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Abstract. The solar wind interacting with a magnetized obstacle is modelled with

the steady Vlasov-Poisson system in the plane. The system is linearized for the (given)

magnetic field of the obstacle being small. The main focus is on the rate of decay of the

spatial charge density “downwind” of the obstacle. A special case that admits an explicit

solution is presented. It is also shown that when the background particle distribution

is compactly supported in velocity, that the spatial charge density cannot, in general,

decay faster than x
− 1

2
1 , where x1 is the downwind distance.

1. Introduction. Consider the following simplified model of the steady solar wind:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v · ∇xf − (E1 + v2B) ∂v1f − (E2 − v1B) ∂v2f = 0,

ρ = −
ˆ

(f − F (v)) dv,

∇ · E = ρ,

∇× E = 0.

(1.1)

Here f gives the density in phase space of mobile negative ions with mass one and charge

minus one. This is assumed to depend on position, x = (x1, x2), and velocity, v = (v1, v2).

The positive ions have charge positive one, but are taken to have infinite mass so that

they form a fixed background density given by F (v1, v2) (see [6]). We take F (v) = 0

for v1 ≤ 0. B = B(x1, x2) is a given magnetic field. The self-consistent magnetic field

due to the plasma is neglected. We assume that E → 0 as x1 → −∞, f − F → 0 as

x1 → −∞ for v1 > 0, and f − F → 0 as x1 → +∞ for v1 < 0. We wish to understand

the “downwind”, i.e., large x1, behavior.

In [7] a one space dimensional version of this problem is considered and it is shown

that for B small and compactly supported, that f − F and E do not decay to zero as
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x1 → +∞. Similar results were shown when a self-consistent magnetic field was included,

[8]. Thus it is reasonable to expect at most slow decay in higher dimensions.

To make (1.1) more tractable, we will linearize about B = 0: Let g = f − F . Then

we compute that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v · ∇xg − (E1 + v2B) ∂v1F − (E2 − v1B) ∂v2F = 0,

ρ = −
ˆ

g dv,

∇ · E = ρ,

∇× E = 0.

(1.2)

We make the following standing assumptions throughout. Of F we assume that 0 ≤
F ∈ C3(R2) with F and |∇F | in L1(R2) and there exist ε > 0 and C > 0 such that

v1 ≤ ε ⇒ F (v1, v2) = 0 ∀v2, (1.3)

F (v) ≤ C|v|−1−ε and |v1∂v2F − v2∂v1F | ≤ Cv−ε
1 |v|−2|v2|, (1.4)

F (v1,−v2) = F (v1, v2) ∀v, (1.5)

F (v) 	= 0 and v2 	= 0 ⇒ v2∂v2F (v) < 0. (1.6)

It is also assumed that B ∈ C(R2), g ∈ C1(R4), ρ ∈ C1(R2), E ∈ C1(R2) are all bounded

and satisfy (1.2) with

|E(x1, x2)|+ |ρ(x1, x2)| |x1| ≤ C |x1|−1−ε for x1 ≤ 0, (1.7)

g(x+ sv, v) → 0 as s → −∞ ∀x, v, (1.8)

x1 ≤ 0 ⇒ B(x1, x2) = 0 ∀x2, (1.9)

|B(x)| ≤ C|x|−2−ε, (1.10)

v 
→ g(x, v) is in L1(R2) ∀x, (1.11)ˆ
|ρ(x1, x2)| dx2 ≤ Cerx1 (1.12)

for some

r > sup
w

ˆ ∞

0

τ−1F (τ−1w)dτ. (1.13)

It will be shown that

ρ(x1, x2) = 0 for x1 ≤ 0.

Theorem 1.1. In addition to the standing assumptions (1.3) through (1.13) suppose F

is of the form

F (v) = A(v1)

(
1 +

(
v2
v1

)2
)−1

.

Then

ρ(x) = −a2

ˆ x1

0

ˆ
(x2 − x̃2) cos

(
(x1 − x̃1)

√
πa1

)
(x1 − x̃1)

2 + (x2 − x̃2)
2 B (x̃) dx̃2 dx̃1
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for x1 > 0, where

a1 =

ˆ ∞

0

A (w̃1) w̃
−1
1 dw̃1

and

a2 =

ˆ ∞

0

A (w̃1) dw̃1.

