θ(ε, δ))‖f0‖L1(Ω)

≤ 3

2
‖f0‖L1(Ω)

if we choose δ sufficiently small such that Θ(ε, δ) < 1/2.

Moreover, ∫
Ω0

2

f̄0(X(t0), v) dxdv =

∫
Ω0

2

h0(v, t0(x, v, t)) dxdv

≤
∫ ∞

0

∫ X(t,0,v,0)

0

h0(v, t0) dxdv

=

∫ ∞

0

∫ t

0

h0(v, s)

∣∣∣∣∂X(t, 0, v, s)

∂s

∣∣∣∣ dsdv,
where the last equality follows by the change of variable x �→ s = t0(x, v, t) with a note

that in Ω0
2, s = t0(x, v, t) is equivalent to x = X(t, 0, v, s).

We know that X(s,X(t, 0, v, s), v, t) = 0 for every s, so

∂X

∂x
(s,X(t, 0, v, s), v, t) · ∂X(t, 0, v, s)

∂s

= −∂X

∂s
(s,X(t, 0, v, s), v, t)

= −βε(v)− (v − βε(v))ηε(X(s,X(t, 0, v, s), v, t))

= −βε(v).

(14)

Therefore, ∣∣∣∣∂X(t, 0, v, s)

∂s

∣∣∣∣ ≤ βε(v)

1−Θ(ε, δ)
.

If we choose δ sufficiently small such that Θ(ε, δ) < 1/3, then∫
Ω0

2

f̄0(X(t0), v) dxdv ≤ 1

1−Θ(ε, δ)

∫ ∞

0

∫ t

0

h0(v, s)βε(v) dsdv

≤ 3

2

∫ ∞

0

∫ t

0

h0(v, s)βε(v) dsdv

≤ 3

2
‖h0‖L1

v(ν
+
T ) .

Similarly, we have ∫
Ω1

2

f̄0(X(t0), v) dxdv ≤ 3

2
‖h1‖L1

v(ν
−
T ) .
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From [6, Lemma 2], we know that∫
Ω

∫ t

t0

|Qε[F ]|(X(s), v, s) dsdxdv

≤ 4(1 + Θ(ε, δ))δ

ε2
sup

0≤t≤δ
‖F (t)‖L1(Ω)

≤ 8(1 + Θ(ε, δ))δ

ε2

(
‖f0‖L1(Ω) + ‖h0‖L1

v(ν
+
T ) + ‖h1‖L1

v(ν
−
T )

)
.

(15)

So far, by (13), we get

‖T [F ](t)‖L1(Ω) ≤ 2
(
‖f0‖L1(Ω) + ‖h0‖L1

v(ν
+
T ) + ‖h1‖L1

v(ν
−
T )

)
if we choose δ sufficiently small such that 8(1+Θ(ε,δ))δ

ε2 < 1/2.

Now, we show the continuity of T [F ] in L1(Ω) at t = 0. First, we have∣∣∣∣
∫
Ω1

f0(X(0), v) dxdv −
∫
Ω

f0(X(0), v) dX(0)dv

∣∣∣∣
≤

∫
Ω̃1

f0(X(0), v)||J(t; 0)| − 1| dX(0)dv +

∫
Ω\Ω̃1

f0(X(0), v) dX(0)dv.

(16)

Note that if v ≥ 0 and (X(0), v) ∈ Ω\Ω̃1, then v ≥ x/t ≥ y/t. Similarly, if v < 0 and

(X(0), v) ∈ Ω\Ω̃1, then |v| ≥ (1− x)/t ≥ (1− y)/t. Put y := X(0), we get∫
Ω\Ω̃1

f0(X(0), v) dX(0)dv ≤
∫ 1

0

∫
[|v|≥min{y,1−y}/t]

f0(y, v) dvdy ↘ 0 as t ↘ 0.

Moreover, from Lemma 8, we have |J(t; 0)| → 1 as t → 0. Then by (16), we obtain∫
Ω1

f0(X(0), v) dxdv →
∫
Ω

f0(x, v) dxdv as t ↘ 0.

On the other hand, we have∫
Ω0

2

f̄0(X(t0), v) dxdv ≤ 3

2

∫ ∞

0

∫ t

0

h0(v, s)βε(v) dsdv ↘ 0 as t ↘ 0,

∫
Ω1

2

f̄0(X(t0), v) dxdv ≤ 3

2

∫ 0

−∞

∫ t

0

h1(v, s)|βε(v)| dsdv ↘ 0 as t ↘ 0,

and∫
Ω

∫ t

t0

|Qε[F ]|(X(s), v, s) dsdxdv ≤ 4(1 + Θ(ε, δ))t

ε2
sup

0≤s≤δ
‖F (s)‖L1(Ω) ↘ 0 as t ↘ 0.

From (13), we conclude that T is continuous in L1(Ω) at t = 0. For the continuity of

T at t = τ > 0, to avoid a complicated change of variable, we first show that there is

a unique solution to (11) in L∞([0, δ];L1 ∩ L∞(Ω)). Then we write an equation similar

to (11) with initial time τ (not 0) and prove in the same way. Nevertheless, T is a map

from U to U .
Finally, similarly to (12) and (15), we get

‖T [F1](t)− T [F2](t)‖L∞(Ω) ≤
4δ

ε2
‖F1(t)− F2(t)‖L∞(Ω)
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and

‖T [F1](t)− T [F2](t)‖L1(Ω) ≤
4(1 + Θ(ε, δ))δ

ε2
‖F1(t)− F2(t)‖L1(Ω) .

