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Abstract. Breast cancer is the most frequently diagnosed cancer in women. From

mammography, Magnetic Resonance Imaging (MRI), and ultrasonography, it is well doc-

umented that breast tumours are often ellipsoidal in shape. The World Health Organi-

sation (WHO) has established a criteria based on tumour volume change for classifying

response to therapy. Typically the volume of the tumour is measured on the hypothesis

that growth is ellipsoidal. This is the Calliper method, and it is widely used throughout

the world. This paper initiates an analytical study of ellipsoidal tumour growth based

on the pioneering mathematical model of Greenspan. Comparisons are made with the

more commonly studied spherical mathematical models.

1. Tumour biology. Cell proliferation is normally a highly regulated process, such

that only the required numbers of cells populate a given tissue. If control of proliferation

is altered or lost, cells may continue to divide leading to an abnormal mass of tissue – a

tumour. The most common cause of tumours is genetic mutation resulting in uncontrolled

cell division. Although a single mutation can account for this loss of control, it is far

more common for a series of mutations in a number of genes to accumulate, eventually

resulting in loss of proliferative control. This increased cell mass can be due to increased

cell division or a decrease in programmed cell death, which normally occurs as part of

limiting cell numbers, or a combination of both.

Two classes of genes that are commonly mutated in tumours are oncogenes and tumour

suppressors. Oncogenes are mutated forms of proto-oncogenes,which normally encode
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proteins involved in growth promoting signal transduction and mitogenesis. Oncogenes

are more active, hence increasing the rate of proliferation. Tumour suppressor genes, as

their name suggests, are normally involved in slowing cell growth and division; mutations

release this control, again increasing proliferation. Mutations in either class of gene, or

in both, result in reduced control of cell growth and division, giving these cells a growth

advantage over neighbouring healthy cells and leading to the development of a tumour.

Tumours can be benign or malignant, dependent on their aggressiveness. A benign

tumour stays as a noninvasive cluster, without spreading into its surroundings. The

margin of the tumour is very distinct and the whole tumour can usually be removed by

surgery. By aquiring more mutations, a benign tumour can become malignant. Malignant

tumours grow aggressively and invade into surrounding tissue. Tumour cells that break

away from the parent tumour, and move via lymphatic or blood vessels to a distant site

to form secondary tumours or metastases, are characteristic of a malignant tumour.

Most tumours start as a small mass of rapidly proliferating cells, where nutrients

and oxygen are acquired by passive diffusion from the surrounding tissues, the size of the

tumour is limited to about 2mm in diameter and tumours can stay in this diffusion limited

state, where cell proliferation is balanced by cell death, for months or even years. It was

over thirty years ago that Judah Folkman [10] first proposed that in order to develop

beyond this dormant state, the tumour must induce the growth of new blood vessels in

order to supply the increasing metabolic demands. At that time, the mechanism of new

vessel growth, called angiogenesis, was not known, but Folkman suggested that the switch

in a tumour towards a pro-angiogenic state is a specific stage in tumour development.

Once the tumour becomes vascularised, diffusion no longer limits size, and the tumour

can grow and develop.

It is now known that control of angiogenesis is orchestrated by a large number of

pro-angiogenic and anti-angiogenic factors, and it is the shift in balance from anti- to

pro-angiogenic that elicits the so-called angiogenic switch and induces growth of blood

vessels towards the tumour. Many factors contribute to the switch towards angiogenesis,

one of which is oxygen deficiency within the tumour. Tissues deprived of oxygen become

hypoxic, and express a range of factors to help them survive, some of which are pro-

angiogenic factors, driving the growth of new blood vessels towards that tissue.

This whole orchestration of complex events leads to a micro-vascular structure that

eventually reaches and penetrates the tumor, vastly improving its blood supply and allow-

ing for rapid and unconstrained growth. For an up-to-date account of the biochemistry

of tumour angiogenesis, we refer to Plank and Sleeman [14] as well as the references [3],

[13] and [16].