Comment. If A(v1) is compactly supported, then ( 1.4) holds.

Corollary 1.1. Under the assumptions of Theorem 1.1,

|ρ(x)| ≤ 4πa2

(
sup

(
x2
1|B|

)
+

ˆ
|B|dx

)
x−1
1 .

Moreover, the decay rate of x−1
1 is optimal.

The next theorem shows that for F compactly supported, the decay rate for ρ is even

slower.

Theorem 1.2. In addition to the standing assumptions (1.3) through (1.13), assume

that F is compactly supported. Then there exists B ∈ C∞(R2) with

lim
|x|→∞

|x|p|B(x)| = 0

for every p > 0, such that

sup
x2

|ρ(x1, x2)| ≥ Cx
− 1

2
1

for some C > 0 and all x1 > C.

Although (1.2) is linearized about B = 0, it seems likely that slow decay rates apply

to the full nonlinear problem as well. In fact, the magnetic tail of the earth has been

observed to extend beyond 200 earth radii downwind, [5].

Linearization of the dynamic problem about f = F (with B = 0) has been studied

extensively. The decay in ρ for large time was first observed by Landau, [3]. A more

mathematical treatment is contained in [9]. Estimates of decay rates are established in

[1] and [2] and (as in Theorems 1.1 and 1.2 above) they depend on F . We comment that

equation (2.2) of this paper (in x1, x2) and equation (7) of [1] (in t, x) have a similar

structure. This was unexpected since E is derived from a two-dimensional density here

and a one-dimensional density in [1]. The conservation laws used in [1] do not seem to

have analogues here. Lemma 2 of [1] and Theorem 1.1 here are closely related.

This paper is organized as follows: The integral equation for ρ is derived in Section

2. In Section 3 we take the Laplace transform in x1 and the Fourier transform in x2.

Section 4 contains the proofs of Theorem 1.1 and its corollary. The proof of Theorem

1.2 in Section 5 uses the stationary phase approximation to get pointwise estimates. We

mention that the non-decay results of [1] are in the L2 norm and did not require use of

the stationary phase approximation.

The following notation is used:

〈a1, a2〉 ∧ 〈b1, b2〉 = a1b2 − a2b1.
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‖ ‖p is the Lp norm. Also, C denotes a positive generic constant which may change from

line to line and may depend on F but not on B, x, or v.

2. A convolution equation for ρ. Consider (1.2) with the assumptions (1.3)

through (1.13). Then

g(x, v) =

ˆ 0

−∞

d

ds
(g(x+ sv, v)) ds

=

ˆ 0

−∞
v · ∇xg(x+ sv, v)ds

=

ˆ ∞

0

(∂v1F (E1 + v2B) + ∂v2F (E2 − v1B))

∣∣∣∣
x−τv

dτ

and

ρ(x) = −
¨ ∞

0

(∇F (v) · E(x− τv)− v ∧∇F (v)B(x− τv)) dτ dv

=

ˆ ∞

0

ˆ
[F (v)∇v · (E(x− τv)) + v ∧ ∇F (v)B(x− τv)] dv dτ

=

ˆ ∞

0

ˆ
[−τF (v)ρ(x− τv) + v ∧ ∇F (v)B(x− τv)] dv dτ.

(2.1)

Letting

k(w) =

ˆ ∞

0

τ−1F (τ−1w)dτ

and

k1(w) =

ˆ ∞

0

(τ−1w) ∧ ∇F (τ−1w)τ−2dτ,

(2.1) becomes (letting w = τv)

ρ(x) = −
ˆ

k(w)ρ(x− w)dw +

ˆ
k1(w)B(x− w)dw. (2.2)

Note that k(w) = k1(w) = 0 if w1 ≤ 0. Since B = 0 on (−∞, 0]× R,ˆ
k1(w)B(x− w)dw =

ˆ ∞

0

ˆ
k1(w)B(x− w)dw2 dw1 = 0

for x1 ≤ 0. Hence (2.2) becomes

ρ(x) = −
ˆ ∞

0

ˆ
k(w)ρ(x− w)dw2 dw1,

and we claim that ρ = 0 on (−∞, 0]× R. To show this let

‖ρ‖ = sup
x1≤0

e−rx1

ˆ
|ρ(x1, x2)| dx2,
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where r is from (1.13). Then for x1 ≤ 0,

|ρ(x)| ≤ ‖k‖∞
ˆ ∞

0

ˆ
|ρ(x− w)| dw2 dw1

≤ ‖k‖∞
ˆ ∞

0

‖ρ‖ er(x1−w1)dw1

=
‖k‖∞
r

‖ρ‖ erx1

and

‖ρ‖ ≤ ‖k‖∞
r

‖ρ‖.