By 4δ
ε2 < 1/2 and 4(1+Θ(ε,δ))δ

ε2 < 1/2, we see that T is a contraction mapping. So for δ

small enough (not depending on f0, h0, and h1), we can apply the fixed point theorem

to get a unique mild solution in U .
Note that the role of U is not important. With a similar argument, we can show that

T is a contraction mapping from C([0, δ];L1(Ω)) ∩ L∞([0, δ];L∞(Ω)) to itself. Hence,

that mild solution in U is the unique one in C([0, δ];L1(Ω)) ∩ L∞([0, δ];L∞(Ω)). �
Remark 12. In case h0 ∈ L1((0,∞);L∞(0, T )) instead of L1

v(ν
+
T ), we use the following

estimation: ∫
Ω0

2

f̄0(X(t0), v) dxdv =

∫
Ω0

2

h0(v, t0(x, v, t)) dxdv

≤
∫
Ω0

2

‖h0(v, .)‖L∞(0,T ) dxdv

≤
∫ ∞

0

∫ 1

0

‖h0(v, .)‖L∞(0,T ) dxdv

= ‖h0‖L1((0,∞);L∞(0,T )).

Because the way we choose δ in the above lemma does not depend on f0, h0, and

h1, we can extend the solution to the whole interval [0, T ]. So we have the following

corollary.

Corollary 13. For any T > 0, f0 ∈ L1 ∩ L∞(Ω), h0 ∈ L1
v ∩ L∞(ν+T ), h1 ∈ L1

v ∩
L∞(ν−T ) with f0, h0, h1 ≥ 0, there exists a unique mild solution F ∈ C([0, T ];L1(Ω)) ∩
L∞([0, T ];L∞(Ω)) to the approximate problem (7)–(10).

From now on, we fix T > 0 and choose ε > 0 small such that Θ(ε, T ) < 1 to make the

Jacobian J(s; t) = ∂X(s)
∂x always positive. By the above corollary, we are ready to show

the existence of weak solutions to the approximate problem.

Lemma 14. For any f0 ∈ L1 ∩ L∞(Ω), h0 ∈ L1
v ∩ L∞(ν+T ), h1 ∈ L1

v ∩ L∞(ν−T ) with

f0, h0, h1 ≥ 0, there exists a weak solution F ∈ C([0, T ];L1(Ω)) ∩ L∞([0, T ];L∞(Ω)) to

the approximate problem (7)–(10).

Proof. Let F ∈ C([0, T ];L1(Ω))∩L∞([0, T ];L∞(Ω)) be a mild solution to the approx-

imate problem (7)–(10). We will show that F is a weak solution to the approximate

problem (7)–(10).

First, we denote Ωt = {(x, v) ∈ R
2 : t0(x, v, t) < t1(x, v, t)}. For (x, v) ∈ Ωt and

t0 < s < t1, we can replace x by X(s), t by s in (11) and get

F (X(s), v, s) = f̄0(X(t0), v) +

∫ s

t0

Qε[F ](X(τ ), v, τ ) dτ. (17)
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Now, we have

I :=

∫
Ωt

∫ t1

t0

F (X(s), v, s)
∂

∂s

(
ψ(X(s), v, s)

∂X(s)

∂x

)
dsdxdv

=

∫
Ωt

∫ t1

t0

F (X(s), v, s)

[
ψt(X(s), v, s)

∂X(s)

∂x

+ψx(X(s), v, s)
∂X(s)

∂s

∂X(s)

∂x
+ ψ(X(s), v, s)

∂2X(s)

∂x∂s

]
dsdxdv

=

∫
Ωt

∫ t1

t0

F (X(s), v, s)

[
ψt(X(s), v, s)

∂X(s)

∂x

+ ψx(X(s), v, s)[βε(v) + (v − βε(v))ηε(X(s))]
∂X(s)

∂x

+ψ(X(s), v, s)(v − βε(v))η
′
ε(X(s))

∂X(s)

∂x

]
dsdxdv.

Note that {(x, v, s) : (x, v) ∈ Ωt, t0 < s < t1} = {(x, v, s) : s ∈ (0, t), v ∈ R, X(s) ∈
(0, 1)}. So by the change of variable (x, v, s) �→ (X(s), v, s), we have

I =

∫
Ut

F (x, v, s)[ψt(x, v, s) + ∂x([βε(v) + (v − βε(v))ηε(x)]ψ(x, v, s))] dxdvds.

On the other hand, applying (17) to the definition of I, we get I = II + III, where

II and III are defined as follows.

II :=

∫
Ωt

∫ t1

t0

f̄0(X(t0), v)
∂

∂s

(
ψ(X(s), v, s)

∂X(s)

∂x

)
dsdxdv

=

∫
Ωt

f̄0(X(t0), v)

[
ψ(X(t1), v, t1)

∂X

∂x
(t1)− ψ(X(t0), v, t0)

∂X

∂x
(t0)

]
dxdv

=

∫
Ωt

f̄0(X(t0), v)ψ(X(t1), v, t1)
∂X

∂x
(t1) dxdv

−
∫
Ωt∩[v>0,t0>0]

h0(v, t0)ψ(X(t0), v, t0)
∂X

∂x
(t0) dxdv

−
∫
Ωt∩[v<0,t0>0]

h1(v, t0)ψ(X(t0), v, t0)
∂X

∂x
(t0) dxdv

−
∫
Ωt∩[t0=0]

f0(X(0), v)ψ(X(0), v, 0)
∂X(0)

∂x
dxdv

=

∫
Ω

f̄0(X(t0), v)ψ(X(t), v, t) dxdv −
∫ ∞

0

∫ t

0

βε(v)h0(v, s)ψ(0, v, s) dsdv

+

∫ 0

−∞

∫ t

0

βε(v)h1(v, s)ψ(0, v, s) dsdv −
∫
Ω

f0(x, v)ψ(x, v, 0) dxdv,

where in the last equality: the first integral follows χΩt∩[t1=t]=χΩ a.e. and ψ(X(t1), v, t1)

= 0 when t1 < t, the second and third integral are obtained from the change of variable
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x �→ s = t0(x, v, t) (see (14)), and the fourth integral is obtained from the change of

variable x �→ X(0, x, v, t).