In this paper we consider the growth of avascular tumours, the first step being in

understanding the growth of complex processes involved in angiogenesis and vascular

structures. There exist in the literature several mathematical models of avascular tu-

mour growth. These include (i) models that describe continuum cell populations and

their growth by considering the interactions between cell density and the chemical species

that provide nutrients as well as inhibitors, (ii) models that describe mechanical interac-

tions between tumour cells and their surroundings and (iii) individual cell based models

that allows one to track cells in both space and time. From in vitro experiments and
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some observed in vivo studies, it is known that avascular tumours may grow as symmet-

ric spheroids wherein growth is essentially radial. In this situation many of the above

mathematical models admit to analytical treatment and enable one to determine cell

movement, track the spheroidal boundary and to assess the roles of growth inhibitors

and growth promoters. The stability of tumour growth can also be analysed; see [12] for

a review and cited references.

A solid mass growing in healthy tissue produces stress. Models [11] have been devel-

oped to study this form of mechanical stress in which the tumour deforms the surrounding

tissue due to the stress it imposes on the environment, and the environment in turn alters

tumour growth dynamics. In these models, tumour growth inhibition depends on the

stiffness of the surrounding environment. In an in vivo setting this corresponds to the

stiffness of the extracellular matrix environment. In an in vitro setting, this corresponds

to the stiffness of the agarose gel. The effects of physical confinement on tumour growth

have been studied experimentally. In [8], human colon adenocarcinoma cells were grown

in cylindrical glass tubes with a radius that was much smaller than the length of the

tube. It was found that cell aggregates in 0.7% gel placed in a capillary tube grew to

take on an ellipsoidal shape driven by the geometry of the capillary tube. The same cells

grown outside a capillary tube developed into a spherical shape. This experiment high-

lights that geometric confinement alters the shape and growth dynamics of a developing

tumour. Mathematical models which treat avascular tumours as visco-elastic materials

and discuss the effects of mechanical stress are considered in [4, 15].

Breast cancer is the most frequently diagnosed cancer in women. From mammography,

magnetic resonance imaging (MRI) and ultrasonography it is well documented that breast

tumours are often ellipsoidal in shape. Indeed the World Health Organisation (WHO)

established in 1979 criteria based on tumour volume change for classifying response to

therapy as progressive disease, partial recovery or no change. Typically the volume of

the tumour is measured on the hypothesis that growth is ellipsoidal. This is the so-

called calliper method and is widely used throughout the world in assessing and grading

gliomas. See [2, 5, 17].

In this paper we initiate an analytical study of ellipsoidal tumour growth based on the

pioneering mathematical model of avascular tumour growth due to Greenspan [6, 7, 15].

In section 2 we formulate the mathematical model in terms of ellipsoidal geometry

and explicitly solve for the pressure field and nutrient concentration within a growing

avascular ellipsoidal tumour made up of a live cell layer, a quiescent layer and a necrotic

core. Because the analysis depends extensively on the use of Lamé functions, their

relevant properties together with a description of ellipsoidal coordinates are outlined in

Appendix A. Section 3 contains a resumé of the well-known spherical tumour problem

and emphasises the modelling differences with the Greenspan model. In section 4 we

carry out a number of numerical simulations. The paper concludes in section 5 with a

discussion of the results.

2. The mathematical model. The tumour is assumed to have a three-layer struc-

ture consisting of a thin outer layer of live proliferating cells that envelops an inner layer

of quiescent live but not proliferating cells which in turn envelops a large necrotic core of
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dead cells and debris. Cells proliferate as long as the available concentration of nutrient

supply, denoted by σ(r, t), remains above a critical level σ1. A cell dies due to apoptosis

or otherwise when σ falls below a critical level σ2. In the quiescent region, nutrient

supply varies over the interval σ2 ≤ σ ≤ σ1. The characteristic thickness s of the layer

of live proliferating cells depends on σ1 and the value of σ at the outer surface of the

tumour.

It is assumed that the tumour boundaries evolve as members of the confocal ellipsoidal

family with foci (±h2, 0, 0), (±h3, 0, 0), (0,±h1, 0) in accordance with the ellipsoidal

coordinate system defined by

x1 =
ρμν

h2h3
, (1)

x2 =

√
ρ2 − h2

3

√
μ2 − h2

3

√
h2
3 − ν2

h1h3
, (2)

x3 =

√
ρ2 − h2

2

√
h2
2 − μ2

√
h2
2 − ν2

h1h2
, (3)

where (ρ, μ, ν) and (x1, x2, x3) are the ellipsoidal and Cartesian coordinates, respectively.