Since r > ‖k‖∞, ‖ρ‖ = 0 follows.

Defining

(a ∗ b)(x) =
ˆ x1

0

ˆ
a(w)b(x− w)dw2 dw1,

(2.2) may be written as

ρ = −k ∗ ρ+ k1 ∗B (2.3)

for x1 ≥ 0.

Note that k(w) = k1(w) = 0 if w1 ≤ 0. For w1 > 0 (and letting w̃1 =
w1

τ
),

k(w) =

ˆ ∞

0

τ−1F (τ−1w)dτ

=

ˆ ∞

0

F

(
w̃1,

w2

w1
w̃1

)
w̃−1

1 dw̃1 = H

(
w2

w1

)
,

(2.4)

where

H(λ) =

ˆ ∞

0

F (w̃1, λw̃1)w̃
−1
1 dw̃1. (2.5)

Similarly, for w1 > 0,

k1(w) =

ˆ ∞

0

(τ−1w) ∧∇F (τ−1w)τ−2dτ

= w−1
1 H1

(
w2

w1

)
,

where

H1(λ) =

ˆ ∞

0

〈w̃1, λw̃1〉 ∧ ∇F (w̃1, λw̃1) dw̃1. (2.6)

Note that H is even and H1 is odd.
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3. Transforms. We will use the Laplace transform in x1:

Lh(s) =
ˆ ∞

0

h(x1)e
−sx1dx1

and the Fourier transform in x2:

ĥ(ξ) =

ˆ
h(x2)e

−iξx2dx2.

Then for s = s1 + is2 with s1 > 0 and ξ 	= 0,

Lk̂(s, ξ) =

ˆ ∞

0

ˆ
H

(
x2

x1

)
e−x1s−ix2ξdx2 dx1

=

ˆ ∞

0

ˆ
H(λ) e−(s+iξλ)x1x1dλ dx1

=

ˆ
H(λ)

ˆ ∞

0

x1e
−(s+iξλ)x1dx1 dλ

=

ˆ
H(λ)(s+ iξλ)−2dλ = ξ−2H

(
s

ξ

)
,

where

H(s) =

ˆ
H(λ)(s+ iλ)−2dλ. (3.1)

Similarly

Lk̂1(s, ξ) =

ˆ ∞

0

ˆ
x−1
1 H1

(
x2

x1

)
e−x1s−iξx2dx2 dx1

=

ˆ
H1(λ)

ˆ ∞

0

x−1
1 e−(s+iξλ)x1x1dx1 dλ

=

ˆ
H1(λ)(s+ iξλ)−1dλ = ξ−1H1

(
s

ξ

)
,

where

H1(s) =

ˆ
H1(λ)(s+ iλ)−1dλ. (3.2)

Hence (2.3) yields

Lρ̂ = −ξ−2H
(
s

ξ

)
Lρ̂+ ξ−1H1

(
s

ξ

)
LB̂. (3.3)

Let’s collect some observations about H and H1. Both are analytic on C\ {s2i :
s2 ∈ R}. Also

H(−s) = H(s), (3.4)

H1(−s) = H1(s), (3.5)

H(s) = H(s),

and

H1(s) = −H1(s)
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for im(s) 	= 0. It follows that

H(−s) = H(s),

H1(−s) = −H1(s)

and that for s1 ∈ R\{0},
H(s1) = H(s1),

H1(s1) = −H1(s1),

so H(s1) is real and H1(s1) is pure imaginary. An elementary calculation shows that

im (H(s1 + is2)) = 4s1s2

ˆ ∞

0

λH ′(λ)dλ

(s21 + (s2 + λ)2) (s21 + (s2 − λ)2)

so, using (1.6),

im (H(s1 + is2)) 	= 0 if s1s2 	= 0.