III :=

∫
Ωt

∫ t1

t0

∫ s

t0

Qε[F ](X(τ ), v, τ )
∂

∂s

(
ψ(X(s), v, s)

∂X(s)

∂x

)
dτdsdxdv

=

∫
Ωt

∫ t1

t0

∫ t1

τ

Qε[F ](X(τ ), v, τ )
∂

∂s

(
ψ(X(s), v, s)

∂X(s)

∂x

)
dsdτdxdv

=

∫
Ωt

∫ t1

t0

Qε[F ](X(τ ), v, τ )

[
ψ(X(t1), v, t1)

∂X

∂x
(t1)− ψ(X(τ ), v, τ )

∂X

∂x
(τ )

]
dτdxdv

=

∫
Ω

∫ t

t0

Qε[F ](X(τ ), v, τ )ψ(x, v, t) dτdxdv

−
∫
Ωt

∫ t1

t0

Qε[F ](X(τ ), v, τ )ψ(X(τ ), v, τ )
∂X

∂x
(τ ) dτdxdv

=

∫
Ω

F (x, v, t)ψ(x, v, t) dxdv −
∫
Ω

f̄0(X(t0), v)ψ(x, v, t) dxdv

−
∫
Ω

∫ t

0

Qε[F ](x, v, τ )ψ(x, v, τ ) dτdxdv,

where the second identity follows by Fubini’s theorem and the reasoning for the last two

equalities is similar to the previous parts. Now, put everything together and use the

identity I = II + III to get the conclusion that F is a weak solution of the approximate

problem. �
3.1.2. Maximum principle, minimum principle, and uniform L1 boundedness. In this

part, we will present maximum and minimum principles for the weak solutions to the

approximate problems. Consequently, we obtain the uniqueness and total mass bounds

for these solutions.

To show the maximum and minimum principles, we will use the smooth solutions of the

adjoint problems as test functions for the formula of weak solutions to the approximated

problem (7)–(10). These smooth solutions do not have compact support, but we can

approximate them by ones with compact supports (see [6]). The adjoint problem to the

approximated equation (7)–(10) is stated as follows:

L̄ψ := ψt + ∂x([βε(v) + (v − βε(v))ηε(x)]ψ)− Q̄ε[ψ] = 0, (18)

ψ|t=T = ψT , ψ|γ+
T
= 0, (19)

where

Q̄ε[ψ](x, v, t) =
2

ε2

∫ ∞

−∞
[ψ(x, v, t)− ψ(x, v − εζ, t)]ξ(ζ) dζ

and ψT (x, v) ∈ C∞
c (Ω) with ψT (x, v) ≥ 0. Clearly, ψT satisfies the compatibility condi-

tion introduced in [6]: ψT (x, v) = 0 for all (x, v) ∈ N with

N = [{x2 + βε(v) < δ} ∪ {(x− 1)2 + β2
ε (v) < δ}] ∩ Ω

for some δ > 0 small.
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According to [6, Lemma 4 and Lemma 5] and the compatibility condition, there always

exists a smooth solution ψ ∈ C∞(UT ) to the adjoint problem (18)–(19) with ψ ≥ 0. In

addition, we have the following two lemmas.

Lemma 15. Let fε ∈ C([0, T ];L1(Ω)) ∩ L∞([0, T ];L∞(Ω)) be a weak solution to the

approximate problem (7)–(10) and let ψ ∈ C∞(UT ) be a solution for the adjoint problem

(18)–(19). Then for all t ∈ [0, T ], we have∫
Ω

fε(x, v, t)ψ(x, v, t) dxdv −
∫
Ω

f0(x, v)ψ(x, v, 0) dxdv

−
∫
ν+
t

βε(v)h0(v, s)ψ(0, v, s) dsdv +

∫
ν−
t

βε(v)h1(v, s)ψ(1, v, s) dsdv = 0.
(20)

Proof. The conclusion follows from the definition of weak solutions to the approximate

problem and ψ ∈ C∞(UT ) being a solution for the adjoint problem. �

Lemma 16. Let ψ(x, v, t) ∈ C∞(UT ) be a solution to the adjoint problem (18)–(19).

Then for every t ∈ [0, T ], we have∫
Ω

ψ(x, v, t) dxdv =

∫
Ω

ψ(x, v, 0) dxdv +

∫
ν+
t

βε(v)ψ(0, v, s) dsdv

−
∫
ν−
t

∫ 0

−∞
βε(v)ψ(1, v, s) dsdv.

(21)

Proof. Integrating (18) in x, v, and s, we get the required identity. �
Now, we state a maximum principle for a weak solution of the approximate problem

(7)–(10).

Lemma 17. If f0 ∈ L∞(Ω), h0 ∈ L∞(ν+T ), and h1 ∈ L∞(ν−T ), then a weak solution fε to

(7)–(10) satisfies for every t ∈ [0, T ],

fε(x, v, t) ≤ max
{
‖f0‖L∞(Ω), ‖h0‖L∞(ν+

t ) , ‖h1‖L∞(ν−
t )

}
up to a measure zero set.

