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Abstract. In this paper we introduce a system coupling a nonlinear Schrödinger

equation with a system of viscoelasticity, modeling the interaction between short and

long waves, acting for instance on media such as plasmas or polymers. We prove the

existence and uniqueness of local (in time) strong solutions and the existence of global

weak solutions for the corresponding Cauchy problem. In particular we extend previous

results in [Nohel et. al., Commun. Part. Diff. Eq., 13 (1988)] for the quasilinear system

of viscoelasticity. We finish with some numerical computations to illustrate our results.

1. Introduction. In [3], D.J. Benney initiated the study of mathematical models

describing the interaction between short and long waves in fluids, namely capillary and

gravity waves or internal and surface waves. This has been developed by many authors,

such as M. Tsutsumi and S. Hatano in the pioneering papers [24, 25], and more recently,

in the framework of quasilinear systems, in [10, 11, 12, 13, 14] and [15]. Their numerical

study was initiated in [1] and developed in [2].

In this paper, we will apply the ideas of these authors to the case of viscoelastic

fluids, arising, for instance, in plasma physics (in the study of helioseismology; cf. [6]),

or in the study of polymers [18]. To this purpose, we introduce a model coupling the

nonlinear Schrödinger equation (modeling the short waves) with a quasilinear system of

viscoelasticity (modeling the long waves). This last system was studied in [20]. Thus,
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we analyze the following Cauchy problem,⎧⎪⎪⎪⎨⎪⎪⎪⎩
iut + uxx = uv + α|u|2u,
vt = wx,

wt = (σ(v))x + (|u|2)x +

∫ t

0

k(t− τ )
[
(σ(v))x + (|u|2)x

]
(·, τ ) dτ,

(1.1)

where x ∈ R, t ≥ 0, α is a real constant, and i =
√
−1. Here, u(x, t) ∈ C is the envelope

of the short waves, v(x, t) ∈ R is the deformation gradient, w(x, t) ∈ R is the velocity of

the long waves, σ ∈ C3(R) is the stress function verifying σ′ ≥ σ0 > 0 (hyperbolicity),

and k is a given C1 kernel. We consider (1.1) with the initial data

u0, v0, w0 ∈ H1(R). (1.2)

The integral term in the right-hand side of (1.1) represents the memory effects due to

the viscoelastic structure of the fluid.

We now recall a transformation due to R.C. MacCamy [19] (see also [20]). Let q(t)

be the resolvent kernel associated with k; i.e., q is the solution of the linear Volterra

equation

q(t) +

∫ t

0

k(t− τ )q(τ ) dτ = k(t), τ ≥ 0. (1.3)

Convolving the third equation in (1.1) with q(t), it is not difficult to obtain for smooth

solutions ∫ t

0

k(t− τ )
[
(σ(v))x + (|u|2)x

]
(x, τ ) dτ =

∫ t

0

q(t− τ )wt(x, τ ) dτ

= q(0)w(x, t)− q(t)w0(x) +

∫ t

0

q′(t− τ )w(x, τ ) dτ.

(1.4)

Thus, for smooth solutions, (1.1), (1.2) is equivalent to the Cauchy problem⎧⎪⎨⎪⎩
iut + uxx = uv + α|u|2u,
vt = wx, x ∈ R, t ≥ 0,

wt = (σ(v))x + (|u|2)x + F(w),

(1.5)

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), (1.6)

where

F(w)(x, t) = q(0)w(x, t)− q(t)w0(x) +

∫ t

0

q′(t− τ )w(x, τ ) dτ. (1.7)

In the case where u ≡ 0, that is, the nonlinear viscoelasticity system, the existence of

a global (in time) weak solution for initial data in L∞(R) ∩ L2(R) and k ∈ C1([0,+∞))

was proved in [20] (see also [5] for a different model) by the vanishing viscosity method

applied to both variables v and w and the compensated compactness method [23, 16]

based on ideas introduced by C. Dafermos in [7] (see also [11], and for related results

[9, 10]).