Also for s1 ∈ R\{0} (since H is even and (1.6) holds),

H(s1) =

ˆ
H(λ)

s21 − λ2 − 2iλs1

(s21 + λ2)
2 dλ

=

ˆ
H(λ)

d

dλ

(
λ

s21 + λ2

)
dλ = −

ˆ
λH ′(λ)

s21 + λ2
> 0.

It follows that

1 + ξ−2H
(
s

ξ

)
	= 0

for re(s) 	= 0 and we may define

R(s, ξ) =
ξ−1H1

(
s
ξ

)
1 + ξ−2H

(
s
ξ

)
for re(s) 	= 0. Note that R is analytic in s and by (3.3) that

Lρ̂ = RLB̂. (3.6)

It follows from (3.4) and (3.5) that R(s,−ξ) = −R(s, ξ) and hence

R(s, ξ) =
ξ−1H1

(
s
|ξ|

)
1 + ξ−2H

(
s
|ξ|

) . (3.7)

Similarly, it follows that

R(−s, ξ) = −R(s, ξ). (3.8)
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4. The Proof of Theorem 1.1. Suppose F has the form

F (v) = A(v1)B

(
v2
v1

)
.

Then from (2.5),

H(λ) =

ˆ ∞

0

A(w̃1)B(λ)w̃−1
1 dw̃1 = a1B(λ),

where

a1 =

ˆ ∞

0

A(w̃1)w̃
−1
1 dw̃1.

Similarly, from (2.6) an elementary calculation reveals that

H1(λ) = a2
(
(1 + λ2)B′(λ) + λB(λ)

)
,

where

a2 =

ˆ ∞

0

A(w̃1)dw̃1.

Taking B(λ) = (1 + λ2)−1 leads to

H1(λ) = −a2λ(1 + λ2)−1.

Next (3.1) and (3.2) become

H(s) = a1

ˆ
(1 + λ2)−1(s+ iλ)−2dλ

and

H1(s) = −a2

ˆ
λ(1 + λ2)−1(s+ iλ)−1dλ.

These may be evaluated using residues. For re(s) > 0, λ 
→ (1 + λ2)−1(s + iλ)−2 is

analytic with poles at ±i and is. is is in the upper half-plane and so

H(s) = −
‰

|λ+i|=δ

a1dλ

(1 + λ2)(s+ iλ)2

= −2πi
a1

(λ− i)(s+ iλ)2

∣∣∣∣
λ=−i

=
πa1

(s+ 1)2

for δ ∈ (0, 1). Similarly

H1(s) = −
‰

|λ+i|=δ

(−a2)λ dλ

(1 + λ2)(s+ iλ)

= 2πi
a2λ

(λ− i)(s+ iλ)

∣∣∣∣
λ=−i

=
πa2i

s+ 1
.

Substitution into (3.7) yields

R(s, ξ) =
πa2i(s+ |ξ|)

(s+ |ξ|)2 + πa1
sign(ξ)

for re(s) > 0 and ξ 	= 0. Here sign(ξ) =
ξ

|ξ| .
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The inverse Laplace transform of R may be computed by another residue calculation.

Let C(s1) = {s1 + is2 : s2 ∈ R}. Then for any s1 > 0 and x1 > 0,

L−1R(x1, ξ) =
1

2πi

ˆ
C(s1)

R(s, ξ)esx1ds

=
πa2i sign(ξ)

2πi

ˆ
C(s1)

(s+ |ξ|)esx1ds

(s+ |ξ|)2 + πa1

=
πa2i sign(ξ)

2πi

⎛
⎜⎝ ‰

|s+|ξ|−i
√
πa1|=δ

(s+ |ξ|)esx1ds

(s+ |ξ|)2 + πa1
+

‰

|s+|ξ|+i
√
πa1|=δ

(s+ |ξ|)esx1ds

(s+ |ξ|)2 + πa1

⎞
⎟⎠

= πa2i sign(ξ)

(
(s+ |ξ|)esx1

s+ |ξ|+ i
√
πa1

∣∣∣∣
s=−|ξ|+i

√
πa1

+
(s+ |ξ|)esx1

s+ |ξ| − i
√
πa1

∣∣∣∣
s=−|ξ|−i

√
πa1

)

= πa2i sign(ξ)e
−x1|ξ| cos (x1

√
πa1) .

(4.1)

Denoting the inverse Fourier transform by F−1 we have

F−1L−1R(x) =
1

2π

ˆ
L−1R(x1, ξ)e

iξx2dξ.