Proof. Put Mt = max
{
‖f0‖L∞(Ω), ‖h0‖L∞(ν+

t ) , ‖h1‖L∞(ν−
t )

}
. We want to show that

for each t ∈ [0, T ], we have fε(x, v, t) ≤ Mt for almost everywhere (x, v) ∈ Ω. Adapting

the proof of [6, Lemma 9], it is enough to show the following estimation:∫
Ω

fε(x, v, 0)ψ(x, v, 0) dxdv +

∫
ν+
t

βε(v)h0(v, s)ψ(0, v, s) dsdv

−
∫
ν−
t

βε(v)h1(v, s)ψ(1, v, s) dsdv

≤ M

(∫
Ω

ψ(x, v, 0) dxdv +

∫
ν+
t

βε(v)ψ(0, v, s) dsdv −
∫
ν−
t

βε(v)ψ(1, v, s) dsdv

)

= M

∫
Ω

ψ(x, v, t) dxdv,

where the last equality follows from (21). We skip the remaining proof. �
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Similarly, we have a minimum principle for a weak solution of (7)–(10).

Lemma 18. If f0, h0, h1 ≥ 0, then a weak solution fε to (7)–(10) satisfies for every

t ∈ [0, T ],

fε(x, v, t) ≥ 0

up to a measure zero set.

Proof. We can prove this lemma by modifying the proof of the maximum principle.

Here, we present a simpler way.

Fix t > 0, ϕ ∈ C∞
c (Ω) with ϕ ≥ 0, and let ψ ≥ 0 be a smooth solution to the adjoint

problem (18)–(19) with final data ψ(t) = ϕ. From (20), we have∫
Ω

fε(x, v, t)ϕ(x, v) dxdv =

∫
Ω

f0(x, v)ψ(x, v, 0) dxdv +

∫
ν+
t

βε(v)h0(v, s)ψ(0, v, s) dsdv

−
∫
ν−
t

βε(v)h1(v, s)ψ(1, v, s) dsdv.

The right hand side in the above identity is non–negative. So we have∫
Ω

fε(x, v, t)ϕ(x, v) dxdv ≥ 0

for every ϕ ∈ C∞
c (Ω) with ϕ ≥ 0. Therefore, fε(x, v, t) ≥ 0 almost everywhere. �

Putting the maximum and minimum principles together, we obtain the uniqueness for

solutions of the approximate problem.

Corollary 19. For f0 ∈ L1 ∩ L∞(Ω), h0 ∈ L1
v ∩ L∞(ν+T ), and h1 ∈ L1

v ∩ L∞(ν−T ) with

f0, h0, h1 ≥ 0, there is a unique weak solution fε ∈ C([0, T ];L1(Ω)) ∩ L∞([0, T ];L∞(Ω))

to the approximate problem (7)–(10).

The maximum, minimum principles give us a uniform L∞ bound for the weak solu-

tion of the approximate problem to the Fokker–Planck equation with inflow boundary

conditions. Now, we use these principles to obtain a uniform L1 bound for the solution.

Lemma 20. For f0 ∈ L1∩L∞(Ω), h0 ∈ L1
v∩L∞(ν+T ), h1 ∈ L1

v∩L∞(ν−T ) with f0, h0, h1 ≥
0, if fε is a weak solution to (7)–(10), then we have the following estimation for every

t ∈ [0, T ]:

‖fε(t)‖L1(Ω) ≤ ‖f0‖L1(Ω) + ‖h0‖L1
v(ν

+
t ) + ‖h1‖L1

v(ν
−
t ) .

Proof. Fix t > 0, ϕ ∈ C∞
c (Ω) with 0 ≤ ϕ ≤ 1, and let ψ ≥ 0 be a smooth solution to

the adjoint problem (18)–(19) with final data ψ(t) = ϕ. From (20), we have∫
Ω

fε(x, v, t)ϕ(x, v) dxdv =

∫
Ω

f0(x, v)ψ(x, v, 0) dxdv +

∫
ν+
t

βε(v)h0(v, s)ψ(0, v, s) dsdv

−
∫
ν−
t

βε(v)h1(v, s)ψ(1, v, s) dsdv.
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Note that we also have a similar maximum principle for the adjoint problem. As a

consequence, we have 0 ≤ ψ ≤ 1. Therefore,∫
Ω

fε(x, v, t)ϕ(x, v) dxdv ≤
∫
Ω

f0(x, v) dxdv +

∫
ν+
t

βε(v)h0(v, s) dsdv

−
∫
ν−
t

βε(v)h1(v, s) dsdv

≤ ‖f0‖L1(Ω) + ‖h0‖L1
v(ν

+
t ) + ‖h1‖L1

v(ν
−
t ) .

This is true for every ϕ ∈ C∞
c (Ω) with 0 ≤ ϕ ≤ 1. Approximating χΩ by an in-

creasing sequence of non–negative functions in C∞
c (Ω) and using the Lebesgue monotone

convergence theorem, we get the conclusion. �
3.2. The well–posedness of solutions. We present in this section the proof of Theorem

2. As a first step, we will use the maximum, minimum principles in the last section to

obtain the following lemma.

Lemma 21. Let {fε} be weak solutions to the approximate problems. Then there exist a

sequence εn ↘ 0 and f̄ ∈ L∞(UT ) such that {fεn} converges to f̄ in weak–∗ topology of

L∞(UT ). Moreover, for every test function ψ(x, v, s) ∈ C1,2,1
x,v,s(Ūt) with supp(ψ(·, ·, s)) ⊂

[0, 1]× [−R,R] for some R > 0 and ψ|γ+
t
= 0, we have∫

Ω

fεn(x, v, t)ψ(x, v, t)

converges for any t ∈ [0, T ].