In this paper, we start by proving in Section 2 the existence and uniqueness for local (in

time) strong solutions for (1.5),(1.6) with initial data (u0, v0, w0) ∈ H3(R) × (H2(R))2

by applying a variant of Kato’s theorem [17]. In Section 3 and for a special class of
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stress functions σ, we apply the physical vanishing viscosity method (that is, only in the

velocity variable w) and a variant of the compensated compactness method introduced

by D. Serre and J. Shearer in [22] (see also [12]) to obtain the existence of a global

(in time) weak solution for (1.5),(1.6) with initial data (u0, v0, w0) ∈ (H1(R))3. Finally,

in Section 4, we present some numerical simulations to illustrate the behavior of the

solutions in a special case.

2. Local (in time) existence of strong solutions. Let u0 ∈ H3(R), v0 ∈ H2(R),

w0 ∈ H2(R). To study the Cauchy problem (1.5),(1.6), we introduce the Riemann

invariants

l = w +

∫ v

0

√
σ′(ξ) dξ, r = w −

∫ v

0

√
σ′(ξ) dξ.

We derive l − r = f(v), for some f one-to-one and smooth, and w = l+r
2 .

For classical solutions the Cauchy problem, (1.5),(1.6) is equivalent to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iut + uxx = uv + α|u|2u,

lt −
√
σ′(v)lx = (|u|2)x +

1

2
F(l + r),

rt +
√
σ′(v)rx = (|u|2)x +

1

2
F(l + r),

(2.1)

by setting v = f−1(l − r) = v(l, r) and with F given by (1.7). We take as initial data

u(·, 0) = u0 ∈ H3(R), l(·, 0) = l0 ∈ H2(R), r(·, 0) = r0 ∈ H2(R), with

l0 = w0 +

∫ v0

0

√
σ′(ξ) dξ, r0 = w0 −

∫ v0

0

√
σ′(ξ) dξ. (2.2)

To obtain a local strong solution of the Cauchy problem (2.1),(2.2), we consider, using

the technique employed in [21] and [14], an auxiliary system with nonlocal source terms.

This is necessary in order to write the system (2.1),(2.2) without derivative loss (see

[14]). Thus, we consider the following system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
iFt + Fxx = Fv + αu2F + 2α|u|2F +

1

2
u(lx + rx),

lt −
√
σ′(v)lx = (|ũ|2)x +

1

2
F(l + r),

rt +
√
σ′(v)rx = (|ũ|2)x +

1

2
F(l + r),

(2.3)

where F is the complex conjugate of F and F, ũ are defined by

u(x, t) = u0(x) +

∫ t

0

F (x, s) ds,

ũ(x, t) = (Δ− 1)−1(α|u|2u+ u(v − 1)− iF )

(see [14] for the motivation behind this definition). The initial data are

F (·, 0) = F0 ∈ H1(R), l(·, 0) = l0 ∈ H2(R), r(·, 0) = r0 ∈ H2(R), (2.4)

with l0, r0 given by (2.2).

We will prove the following result:
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Theorem 2.1. Let (F0, l0, r0) ∈ H1×H2×H2. Then, there exists T ∗ > 0 (depending on

(F0, l0, r0)) such that for all T < T ∗ there exists a unique solution (F, l, r) of the Cauchy

problem (2.3),(2.4) with

(F, l, r) ∈ Cj([0, T ];H1−2j)× Cj([0, T ];H2−j)× Cj([0, T ];H2−j), j = 0, 1.

From this result and from the definitions of F , ũ, reasoning as in [14, Lemma 2.1] (see

also [15]), it is easy to derive the following result for the system (1.5),(1.6):

Theorem 2.2. Let (u0, v0, w0) ∈ H3 ×H2 ×H2. Then, there exists T ∗ > 0 (depending

on (u0, v0, w0)) such that for all T < T ∗ there exists a unique solution (u, v, w) of the

Cauchy problem (1.5),(1.6) with

(u, v, w) ∈ Cj([0, T ];H3−2j)× Cj([0, T ];H2−j)× Cj([0, T ];H2−j), j = 0, 1.