Substitution of (4.1) and a direct calculation leads to

F−1L−1R(x) = −
a2x2 cos

(
x1

√
πa1

)
x2
1 + x2

2

.

From (3.6) it follows that

ρ =
(
F−1L−1R

)
∗B,

so Theorem 1.1 follows.

To prove the corollary note that

|ρ(x)| ≤
ˆ x1

0

ˆ
a2 |x2 − x̃2|

(x1 − x̃1)
2
+ (x2 − x̃2)

2 |B(x̃)| dx̃2 dx̃1

≤ a2

ˆ x1

0

ˆ |B(x̃)|
r

dx̃2dx̃1,

where

r =
√
(x1 − x̃1)2 + (x2 − x̃2)2.
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Note that r <
1

2
x1 ⇒ x1 − x̃1 <

1

2
x1 ⇒ 1

2
x1 < x̃1, so letting CB = sup

(
x2
1 |B(x1, x2)|

)
we have

¨

r< 1
2x1

|B(x̃)|
r

dx̃2dx̃1 ≤
¨

r< 1
2x1

CB

x̃2
1

dx̃2 dx̃1

r

≤ CB

( 12x1)2

¨

r< 1
2x1

dx̃2 dx̃1

r
=

4CB

x2
1

2π
1

2
x1 =

4πCB

x1
.

Hence

|ρ(x)| ≤
(
4πCB

x1
+

ˆ x1

0

ˆ |B(x̃)|
1
2x1

dx̃2 dx̃1

)
a2

≤ (4πCB + 2‖B‖L1) a2
x1

.

To show that this rate is sharp, let

ω =
√
πa1

and assume that B is positive on the set
{
(x1, x2) : 0 < x1 < ω−1 and |x2| < ω−1

}
and

zero everywhere else. Consider x =
(
2nπω−1, 2nπω−1

)
, where n is a positive integer.

Then

−ρ(x)

a2
=

ˆ ω−1

0

ˆ ω−1

−ω−1

(x2 − x̃2) cos(ω(x1 − x̃1))

(x1 − x̃1)2 + (x2 − x̃2)2
B(x̃)dx̃2 dx̃1

≥
ˆ ω−1

0

ˆ ω−1

−ω−1

(2nπω−1 − ω−1) cos(1)B(x̃)

(2nπω−1)2 + (2nπω−1 + ω−1)2
dx̃2 dx̃1

≥ C‖B‖L1

x1
.

5. The Proof of Theorem 1.2. In this section we assume that F has compact

support and hence there exists rH > 0 such that |λ| ≥ rH ⇒ H(λ) = H1(λ) = 0. Then

H and H1 are analytic on C\ {is2 : |s2| ≤ rH}. It is necessary to compute the limits of

H and H1 as re(s) → 0+ (and |im(s)| ≤ rH).

The following notation will be used:

σ∗(s2) =
1

π
lim

δ→0+

(ˆ −s2−δ

−∞

σ(λ)

s2 + λ
dλ+

ˆ ∞

−s2+δ

σ(λ)

s2 + λ
dλ

)

whenever this limit exists. Also consider σ ∈ C1(R) with |σ(λ)|+ |λσ′(λ)| ≤ C|λ|−δ for

some C, δ > 0. For s = s1 + is2 with s1 > 0, define arg(s) ∈
(
−π

2
,
π

2

)
by s = |s|ei arg(s).
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Thenˆ
σ(λ)(s2 + iλ)−1dλ =

ˆ
σ(λ)(−i)

d

dλ
[log(s+ iλ)] dλ

= i

ˆ
σ′(λ) (ln |s+ λ|+ i arg(s+ iλ)) dλ

−→
s1→0+

i

ˆ
σ′(λ)

(
ln |s2 + λ|+ i

π

2
sign(s2 + λ)

)
dλ

= π (σ(−s2)− iσ∗(s2)) .

(5.1)

(5.1) will be applied to H and to H1. Recall that H is even and hence H ′ is odd. By

(3.1) and (5.1),

H(s) =

ˆ
H(λ)

d

dλ

[
i(s+ iλ)−1

]
dλ

= −i

ˆ
H ′(λ)(s+ iλ)−1dλ

−→
s1→0+

−iπ (H ′(−s2)− i(H ′)∗(s2))

= π (−(H ′)∗(s2) + iH ′(s2)) .

