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Abstract. The open-loop systems of a Schrödinger equation and an Euler-Bernoulli

equation with variable coefficients and boundary controls and collocated observations are

considered. It is shown, with the help of a multiplier method on a Riemannian manifold,

that both systems are well-posed in the sense of D. Salamon and regular in the sense of G.

Weiss. The feed-through operators are found to be zero. The results imply particularly

that the exact controlability of each open-loop system is equivalent to the exponential

stability of the associated closed-loop system under the output proportional feedback.

1. Introduction and main results. Well-posed and regular linear infinite dimen-

sional systems first introduced by D. Salamon and G. Weiss in the 1980s ([25, 26, 29, 30])

are a quite general class of linear infinite-dimensional systems. They cover many control

systems described by time delay equations and partial differential equations with actua-

tors and sensors supported at isolated points, subdomains, or on a part of the boundary
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of the spatial region [6]. This class of linear infinite-dimensional systems, although the

input and output operators are usually unbounded, may possess many properties paral-

leling in many ways to finite-dimensional systems, for instance, representation, transfer

function, internal model based tracking and disturbance rejection, stabilizing controller

parametrization, and quadratic optimal control, to name just a few [7].

The abstract theory of well-posed and regular linear systems has been quite fruitful.

However, only a few multidimensional PDEs have been verified to be well-posed and

regular. For the systems with constant coefficients, the well-posedness and regularity

of a multidimensional heat equation with both Dirichlet and Neumann type boundary

controls were established in [5], and that for a wave equation with boundary Dirichlet

input and collocated output was proved in [1] and [14]. The well-posedness and regularity

for multi-dimensional Schrödinger and Euler-Bernoulli equations were reported in [11, 12,

19]. The well-posedness and regularity for a wave equation with variable coefficients and

Dirichlet boundary control and observation was established in [15], and that for a plate

equation with variable coefficients under Neumann boundary control and observation

was obtained in [16]. In [13], the exact controllability, well-posedness and regularity

for the transmission problem of plate equations with variable coefficients and Neumann

boundary control and observation were considered. Recently, the well-posedness and

regularity of linear elasticity with Dirichlet boundary control and collocated observation

were established in [3, 17].

The objective of this paper is, on the one hand, to generalize the well-posedness

for a Schrödinger equation with Dirichlet boundary control [19] and an Euler-Bernoulli

plate equation with boundary moment control [22], all with collocated observation, to

the variable coefficients cases, and on the other hand, to show that, in both cases, the

systems are regular with zero feed-through operators.

The systems to be considered are described, respectively, by the Schrödinger equation

with Dirichlet boundary control and collocated observation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vt(x, t)− iPv(x, t) = 0, x = (x1, x2, . . . , xn) ∈ Ω, t > 0,

v(x, t) = u(x, t), x ∈ Γ, t ≥ 0,

y(x, t) = −i
∂A−1v(x, t)

∂νA
, x ∈ Γ, t ≥ 0,

(1.1)

and the Euler-Bernoulli equation with boundary moment control and collocated obser-

vation

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) + P 2w(x, t) = 0, x ∈ Ω, t > 0,

w(x, t) = 0, x ∈ Γ, t ≥ 0,

Pw(x, t) = u(x, t), x ∈ Γ, t ≥ 0,

y(x, t) =
∂A−1wt(x, t)

∂νA
, x ∈ Γ, t ≥ 0,

(1.2)
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where Ω ⊂ Rn(n ≥ 2) is an open bounded region with C2-boundary Γ. P is a second

order partial differential operator

P = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
,

and for some constants a, b > 0,

a
n∑

i=1

|ξi|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ b
n∑

i=1

|ξi|2, ∀ x ∈ Ω, ξ = (ξ1, ξ2, . . . , ξn) ∈ C
n,

aij = aji ∈ C∞(Rn), ∀ i, j = 1, 2, . . . , n.

(1.3)

The operator A is defined by

Af := Pf, ∀f ∈ D(A) = H2(Ω) ∩H1
0 (Ω) (1.4)

and

∂

∂νA
≡ νA =

n∑
i,j=1

aijνj
∂

∂xi
, (1.5)

where ν = (ν1, ν2, . . . , νn) is the unit normal of ∂Ω pointing towards the exterior of Ω.

u and y are the input functions (or controls) and the output functions (or observations),

respectively. It is seen that both operators A and P appear in the system (1.1) and

(1.2) simultaneously. That is why we put them together and treat the two with a similar

approach.

Let H = H−1(Ω), H = H1
0 (Ω) × H−1(Ω) and U = L2(Γ). Theorem 1.1 is the

generalization of Proposition 4.2 of [19] where the coefficients of the system (1.1) are

constants.

Theorem 1.1. Let T > 0, v0 ∈ H and u ∈ L2(0, T ;U). Then there exists a unique

solution v ∈ C(0, T ;H) to the Equation (1.1) satisfying the initial condition v(·, 0) = v0.

Moreover, there exists a constant CT > 0, independent of (v0, u), such that

‖v(·, T )‖2H + ‖y‖2L2(0,T ;U) ≤ CT

[
‖v0‖2H + ‖u‖2L2(0,T ;U)

]
.

Theorem 1.2 below generalizes the well-posedness result of Theorem 4.29 of [22] to

the variable coefficients case.

Theorem 1.2. Let T > 0, (w0, w1) ∈ H, and u ∈ L2(0, T ;U). Then there exists a

unique solution (w,wt) ∈ C([0, T ];H) to the Equation (1.2) satisfying w(·, 0) = w0 and

wt(·, 0) = w1. Moreover, there exists a constant CT > 0, independent of (w0, w1, u), such

that

‖(w(·, T ), wt(·, T ))‖2H + ‖y‖2L2(0,T ;U) ≤ CT

[
‖(w0, w1)‖2H + ‖u‖2L2(0,T ;U)

]
.

Theorems 1.1 and 1.2 imply that the open-loop systems (1.1) and (1.2) are well-posed

in the sense of D. Salamon with the state spaces H and H, respectively, with input and

output space U [27]. These results together with Theorem 2.2 of [2] and Proposition 3.1

of [22] (see also Theorem 3 of [10]) give immediately the following corollary.
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Corollary 1.3. The systems (1.1) or (1.2) are exactly controllable in some time interval

[0, T ] if and only if the corresponding closed-loop system under the proportional output

feedback u = −ky, k > 0 are exponentially stable.

For the exponential stability of the system (1.1) under the feedback u = −ky, k > 0,

we refer to [24]. For the exact controllability of the system (1.2), we refer the reader to

[34] and [20].