Proof. By the maximum, minimum principles, we have {fε} is uniformly bounded

in L∞(UT ). By the Banach–Alaoglu theorem, there exists a subsequence {fεn} con-

verges in weak–∗ topology to a function f̄ in L∞(UT ). Let ψ(x, v, s) ∈ C1,2,1
x,v,s(Ūt) with

supp(ψ(·, ·, s)) ⊂ [0, 1] × [−R,R] for some R > 0 and ψ|γ+
t
= 0. From the definition of

weak solutions to approximate problems, we have∫
Ω

fεn(x, v, t)ψ(x, v, t) dxdv =

∫
Ω

f0(x, v)ψ(x, v, 0) dxdv

+

∫
ν+
t

βεn(v)h0(v, s)ψ(0, v, s) dvds−
∫
ν−
t

βεn(v)h1(v, s)ψ(1, v, s) dvds

+

∫
Ut

fεn(x, v, s)[ψt(x, v, s) + ∂x([βεn(v) + (v − βεn(v))ηεn(x)]ψ(x, v, s))] dxdvds

+
2

ε2n

∫
Ut

fεn(x, v, s)

∫ ∞

−∞
[ψ(x, v − εnζ, s)− ψ(x, v, s)]ξ(ζ) dζdxdvds.

(22)

The right hand side converges as n → ∞. It can be seen from a note that in L1(Ut),

as εn → 0,

∂x([βεn(v) + (v − βεn(v))ηεn(x)]ψ(x, v, s)) → ∂x(vψ(x, v, s))

and
2

ε2n

∫ ∞

−∞
[ψ(x, v − εnζ, s)− ψ(x, v, s)]ξ(ζ) dζ → ∂vvψ(x, v, s).
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As a consequence, we have the left hand side of (22) converges as n → ∞. �
For the sake of simplicity, we will denote fεn by fn. Note that in the previous lemma,

we cannot conclude that∫
Ω

fn(x, v, t)ψ(x, v, t) dxdv →
∫
Ω

f̄(x, v, t)ψ(x, v, t) dxdv as n → ∞.

Indeed,
∫
Ω
f̄(x, v, t)ψ(x, v, t) dxdv may not be well defined for every t because f̄ can

change its values on a zero measure set of UT . However, we can derive the above con-

vergence with a suitable modification in the next proposition.

Proposition 22. Let T > 0, f0 ∈ L1 ∩ L∞(Ω), h0 ∈ L1
v ∩ L∞(ν+T ), h1 ∈ L1

v ∩ L∞(ν−T )

with f0, h0, h1 ≥ 0. Let {fn} be the sequence obtained in Lemma 21. Then there exists

f ∈ L∞([0, T ];L1 ∩ L∞(Ω)) such that fn converges to f in weak–∗ topology of L∞(UT )

and ∫
Ω

fn(x, v, t)ψ(x, v, t) dxdv →
∫
Ω

f(x, v, t)ψ(x, v, t) dxdv as n → ∞ (23)

for every test function ψ(x, v, s) ∈ C1,2,1
x,v,s(Ūt) with supp(ψ(·, ·, s)) ⊂ [0, 1] × [−R,R] for

some R > 0 and ψ|γ+
t
= 0. Moreover, we have f ≥ 0 up to a measure zero set of Ω and

the following estimations hold:

‖f(t)‖L∞(Ω) ≤ max
{
‖f0‖L∞(Ω) , ‖h0‖L∞(ν+

t ) , ‖h1‖L∞(ν−
t )

}
(24)

and

‖f(t)‖L1(Ω) ≤ ‖f0‖L1(Ω) + ‖h0‖L1
v(ν

+
t ) + ‖h1‖L1

v(ν
−
t ) . (25)

Proof. Fix t ∈ [0, T ]. From the maximum, minimum principles and the Banach–

Alaoglu theorem applied for the sequence {fn(t)} in L∞(Ω), there exists a subsequence

{fnk
(t)} converges in weak–∗ topology to a function, which will be denoted by f(t),

in L∞(Ω). By Lemma 17, Lemma 18, and Lemma 20, we have f(t, ., .) ≥ 0 almost

everywhere and satisfies (24), (25).

Note that the subsequence {nk} is chosen with respect to a fixed t. Now, we will

show that it does not matter when coupled with test functions. Indeed, let ψ(x, v, s) ∈
C1,2,1

x,v,s(Ūt) with supp(ψ(·, ·, s)) ⊂ [0, 1]× [−R,R] for some R > 0 and ψ|γ+
t
= 0. By fnk

(t)

converges weak–∗ to f(t), we have∫
Ω

fnk
(x, v, t)ψ(x, v, t) dxdv →

∫
Ω

f(x, v, t)ϕ(x, v, t) dxdv as k → ∞.

In addition, we know that
∫
Ω
fn(x, v, t)ψ(x, v, t) dxdv converges as n → ∞. So its

limit must be
∫
Ω
f(x, v, t)ϕ(x, v, t) dxdv. We obtain (23).

Finally, letting f̄ be the weak limit obtained in Lemma 21, we will show that f = f̄

almost everywhere. From (23), for ψ ∈ C∞
c (UT ), we have∫

Ω

fn(x, v, s)ψ(x, v, s) dxdv →
∫
Ω

f(x, v, s)ψ(x, v, s) dxdv as n → ∞

for any s ∈ [0, T ].
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By the total mass bound of {fn} and the Lebesgue dominated convergence theorem,

we can see that∫
UT

fn(x, v, s)ψ(x, v, s) dxdvds →
∫
UT

f(x, v, s)ψ(x, v, s) dxdvds as n → ∞.