The basic ellipsoid is given, in Cartesian coordinates, by

x2
1

α2
1

+
x2
2

α2
2

+
x2
3

α2
3

= 1, 0 < α3 < α2 < α1 < +∞, (4)

where the semi-focal distances are given by

h2
1 = α2

2 − α2
3, h

2
2 = α2

1 − α2
3, h

2
3 = α2

1 − α2
2. (5)
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Fig. 1. Ellipsoidal tumour with the 3-layer structure of necrotic
core, quiescent layer, and proliferating layer.

Let ΩN denote the ellipsoid occupied by the tumour’s necrotic core. Similarly, let

ΩQ, ΩP denote the ellipsoidal shells occupied by the quiescent and proliferating cells,

respectively. The exterior of the ellipsoidal tumour is denoted by ΩS . The boundaries

of these regions, denoted by ∂ΩN , ∂ΩQ, ∂ΩP , correspond to the coordinate values

ρ = ρN , ρ = ρQ, ρ = ρP , respectively. Next, let P (r) denote the pressure field and σ(r)
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the nutrient concentration at the point r = (ρ, μ, ν). Finally, the threshold values σ1 and

σ2 of σ(r) specify the above ellipsoidal regions as

ΩN = {(ρ, μ, ν) : h2 ≤ ρ < ρN , σ(r) < σ2} ,
ΩQ = {(ρ, μ, ν) : ρN < ρ < ρQ, σ2 < σ(r) < σ1} ,
ΩP = {(ρ, μ, ν) : ρQ < ρ < ρP , σ(r) > σ1} ,
ΩS = {(ρ, μ, ν) : ρ > ρP , σ1 < σ(r) < σ∞} , (6)

where σ∞ is the ambient nutrient concentration outside the tumour.

Regarding the tumour as an incompressible fluid, local changes in the cell population

due to proliferation and apoptsis will induce motion of the neighboring cells. Denote by

S = S(σ) the cell loss rate at a point inside the tumour and denote the cell velocity by

q(r, t), where r is the position vector in ellipsoidal coordinates.

By applying the law of conservation of mass one arrives at the following equation for

q:

� · q = −S(σ). (7)

The next step is to introduce Darcy’s law which relates internal pressure p to the velocity

q(r, t) by

q(r, t) = −� p. (8)

By eliminating q between these equations we get

�p = S(σ). (9)

Reaction-diffusion kinetics are used to model the evolution of the nutrient σ. It is known

that a typical chemical diffusion time scale is much shorter than a typical tumour cell

doubling time so that, as the tumour grows, σ rapidly diffuses throughout the new

volume. As a consquence it can be assumed that σ is in a diffusive steady state. In other

words, σ is governed by

�σ = 0. (10)

The cell loss rate S is modelled in the following way. Cell loss due to apoptosis is restricted

to the proliferating and quiescent region and is assumed to occur at the constant rate

S1. Cell loss due to necrosis is assumed to occur at the constant rate S2. In terms of the

Heaviside step function H we can write S in the concise form

S(σ) = S1H(| r | − | rN |) + S2H(| rN | − | r |), (11)

where rN denotes a point on the surface of the necrotic region.

In accordance with Greenspan [6, 7] we have the following relations holding on the

surface of the tumour:

q · n̂ = −n̂ · �p+
β

dt
s, (12)

q× n̂ = −n̂×�p (13)

together with the nutrient boundary conditions

n̂ · �σ =
γ

k
s. (14)
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In equations (12) and (13), the velocity q is given by

q(r, t) = hρ
dρ

dt
ρ̂+ hμ

dμ

dt
μ̂+ hν

dν

dt
ν̂ (15)

on ρ = ρp and the metric coefficients hi, i = ρ, μ, ν are defined in Appendix A.

In addition σ is assumed continuous together with its normal derivative across the

interior surfaces of the tumour. We also assume that the surrounding medium is large

in comparison with the tumour size and that there is a constant supply of nutrient, i.e.,

σ → σ∞, as | r |→ ∞. (16)

In equations (12) and (14), β is the rate of mass/volume production, dt the mass density

of the tumour colony, γ is the rate of mass/volume consumption, k the diffusion constant

and s is the local thickness of the live outer layer of proliferating cells.