(5.2)

Similarly, by (3.2) and (5.1),

H1(s) −→
s1→0+

π (H1(−s2)− iH1∗(s2)) = −π (H1(s2) + iH1∗(s2)) . (5.3)

Let

R+(s2, ξ) =
−πξ

(
H1

(
s2
|ξ|

)
+ iH1∗

(
s2
|ξ|

))
ξ2 − π (H ′)∗

(
s2
|ξ|

)
+ iπH ′

(
s2
|ξ|

) .
Then by (3.7), (5.2), and (5.3),

R(s, ξ) → R+(s2, ξ) as s1 → 0+.

Consider s = s2i with

∣∣∣∣s2ξ
∣∣∣∣ > rH , recalling that H and H1 are analytic at these points.

Define

h(z) =

ˆ
H(λ)(λ+ z)−2dλ (5.4)

for |z| > rH . Then h is even, decreasing on (rH ,∞), and

π(H ′)∗

(
s2
|ξ|

)
=

ˆ
H(λ)

(
s2
|ξ| + λ

)
2

dλ = h

(
s2
|ξ|

)
.

Note that

R(s, ξ) = R+(s2, ξ) =
−πξiH1∗

(
s2
|ξ|

)
ξ2 − h

(
s2
|ξ|

)
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for s = s2i with

∣∣∣∣s2ξ
∣∣∣∣ > rH . For |ξ| >

√
h(rH) we have ξ2 − h

(
s2
|ξ|

)
> 0 on

∣∣∣∣s2ξ
∣∣∣∣ > rH ;

hence R is analytic (in s) on C\
{
is2 :

∣∣∣∣s2ξ
∣∣∣∣ ≤ rH

}
. For |ξ| <

√
h(rH), R has poles at

s = ±p(ξ)i, where

p(ξ) = |ξ|h−1(ξ2)

and h−1 is the inverse of h restricted to (rH ,∞).

Let C(s1) = {s1 + is2 : s2 ∈ R} , Ia<b = 1 if a < b and 0 otherwise and R−(s2, ξ) =

lim
s1→0−

R(s, ξ). Since for x1 > 0,

1

2πi

ˆ
C(s1)

R(s, ξ)esx1ds =

{
0 if s1 < 0

L−1R(x1, ξ) if s1 > 0

we have for δ > 0 sufficiently small,

L−1R(x1, ξ) =
1

2πi

ˆ rH |ξ|

−rH |ξ|
(R+ −R−) e

is2x1i ds2

+
1

2πi
I|ξ|<

√
h(rH)

⎛
⎜⎝ ‰

|s−p(ξ)i|=δ

Resx1ds+

‰

|s+p(ξ)i|=δ

Resx1ds

⎞
⎟⎠ .

(5.5)

By (3.8),

R+ −R− = R+ +R+ = 2re(R+).

Let

R0(z, ξ) =
−ξ(H1(z)(ξ

2 − π(H ′)∗(z)) + πH1∗(z)H
′(z))

(ξ2 − π(H ′)∗(z))2 + (πH ′(z))2
.

Then

1

2π

ˆ rH |ξ|

−rH |ξ|
(R+ −R−) e

is2x1ds2

=

ˆ rH |ξ|

−rH |ξ|
R0

(
s2
|ξ| , ξ

)
eis2x1ds2 (5.6)

=

ˆ rH

−rH

R0(z, ξ)e
i|ξ|zx1 |ξ|dz.
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The second term of (5.5) may be computed using residues. For |ξ| <
√
h(rH), (3.7)

yields

1

2πi

‰

|s−pi|=δ

Resx1ds =
1

2πi

‰

|s−pi|=δ

ξH1

(
s
|ξ|

)
esx1ds

ξ2 +H
(

s
|ξ|

)

=
ξH1

(
ip
|ξ|

)
eipx1

H′
(

ip
|ξ|

)
|ξ|−1

.

(5.7)

Since
p

|ξ| > rH it follows from (3.1), (3.2), and (5.4) that

H′
(
ip

|ξ|

)
= ih′

(
p

|ξ|

)

and

H1

(
ip

|ξ|

)
= −iπH1∗

(
p

|ξ|

)
,

so

1

2πi

‰

|s−pi|=δ

R esx1ds = −πξ|ξ|
H1∗

(
p
|ξ|

)
h′
(

p
|ξ|

) eipx1 .