Theorem 1.4. The system (1.1) is regular. More precisely, if v(·, 0) = 0 and u(·, t) ≡
u(·) ∈ U is a step input, then the corresponding step response y satisfies

lim
σ→0+

∫
Γ

∣∣∣∣ 1σ
∫ σ

0

y(x, t) dt

∣∣∣∣
2

dx = 0. (1.6)

Theorem 1.5. The system (1.2) is regular. More precisely, if w(·, 0) = wt(·, 0) = 0 and

u(·, t) ≡ u(·) ∈ U is a step input, then the corresponding output y satisfies

lim
σ→0+

∫
Γ

∣∣∣∣ 1σ
∫ σ

0

y(x, t) dt

∣∣∣∣
2

dx = 0. (1.7)

Theorems 1.1, 1.2, 1.4 and 1.5 together show that the systems (1.1) and (1.2) are well-

posed regular linear systems with feedthrough operators zero. This makes the systems

(1.1) and (1.2) parallel in many ways to linear finite-dimensional ones.

Our main approach in proving above mentioned results is the Riemannian geometry

method introduced in [33] for the proof of exact controllability of wave equation with

variable coefficients. The difficulty of our proofs also arises from the occurrence of the

variable coefficients as that in [33]. By the geometry approach, similar to [34], the com-

putations on the Riemannian manifold become much more simple, which it would be

extremely tedious and even hardly carried out in Euclidean space. The key point is

that by the introduction of the Riemannian metric, the corresponding differential op-

erators with variable coefficients in Euclidean space become the differential operators

with constant coefficients on the Riemannian manifold, except some low order pertur-

bations. Therefore, the techniques in dealing with problems with constant coefficients

in Euclidean space can then be moved to Riemannian manifold. From this point view,

it seems that the Riemannian geometry method becomes natural in dealing with the

non-uniform problems.

The remainder of the paper is organized as follows. In Section 2, the systems (1.1)

and (1.2) are casted into the abstract settings separately, and some basic background on

Riemannian geometry is introduced. The proofs of Theorems 1.1 and 1.2 are given in

Section 3 and Section 4, respectively. Section 5 is devoted to the proofs of Theorems 1.4

and 1.5.

2. Abstract formulations and preliminaries. In order to formulate the system

(1.1) and (1.2) into abstract forms, we need some notation and facts in Riemannian

geometry.
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By the ellipticity condition (1.3), we let G(x) and ρ(x) be the following positive matrix

and its determinant, respectively,

G(x) := [gij(x)]n×n = [aij(x)]
−1
n×n, ρ(x) := det[gij(x)]n×n, ∀ x ∈ R

n. (2.1)

For each x = (x1, x2, . . . , xn) ∈ R
n, define the inner product and norm over the tangent

space R
n
x of Rn by

〈X,Y 〉g :=

n∑
i,j=1

gijαiβj ,

|X|g := 〈X,X〉1/2g , ∀ X =
n∑

i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ R

n
x .

(2.2)

Then (Rn, g) becomes a Riemannian manifold with Riemannian metric g [34]. Denote

by D the Levi-Civita connection with respect to g. Let N be a smooth vector field on

(Rn, g). Then for each x ∈ Rn, the covariant differential DN of N determines a bilinear

form on Rn
x ,

DN(X,Y ) = 〈DXN, Y 〉g, ∀ X,Y ∈ R
n
x , (2.3)

where DXN stands for the covariant derivative of the vector field N with respect to X.

For any ϕ ∈ C2(Rn) and N =
∑n

i=1 h
i(x) ∂

∂xi
, denote

div0(N) :=
n∑

i=1

∂hi

∂xi
, Dϕ := ∇gϕ =

n∑
i,j=1

aij
∂ϕ

∂xj

∂

∂xi
,

divg(N) :=

n∑
i=1

ρ−1/2 ∂

∂xi
(ρ1/2hi),

Δgϕ :=
n∑

i,j=1

ρ−1/2 ∂

∂xi

(
ρ1/2aij

∂ϕ

∂xj

)
= −Pϕ+ (Dq)ϕ, q(x) = 1/2 log(ρ(x)),

where div0 is the divergence operator in Euclidean space Rn, and ∇g, divg and Δg are the

gradient operator, the divergence operator and the Beltrami-Laplace operator in (Rn, g),

respectively.

Denote by μ = νA
|νA|g the unit outward-pointing normal to ∂Ω in terms of the Rie-

mannian metric g. The following Lemma 2.1, providing some useful identities [28, pp.

128, 138], will be used frequently in subsequent sections.

Lemma 2.1. Let ϕ, ψ ∈ C1(Ω) and N be a vector field on (Rn, g). Then we have the

following.

(1) Divergence formulae and theorems:

div0(ϕN) = ϕdiv0(N) +N(ϕ), divg(ϕN) = ϕdivg(N) +N(ϕ),∫
Ω

div0(N) dx =

∫
Γ

N · ν dΓ,
∫
Ω

divg(N) dx =

∫
Γ

〈N,μ〉g dΓ.
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(2) Green’s first formulae:∫
Ω

ψPϕdx = −
∫
Γ

ψ
∂ϕ

∂νA
dΓ +

∫
Ω

〈∇gϕ,∇gψ〉g dx,∫
Ω

ψΔgϕdΩ =

∫
Γ

ψ
∂ϕ

∂μ
dS −

∫
Ω

〈∇gϕ,∇gψ〉g dΩ.

(3) Green’s second formulae:∫
Ω

ψPϕdx−
∫
Ω

Pψ ϕdx = −
∫
Γ

ψ
∂ϕ

∂νA
dΓ +

∫
Γ

∂ψ

∂νA
ϕdΓ,∫

Ω

ψΔgϕdΩ−
∫
Ω

Δgψ ϕdΩ =

∫
Γ

ψ
∂ϕ

∂μ
dS −

∫
Γ

∂ψ

∂μ
ϕ dΓ,

where dΩ and dS are the canonical volume elements on Ω and Γ, respectively.

Similar to (4) of Lemma 2.1 in [33], we have the following multiplier identity.

Lemma 2.2. Let N be a smooth real vector field on (Rn, g). For z ∈ C1(Ω), the following

formula holds:

〈∇gz,∇g(N(z))〉g = DN(∇gz,∇gz) +
1

2
divg(|∇gz|2gN)− 1

2
|∇gz|2gdivg(N). (2.4)

The following Lemma 2.3 is straightforward.