On the outer boundary ∂ΩP of the tumour we assume that the pressure p satisfies the

Young-Laplace relation [1]

pin − pout = aκ. (17)

This relation states that the pressure difference across ∂ΩP is proportional to the mean

curvature κ, which is the energy needed to maintain the intercellular bonds which exist on

∂ΩP . On the boundary ∂ΩN separating the necrotic and live layers we assume continuity

of the nutrient together with continuity of the pressure and its normal derivative.

2.1. The nutrient concentration problem. Let σN (r), σL(r) and σS(r) denote the nu-

trient concentrations at the point r of ΩN , ΩL = ΩQ ∪ ΩP and ΩS respectively. Then

from (10) we can write

Δσi(r) = 0, r ∈ Ωi, i = N, L, S. (18)

On the boundary ∂ΩN we have

σN (rN ) = σL(rN ), (19)

while on the exterior boundary ∂ΩL we have

σL(rP ) = σS(rP ), (20)

together with

ρ̂ · �σL(rP ) = ρ̂ · �σS(rP ), (21)

where ρ̂ is the unit outward normal at the point rP = (ρP , μ, ν) of the ellipsoidal outer

boundary. Note also that from (14) we have

ρ̂ · �σL(rP ) =
γ

k
s(rP ).

The local thickness s(rP) of the tumour’s outer live cell layer, considered small compared

to ΩN , is given by the expression

s(rP ) = hρ(rP )(ρP − ρQ). (22)

We now assume that the nutrient concentration σ is expressible in terms of ellipsoidal

harmonics as

σS(r) = σL(r) =
∞∑

n=0

2n+1∑
m=1

[amn + bmn (2n+ 1)Imn (ρ)]Em
n (ρ)Em

n (μ)Em
n (ν), (23)
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for ρ > ρN and

σN (r) =

∞∑
n=0

2n+1∑
m=1

cmn Em
n (ρ)Em

n (μ)Em
n (ν), (24)

for h2 ≤ ρ < ρN . Here Em
n (x) and Imn (x) are the Lamé functions and the elliptic integral

of degree n and order m and are connected to each other by

Imn (ρ) ≡
∫ ∞

ρ

dt

[Em
n (t)]

2
√
(t2 − h2

2)(t
2 − h2

3)
. (25)

In the subsequent analysis we shall explicitly use only the following Lamé polynomials:

E1
0(x) = 1,

E1
2(x) = x2 + Λ− α2

1, (26)

E2
2(x) = x2 + Λ

′ − α2
1,

where Λ, Λ
′
are the roots of the quadratic equation

3∑
i=1

1

Λ− α2
i

= 0.

From the definition of hρ it can be shown that

[hρ(ρp)]
2 =

1

(ρ2p − h2
3)(ρ

2
p − h2

2)

×
[
E1

2(ρp)E
2
2(ρp)S

1
0(μ, ν)−

E2
2(ρp)

Λ− Λ′ S
1
2(μ, ν) +

E1
2(ρp)

Λ− Λ′ S
2
2(μ, ν)

]
,

where

S1
0(μ, ν) = 1,

S1
2(μ, ν) = (μ2 + Λ− a21)(ν

2 + Λ− a21), (27)

S2
2(μ, ν) = (μ2 + Λ

′ − a21)(ν
2 + Λ

′ − a21).

With these observations and using the boundary conditions together with the orthogo-

nality of the Lamé polynomials we obtain

σS(r) = σL(r) =
[
σ∞ − (σ∞ − σ2)

I1
0 (ρ)

I1
0 (ρN )

]
−
[
(σ∞−σ2)
I1
0 (ρN )

I1
2 (ρ)E

1
2(ρ)

(3/2π)I1
2 (ρP )E1

2(ρP )V (ρP )−1

]
S1
2(μ,ν)

Λ−Λ′

+
[
(σ∞−σ2)
I1
0 (ρN )

I2
2 (ρ)E

2
2(ρ)

(3/2π)I2
2 (ρP )E2

2(ρP )V (ρP )−1

]
S2
2(μ,ν)

Λ−Λ′ (28)

and

σN (r) = σ2

−
[
(σ∞−σ2)
I1
0 (ρN )

I1
2 (ρN )E1

2(ρ)

(3/2π)I1
2 (ρP )E1

2(ρP )V (ρP )−1

]
S1
2(μ,ν)