Because {fεn} converges to f̄ in weak–∗ topology of L∞(UT ), we also have∫
UT

fn(x, v, t)ψ(x, v, t) dxdv →
∫
UT

f̄(x, v, t)ψ(x, v, t) as n → ∞.

So for every ψ ∈ C∞
c (UT ), we have∫

UT

f(x, v, s)ψ(x, v, s) dxdvds =

∫
UT

f̄(x, v, t)ψ(x, v, s) dxdvds.

This implies f = f̄ almost everywhere. The proof is complete. �
Now we present the proof of Theorem 1.

Proof of Theorem 2. The existence of weak solutions to (1)–(4) is straightforward

from (22) and Proposition 22. The weak continuity of solutions follows from the fol-

lowing integral expression, where the right hand side is continuous:∫
Ω

f(x, v, t)ψ(x, v, t) dxdv =

∫
Ω

f0(x, v)ψ(x, v, 0) dxdv

+

∫
ν+
t

vh0(v, s)ψ(0, v, s) dsdv −
∫
ν−
t

vh1(v, s)ψ(1, v, s) dsdv

+

∫
Ut

f(x, v, s)[ψt(x, v, s) + vψx(x, v, s) + ψvv(x, v, s)] dxdvds.

By f ≥ 0 and (24), we have the minimum and maximum principles for weak solutions

of (1)–(4). As a consequence, we obtain the uniqueness and complete the proof of this

theorem. �

4. The regularity of solutions. To study the regularity of the Fokker–Planck equa-

tion with inflow boundary conditions, we first recall that the fundamental solution G of

the Fokker–Planck equation (1) in the whole space (x, v, t) ∈ R× R× R+ is given by

G(x, v, t; y, w, s) := G(x− y, v, w, t− s)

=
31/2

2π(t− s)2
exp

(
−3 |x− y − (t− s)(v + w)/2|2

(t− s)3
− |v − w|2

4(t− s)

)
.

The above fundamental solution for the Fokker–Planck operator is obtained by Kol-

mogorov in 1934 (see [8]). Any solution of (1) with initial data f0 ∈ L1 ∩ L∞(R2) has

the integral expression

f(x, v, t) =

∫
R2

G(x, v, t; y, w, 0)f0(y, w) dydw.

Using the fundamental solution G, we can construct solutions to the backward Fokker–

Planck equation with absorbing boundary conditions, which is to solve the adjoint prob-

lem

M∗(ψ) := ψt + vψx + ψvv = 0
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for (x, v, t) ∈ UT and for given data ψ(T ) = ψT at t = T with ψT ∈ L1 ∩ L∞(Ω). Recall

that a weak solution f ∈ L∞([0.T ];L1 ∩ L∞(Ω)) to (1)–(4) satisfies∫
Ut

fM∗(ψ) =

∫
Ω

f(t)ψ(t)−
∫
Ω

f0ψ(0)−
∫
ν+
t

vh0ψ(0) +

∫
ν−
t

vh1ψ(1) (26)

for every ψ(x, v, t) ∈ C1,2,1
x,v,t (ŪT ) such that supp(ψ(·, ·, t)) ⊂ [0, 1] × [−R,R] for some

R > 0 and ψ|γ+
T
= 0.

Note that if f is a solution to the forward Fokker–Planck equation, then g(x, v, t) :=

f(x,−v, T−t) is the solution to the adjoint equation. Thus, the transformation t �→ T−t,

v �→ −v, and w �→ −w in G yields the fundamental solution for the backward Fokker–

Planck equation. As a consequence, any solution g of (26) with final data g(T ) = gT ∈
L1 ∩ L∞(R2) has the integral expression

g(x, v, t) =

∫
R2

G(x,−v, T − t; y,−w, 0)gT (y, w) dydw. (27)

4.1. Interior hypoellipticity. We present in this section the regularity of weak solutions

to the Fokker–Planck equation with inflow boundary conditions at the interior point of

Ω. To obtain it, we first present a useful lemma whose role is crucial for estimating R

terms in a later part.

Lemma 23. Let (x0, v0)∈R
2, r > 0, t > 0. Then for every (x, v)∈B3r(x0, v0)\B2r(x0, v0),

(y, w) ∈ Br(x0, v0), and s ∈ (0, t], we have

G(x, v, s; y, w, 0) ≤ C,

where the constant C > 0 just depends on (x0, v0), r, and t.

Proof. Let (x, v) ∈ B3r(x0, v0)\B2r(x0, v0) and (y, w) ∈ Br(x0, v0). We have

|x− y|2 + |v − w|2 > r2.

First, assume that |x− y| > r/
√
2. Let t0 < t such that

t0(|v0|+ 2r) < r/2
√
2.

Then for every s ∈ (0, t0), we have

|x− y − s(v + w)/2|2

s3
≥ (|x− y| − s |v + w| /2)2

s3
>

r2

8s3
.

So

G(x, v, s; y, w, 0) ≤ 31/2

2πs2
exp

(
−3r2

8s3

)
< C1

for some constant C1 > 0.

Clearly, for every s ∈ [t0, t], we have G(x, v, s; y, w, 0) < C2 for some constant C2 > 0.

Now, for |x− y| ≤ r/
√
2, we have |v − w| > r/

√
2. So

G(x, v, s; y, w, 0) ≤ 31/2

2πs2
exp

(
−|v − w|2

4s

)
≤ 31/2

2πs2
exp

(
− r2

8s

)
< C3

for some constant C3 > 0.