Lemma 2.3. Let ϕ be a complex function defined on Ω with suitable regularity. Then

there exist some constants C’s possibly depending on g, N and Ω, such that

(1)

sup
x∈Ω

|N |g ≤ C, sup
x∈Ω

|DN |g ≤ C, sup
x∈Ω

|divg(N)| ≤ C, sup
x∈Ω

|Dq|g ≤ C,

sup
x∈Ω

|∇g(divgN)|g ≤ C;

(2)

|N(ϕ)| ≤ C|∇gϕ|g, |Dq(ϕ)| ≤ C|∇gϕ|g, |DN(∇gϕ,∇gϕ)| ≤ C |∇gϕ|2g ,

|〈∇gϕ,∇g(divgN)〉g| ≤ C|∇gϕ|g,

where q(x) = 1/2 log(ρ(x)) and ρ is given by (2.1);

(3)∫
Ω

|ϕ|2 dx ≤ C‖ϕ‖2H1(Ω),

∫
Ω

|∇gϕ|2g dx ≤ C‖ϕ‖2H1(Ω),

∫
Ω

|∇g(Pϕ)|2g dx ≤ C‖ϕ‖2H3(Ω).

Now we are in a position to cast the system (1.1) into an abstract form of a first-order

system in the Hilbert state space H = H−1(Ω).

By Green’s first formula, an extension A1 ∈ L(H1
0 (Ω), H

−1(Ω)) of A can be defined

by

〈A1ϕ, ψ〉H−1(Ω)×H1
0 (Ω) =

∫
Ω

〈∇gϕ,∇gφ〉g dx, ∀ ϕ, ψ ∈ H1
0 (Ω).
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Then A1 is a positive self-adjoint operator in H, and by means of the Lax-Milgram

theorem, A1 is a canonical isomorphism from D(A1) = H1
0 (Ω) onto H. It is easily shown

(see e.g., [18]) that D(A
1/2
1 ) = L2(Ω) and A

1/2
1 is a canonical isomorphism from L2(Ω)

onto H.

Define the Dirichlet map Υ ∈ L(L2(Γ), H1/2(Ω)) ([21] p. 189) as follows:

Υu = ϕ ⇐⇒
{

Pϕ = 0 in Ω,

ϕ|Γ = u.
(2.5)

Then (1.1) can be written as

v̇ − iA1(v −Υu) = 0. (2.6)

Identifying H with its dual H ′, we have the following relations:

D(A1) ⊂ D(A
1/2
1 ) ↪→ H = H ′ ↪→ [D(A

1/2
1 )]′ ⊂ [D(A1)]

′.

Define an extension Ã1 ∈ L(D(A
1/2
1 ), [D(A

1/2
1 )]′) of A1 by

〈Ã1ϕ, ψ〉[D(A
1/2
1 )]′×D(A

1/2
1 )

= 〈A 1/2
1 ϕ,A

1/2
1 ψ〉H , ∀ ϕ, ψ ∈ D(A

1/2
1 ), (2.7)

where 〈·, ·〉H is the inner product on H−1(Ω). In this way, iÃ1 generates a C0-group on

[D(A
1/2
1 )]′. Hence (2.6) can be written in [D(A1)]

′ as

v̇ = iÃ1v +B1u, (2.8)

where B1 ∈ L(U, [D(A
1/2
1 )]′) is given by

B1u = −iÃ1Υu, ∀ u ∈ U. (2.9)

Define B∗
1 ∈ L(D(A

1/2
1 ), U), the adjoint of B1, by

〈B1u, f〉[D(A
1/2
1 )]′×D(A

1/2
1 )

= 〈u,B∗
1f〉U , ∀ f ∈ D(A

1/2
1 ) = L2(Ω), u ∈ U.

Then for any f ∈ L2(Ω) and u ∈ C∞
0 (Γ), we have

〈B1u, f〉[D(A
1/2
1 )]′×D(A

1/2
1 )

= 〈−iÃ1Υu, f〉
[D(A

1/2
1 )]′×D(A

1/2
1 )

= −i〈A 1/2
1 Υu,A

1/2
1 f〉H

= −i〈Υu,A(A−1f〉L2(Ω) =

∫
Ω

ΥuP (iA−1f) dx

=

∫
Ω

P (Υu) iA−1f dx−
∫
Γ

Υu
∂(iA−1f)

∂νA
dΓ +

∫
Γ

∂(Υu)

∂νA
(iA−1f) dΓ

=

〈
u,−i

∂A−1f

∂νA

〉
U

,

where in the last two steps, we used Green’s second formula and the definitions of Υ and

A. Since C∞
0 (Γ) is dense in L2(Γ), we obtain

B∗
1f = −i

∂A−1f

∂νA
, ∀ f ∈ L2(Ω). (2.10)
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System (1.1) is then formulated as an abstract form of a first-order system in the state

Hilbert space H: {
v̇ = iÃ1v +B1u,

y = B∗
1v,

(2.11)

where Ã1, B1, and B∗
1 are defined by (2.7), (2.9), and (2.10), respectively. The abstract

study for system (2.11) can be found in [22].

Next, we formulate the system (1.2) as an abstract second-order system in H =

H1
0 (Ω)×H. Let A be the positive self-adjoint operator in L2(Ω) defined by⎧⎪⎪⎨

⎪⎪⎩
Aϕ = P 2ϕ,

D(A) = {ϕ ∈ L2(Ω) ; P 2ϕ ∈ L2(Ω), ϕ|Γ = Pϕ|Γ = 0}

= {ϕ ∈ H4(Ω) ; ϕ|Γ = Pϕ|Γ = 0}.

Just as in [15], it can be shown that

A1/2 = A,

where A is given by (1.4), and furthermore, we have the following space identifications

with equivalent norms [9, 21]:{
D(Aθ) = {ϕ ∈ H4θ(Ω) ;ϕ|Γ = 0} = H4θ(Ω) ∩H1

0 (Ω), 1/8 < θ < 5/8,

D(Aθ) = {ϕ ∈ H4θ(Ω) ; ϕ|Γ = Pϕ|Γ = 0}, 5/8 < θ ≤ 1.
(2.12)

By (2.12), we have

V � D(A3/4) = {ϕ ∈ H3(Ω) ; ϕ|Γ = Pϕ|Γ = 0}.

Define an extension operator A of A to the domain V as

〈A ϕ, ψ〉H = 〈A1/2ϕ,A1/2ψ〉H , ∀ ϕ, ψ ∈ V. (2.13)

Then A is positive self-adjoint in H. In fact, for some constants C,C ′ > 0, we have

〈A ϕ, ϕ〉H = 〈A1/2ϕ,A1/2ϕ〉H = 〈A1/4ϕ,A1/4ϕ〉L2(Ω)

≥ C‖ϕ‖2L2(Ω) ≥ C ′‖A−1/4ϕ‖2L2(Ω) = C ′‖ϕ‖2H , ∀ ϕ ∈ V.