Λ−Λ′

+
[
(σ∞−σ2)
I1
0 (ρN )

I2
2 (ρN )E2

2(ρ)

(3/2π)I2
2 (ρP )E2

2(ρP )V (ρP )−1

]
S2
2(μ,ν)

Λ−Λ′ , (29)

where

σ2 = σ∞ − γ

κ

(ρP − ρQ)(ρ
2
P + Λ− α2

1)(ρ
2
P + Λ′ − α2

1)I
′
0(ρN )√

(ρ2P − h2
3)
√
(ρ2P − h2

2)
.
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In (28) and (29) the volume V (ρP ) of the ellipsoid ρ = ρP is given by

V (ρ) =
4π

3
ρ
√
(ρ2 − h2

3)(ρ
2 − h2

2). (30)

In terms of the outer boundary ρP we can use

∂σL(rP )

∂ρ
=

γ

k
hρ(ρP )s(ρP ) (31)

to show that

(ρP − ρQ)I
1
0 (ρN ) =

k(σ∞ − σ2)

γ

√
(ρ2P − h2

3)(ρ
2
P − h2

2)

(ρ2P + Λ− α2
1)(ρ

2
P + Λ′ − α2

1)
. (32)

If we set

σ1 = σ∞ − γ(ρP − ρQ)(ρ
2
P + Λ− α2

1)(ρ
2
P + Λ

′ − α2
1)

k
√
(ρ2P − h2

3)
√
(ρ2P − h2

2)
I10 (ρQ), (33)

then equations (28) and (32) ensure that at all points on the quiescent interface ρ = ρQ
the nutrient concentration has, approximately, the threshold value σ1. See the remark

below. From (32) and (33) we deduce that

I10 (ρN )

σ∞ − σ2
=

I10 (ρQ)

σ∞ − σ1
, (34)

which provides a connection between the boundaries ρN and ρQ. Finally we note that

the relations (32) and (34) together connect all three boundaries of the tumour model.

Remark. The deviations imposed by the last two terms of (28) on the value σ1 of

σ(rQ) are negligibly small. To see this write (28) in the symbolic form

σL(rQ) = σ1 +A(ρ, ρP , ρN )S1
2(μ, ν) +B(ρ, ρP , ρN )S2

2(μ, ν).

Then using the values given in Tables 1 and 2 for the various parameters it can be shown

that

A(ρ, ρP , ρN )S1
2(μ, ν) +B(ρ, ρP , ρN )S2

2(μ, ν) ≤ 10−8σ1.

A similar argument may be applied to equation (29). That is, the error on setting

σ(rN ) = σ2 is of the form

Ã(ρ, ρP , ρN )S1
2(μ, ν) + B̃(ρ, ρP , ρN )S2

2(μ, ν) ≤ 10−6σ2.

The above analysis completes the discussion of the nutrient concentration within the

tumour. We now consider the corresponding pressure distribution.

2.2. The pressure concentration problem. Combining equation (12) and (15) we find

that on ρ = ρp,

[hρ(ρp)]
2 dρp

dt
= −∂p

∂ρ
(ρp) +

β

dt
hρ(ρp)s(ρp). (35)

We now make the important observation that because of the form of the scale factor

hρ(ρp) and the orthogonality of the surface ellipsoidal harmonics, the right-hand side

of (35) must be expressible as an expansion in terms of the surface harmonics (27).

Turning to the boundary condition (14) for the nutrient concentration σL(rP ) we have

∂σL(rP )

∂ρ
=

γ

k
hρ(rP )s(rP ). (36)
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From (23) we see that σL(rP ) is expressible as an expansion in terms of the ellipsoidal

harmonics (26).

On combining equations (13) and (15) we obtain the relation

−hμ(rP )
dμ

dt
ν̂ + hν(rP )

dν

dt
μ̂ = − 1

hμ(rP )

∂pL
∂μ

ν̂ +
1

hν(rP )

∂pL
∂ν

μ̂, (37)

from which we deduce that

[hμ(rP )]
2 dμ

dt
=

∂pL
∂μ

,

[hν(rP )]
2 dν

dt
=

∂pL
∂ν

. (38)

These relations determine the evolution of cells on the outer surface of the tumour and

so for consistency we must have
dμ

dt
= 0 =

dν

dt
and consequently

∂pL
∂μ

= 0 =
∂pL
∂ν

. (39)

On taking account of these relations, equation (9), together with (11), the boundary

condition (12) and the Young-Laplace equation (17), is solved in the following manner.