Take C = max{C1, C2, C3}; we get the conclusion. �
Now, we are ready to show the interior hypoellipticity.
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Proposition 24. Let f be the unique weak solution of the Fokker–Planck equation in the

unit interval with the initial data and inflow boundary data satisfying f0 ∈ L1 ∩L∞(Ω),

h0 ∈ L1
v ∩ L∞(ν+T ), h1 ∈ L1

v ∩ L∞(ν−T ) with f0, h0, h1 ≥ 0. Then for each t > 0,

f(t) ∈ Hk,m
loc (Ω).

Proof. Fix t0 > 0, (x0, v0) ∈ Ω, and ρ > 0 such that B3ρ(x0, v0) ⊂ Ω. We will

write Br for short for Br(x0, v0). Let ϕ(x, v) ∈ Cc(Bρ) and g(x, v, t) be the solution

of the backward Fokker–Planck equation (26) in the whole space with the final data

g(t0) = ϕ. By the hypoellipticity of the Fokker–Planck operator (see [4, 5, 9]), we get

g ∈ C∞(R2 × (−∞, t0)). Now, choose a smooth cut–off function ζ ∈ C∞
c (R2) such that

ζ =

{
1, on B2ρ,

0, on R
2\B3ρ.

Let ψ = gζ. We have

M∗(ψ) = ψt + vψx + ψvv = (vζx + ζvv)g + 2ζvgv =: R (28)

and suppR ⊂ B̄3ρ\B2ρ.

Moreover, we can see that suppψ(t) ⊂ B̄3ρ for all t < t0 and ψ(0, v, t) = ψ(1, v, t) = 0

for all v ∈ R, t < t0. So we may use ψ as a test function in (26) to get∫
Bρ

f(t0)ϕ =

∫ t0

0

∫
B3ρ\B2ρ

Rf dxdvdt +

∫
B3ρ

f0g(0)ζ.

The integral expression (27) gives us

‖g(0)‖L∞(B3ρ)
≤ C0 ‖ϕ‖L2(Bρ)

,

for some constant C0 > 0.

Moreover, by Lemma 23 and (27), there exists a constant C1 > 0 not depending on x,

v, t such that

g(x, v, t) ≤ C1, gv(x, v, t) ≤ C1

for every (x, v) ∈ B3ρ\B2ρ and t < t0. Hence, there exists a constant C2 > 0 such that

|R(x, v, t)| ≤ C2 ‖ϕ‖L2(Bρ)

for every (x, v) ∈ B3ρ\B2ρ and t < t0.

Together with the total mass bound in Theorem 2, we have for every ϕ ∈ Cc(Bρ),∫
Bρ

f(t0)ϕ ≤ C ‖f0‖L1(Ω) ‖ϕ‖L2(Bρ)
,

where the constant C > 0 depends only on (x0, v0, t0) and ρ.

The above estimation is a key step. By density and duality arguments, f(t0) ∈ L2(Bρ).

For the regularity of higher orders, the argument is similar to that of [6, Proposition 2],

so we skip it. �
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4.2. Boundary hypoellipticity. In this section, we will present the regularity of weak

solutions of the Fokker–Planck equation at the boundary away from the grazing set and

end the proof for Theorem 4. Before going to the main proof, we first recall a useful

lemma in [6].

Lemma 25. Let t0 > 0, v0 < 0, and ρ > 0 such that 3ρ < |v0|. Then there exists

λ(w, t) ∈ L1(R× [0, t0]) such that suppλ ⊂ [v0 − 3ρ, v0 + 3ρ]× [0, t0] and that g(x, v, t)

defined by the following expression:

g(x, v, t) =

∫
R2

G(x− y,−v,−w, t0 − t)ϕ(y, w) dydw

−
∫ t0

t

∫ v0+3ρ

v0−3ρ

G(x,−v,−w, s− t)λ(w, s) dwds

(29)

solves the problem⎧⎪⎪⎨
⎪⎪⎩
M∗(g) = 0, for t < t0,

g(x, v, t0) = ϕ(x, v), where ϕ ∈ Cc(Bρ(0, v0) ∩ Ω),

g(0, v, t) = 0, for |v − v0| < 3ρ.

(30)

Moreover, there is a constant C > 0 not depending on ϕ such that

‖λ‖L1([v0−3ρ,v0+3ρ]×[0,t0])
≤ C ‖ϕ‖L2(Bρ(0,v0)∩Ω) . (31)

Proof. For the existence of λ, see [6, Lemma 19]. Note that in [6, Lemma 19], we also

have the following expression for λ:

λ(v, t) = vḡ(0, v, t)− v

∫ t0

t

∫ v0+3ρ

v0−3ρ

λ(w, s)G(0,−v,−w, s− t) dwds, (32)

where v ∈ (v0 − 3ρ, v0 + 3ρ), t < t0, and ḡ is defined by

ḡ(x, v, t) :=

∫
R2

G(x− y,−v,−w, t0 − t)ϕ(y, w) dydw.

In the following, we will use {Ci} as positive constants just depending on v0, t0, and

ρ. Moreover, we will write Br for short for Br(0, v0).

First, we claim that |ḡ(0, v, t)| ≤ C0 ‖ϕ‖L2(Bρ∩Ω) with the constant C0 > 0 not de-

pending on v, t, and ϕ. It can be seen from the estimate

G(−y,−v,−w, t0 − t) ≤ 31/2

2π(t0 − t)2
exp

(
−3 |(t0 − t)(v + w)/2|2

(t0 − t)3
− |v − w|2

4(t0 − t)

)

≤ C1

(t0 − t)2
e−

C2
t0−t < C3

for every (v, t) ∈ [v0 − 3ρ, v0 + 3ρ] × [0, t0) and for every (y, w) ∈ Bρ with y ≥ 0. Note

that the above estimation is not valid if we allow y < 0.