We identify H with its dual H ′. Then the following relations hold:

D(A 1/2) ↪→ H = H ′ ↪→ [D(A 1/2]′.

An extension Ã ∈ L(D(A 1/2), [D(A 1/2)]′) of A is defined by

〈Ãf, g〉[D(A 1/2)]′×D(A 1/2) = 〈A 1/2f,A 1/2g〉H , ∀ f, g ∈ D(A 1/2). (2.14)

Define the map G ∈ L(L2(Γ), H5/2(Ω)) [21, p. 189] so that Gu = φ if and only if{
P 2φ(x) = 0, x ∈ Ω,

φ(x)|Γ = 0, Pφ(x)|Γ = u(x).
(2.15)

By virtue of the operators Ã and G, (1.2) can be written in [D(A 1/2)]′ as

ẅ + Ãw = Bu, (2.16)
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where B ∈ L(U, [D(A 1/2)]′) is given by

Bu = ÃGu, ∀ u ∈ U. (2.17)

Define B∗ ∈ L(D(A 1/2), U) by

〈Bu, f〉[D(A1/2)]′×D(A1/2) = 〈u,B∗f〉U , ∀ f ∈ D(A 1/2) = H1
0 (Ω), u ∈ U.

Then for any f ∈ D(A 1/2) and u ∈ C∞
0 (Γ), we have

〈Bu, f〉[D(A1/2)]′×D(A1/2)

= 〈ÃGu, f〉[D(A1/2)]′×D(A1/2) = 〈A 1/2Gu,A 1/2f〉H
= 〈A Gu,A(A−1f)〉H = 〈A−1/4AGu,A−1/4A(A−1f)〉L2(Ω)

= 〈AGu,A(A−1f)〉L2(Ω)

=

∫
Ω

P 2(Gu)A−1f dx+

∫
Γ

P (Gu)
∂A−1f

∂νA
dΓ +

∫
Γ

(A−1f)
∂P (Gu)

∂νA
dΓ

=

〈
u,

∂A−1f

∂νA

〉
U

,

where we used Green’s second formula and the definitions of G and A. Since C∞
0 (Γ) is

dense in L2(Γ), we actually obtain

B∗f =
∂A−1f

∂νA

∣∣∣∣
Γ

, ∀f ∈ D(A 1/2) = H1
0 (Ω). (2.18)

Finally, we cast the open-loop system (1.2) into the abstract form of a second-order

collocated system in H, {
ẅ + Ãw = Bu,

y = B∗ẇ,
(2.19)

where Ã, B, and B∗ are defined by (2.14), (2.17), and (2.18), respectively. System (2.19)

was well studied in [2, 10].

3. Proof of Theorem 1.1. For brevity in notation, we shall denote by CT , in subse-

quent sections, a positive constant depending only on the time T that may have different

values in different contexts. First, we show that B1 is admissible for eiA1t, the C0-group

generated by iA1 on H. Since the system (1.1) is collocated, B1 is admissible for eiA1t

if and only if B∗
1 is admissible for e−iA ∗

1 t = eiA1t (see [29]). Therefore, we need to show

the estimate∫ T

0

∥∥B∗
1(e

iA1tv0)
∥∥2
L2(Γ)

dt ≤ CT ‖v0‖2H−1(Ω), ∀ v0 ∈ D(A1) = H1
0 (Ω). (3.1)
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Set z = A −1
1 v. Instead of (2.11), we consider the following z equation in the space H1

0 (Ω)

that is derived from (2.9), (2.10), and (2.11):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zt(x, t) = iPz(x, t)− i(Υu(·, t))(x), (x, t) ∈ Ω× (0, T ],

z(x, 0) = z0(x), x ∈ Ω,

z(x, t) = 0, (x, t) ∈ Γ× [0, T ],

y(x, t) = −i
∂z(x, t)

∂νA
, (x, t) ∈ Γ× [0, T ].

(3.2)

Let f(x, t) = −i(Υu(·, t))(x). By the definition of the Dirichlet map Υ, we have∫ T

0

‖f(·, t)‖2L2(Ω) dt ≤ CT

∫ T

0

‖u(·, t)‖2L2(Γ) dt. (3.3)

By Lemma 4.1 of [15], there exists a C2 vector field N on Ω such that

N(x) = μ(x), x ∈ Γ; |N(x)|g ≤ 1, x ∈ Ω. (3.4)

Multiply both sides of the first equation in (3.2) by N(z) and integrate over Ω, to give

0 =

∫
Ω

ztN(z) dx− i

∫
Ω

PzN(z) dx−
∫
Ω

fN(z) dx

=

∫
Ω

ztN(z) dx+ i

∫
Ω

(Δgz − (Dq)z)N(z) dx−
∫
Ω

fN(z) dx

=

∫
Ω

ztN(z) dx+ i

∫
Γ

∣∣∣∣ ∂z∂μ
∣∣∣∣
2

dΓ− i

∫
Ω

〈∇gz,∇g(N(z))〉g dx

− i

∫
Ω

(Dq)zN(z) dx−
∫
Ω

fN(z) dx.

It then follows that∫
Γ

∣∣∣∣ ∂z∂μ
∣∣∣∣
2

dΓ = Re

∫
Ω

〈∇gz,∇g(N(z))〉gdx

−Im

∫
Ω

ztN(z) dx+Re

∫
Ω

(Dq)zN(z)dx+ Im

∫
Ω

fN(z)dx.

(3.5)

By Lemma 2.2, one has

Re〈∇gz,∇g(N(z))〉g = ReDN(∇gz,∇gz) +
1

2
divg(|∇gz|2gN)− 1

2
|∇gz|2gdivgN. (3.6)

Substitute (3.6) into (3.5), to obtain∫
Γ

∣∣∣∣ ∂z∂μ
∣∣∣∣
2

dΓ = Re

∫
Ω

DN(∇gz,∇gz)dx

+
1

2

∫
Γ

|∇gz|2gdΓ− 1

2

∫
Ω

|∇gz|2gdivgN dx

− Im

∫
Ω

ztN(z) dx+ Re

∫
Ω

(Dq)zN(z)dx+ Im

∫
Ω

fN(z)dx.