In both the live cell layer and the necrotic core, equation (9) has the particular integral

ppart,i =
Siρ

2

6

(
S1
0(μ, ν)−

S1
2(μ, ν)

(Λ− Λ′)(Λ− α2
1)

+
S2
2(μ, ν)

(Λ− Λ′)(Λ′ − α2
1)

)
(40)

for i = N,L.

The full pressure field in the necrotic core can then be written in the form

pN (ρ, μ, ν) =
∞∑

n=0

2n+1∑
m=1

dmn Em
n (ρ)Em

n (μ)Em
n (ν)

+
SNρ2

6

(
S1
0(μ, ν)−

S1
2(μ, ν)

(Λ− Λ′)(Λ− α2
1)

+
S2
2(μ, ν)

(Λ− Λ′)(Λ′ − α2
1)

)
,

(41)

while in the live cell layer we write

pL(ρ, μ, ν) =
∞∑

n=0

2n+1∑
m=1

[emn + (2n+ 1)Imn (ρ)fm
n ]Em

n (ρ)Em
n (μ)Em

n (ν)

+
SLρ

2

6

(
S1
0(μ, ν)−

S1
2(μ, ν)

(Λ− Λ′)(Λ− α2
1)

+
S2
2(μ, ν)

(Λ− Λ′)(Λ′ − α2
1)

)
.

(42)

The coefficients dmn , emn , fm
n are determined by applying the continuity boundary con-

ditions together with (17), with the assumption that the trace of the exterior pressure

pout on the outer boundary of the tumour is given by

pout = g(ρP )− aκ(rP ). (43)
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In (43), g(ρP ) is a function of ρ, constant on the boundary ρ = ρP and κ(rP ) is the mean

curvature at the point rP on the ellipsoid defined by

κ(ρp, μ, ν) =

(
1

ρ2p − μ2
+

1

ρ2p − ν2

) ρp

√
ρ2p − h2

3

√
ρ2p − h2

2

2
√
ρ2p − μ2

√
ρ2p − ν2

. (44)

Hence we arrive, for r ∈ ΩL, at

pL =

[
1

6
S1(ρ

2 − ρ2P ) +
1

4π
(S1 − S2)V (ρN )I10 (ρ, ρP ) + g(ρp)

]
S1
0(μ, ν)

+
1

(Λ′ − Λ)

{
S1

6(Λ− a21)

[
ρ2 − ρ2p

E1
2(ρ)

E1
2(ρp)

]

− 1

4π
(S1 − S2)V (ρN )I12 (ρ, ρP )E

1
2(ρ)

}
S1
2(μ, ν)

+
1

(Λ− Λ′)

{
S1

6(Λ′ − a21)

[
ρ2 − ρ2p

E2
2(ρ)

E2
2(ρp)

]

+
1

4π
(S1 − S2)V (ρN )I22 (ρ, ρp)E

2
2(ρ)

}
S2
2(μ, ν).

(45)

Similarly for r ∈ ΩN ,

pN =

[
1

6
S2(ρ

2 − ρ2N ) +
1

4π
(S1 − S2)V (ρN )I10 (ρN , ρP ) +

1

6
S1(ρ

2
N − ρ2P ) + g(ρP )

]

+
1

(Λ− Λ′)

{
S2

6(Λ− a21)

[
E1

2(ρ)ρ
2
N

E1
2(ρN )

− ρ2
]

− S1

6(Λ− a21)

[
ρ2N

E1
2(ρN )

− ρ2P
E1

2(ρP )

]
E1

2(ρ)

}
S1
2(μ, ν)

+
1

(Λ− Λ′)

{
1

4π
(S1 − S2)V (ρN )I12 (ρP , ρN )E1

2(ρ)

}
S1
2(μ, ν)

− 1

(Λ− Λ′)

{
S2

6(Λ′ − a21)

[
E1

2(ρ)ρ
2
N

E1
2(ρN )

− ρ2
]

− S1

6(Λ′ − a21)

[
ρ2N

E2
2(ρN )

− ρ2P
E2

2(ρP )

]
E2

2(ρ)