In similar fashion, it may be shown that (also using (3.4) and (3.5))

1

2πi

‰

|s+pi|=δ

Resx1ds = πξ|ξ|
H1∗

(
p
|ξ|

)
h′
(

p
|ξ|

) e−ipx1 . (5.8)

Collecting (5.6), (5.7), and (5.8), (5.5) becomes

L−1R(x1, ξ) =

ˆ rH

−rH

R0(z, ξ)e
i|ξ|x1z|ξ|dz

− πξ|ξ|I|ξ|<√h(rH)

H1∗
(

p
|ξ|

)
h′
(

p
|ξ|

) (
eipx1 − e−ipx1

)
.

(5.9)

Since ρ = F−1L−1R∗B, (5.9) allows us to represent the solution. We claim that the

first term of (5.9) satisfies ∣∣∣∣
ˆ rH

−rH

R0(z, ξ)e
i|ξ|x1z|ξ|dz

∣∣∣∣ ≤ C

x1
(5.10)

for |ξ| ≤ 1

2

√
h(rH). This estimate seems to break down as |ξ| approaches

√
h(rH). Hence

the strategy for proving Theorem 1.2 is to choose B with |ξ| > 1

2

√
h(rH) ⇒ B̂(x1, ξ) = 0.

Then the second term of (5.9) will be analyzed using the stationary phase approximation.
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First we establish (5.10). Note that (H ′)∗ is continuous with (H ′)∗(0) < 0 and

π(H ′)∗(z) = h(z) for |z| > rH . Hence we may choose r1 and r2 with 0 < r1 < r2 < rH
such that

π(H ′)∗(z) ≤ −C if |z| ≤ r1

and

π(H ′)∗(z) ≥
1

2
h(rH) if r2 ≤ r ≤ rH .

Let

D(z, ξ) =
(
ξ2 − π(H ′)∗

)2
+ (πH ′)2.

For |z| ≤ r1,

D ≥ (ξ2 + C)2 ≥ C.

On r1 ≤ |z| ≤ r2, H ′(z) 	= 0, so by continuity,

D ≥ (πH ′(z))2 ≥ C.

For r2 ≤ |z| ≤ rH and |ξ| ≤ 1

2

√
h(rH),

D ≥
(
ξ2 − π(H ′)∗(z)

)2
=
(
π(H ′)∗(z)− ξ2

)2

≥
(
1

2
h(rH)−

(
1

2

√
h(rH)

)2
)2

=
1

16
h2(rH).

So for |ξ| ≤ 1

2

√
h(rH) we have D ≥ C and it follows that

|∂zR0(z, ξ)| ≤ C.

Since R0(ξ,±rH) = 0 we have∣∣∣∣
ˆ rH

−rH

R0(z, ξ)e
i|ξ|x1z|ξ|dz

∣∣∣∣

=

∣∣∣∣−
ˆ rH

rH

∂zR0(z, ξ)
ei|ξ|x1z

ix1
dz

∣∣∣∣
and (5.10) follows as claimed.

In preparation for using stationary phase on the second term of (5.9) we claim that

0 < p′(ξ) and 0 < p′′(ξ) (5.11)

for 0 < ξ <
√
h(rH). Define

j(z) = z2h(z) =

ˆ
H(λ)

(
1 +

λ

z

)−2

dλ

and

q(ξ) =
p(ξ)

ξ
.

Then

ξ2 = h(q)
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and

p2 = ξ2q2 = q2h(q) = j(q).

Hence

2ξ = h′(q)q′

and

2pp′ = j′(q)q′.

But h′(z) < 0 and

j′(z) = 2z−2

ˆ
λH(λ)

(
1 +

λ

z

)−3

dλ

= 2z−2

ˆ rH

0

λH(λ)

[(
1 +

λ

z

)−3

−
(
1− λ

z

)−3
]
dλ < 0,

so

q′ =
2ξ

h′(q)
< 0

and

p′ =
j′(q)q′

2p
> 0.

Furthermore

p′ =
j′(q)

2p

2ξ

h′(q)
= �(q),

where we define � by

�(z) =
j′(z)

zh′(z)
.