(3.7)
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Notice that for any x ∈ Γ, it has

∇gz(x) = 〈∇gz(x), μ(x)〉gμ(x) + Y (x) =
∂z(x)

∂μ
μ(x) + Y (x)

for some Y (x) ∈ Rn
x with 〈Y (x), μ(x)〉g = 0, which implies that Y (x) · ν(x) = 0. This

fact together with the boundary condtion z|Γ = 0 gives

|∇gz(x)|2g = 〈∇gz(x),∇gz(x)〉g

= ∇gz(x)(z(x)) =

∣∣∣∣∂z(x)∂μ

∣∣∣∣
2

=
1

|νA(x)|2g

∣∣∣∣∂z(x)∂νA

∣∣∣∣
2

, ∀ x ∈ Γ,
(3.8)

where we used the fact μ = νA
|νA|g . In addition, by (1.3), (1.5), and (2.2), we have

min
x∈Γ

1

|νA(x)|2g
≥ 1

b
. (3.9)

By (3.8) and (3.9), making use of the Cauchy-Schwartz inequality and Lemma 2.3, we

deduce, from (3.7), that

∫
Γ

∣∣∣∣ ∂z

∂νA

∣∣∣∣
2

dΓ ≤ b

∫
Γ

∣∣∣∣ ∂z∂μ
∣∣∣∣
2

dΓ

= 2bRe

∫
Ω

DN(∇gz,∇gz) dx− b

∫
Ω

|∇gz|2gdivgN dx− 2bIm

∫
Ω

ztN(z) dx

+2bRe

∫
Ω

(Dq)zN(z) dx+ 2bIm

∫
Ω

fN(z) dx

≤ C

(∫
Ω

|∇gz|2g dx+

∫
Ω

|f |2 dx
)
− 2bIm

∫
Ω

ztN(z) dx.

(3.10)

Now we compute the last term in (3.10). By the divergence formula and (3.2), it follows

that

divg(ztzN) = ztzdivgN +N(zt)z +N(z)zt

= (iPz + f)zdivgN +
d

dt
(zN(z))− ztN(z) +N(z)zt

= (iPz + f)zdivgN +
d

dt
(zN(z)) + 2iIm ztN(z).

Integrate the above equality over Ω, to give

2iIm

∫
Ω

ztN(z) dx =

∫
Ω

[i(Δg −Dq)z − f ]zdivgN dx− d

dt

∫
Ω

zN(z) dx

= −i

∫
Ω

〈∇gz,∇g(zdivgN)〉g dx− i

∫
Ω

Dq(z)zdivgN dx−
∫
Ω

fzdivgN dx

− d

dt

∫
Ω

zN(z) dx.
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Therefore,

−2bIm

∫ T

0

∫
Ω

ztN(z) dxdt

=

∫ T

0

∫
Ω

〈∇gz,∇g(zdivg(N))〉g dxdt+
∫ T

0

∫
Ω

Dq(z)zdivg(N) dxdt

+i

∫ T

0

∫
Ω

fzdivg(N) dxdt+ i

∫
Ω

zN(z) dx

∣∣∣∣
T

0

.

(3.11)

Using (3.11) and integrating both sides of (3.10) over [0, T ], we obtain∫ T

0

∫
Γ

∣∣∣∣ ∂z

∂νA

∣∣∣∣
2

dΓdt ≤ CT

(
‖z‖2L2(0,T ;H1(Ω))

+‖f‖2L2(Ω×(0,T )) + ‖z‖2L∞(0,T ;H1(Ω))

)
.

(3.12)

Let f = −iΥu = 0 in (3.2). For any z0 ∈ D(A1) = H1
0 (Ω), it has

eiA1tz0 ∈ C([0, T ];D(A1)) ∩ C1((0, T ];H),

and hence, by (3.12), we have∫ T

0

∫
Γ

∣∣∣∣∂(eiA1tz0)

∂νA

∣∣∣∣
2

dΓdt ≤ CT ‖z0‖2D(A1)
, ∀ z0 ∈ D(A1). (3.13)

This implies∫ T

0

∫
Γ

∣∣∣∣∂(eiA1tA −1
1 v0)

∂νA

∣∣∣∣
2

dΓdt ≤ CT ‖v0‖2H−1(Ω), ∀ v0 ∈ D(A1). (3.14)

By the definition of B∗
1 , (3.13) is just (3.1). Therefore, B1 is admissible.

Next, we show the boundedness of input-output map for the system (3.2), that is, for

some (and hence for all) T > 0, the solution to (3.2) with z0 = 0 satisfies∫ T

0

∫
Γ

∣∣∣∣∂z(x, t)∂νA

∣∣∣∣
2

dΓdt ≤ CT

∫ T

0

∫
Γ

|u(x, t)|2 dΓdt, ∀ u ∈ L2(0, T ;L2(Γ)). (3.15)

Noticing that the solution to (3.2) with z0 = 0 is given by

z(x, t) =

∫ t

0

[
eiÃ1(t−s)f(·, s)

]
(x)ds = −i

∫ t

0

[
eiÃ1(t−s)Υu(·, s)

]
(x)ds,

and the admissibility just verified, we have [30]

Ã1z(x, t) = −i

∫ t

0

[
eiÃ1(t−s)Ã1Υu(·, s)

]
(x)ds

=

∫ t

0

[
eiÃ1(t−s)B1u(·, s)

]
(x)ds ∈ C([0, T ];H).

It then follows that

z ∈ C([0, T ];H1
0 (Ω)). (3.16)

This together with (3.3) and (3.12) shows that (3.15) is valid. The proof is complete. �
Remark 3.1. From Proposition 4.1 of [23], (3.15) implies the admissibility of B (so

is for B∗), but we do not use this fact here.
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4. Proof of Theorem 1.2. By definition of the well-posedness (see [6]), Theorem

1.2 is equivalent to saying that B is admissible (so is B∗), and the solution to (1.2) with

zero initial data satisfies

‖y‖2L2(0,T ;L2(Γ)) ≤ CT ‖u‖2L2(0,T ;L2(Γ)), ∀ u ∈ L2(0, T ;L2(Γ)). (4.1)

Introduce the following transform

z(t) = A−1w(t) ∈ C(0, T ;V ). (4.2)

Instead of (1.2), we consider the following system in V ×H1
0 (Ω):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ztt(x, t) + P 2z(x, t) = Υu(x, t), (x, t) ∈ Ω× (0, T ] � Q,

z(x, 0) = 0, zt(x, 0) = 0, x ∈ Ω,

z(x, t) = 0, P z(x, t) = 0, (x, t) ∈ Γ× (0, T ] � Σ,

y(x, t) =
∂zt
∂νA

(x, t), (x, t) ∈ Σ,

(4.3)

where the operator Υ is defined by (2.5), and the validity of the first equation in (4.3) is

attributed to the fact

A−1ÃGu = Ã1/2Gu = AGu = Υu, ∀ u ∈ L2(Γ).