}
S2
2(μ, ν)

− 1

(Λ− Λ′)

{
1

4π
(S1 − S2)V (ρN )I22 (ρP , ρN )E2

2(ρ)

}
S2
2(μ, ν),

(46)

where Imn (ρ1, ρ2) = Imn (ρ1)− Imn (ρ2).
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Using the definitions of the Lamé polynomials (26), the expressions (44) and (45) can

be written as

pL =

[
1

6
S1(ρ

2 − ρ2P ) +
1

4π
(S1 − S2)V (ρN )I10 (ρ, ρP ) + g(ρP )

]

+

{
(S1 − S2)V (ρN )

4π(Λ− Λ′)
I12 (ρP , ρ)(ρ

2 + Λ− a21) +
S1(ρ

2
P − ρ2)

6(Λ− Λ′)(ρ2P + Λ− a21)

}
S1
2(μ, ν)

−
{
(S1 − S2)V (ρN )

4π(Λ− Λ′)
I22 (ρP , ρ)(ρ

2 + Λ
′ − a21) +

S1(ρ
2
P − ρ2)

6(Λ− Λ′)(ρ2P + Λ′ − a21)

}
S2
2(μ, ν)

(47)

and

pN =

[
1

6
S2(ρ

2 − ρ2N ) +
1

4π
(S1 − S2)V (ρN )I10 (ρN , ρP ) +

1

6
S1(ρ

2
N − ρ2P ) + g(ρP )

]

+

{
(S1 − S2)V (ρN )

4π(Λ− Λ′)
I12 (ρP , ρN )(ρ2 + Λ− a21) (48)

+
S1(ρ

2
P − ρ2N )(ρ2 + Λ− a21)

6(Λ− Λ′)(ρ2P + Λ− a21)(ρ
2
N + Λ− a21)

}
S1
2(μ, ν)

+

{
S2(ρ

2
N − ρ2)

6(Λ− Λ′)(ρ2N + Λ− a21)

}
S1
2(μ, ν)

−
{
(S1 − S2)V (ρN )

4π(Λ− Λ′)
I22 (ρP , ρN )(ρ2 + Λ

′ − a21)

+
S1(ρ

2
P − ρ2N )(ρ2 + Λ

′ − a21)

6(Λ− Λ′)(ρ2P + Λ′ − a21)(ρ
2
N + Λ′ − a21)

}
S2
2(μ, ν)

−
{

S2(ρ
2
N − ρ2)

6(Λ− Λ′)(ρ2N + Λ′ − a21)

}
S2
2(μ, ν).

The next problem is to derive the differential equation that describes the evolution of

the tumour’s outer boundary. On noting that the thickness of the layer of live cells is

s = hρ(ρp)(ρP − ρQ), (49)

we find, from (35), that

[hρ(rP )]
2 dρp

dt
= −∂pL

∂ρ
(rP ) +

β

dt
[hρ(rP )]

2 (ρP − ρQ). (50)

On substituting for pL from (47) in (50) and using the orthogonality property of the

surface ellipsoidal harmonics on ρ = ρP we find

dρP
dt

=
(S1 − S2)V (ρN )

4π

√
(ρ2P − h2

3)(ρ
2
P − h2

2)

(ρ2P + Λ− α2
1)(ρ

2
P + Λ′ − α2

1)

− S1

3

ρP (ρ
2
P − h2

3)(ρ
2
P − h2

2)

(ρ2P + Λ− α2
1)(ρ

2
P + Λ′ − α2

1)
+

β

dt
(ρP − ρQ)
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or

dρP
dt

=−
[
S2V (ρN )

V (ρP )
+

S1(V (ρP )− V (ρN ))

V (ρP )

]
ρP (ρ

2
P − h2

3)(ρ
2
P − h2

2)

3(ρ2P + Λ− α2
1)(ρ

2
P + Λ′ − α2

1)
+

β

dt
(ρP−ρQ),

(51)

where V (ρP ), V (ρN ) are the volumes of the ellipsoids ρ = ρP and ρ = ρN , respectively,

given by equation (30).

