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Abstract. Escape to infinity is proved to occur when a charge moves under the action

of the magnetic field created by a finite number of planar closed wires.

1. Introduction. The late Prof. Ulam, cf. [1], repeatedly stressed the importance of

the study of the magnetic field B created by closed (cyclic or periodic) wires, as a source

of mathematical problems: the presence of knotted streamlines of B, ergodic streamlines

in open sets of R3, applications in plasma physics and biology, [2]. Recently, [3], the

unreachability of the wires (the sources of B) when a charged particle moves in R
3 under

the presence of B was proved either for a finite number of parallel wires (that is, for a

finite number of parallel straight lines) or for a finite number of circular wires, lying on

parallel planes πi, its centers lying on a straight line L orthogonal to the planes πi.

We study in this paper the escape to infinity of electric charges under the presence of

the magnetic field B created by closed wires traversed by electrical intensities Ii. It is

assumed that the electric charges interact with B via the Lorentz equation,

ẍ = ẋ ∧B. (1.1)

For electric charges, interacting with the electric field E created by pointlike charges,

escape to infinity was studied in [4]–[5]. The reader should have a look at references [6]

and [7], where Matsuno and Goriely and Hyde studied the escape of Rn vector fields

via Painlevé analysis. The references in [8]–[22] are also useful concerning the escape for

polynomial vector fields.
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Concerning escape to infinity in the presence of magnetic fields B(x) created or not

created by a finite number of cyclic wires, the authors are not aware of previous references

studying this problem.

The result obtained here is (see Section 2): if all the cyclic wires lie on a plane π, then

escape to infinity is possible if the initial conditions (x0, ẋ0) (see equation (1.1)) satisfy:

x0 ∈ π

ẋ0 ‖ π

‖x0‖ large

⎫⎬
⎭ , (1.2)

‖ · ‖ being the standard Euclidean norm. This result also holds (see Section 3) in the

relativistic case.

A trivial case of escape to infinity appears when the cyclic spires are circular and

their centers lie on a straight line L orthogonal to their (parallel) planes. In this case

B(x)|L ‖ L and escape to infinity trivially occurs along L (for ẋ0 ‖ L).

The results of the present paper could be of interest in the study of plasma physics.

2. Escape under the magnetic field of a dipole. We show in this section that

escape to infinity occurs in the equator plane of a dipole (equator of the Earth considered

magnetically as a dipole oriented in the North-South direction) and a useful application

of this fact is given (see equation (2.11) and the lines following it).

In fact, a magnetic dipole, parallel or antiparallel to the z-axis gives rise to a magnetic

field B(x), x = (x, y, z), which on the points of the (x, y)-plane (equatorial plane of the

dipole) is of the form, [23],

B = (0, 0, B⊥)

B⊥ = k(x2 + y2)−3/2

}
, (2.1)

k being a real number proportional to the modulus of the magnetic moment of the dipole.

Under these circumstances, an electric charge (we take its charge and mass equal

to one) moving under this vector field B, with initial conditions (x0, y0, 0; ẋ0, ẏ0, 0) will

never, of course, abandon the plane z = 0.

We now prove that this charge, under suitable initial conditions, can escape to infinity

in the plane z = 0. Indeed, its nonrelativistic equations of motion are:

ẍ = B⊥(x, y) ẏ

ÿ = −B⊥(x, y) ẋ

}
, (2.2)

where B⊥(x, y) is given in equation (2.1). Equation (2.2) possesses the pair of first

integrals:

ẋ2 + ẏ2

xẏ − yẋ+
1

2

∫
B⊥(u)du

u = x2 + y2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (2.3)
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which in polar coordinates (r, φ) become:

ṙ2 + r2φ̇2

r2φ̇+
1

2

∫
B⊥(u)du

u = r2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.4)

For a dipole B⊥(u) =
k

u3/2 , the term 1
2

∫
B⊥(u)du in equation (2.4) becomes:

−k

r
. (2.5)

Calling v20 and L the values of the first integrals in equation (2.4) we get (choosing

ṙ > 0):

φ̇ = (L+ k
r )r

−2

ṙ =
√
v20 − (L+ k

r )
2r−2

}
. (2.6)

Escape to infinity will occur if the radicand R := v20 − (L+ k
r )

2r−2 in ṙ never vanishes.

We now set k > 0. This can always be assumed by choosing appropriately the direction

of the z-axis. The reader can check that R does not vanish when the following inequality

holds:

L2 < 4v0k. (2.7)

We now write (for further use) the expressions of r′ = dr
dφ , r

′′ = d2r
dφ2 and ρ(φ) (ρ =

radius of curvature) for the escape orbits r(φ) of equations (2.2) when B⊥ = kr−3 (see

equation (2.1)):

r′ =
dr

dφ
=

ṙ

φ̇
=

[v20 − (L+ k
r )

2r−2]1/2

(L+ k
r )r

−2
= r2

v0
L

+O(r), (2.8)

O(r) standing for a term of type rA1(r), with A1 bounded for large values of r;

r′′ =
dr′

dφ
= 2

v0
L
r
dr

dφ
+ . . . = 2

v0
L
r · r2 v0

L
+ . . . = 2

v20
L2

r3 +O(r2)

O(r2) = r2A2(r)

⎫⎪⎪⎬
⎪⎪⎭ , (2.9)

with A2 bounded for large values of r. The radius of curvature is given by, [24]:

ρ(φ) =
(r2 + r′2)3/2

2r′2 + r2 − rr′′
=

(r2 + r4
v2
0

L2 )
3/2

r2
+ . . . =

v30
L3

r4 +O(r3). (2.10)

We give now an application of the above formulas when the magnetic field B is of the

form
B = (0, 0, B∗

⊥(x, y))