Therefore, Theorem 1.2 is valid if and only if B is admissible, and for some (and hence

for all) T > 0, there exists a CT > 0 such that the solution to (4.3) satisfies

∫
Σ

∣∣∣∣ ∂zt∂νA
(x, t)

∣∣∣∣
2

dΣ ≤ CT

∫
Σ

|u(x, t)|2dΣ. (4.4)

Step 1 (Energy identity). Let N be the C2 vector field on Ω satisfying (3.4). Multiply

the both sides of (4.3) by N(Pz), to give∫
Q

zttN(Pz) dQ+

∫
Q

P 2zN(Pz) dQ−
∫
Q

ΥuN(Pz) dQ = 0. (4.5)

Compute the first term on the left-hand side of (4.5) to yield

∫
Q

zttN(Pz) dQ =

∫
Ω

zN(Pz) dx

∣∣∣∣
T

0

−
∫
Q

ztN(Pzt) dQ

=

∫
Ω

zN(Pz) dx

∣∣∣∣
T

0

−
∫
Q

[N(ztPzt)−N(zt)Pzt] dQ

=

∫
Ω

zN(Pz) dx

∣∣∣∣
T

0

−
∫
Σ

zt(Pzt)〈N,μ〉g dΣ+

∫
Q

zt(Pzt)divgN dQ+

∫
Q

N(zt)Pzt dQ

=

∫
Ω

zN(Pz) dx

∣∣∣∣
T

0

+

∫
Q

zt(Pzt)divgN dQ+

∫
Q

N(zt)Pzt dQ.
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Since

Re

∫
Q

zt(Pzt)divgN dQ = −Re

∫
Q

ztdivgNΔgzt dQ+Re

∫
Q

ztDq(zt) dQ

= −Re

∫
Σ

ztdivgN
∂zt
∂μ

dΣ+ Re

∫
Q

〈∇g(ztdivgN),∇gzt〉g dQ+Re

∫
Q

ztDq(zt) dQ

=

∫
Q

divgN |∇gzt|2g dQ+Re

∫
Q

zt∇g(divgN)(zt) dQ+Re

∫
Q

ztDq(zt) dQ

=

∫
Q

divgN |∇gzt|2g dQ+
1

2

∫
Q

∇g(divgN)(|zt|2) dQ+
1

2

∫
Q

Dq(|zt|2)dQ,

and

Re

∫
Q

N(zt)Pzt dQ = −Re

∫
Q

N(zt)Δgzt dQ+Re

∫
Q

N(zt)Dq(zt) dQ

= −Re

∫
Σ

N(zt)
∂zt
∂μ

dΣ+ Re

∫
Q

〈∇gzt,∇g(N(zt))〉g dQ+Re

∫
Q

N(zt)Dq(zt) dQ

= −
∫
Σ

∣∣∣∣∂zt∂μ

∣∣∣∣
2

dΣ+ Re

∫
Q

DN(∇gzt,∇gzt) dQ+
1

2

∫
Q

divg(|∇gzt|2gN) dQ

−1

2

∫
Q

|∇gzt|2gdivgN dQ+Re

∫
Q

N(zt)Dq(zt) dQ

= −1

2

∫
Σ

∣∣∣∣∂zt∂μ

∣∣∣∣
2

dΣ+ Re

∫
Q

DN(∇gzt,∇gzt) dQ− 1

2

∫
Q

|∇gzt|2gdivgN dQ

+Re

∫
Q

N(zt)Dq(zt) dQ,

where the formulae (3.6) and (3.8) were used for the computation of the above identity,

it follows that

Re

∫
Q

zttN(Pz) dQ = Re

∫
Ω

zN(Pz) dx

∣∣∣∣
T

0

+
1

2

∫
Q

divgN |∇gzt|2g dQ

+
1

2

∫
Q

∇g(divgN)(|zt|2) dQ+
1

2

∫
Q

Dq(|zt|2) dQ− 1

2

∫
Σ

∣∣∣∣∂zt∂μ

∣∣∣∣
2

dΣ

+Re

∫
Q

DN(∇gzt,∇gzt) dQ+Re

∫
Q

N(zt)Dq(zt) dQ.

(4.6)
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By Green’s first formula, (3.6) and (3.8), the second term on the left-hand side of (4.5)

is computed as

Re

∫
Q

P 2zN(Pz) dQ = Re

∫
Q

〈∇g(Pz),∇g(N(Pz))〉g dQ

−Re

∫
Σ

∂Pz

∂μ
N(Pz) dΣ = Re

∫
Q

DN(∇g(Pz),∇g(Pz)) dQ

+
1

2

∫
Q

divg(|∇g(Pz)|2gN) dQ− 1

2

∫
Q

|∇g(Pz)|2gdivgN dQ

−
∫
Σ

∣∣∣∣∂Pz

∂μ

∣∣∣∣
2

dΣ = Re

∫
Q

DN(∇g(Pz),∇g(Pz)) dQ

−1

2

∫
Q

|∇g(Pz)|2gdivgN dQ− 1

2

∫
Σ

∣∣∣∣∂Pz

∂μ

∣∣∣∣
2

dΣ.

(4.7)

Combine (4.5), (4.6), and (4.7), to obtain

1

2

∫
Σ

(∣∣∣∣∂zt∂μ

∣∣∣∣
2

+

∣∣∣∣∂Pz

∂μ

∣∣∣∣
2
)
dΣ = R1 +R2 + bT , (4.8)

where

R1 = Re

∫
Q

DN(∇g(Pz),∇g(Pz)) dQ+Re

∫
Q

DN(∇gzt,∇gzt) dQ

+
1

2

∫
Q

Dq(|zt|2) dQ+
1

2

∫
Q

divgN
(
|∇gzt|2g − |∇g(Pz)|2g

)
dQ

+
1

2

∫
Q

∇g(divgN)(|zt|2) dQ+Re

∫
Q

N(zt)Dq(zt) dQ,

(4.9)

R2 = −
∫
Q

ΥuN(Pz) dQ, (4.10)

bT = Re

∫
Ω

zN(Pz) dx

∣∣∣∣
T

0

. (4.11)

Step 2 (Estimate of R1). It is easy to show⎧⎪⎪⎨
⎪⎪⎩

ztt + A z = 0,

z(0) = z0, zt(0) = z1,

y = B∗Azt,

(4.12)

where A and A are given by (2.13) and (1.4), respectively, which is the dual system of

(2.16), associates with a C0-group solution in the space V ×H1
0 (Ω). That is to say, for any

(z0, z1) ∈ V ×H1
0 (Ω), the corresponding solution to (4.12) satisfies (z, zt) ∈ V ×H1

0 (Ω),

and depends continuously on (z0, z1). By this fact, letting Υu = 0 in (4.8) and using

(3.8) and (3.9), we obtain from (4.8) that∫
Σ

∣∣∣∣ ∂zt∂νA

∣∣∣∣
2

dΣ ≤ CT ‖(z0, z1)‖2V×H1
0 (Ω) , (4.13)
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which is equivalent to saying that for any initial data (w0, w1) ∈ H1
0 (Ω)×H, the solution

to the system (1.2) with u = 0 satisfies∫
Σ

∣∣∣∣∂A−1wt

∂νA

∣∣∣∣
2

dΣ ≤ CT ‖(w0, w1)‖2H1
0 (Ω)×H . (4.14)

This shows that B∗ is admissible; so is B [29]. In other words,

u �→ {w,wt} is continuous from L2(Σ) → C([0, T ];H1
0 (Ω)×H). (4.15)

By (4.15), we have

(z, zt) ∈ C([0, T ];V ×H1
0 (Ω)) continuously in u ∈ L2(Σ). (4.16)

Hence

R1 ≤ CT ‖u‖2L2(Σ), ∀ u ∈ L2(Σ), (4.17)

where we used Lemma 2.3.