Proof of Theorem 2.1. In order to apply a variant of Kato’s well-posedness result,

Theorem 6 in [17], we put the Cauchy problem (2.3),(2.4) in the framework of real

spaces by introducing the new variables F1 = �F, F2 = 	F , u1 = �u, u2 = 	u. By

setting U = (F1, F2, l, r) and F10 = �F0, F20 = 	F0, the Cauchy problem (2.3),(2.4) can

be written as follows: {
Ut +A(U)U = g(t, U),

U(·, 0) = U0,
(2.5)

where

A(U) =

⎡⎢⎢⎣
0 Δ 0 0

−Δ 0 0 0

0 0 −
√
σ′(v)∂x 0

0 0 0
√
σ′(v)∂x

⎤⎥⎥⎦ ,

g(t, U) =

⎡⎢⎢⎢⎢⎢⎣
2α|u|2F2 − α(u2

1 − u2
2)F2 + 2αu1u2F1 + F2v +

1
2u2(lx + rx)

2α|u|2F1 − α(u2
1 − u2

2)F1 − 2αu1u2F2 − F1v − 1
2u2(lx + rx)

(|ũ|2)x + 1
2F(l + r)

(|ũ|2)x + 1
2F(l + r)

⎤⎥⎥⎥⎥⎥⎦
and U0 = (F10, F20, l0, r0) ∈ Y = (H1(R))2 × (H2(R))2. Note that the source term is

nonlocal.

In what follows we use the notation of [17, paragraph 7]. Set X = (H−1(R))2 ×
(L2(R))2 and S = (1 − Δ) Id, which is an isomorphism S : Y → X. Furthermore, we

denote by WR the open ball in Y of radius R centered at the origin.

We need to check several assumptions in order to apply Theorem 6 of [17]. First, it is

necessary that the semigroup generated by the operator A above satisfy

‖e−tA(U)‖ ≤ eωt, (2.6)

for some real ω, for all t ≥ 0 and U ∈ WR. Observe that it is enough to prove this only

for the operator

a(l, r) =

[
−
√

σ′(v)∂x 0

0
√

σ′(v)∂x

]
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since the remaining part of A corresponds to the Schrödinger (contraction) group. But

(2.6) is proved in [17, paragraph 12], with ω given by

ω =
1

2
sup
x∈R

‖∂xa(l, r)‖ ≤ c(R),

with c : [0,+∞) → [0,+∞) continuous.

Next, we must check that for U ∈ WR, the property SA(U)S−1 = A(U) + B(U) is

valid for some B ∈ L(X). This is proved in [17, paragraph 12]: for (l, r) in a ball W̃ of

(H2(R))2, we have

(1−Δ)a(l, r)(1−Δ)−1 = a(l, r) +B0(l, r),

where

B0(l, r) = [(1−Δ), a(l, r)](1−Δ)−1 ∈ L((L2(R))2)

and

B(U) =

⎡⎢⎢⎣
0 0

0 0

0 0

0 0

0 0

0 0
B0(l, r)

⎤⎥⎥⎦ ,

with [·, ·] denoting the matrix commutator operator.

Now, consider a pair U,U∗ ∈ C([0, T ];WR), U = (F1, F2, l, r), U
∗ = (F ∗

1 , F
∗
2 , l

∗, r∗).

It is easy to see that g satisfies, for fixed T > 0, ‖g(t, U(t)‖Y ≤ C(R, T ), t ∈ [0, T ], if

U ∈ C([0, T ];WR). We obtain, in the same way as [14, 15],

‖g(·, U)− g(·, U∗)‖L1(0,T ′;X) ≤ c(T ′) sup
0≤t≤T ′

‖U(t)− U∗(t)‖X , (2.7)

where 0 ≤ T ′ ≤ T and c(T ′) is a nondecreasing continuous function such that c(0) = 0.