If we can show that �′ < 0, then p′′ = �′(q)q′ > 0 will follow.

Note that

�′ =

(
2zh+ z2h′

zh′

)′
=

3(h′)2 − 2hh′′

(h′)2
. (5.12)

By the Cauchy-Schwarz inequality (and since H
1
2 (λ)(s+ λ)−1 and H

1
2 (λ)(s+ λ)−2 are

linearly independent),

3(h′)2 = 3

(ˆ
H(λ)(−2)(z + λ)−3dλ

)2

= 12

(ˆ
H

1
2 (λ)(z + λ)−1H

1
2 (λ)(z + λ)−2dλ

)2

< 12

(ˆ
H(λ)(z + λ)−2dλ

)(ˆ
H(λ)(z + λ)−4dλ

)

= 12h

(
1

6
h′′
)

= 2hh′′.

From (5.12), �′ < 0 now follows and hence (5.11) follows.
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Let

ξL =
1

4

√
h(rH), ξR =

1

2

√
h(rH).

We wish to choose ξ0 ∈ (ξL, ξR) such that

H1∗

(
p(ξ0)

ξ0

)
	= 0. (5.13)

Suppose this were not possible. Then H1∗ vanishes on an interval outside of [−rH , rH ].

But H1∗ is analytic on C\[−rH , rH ], so H1∗ is identically zero. This implies that H1 and

hence R and hence ρ vanish for all B. This is false, so (5.13) must hold.

Now we may choose B. Let B1 ∈ C∞
0 (R) with ε > 0 and rB > 0 such that 0 < ε < rB,

x1 	∈ (ε, rB) ⇒ B1(x1) = 0, and

B̂1(p(ξ0)) 	= 0.

Choose β ∈ C∞
0 (R) with ξ 	∈ (ξL, ξR) ⇒ β(ξ) = 0 and

β(ξ0) 	= 0. (5.14)

Take

B2(x2) =
1

2π

ˆ
β(ξ)eiξx2dξ = F−1β(x2)

and

B(x) = B1(x1)B2(x2).

For x1 > rB,

ρ̂(x1, ξ) =

ˆ x1

0

B̂(x̃1, ξ)L−1R(x1 − x̃1, ξ)dx̃1

=

ˆ rB

0

B1(x̃1)β(ξ)L−1R(x1 − x̃1, ξ)dx̃1.

Let

B(ξ) = −πξ|ξ|β(ξ)
H1∗

(
p
|ξ|

)
h′
(

p
|ξ|

)

and note that by (5.13) and (5.14),

B(ξ0) 	= 0.
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For x1 > 2rB and |ξ| < 1

2

√
h(rH), (5.9) and (5.10) yield

ρ̂(x1, ξ) =

ˆ rB

0

B1(x̃1)β(ξ)

⎡
⎣O(x1 − x̃1)

−1

−πξ|ξ|
H1∗

(
p
|ξ|

)
h′
(

p
|ξ|

) (
eip(x1−x̃1) − e−ip(x1−x̃1)

)⎤⎦ dx̃1

= O(x−1
1 ) + B(ξ)

ˆ rB

0

B1(x̃1)
(
eip(x1−x̃1) − e−ip(x1−x̃1)

)
dx̃1

= O(x−1
1 ) + B(ξ)

(
B̂1(p)e

ipx1 − B̂1(−p)e−ipx
)
.

Let

λ = p′(ξ0) (5.15)

and consider

2πρ(x1,−λx1) = O(x−1
1 ) +

ˆ ξR

ξL

B(ξ)
(
B̂1(p)e

ipx1 − B̂1(−p)e−ipx1

)
e−iξλx1dξ.

By (5.11), (p− λξ)′′ = p′′ > 0 and by (5.15),

(p− λξ)′ = 0 if ξ = ξ0.

Also by (5.11) and (5.15),

(−p− λξ)′ < 0

for ξ ∈ (ξL, ξR). Now by the stationary phase approximation (see, for example, pages

100 and 101 of [4]) we have

2πρ(x1,−λx1) = O(x−1
1 ) + C1x

−1
2

1 + O(x−1
1 ),

where

C1 = B(ξ0)B̂1(p(ξ0))

√
2π

p′′(ξ0)
ei(

π
4 +x1[p(ξ0)−ξ0λ]) 	= 0.

This proves Theorem 2.1.
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