Step 3 (Estimate of R2 and bT ). From (4.10) and (4.11), by virtue of (4.16), we

readily obtain

R2 + bT ≤ CT ‖u‖2L2(Σ), ∀ u ∈ L2(Σ). (4.18)

Step 4 (Final estimate). Combining (4.17), (4.18), and (4.8), and using (3.8) and

(3.9), we finally obtain∫
Σ

∣∣∣∣ ∂zt∂νA
(x, t)

∣∣∣∣
2

dΣ+

∫
Σ

∣∣∣∣∂Pz

∂νA
(x, t)

∣∣∣∣
2

dΣ ≤ CT

∫
Σ

|u(x, t)|2dΣ. (4.19)

This concludes (4.4). This together with (4.15) completes the proof of Theorem 1.2. �
Remark 4.1. It was realized in Corollary A.2 of [22] that (4.1), the boundedness of

the input-output map, implies the admissibility of B (so is for B∗), but the proof there

is incorrect. A simple proof was given in [4]. But here we do not need this fact.

5. Proofs of Theorems 1.4 and 1.5. It is known from the Appendix of [10] that

the transfer functions of the systems (2.11) and (2.19) are, respectively,

H1(λ) = B∗
1(λ− iÃ1)

−1B1 (5.1)

and

H(λ) = λB∗(λ2 + Ã)−1B, (5.2)

where Ã1, B1, and B∗
1 are given by (2.7), (2.9), and (2.10); Ã, B, and B∗ are given by

(2.14), (2.17), and (2.18), respectively. Moreover, from the well-posedness claimed by

Theorems 1.1 and 1.2, it follows that there exist constants M,α, β > 0 such that [8]

sup
Reλ≥α

‖H1(λ)‖L(U) < M (5.3)

and

sup
Reλ≥β

‖H(λ)‖L(U) < M. (5.4)
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Proposition 5.1. Theorem 1.4 is valid if for any u ∈ C∞
0 (Γ) and ε > 0, the solution vε

to the following equation{
ε−1vε(x)− iPvε(x) = 0, x ∈ Ω,

vε(x) = u(x), x ∈ Γ,
(5.5)

satisfies

lim
ε→0+

∫
Γ

∣∣∣∣ε ∂vε∂νA

∣∣∣∣
2

dΓ = 0. (5.6)

Proof. We need only show that H1(λ)u converges to zero in the strong topology of U

along the positive axis (see [32]), that is,

lim
λ∈R,λ→+∞

H1(λ)u = 0, ∀ u ∈ L2(Γ). (5.7)

Due to (5.3) and a density argument, it suffices to show that (5.7) is satisfied for all

u ∈ C∞
0 (Γ). To this end, let u ∈ C∞

0 (Γ). Denote by

vλ = (λ− iÃ1)
−1B1u. (5.8)

Then along the line from (2.5) to (2.9), we conclude that vλ satisfies{
λvλ(x)− iPvλ(x) = 0, x ∈ Ω,

vλ(x) = u(x), x ∈ Γ.
(5.9)

It follows from (2.10), (5.8), and (5.1) that

(H1(λ)u)(x) = −i
∂(A−1vλ)

∂νA
(x), ∀ x ∈ Γ. (5.10)

Since u ∈ C∞
0 (Γ), there exists a unique classical solution to (5.9). Let ṽ ∈ C∞(Ω) be the

unique solution to the boundary value problem{
P ṽ(x) = 0, x ∈ Ω,

ṽ(x) = u(x), x ∈ Γ.

Then (5.9) can be written as{
iλ vλ(x)− P (vλ(x)− ṽ(x)) = 0, x ∈ Ω,

vλ(x)− ṽ(x) = 0, x ∈ Γ,

or equivalently,

i λA−1vλ = vλ − ṽ.

Hence, (5.10) becomes

(H1(λ)u)(x) = − 1

λ

∂vλ
∂νA

(x) +
1

λ

∂ṽ

∂νA
(x), ∀x ∈ Γ.

Letting vε = vλ with ε = 1
λ , we obtain the required result. �
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Proof of Theorem 1.4. By Proposition 5.1, we only need to prove (5.6).

Let N be the C2 vector field on Ω satisfying (3.4). Multiply both sides of the first

equation of (5.5) by N(vε) and integrate over Ω. Using Green’s first formula and the

fact that N(vε) = 〈∇gvε, N〉g = ∂vε

∂μ on Γ, we obtain

0 =

∫
Ω

ε−1vεN(vε) dx− i

∫
Ω

PvεN(vε) dx

= ε−1

∫
Ω

vεN(vε) dx− i

∫
Ω

(−Δg +Dq)vεN(vε) dx

= ε−1

∫
Ω

vεN(vε) dx+ i

∫
Γ

∣∣∣∣∂vε∂μ

∣∣∣∣
2

dΓ− i

∫
Ω

〈∇gvε,∇gN(vε)〉g dx

−i

∫
Ω

Dq(vε)N(vε) dx.

It then follows that∫
Γ

∣∣∣∣∂vε∂μ

∣∣∣∣
2

dΓ = Re

∫
Ω

〈∇gvε,∇gN(vε)〉g dx− ε−1Im

∫
Ω

vεN(vε) dx

+Re

∫
Ω

Dq(vε)N(vε) dx.

(5.11)

Substitute (3.6) into (5.11), and make use of the divergence theorem, (3.8) and Lemma

2.3 to give

∫
Γ

∣∣∣∣∂vε∂μ

∣∣∣∣
2

dΓ = 2Re

∫
Ω

DN(∇gvε,∇gvε) dx−
∫
Ω

|∇gvε|2gdivg(N) dx

−2ε−1Im

∫
Ω

vεN(vε) dx+ 2Re

∫
Ω

Dq(vε)N(vε) dx

≤ C

∫
Ω

|∇gvε|2g dx− 2ε−1Im

∫
Ω

vεN(vε) dx

≤ C

∫
Ω

|∇gvε|2g dx+ ε−3/2

∫
Ω

|vε|2 dx+ ε−1/2

∫
Ω

|∇gvε|2g dx

(5.12)

where C is a positive constant independent of ε.