Finally, applying Theorem 6 in [17], replacing the local condition [17, equation (7.7)] by

(2.7), we obtain the result. This completes the proof of Theorem 2.1. �

3. Global existence of weak solutions for a class of stress functions. Now

we will consider the question of global (in time) weak solutions of the Cauchy problem

(1.5),(1.6). For a special class of stress functions σ, we will obtain an extension of

the result in [20] for the system of nonlinear viscoelasticity and in [12] for the system

of nonlinear elasticity coupled with the nonlinear Schrödinger equation. We employ the

adaptation of the compensated compactness method developed by D. Serre and J. Shearer

in [22] for the system of nonlinear elasticity, which extends earlier results of L. Tartar

[23] and R. J. DiPerna [16].
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Following [22], we define Σ(v) =
∫ v

0
σ(v) dξ (we may assume σ(0) = 0) and we impose

the following conditions on the stress function σ ∈ C3(R):

H1: σ′(v) ≥ σ0 > 0 for some constant σ0.

H2: σ′′(λ0) = 0 and σ′′(λ) = 0 for λ = λ0.

H3:
σ′′

(σ′)5/4
,

σ′′′

(σ′)7/4
∈ L2(R),

σ′′

(σ′)3/2
,

σ′′′

(σ′)3
∈ L∞(R).

H4:
σ(v)

Σ(v)
→ 0 as |v| → ∞, and there exist constants c > 0 and q > 1/2 such that

(σ′(v))q ≤ c(1 + Σ(v)).

In particular, we have Σ(v) ≥ σ0

2 v2. To simplify, we also suppose that v ∈ H1(R) implies∫
R
Σ(v) dx < ∞. A typical example is given by σ(v) = v3 + v.

We now follow the ideas developed in [12] and introduce a physical viscosity approxi-

mation of the Cauchy problem (1.5),(1.6). For small ε > 0, we consider the system⎧⎪⎨⎪⎩
iut + uxx = uv + α|u|2u,
vt = wx, x ∈ R, t ≥ 0,

wt = (σ(v))x + (|u|2)x + F(w) + εwxx,

(3.1)

with initial data

u0, v0, w0 ∈ H1(R). (3.2)

Observe that although in [20] the authors consider initial data for which v0, w0 are in

L∞ only, this is not possible in our case, since the method of Serre and Shearer requires

initial data with stronger regularity. Of course, this does not exclude the formation of

discontinuities for t > 0.

The proof of the following lemma is an easy adaptation of the first part of the proof

of Lemma 6.1 in [12], and so we omit it.

Lemma 3.1. Let (u, v, w) ∈
(
C([0, T );H1(R)

)3
, T > 0, be a solution to the Cauchy

problem (3.1),(3.2) for fixed ε > 0. We have in [0, T ],

d

dt

∫
R

|u|2 dx = 0, (3.3)

d

dt

[ ∫
R

|ux|2 dx+
α

2

∫
R

|u|4 dx+

∫
R

v|u|2 dx+
1

2

∫
R

w2 dx+

∫
R

Σ(v) dx
]

+

∫
R

F(w)w dx+ ε

∫
R

w2
x dx = 0.

(3.4)

Now, we recall from [20] the inequality∣∣∣ ∫ t

0

∫
R

F(w)w dx dτ
∣∣∣ ≤ C(T )

(
1 +

∫ t

0

∫
R

w2 dx dτ
)
, (3.5)

where C(·) is a continuous function in [0,+∞), independent of ε.