B∗
⊥ ≤ k

r3
B∗

⊥ �= 0

r large

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.11)
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From equations (2.2) and the intrinsic equations of motion of the charge q (remember

m = 1, q = 1),

dv

dt
= 0,

v2

ρ∗
= vB∗

⊥, (2.12)

where v = (ẋ2 + ẏ2)1/2 and ρ∗ is the radius of curvature of the trajectory under the

magnetic field B∗
⊥. We get (via B∗

⊥ ≤ k
r3 ):

ρ∗ ≥ ρdipole, (2.13)

ρdipole being defined by

v2

ρdipole

= vB⊥ = v
k

r3
. (2.14)

Let us now prove that ρ∗(r) is defined for all values of r. In fact, otherwise (and by

equation (2.13)) it would blow up for a certain r1 ∈ R ( lim
r→r1

ρ∗ = +∞) and therefore we

would have (and by equation (2.12))

B∗
⊥(P ) = 0)

P ∈ {r2 = r21}

}
, (2.15)

contradicting one of the assumptions of equations (2.11). Therefore r1 ∈ R cannot exist

and ρ∗ is defined for all values of r (escape to infinity).

Note that in the relativistic case, equations (2.2) become:

d

dt
(γẋ) = B⊥(ẏ,−ẋ)

x = (x, y)

γ = (1− ẋ2)−1/2

c = speed of light = 1, ẋ2 < 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.16)

Since v2 = ẋ2 = ẋ2 + ẏ2 is again a first integral, equations (2.16) become

ẍ = γ−1
0 B⊥ẏ

ÿ = −γ−1
0 B⊥ẋ

γ0 = (1− v20)
−1/2

v20 < 1

⎫⎪⎪⎬
⎪⎪⎭ . (2.17)

We can now include the constant factor γ−1
0 in B⊥(x, y) and proceed as in the first

part of this section.

We can therefore conclude that when the following equations hold (see equations

(2.11)):

γ−1
0 B∗

⊥ ≤ k

r3
B∗

⊥ �= 0

r large

⎫⎪⎬
⎪⎭ , (2.18)

and relativistic escape to infinity is possible as well.
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3. Escape to infinity in the magnetic field of closed, planar wires. We prove

in this section that for a finite number N of plane closed wires lying on the (x, y)-plane

there is escape to infinity. Note that in this case B⊥ is not necessarily symmetric under

rotations around the z-axis.

In fact, from the Biot-Savart formula we get

B(x, y, 0) =
N∑
i=1

Ii

∫ 2π

0

(x− xi(t))

‖ x− xi(t) ‖3
∧ ẋi(t)dt

x = (x, y, 0), xi(t) = (xi(t), yi(t), 0)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.1)

and

B⊥(x, y, 0) =
N∑
i=1

Ii

∫ 2π

0

(x− xi)ẏi − (y − yi)ẋi

‖ x− xi(t) ‖3
dt , (3.2)

Ii ∈ R being the intensities on the closed wires and xi(t) a parametrization of them.

We now write ‖ x− xi(t) ‖3 in the form:

‖ x− xi(t) ‖3=
(
(x− xi(t))

2 + (y − yi(t))
2 + zi(t)

2
)3/2

=
(
x2 + y2 − 2xxi − 2yyi + xi(t)

2
)3/2

= r3/2
(
1 +

−2xxi − 2yyi + xi(t)
2

r2

)3/2

,

x2 + y2 = r2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(3.3)

On substitution of (3.3) into (3.2) and expansion of
(
1 + −2xxi−2yyi+xi(t)

2

r2

)3/2

in powers

of 1
r2 (remember that −2xxi−2yyi+xi(t)

2

r2 → 0 when r → ∞) we get:

B⊥(x, y, 0) =
k′

r3
+

1

r4
A(r, φ)

k′ ∈ R

⎫⎬
⎭ , (3.4)

k′ being defined by

k′ =
N∑
i=1

Ii

∫ −xiẏi + yiẋi

‖ x− xi(t) ‖3
dt =

∑
IiAi, (3.5)

and Ai being the areas of the closed wires Ci:

Ai =

∫
Ci

(−xiẏi + yiẋi)dt. (3.6)

On the other hand, the term A(r, φ) in (3.4) is bounded for large values of r.

We now assume that k′ > 0 (choosing the direction of the z-axis conveniently) or

k′ = 0.

When k′ > 0, from equation (3.4) we get

B⊥(x, y, 0) ≤
2k′

r3
r large

⎫⎬
⎭ . (3.7)

Therefore, applying the reasoning of Section 2 (see the lines following equation (2.13)),

escape to infinity has been proved. Note that by equation (3.4), B⊥ cannot vanish for
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large values of r. Note also that k′ cannot vanish unless Ii is positive for some wires and

negative for other ones.

Escape to infinity also occurs when k′ = 0 since equation (3.4) becomes in this case:

B⊥(x, y, 0) =
L(φ)

rn′ +
A1(r, φ)

rn′+1

n′ > 3

⎫⎬
⎭ , (3.8)

where L(φ) does not vanish identically and is positive (via a convenient choosing of the

direction of the z-axis) and A(r, φ) is bounded for r large.

On the other hand, equation (3.7) now becomes:

B⊥(x, y, 0) ≤
2Max(L(φ))

rn′

r = large

⎫⎬
⎭ , (3.9)

and the existence of escape trajectories follows by the reasoning following equation (3.7).

4. Open problems. In the case of a vector field B created by a finite set of non-

planar closed wires, some of which could be knotted, the possibility of escape to infinity

is still open. In fact, it would be nice to prove that escape to infinity is possible (or is

not possible) when B(x) is created by a particular closed, but nonplanar, wire.
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