Similarly, we have

G(0,−v,−w, s) ≤ C4

for every (v, w, s) ∈ [v0 − 3ρ, v0 + 3ρ]2 × [0, t0).
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Together with (32), we obtain∫ v0+3ρ

v0−3ρ

|λ(v, t)| dv ≤ C5 ‖ϕ‖L2(Bρ∩Ω) + C6

∫ t0

t

∫ v0+3ρ

v0−3ρ

|λ(w, s)| dwds.

Finally, by Gronwall’s inequality, there exists a constant C7 > 0 such that∫ v0+3ρ

v0−3ρ

|λ(v, t)| dv ≤ C7 ‖ϕ‖L2(Bρ∩Ω) .

Taking integration in both sides for t from 0 to t0, we obtain (31). The proof is

complete. �
With the above lemma, we are ready to prove Theorem 4.

Proof of Theorem 4. Proposition 24 gives the interior hypoellipticity. Now, we con-

sider the regularity on the boundary away from the grazing set.

The hypoellipticity at the inflow boundary can be obtained similarly to the interior

case. For the outflow boundary, it is enough to treat the regularity at (0, v0, t0) with

v0 < 0 because the remaining cases (at x = 1) can be obtained similarly.

Fix ρ ∈ (0, 1/3) such that 3ρ < |v0|. Let ϕ(x, v) ∈ Cc(Bρ) and g(x, v, t) be the solution

of the problem (30). Now, choose a smooth cut–off function ζ ∈ C∞
c (R2) such that

ζ =

{
1, on B2ρ,

0, on R
2\B3ρ.

Let ψ = gζ and define R as in (28). We can see that suppR ⊂ B̄3ρ\B2ρ, suppψ(t) ⊂
B̄3ρ for all t < t0, and ψ(x, v, t) = 0 with x = 1 or with (0, v, t) ∈ γ+

t0 . So we may use ψ

as a test function in (26) to get∫
Bρ∩Ω

f(t0)ϕ =

∫ t0

0

∫
(B3ρ\B2ρ)∩Ω

Rf +

∫
B3ρ

f0g(0)ζ +

∫
ν+
t0

vh0ψ(0, ., .)

=: I + II + III.

First, using Lemma 23, the expression (29), the estimate (31), the total mass bound

in Theorem 2, and the argument as in Proposition 24, we obtain

I + II ≤ C0 ‖f0‖L1(Ω) ‖ϕ‖L2(Bρ∩Ω) .

On the other hand,

III =

∫
ν+
t0

vh0ψ(0, ., .) ≤ ‖h0‖L1
v(ν

+
t0

) ‖ψ(0, ., .)‖L∞(ν+
t0

) .

Note that for every x ∈ R, v > 0, w ∈ (v0 − 3ρ, v0 + 3ρ), and t < t0, we have

|v − w| ≥ |v0| − 3ρ. Hence,

G(x,−v,−w, t) ≤ 31/2

2πt2
exp

(
−|v − w|2

4t

)
≤ 31/2

2πt2
exp

(
− (|v0| − 3ρ)2

4t

)
< C1.

So, together with the expression (29) and the estimate (31), we have

III ≤ C2 ‖h0‖L1
v(ν

+
t0

) ‖ϕ‖L2(Bρ∩Ω) .
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Putting the estimates of I + II and III together, we get∫
Bρ∩Ω

f(t0)ϕ ≤ C
(
‖f0‖L1(Ω) + ‖h0‖L1

v(ν
+
t0

)

)
‖ϕ‖L2(Bρ∩Ω) ,

where the constant C > 0 depends only on v0, t0, and ρ.

By density and duality arguments, we have f(t0) ∈ L2(Bρ ∩Ω). The remaining proof

for the regularity of higher orders is similar to that of [6, Theorem 1.3.(i)], so we skip

it. �

5. Decay rate to vacuum solutions. We present in this section the exponential

convergence rate of solutions of the Fokker–Planck equation with inflow boundary data

on a bounded interval. To obtain the result, we will use [6, Theorem 1.3], which concerns

the decaying rate of the solutions of the Fokker–Planck equation with absorbing boundary

conditions.

Proof of Theorem 5. Write f = f i + f b where f i is a solution of (1) with initial

condition f i(0) = f0 and boundary conditions f i|γ− = 0; and f b is a solution of (1) with

initial condition f b(0) = 0 and boundary conditions f b|γ−(0, ., .) = h0, f
b|γ−(1, ., .) = h1.

According to [6, Theorem 1.3.(i)], there exists λ1 > 0 such that∥∥f i(t)
∥∥
L1(Ω)

≤ ‖f0‖L1(Ω) exp(−λ1t).

Moreover, by Theorem 2, we have

‖f b(t)‖L1(Ω) ≤ ‖h0‖L1
v(ν

+
T ) + ‖h1‖L1

v(ν
−
T ) .

From the L1 decay (5) of the inflow boundary data, putting λ = min{λ0, λ1}, we get

(1).

For the L∞ decay, we use [6, Theorem 1.3.(ii)] to get the existence of λ2 > 0 and

C2 > 0 such that ∥∥f i(t)
∥∥
L∞(Ω)

≤ C2 exp(−λ2t),

where C2 depends on ‖f0‖L1(Ω) and ‖f0‖L∞(Ω).

By Theorem 2, we have

‖f b(t)‖L∞(Ω) ≤ max
{
‖h0‖L∞(ν+

T ) , ‖h1‖L∞(ν−
T )

}
.

From the L∞ decay (6) of the inflow boundary data, putting C = C0 + C2 and

λ = min{λ0, λ2}, we get (2) and end the proof for this theorem. �
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