We now prove some estimates which will be needed to prove the well-posedness of the

viscous Cauchy problem (3.1),(3.2).
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By the Gagliardo–Nirenberg inequality we have, by (3.3),∫
R

|u|4 dx ≤ C0‖u‖3L2‖ux‖L2 = C0‖u0‖3L2‖ux‖L2 ,

and since Σ(v) ≥ σ0v
2
0/2 we derive from (3.4),(3.5) for 0 < t ≤ T ,∫

R

w2(x, t) dx ≤ C(T ) + C(T )

∫ t

0

∫
R

w2(x, τ ) dx dτ (3.6)

and so, by the Gronwall inequality and (3.4)–(3.6) we get for 0 < t ≤ T ,∫
R

|ux(x, t)|2 dx+

∫
R

|w(x, t)|2 dx+

∫
R

Σ(v(x, t)) dx

+ ε

∫ t

0

∫
R

w2
x dx dτ ≤ C(t),

(3.7)

∣∣∣ ∫ t

0

∫
R

F(w)w dx dτ
∣∣∣ ≤ C(T ), (3.8)

for some continuous function C on [0,+∞) independent of ε.

Next, we will prove the following estimate, for ε ≤ 1, t ∈ [0, T ]:

ε

∫ t

0

∫
R

σ′(v)(vx)
2 dx dτ + ε2

∫
R

(vx)
2 dx ≤ C(T ), (3.9)

where C is a continuous function on [0,+∞) independent of ε. For this purpose we follow

the ideas in [22, proof of (8)] (see also [12]). We deduce from (3.1), for v smooth enough,∫
R

wtvx − σ′(v)(vx)
2 dx =

∫
R

(|u|2)xvx dx+

∫
R

F(w)vx dx+ ε

∫
R

wxxvx dx

and

− d

dt

∫
R

wxv dx+

∫
R

(wx)
2 dx−

∫
R

σ′(v)(vx)
2 dx

=

∫
R

(|u|2)xvx dx+

∫
R

F(w)vx +
ε

2

d

dt

∫
R

(vx)
2 dx

(since, for w smooth enough, − d
dt

∫
R
wxv dx = −

∫
R
wxtv dx−

∫
R
wxvt dx =

∫
R
wtvx dx−∫

R
wxvt dx and vt = wx).

Integrating over (0, t) we obtain, with v0(x) = v(x, 0), w0(x) = w(x, 0),

−
∫
R

wxv dx+

∫
R

w0xv0 dx+

∫ t

0

∫
R

(wx)
2 dx dτ −

∫ t

0

∫
R

σ′(v)(vx)
2 dx dτ

=

∫ t

0

∫
R

(|u|2)xvx dx dτ +

∫ t

0

∫
R

F(w)vx dx dτ +
ε

2

∫
R

(vx)
2 − (v0x)

2 dx.

From −
∫
R
wxv dx =

∫
R
wvx we derive∫ t

0

∫
R

σ′(v)(vx)
2 dx dτ +

ε

2

∫
R

(vx)
2 dx ≤ ε

4

∫
(vx)

2 dx+
1

ε

∫
R

w2 dx

+

∫
R

|w0x||v0| dx+
ε

2

∫
R

(v0x)
2 dx+ ε

∫ t

0

∫
R

(wx)
2 dx dτ

+ 2

∫ t

0

∫
R

|u||ux||vx| dx dτ +
∣∣∣ ∫ t

0

∫
R

F(w)vx dx dτ
∣∣∣.

(3.10)
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Moreover, we easily get from (3.7), for a fixed δ > 0,

2

∫ t

0

∫
R

|u||ux||vx| dx dτ ≤ C(δ)C(T ) +
δ

σ0

∫ t

0

∫
R

σ′(v)(vx)
2 dx dτ, (3.11)

and also by the definition of F ,∣∣∣ ∫ t

0

∫
R

F(w)vx dx dτ
∣∣∣ ≤ δ

∫ t

0

∫
R

(vx)
2 dx dτ + C(δ)C(T )

∫ t

0

∫
R

w2 dx dτ

≤ δ

σ0

∫ t

0

∫
R

σ′(v)(vx)
2 dx dτ + C(δ)C(T )

∫ t

0

∫
R

w2 dx dτ.

(3.12)

From (3.10)–(3.12) we derive, choosing δ = σ0

4 and multiplying by ε, the estimate (3.9)

for t ∈ (0, T ].