Next, multiply both sides of the first equation of (5.5) by vε and integrate over Ω by

parts to obtain

0 = ε−1

∫
Ω

|vε|2 dx− i

∫
Ω

Pvεvε dx

= ε−1

∫
Ω

|vε|2 dx+ i

∫
Γ

∂vε
∂νA

u dΓ− i

∫
Ω

|∇gvε|2g dx.
(5.13)

Compare the imaginary part of the identity (5.13) and multiply by ε3/2 to give

ε3/2
∫
Ω

|∇gvε|2g dx ≤ ε1/2

2

∫
Γ

|u|2 dΓ +
ε5/2

2

∫
Γ

∣∣∣∣ ∂vε∂νA

∣∣∣∣
2

dΓ. (5.14)
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The same treatment to the real part of the identity (5.13) yields

ε1/2
∫
Ω

|vε|2 dx ≤ ε1/2

2

∫
Γ

|u|2 dΓ +
ε5/2

2

∫
Γ

∣∣∣∣ ∂vε∂νA

∣∣∣∣
2

dΓ. (5.15)

Combining (5.12), (5.14), and (5.15), and making use of (3.8) and (3.9), we obtain∫
Γ

∣∣∣∣ε ∂vε∂νA

∣∣∣∣
2

dΓ ≤ Cbε2
∫
Ω

|∇gvε|2g dx+ bε1/2
∫
Γ

|u|2 dΓ

+bε1/2
∫
Γ

∣∣∣∣ε ∂vε∂νA

∣∣∣∣
2

dΓ ≤
(
Cb

ε

2
+ bε1/2

)∫
Γ

|u|2 dΓ

+

(
Cb

2
ε1/2 + b

)
ε1/2

∫
Γ

∣∣∣∣ε ∂vε∂νA

∣∣∣∣
2

dΓ.

(5.16)

This implies that

lim
ε→0+

∫
Γ

∣∣∣∣ε ∂vε∂νA

∣∣∣∣
2

dΓ = 0.

The proof is complete. �

Proposition 5.2. Theorem 1.5 is valid if for any u ∈ C∞
0 (Γ) and ε > 0, the solution wε

to the equation {
wε(x) + ε2P 2wε(x) = 0, x ∈ Ω,

wε(x) = 0, Pwε(x) = u(x), x ∈ Γ
(5.17)

satisfies

lim
ε→0+

∫
Γ

∣∣∣∣ε∂(Pwε)

∂νA

∣∣∣∣
2

dΓ = 0. (5.18)

Proof. As in the beginning of proof of Proposition 5.1, (1.7) is equivalent to, in the

strong topology of L2(Γ), that

lim
λ∈R,λ→+∞

H(λ)u = 0, ∀ u ∈ L2(Γ), (5.19)

where H(λ) is given by (5.2). Due to (5.4) and a density argument, it suffices to show

that (5.19) is satisfied for all u ∈ C∞
0 (Γ). Now let u ∈ C∞

0 (Γ). Denote by

wλ(x) = ((λ2 + Ã)−1Bu)(x), ∀ x ∈ Ω.

Then wλ(x) satisfies {
λ2wλ(x) + P 2wλ(x) = 0, x ∈ Ω,

wλ(x) = 0, Pwλ(x) = u(x), x ∈ Γ,
(5.20)

and the transfer function H(λ) can be written as

(H(λ)u)(x) = λB∗wλ = λ
∂A−1wλ

∂νA
(x), ∀ x ∈ Γ. (5.21)

Since u ∈ C∞
0 (Γ), there exists a unique classical solution to (5.20). Let w̃ ∈ C∞(Ω) be

the unique solution to the following boundary value problem{
P 2w̃(x) = 0, x ∈ Ω,

w̃(x) = 0, P w̃(x) = u(x), x ∈ Γ.
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Then (5.20) becomes{
λ2wλ(x) + P 2(wλ(x)− w̃(x)) = 0, x ∈ Ω,

wλ(x)− w̃(x) = 0, P (wλ(x)− w̃(x)) = 0, x ∈ Γ,

or equivalently,

λ2A−1wλ = Pwλ − Pw̃. (5.22)

Substitute (5.22) into (5.21), to obtain

(H(λ)u)(x) =
1

λ

∂(Pwλ)

∂νA
(x)− 1

λ

∂(Pw̃)

∂νA
(x).

Since Pw̃ is independent of λ, letting wε(x) = wλ(x) with ε = 1/λ, we conclude the

required result. �
Proof of Theorem 1.5. By Proposition 5.2, it suffices to prove (5.18).

We decompose u into the real part and the imaginary part. Let u = u1 + iu2, where

u1 and u2 are real functions in C∞
0 (Γ). Then the solution wε to (5.17) can be uniquely

decomposed as wε = w1ε + iw2ε corresponding to the decomposition of u, where the real

function wkε verifies the equation{
wkε(x) + ε2P 2wkε(x) = 0, x ∈ Ω,

wkε(x) = 0, Pwkε(x) = uk(x), x ∈ Γ,
(5.23)

for k = 1, 2. Then (5.18) is equivalent to

lim
ε→0+

∫
Γ

∣∣∣∣ε∂(Pwkε)

∂νA

∣∣∣∣
2

dΓ = 0, ∀ k = 1, 2.

Therefore, it is sufficient to show (5.18) for real functions u ∈ C∞
0 (Γ). Now assume that

u ∈ C∞
0 (Γ) is a real function. Denote by

ϕε(x) = ε−1wε(x) + iPwε(x), ∀ x ∈ Ω. (5.24)

Then ϕε satisfies the equation{
ε−1ϕε(x)− iPϕε(x) = 0, x ∈ Ω,

ϕε(x) = −iu(x), x ∈ Γ.
(5.25)

While (5.25) is the same type with that of (5.5). It follows from (5.6) and (5.24) that

0 = lim
ε→0+

∫
Γ

∣∣∣∣ε ∂ϕε

∂νA

∣∣∣∣
2

dΓ = lim
ε→0+

∫
Γ

∣∣∣∣∂wε

∂νA

∣∣∣∣
2

dΓ + lim
ε→0+

∫
Γ

∣∣∣∣ε∂(Pwε)

∂νA

∣∣∣∣
2

dΓ.

Therefore, (5.18) is valid. The proof is complete. �
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