Let us now analyze the problem of the existence of a unique solution (u, v, w) ∈
(C([0,+∞);H1))3 of the Cauchy problem (3.1),(3.2) for fixed ε ∈ (0, 1]. We assume ε = 1

without loss of generality. Let us begin with the study of the existence and uniqueness

of a local (in time) solution. Let 0 < T < +∞ and introduce the complex Banach space

(not to be confused with the spaces introduced in Section 2) XT = C([0, T ];H1) and

the real Banach space YT = C([0, T ];H1), with the standard norms. Let us consider the

product space BT
R × (BT

R)
2 where BT

R = {u ∈ XT : ‖u‖XT
≤ R} and (BT

R)
2 = {(v, w) ∈

Y 2
T : ‖v‖YT

≤ R, ‖w‖YT
≤ R}.

Given (ũ, ṽ, w̃) ∈ BT
R × (BT

R)
2 we consider the mapping

(ũ, ṽ, w̃) �→ Φ(ũ, ṽ, w̃) = (u, v, w) ∈ XT × (YT )
2,

where (u, v, w) is the unique solution of the linear problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iut + uxx = α|ũ|2ũ+ ṽũ, u(0) = u0,

wt − wxx = (σ(ṽ))x + (|ũ|2)x + F(w̃), w(0) = w0,

v(t) = v0 +

∫ t

0

wx dτ,

(3.13)

with u0, v0, w0 ∈ H1 and such that w ∈ L2(0, T ;H2), wt ∈ L2(0, T ;L2). With the usual

method of semigroups, we have

u(t) = eiΔtu0 − i

∫ t

0

eiΔ(t−s)(α|ũ|2ũ+ ṽũ)(s) ds

and

(σ(ṽ))x + (|ũ|2)x + F(w̃) ∈ C([0, T ];L2)

with the estimate [20, (3.42)]∫ t

0

∫
R

∣∣F(w̃1)−F(w̃2)
∣∣2 dx dτ ≤ C(T )

∫ t

0

∫
R

|w̃1 − w̃2|2 dx dτ. (3.14)

Reasoning as in [20, proof of Theorem 3.1], we can, for convenient T and

R > max(|u0|H1 , |v0|H1 , |w0|H1),
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apply the Banach fixed point theorem for strict contractions to obtain existence and

uniqueness of a local (in time) solution of the viscous system (3.1),(3.2). Moreover, we

have

wt − wxx = (σ(v))x + (|u|2)x + F(w)

and, from the previous estimates (3.7),(3.9), (3.14) (with w̃1 = w, w̃2 = 0) and (3.3), we

derive the a priori estimate

‖wt − wxx‖L2(0,T ;L2) ≤ c(T ),

with c ∈ C([0,+∞[;R+), and this implies, by standard regularity estimates for parabolic

equations, that w ∈ L2(0, T ;H2) and ‖w‖L2(0,T ;H2) ≤ c(T ). This in turn gives similar a

priori estimates for ‖wt‖L2(0,T ;L2) and ‖w‖C([0,T ];H1).

We are now in a position to pass to the limit ε → 0 and state the main result in this

section.

Theorem 3.2. Assume (u0, v0, w0) ∈ (H1(R))3 and let LΣ
loc(R × [0,+∞)) be the space

of functions v measurable in R× [0,+∞) such that∫
K

Σ(v) dx dt < ∞ for each compact K ⊂ R× [0,+∞).

Then there exists

(u, v, w) ∈ L∞
loc((0,+∞);H1)× LΣ

loc(R× [0,+∞))× L2
loc(R× [0,+∞))

such that

−i

∫ ∞

0

∫
R

uθt dx dt−
∫ ∞

0

∫
R

uxθx dx dt+

∫
R

u0(x)θ(x, 0) dx

=

∫ ∞

0

∫
R

vuθ dx dt+ α

∫ ∞

0

∫
R

|u|2uθ dx dt,

for all complex-valued θ ∈ C1
0 (R× [0,+∞)), and∫ ∞

0

∫
R

(vφt − wφx) dx dt+

∫
R

v0(x)φ(x, 0) dx

+

∫ ∞

0

∫
R

wψt − σ(v)ψx + F(w)ψ dx dt

+

∫
R

w0(x)ψ(x, 0) dx+

∫ ∞

0

∫
R

(|u|2)xψ dx dt = 0,

for every real-valued φ, ψ ∈ C1
0 (R× [0,+∞)).

Proof. We follow the ideas in [22, 12] (see also [4]): for each ε ∈ (0, 1], let (uε, vε, wε) ∈(
C([0,+∞);H1)

)3
be the unique solution of the Cauchy problem (3.1),(3.2). From the

system (3.1), (3.3), and (3.7), we derive, for fixed T > 0,

{uε}ε bounded in L∞((0, T );H1),

{uεt}ε bounded in L∞((0, T );H−1),

and so, by a well-known compactness result, {uε} is in a compact set of L2(0, T ;L2(IR))

for each interval IR = (−R,R), R > 0. Furthermore, there exists u ∈ H1(R) such

that (for a subsequence) uε
∗
⇀ u in L∞

loc(0,+∞;H1(R)) when ε → 0. By a standard
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diagonalization method, we conclude that, in fact, for a suitable subsequence, uε → u in

L1
loc(R× [0,+∞)).

We also have, by (3.7),

{wε}ε bounded in L2
loc(R× [0,+∞)),

{vε}ε bounded in LΣ(R× [0,+∞)).

By (3.7) and (3.9) we derive

ε

∫ t

0

∫
R

(wεx)
2 + σ′(vε)(vεx)

2 dx dt ≤ C(T ), (3.15)

where C(t) is a continuous function depending on the H1 norm of the initial data, but

not on ε.

Now consider the quasilinear system{
vt = wx,

wt = (σ(v))x
(3.16)

and, for (v, w) ∈ R2, let η(v, w), q(v, w) be a pair of smooth convex entropy-entropy

flux pairs for (3.16) such that ηw, ηww and ηvw/
√
σ are bounded functions in R2. From

(3.3),(3.7),(3.15) and since, for each interval IR = [−R,R], R > 0, we have∣∣∣ ∫ t

0

∫
IR

F(wε) dx dt
∣∣∣ ≤ CR(t),

where CR(t) is a continuous function on [0,+∞) independent of ε, we derive from the

system (3.1) (cf. similar estimates in [22, 4] and [12]) that

∂tη(vε, wε) + ∂xq(vε, wε)

belongs to a compact set of W−1,2
loc (R × [0,+∞)). Hence, in view of the assumptions

H1–H4, we may apply the result on compensated compactness of D. Serre and J. Shearer

[22] to conclude that {(vε, wε)}ε is precompact in
(
L1
loc(R × [0,+∞))

)2
. Hence, there

exist a subsequence {(uε, vε, wε)}ε and

(u, v, w) ∈ L∞
loc(0,+∞;H1)× LΣ

loc(R× [0,+∞))× L2
loc(R× [0,+∞))

such that

(uε, vε, wε) → (u, v, w) in
(
L1
loc(R× [0,+∞))

)3
, ε → 0.

Now take functions θ, φ and ψ as introduced in the statement of Theorem 3.2, multiply

the first equation of system (3.1) by θ, the second one by φ and the third one by ψ and

integrate over R× [0,+∞). After integrating by parts, we pass to the limit as ε → 0 in

view of the above convergences. This allows us to prove that (u, v, w) are weak solutions

of the system (1.1), since we have for some T = T (ψ),∣∣∣ε ∫ ∞

0

∫
R

wεxxψ dx dt
∣∣∣ ≤ cψε

1/2
(
ε

∫ T

0

∫
R

(wεx)
2 dx dt

)1/2

,

which goes to zero as ε → 0 by (3.7). This completes the proof of Theorem 3.2. �
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4. Numerical experiments. In this section we present some numerical experiments

on the system (1.1), to illustrate our results. We use the more convenient formulation

(1.5)–(1.7). According to [20], if the kernel k in (1.1) is the derivative of a C2, positive,

decreasing and convex function on [0,+∞), then the term q(0)w(x, t) in F has a damping

effect and the solutions should remain classical and globally defined.

Thus, we will consider the particular case k(t) = e−t in (1.1), which gives, after some

elementary calculations, q(t) = e−2t in (1.5).

The stress function is taken as σ(v) = v3 + v, which verifies the conditions H1–H4 in

Section 3. The memory term in (1.5) reads

F(w) = w(x, t)− e−2tw0(x)− 2

∫ t

0

e2(s−t)w(x, s) ds. (4.1)

4.1. The numerical scheme. We use a fourth-order explicit Runge–Kutta scheme for

the time-stepping along with standard finite difference discretizations of the space deriva-

tives. As is usual in the simulation of problems posed on the whole line, we restrict

ourselves to a bounded domain [L1, L2] and to initial data decaying exponentially for

large |x|, and set the boundary conditions to zero.

Thus, we are given a spatial mesh size h > 0, J = (L2 − L1)/h (which we suppose

is a natural number without loss of generality), a time step τ , a suitable discretiza-

tion of the initial data, (u0j , v0j , w0j)j=0,...,J , an approximation (un
j , v

n
j , w

n
j )j=0,...,J of

(u(xj , tn), v(xj , tn), w(xj , tn)) at time tn = nτ, n ∈ N, and xj = L1+ jh. We then obtain

(un+1
j , vn+1

j , wn+1
j ) by solving by the fourth-order Runge–Kutta method the equations

d

dt
un
j =

i

h2
(un

j+1 − 2un
j + un

j−1)− iun
j |un

j |2 − ivnj u
n
j ,

d

dt
vnj =

1

2h
(wn

j+1 − wn
j−1),

d

dt
wn

j =
1

2h
(σ(vnj+1)− σ(vnj−1)) +

h

2
(wn

j+1 − 2wn
j + wn

j−1)

+
1

h2
(|un

j+1|2 − |un
j−1|2) + wn

j − e−2tnw0j − 2e−2tnFn
j ,

(4.2)

where Fn
j , the discretization of the nonlocal integral term in (4.1) is defined recursively

by

Fn
j = Fn−1

j + τ (e2tn−1wn−1
j ).

Note the introduction of a viscosity term in the third equation of (4.2) to improve sta-

bility, as is customary in the numerical treatment of hyperbolic equations.

As initial data (see Figure 1), we have set

u0(x) = Ce30ix cosh−1(
√
50x),

v0(x) = C cosh−1(
√
20(x− 0.1)),

w0(x) = C cosh−1(
√
20(x+ 0.1)).

(4.3)

For other simulations of short wave–long wave interactions in the case of a Schrödinger

equation coupled with a nonlinear conservation law, see [1, 2].
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Fig. 1. The initial data (4.3).

4.2. Numerical results. We now present some results obtained by this numerical meth-

od. In Figure 1, we present the initial data (4.3). Next, In Figures 2–5, we plot the

numerical solution, respectively, at times T = 0.001, T = 0.01, and T = 0.1, with a

close-up of the interaction region in Figure 5.

We can clearly observe in these simulations the interaction between the short and the

long waves. In particular, there is the formation of a train of small frequency waves in

the v and (more strongly) in the w variables which can clearly be discerned. These new

waves, due to the nonlinear coupling, are coherent with the oscillations in the Schrödinger

variable u, as can be seen in Figures 3–5.

Thus, our simulations show creation of new waves due to the interaction effects and

thus allow us to see a new qualitative property of the solutions to the system under

consideration.
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Fig. 2. Computed solution of system (1.5),(1.6), T = 0.001.
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Fig. 3. Computed solution of system (1.5),(1.6), T = 0.01.
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Fig. 4. Computed solution of system (1.5),(1.6), T = 0.1.
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Fig. 5. Computed solution of system (1.5),(1.6), T = 0.1 (close-up).
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