3. The spherical tumour. In this section we revisit the problem of a tumour con-

strained to grow as a sphere. In particular we are concerned with the model introduced

in this paper in which the nutrient σ satisfies the boundary condition

n̂ · �σ =
γ

k
s, (52)

where s is the depth of the outer layer of live proliferating cells. This contrasts with the

Greenspan model in which σ is assumed to satisfy the boundary condition

n̂ · �σ =
λ

β

√
σ(r)− σ1. (53)

In analogy with the segmentation of the ellipsoidal tumour we define

ΩN = {(r, θ, φ) : 0 ≤ r < rN , σ(r) = σ2} ,
ΩQ = {(r, θ, φ) : rN ≤ r < rQ, σ2 < σ(r) < σ1} ,
ΩP = {(r, θ, φ) : rQ ≤ r < rP , σ(r) > σ1} ,
ΩS = {(r, θ, φ) : r > rP , σ1 < σ(r) < σ∞} . (54)

S

L

N

P Q

L

N

r=r
N

Q

P

Necrotic core

Quiescent layer

Proliferating layer

�

��

�

�

��

�� r=r

r=r

Fig. 2. Spherical tumour with the 3-layer structure of necrotic core,
quiescent layer, and proliferating layer.

In analogy with the analysis for the ellipsoidal tumour we find that the nutrient

concentration in the proliferating and quiescent layers is given by

σ(r) = σ∞ − γ

k

r2P (rP − rQ)

r
, r ∈ ΩP ∪ ΩQ, (55)
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which holds as long as σ > σ2.

In the necrotic core we deduce that

σ(r) = σ2, r ∈ ΩN . (56)

From (55) we can determine a relationship between the radius rP of the tumour and the

radius rQ of the quiescent layer by observing that when σ = σ1,

σ(rQ) = σ1 = σ∞ − γ

k

r2p(rP − rQ)

rQ
, rQ ∈ ΩP ∪ ΩQ,

from which we find that

rQ =
γr3P

k(σ∞ − σ1) + γr2P
. (57)

Similarly on σ = σ2 we have the continuity condition

σ(rN ) = σ2 = σ∞ − γ

k

r2P (rP − rQ)

rN
, rN ∈ ∂ΩN ,

from which we deduce that

rN =

(
σ∞ − σ1

σ∞ − σ2

)
rQ. (58)

Now consider the determination of the pressure field p(r) in the interior and exterior of

spherical tumour. As in section 2, the pressure satisfies the partial differential equation

(9) together with the boundary condition (17) and the continuity of pressure and its

normal derivative across each internal layer. As in section 2 we assume that the tumour

continues to grow as a sphere and that on its external boundary

pout(rP) = g(rP )−
α

rP
. (59)

Omitting the details of the calculations, which mimic those of section 2, we find that the

pressure field in the necrotic core is given by

pN (r) = g(rP ) +
1

6
(S2r

2 − S1r
2
P ) + (S1 − S2)r

3
N

[
1

2rN
− 1

3rP

]
, r ∈ ΩN , (60)

and

pL(r) = g(rP ) +
1

6
S1(r

2
P − r2) +

1

3
(S1 − S2)r

3
N

[
1

r
− 1

rP

]
, r ∈ ΩQ ∪ ΩP . (61)

In order to derive an equation governing the evolution of the outer tumour boundary we

turn to equation (12), which in spherical polar coordinates becomes

drP
dt

=
dpL(r)

dr
+

β

dt
(rP − rQ), r ∈ ∂ΩP . (62)

By substituting (61) into (62) we obtain the following nonlinear ordinary differential

equation
drP
dt

=
(S1 − S2)r

3
N

3r2P
− S1rP

3
+

β

dt
(rP − rQ). (63)

On substituting for rQ and rN from (57) and (58) in (63) we obtain

drP
dt

=
1

3

(
σ∞ − σ1

σ∞ − σ2

)3
(S1 − S2)r

7
P

(k/γ(σ∞ − σ1) + r2P )
3
− 1

3
S1rP +

β

dt

k(σ∞ − σ1)rP
k(σ∞ − σ1) + γr2P

. (64)
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Table 1

Tumour type Initial tumour dimensions Initial Tumour Volume

Sphere a = 6/1000

Ellipsoid I a1 = 7.2/1000, a2 = 6/1000, a3 = 5/1000 4π
3 (6/1000)3

Ellipsoid II a1 = 9/1000, a2 = 6/1000, a3 = 4/1000

Table 2

Set of Parameters
1a σ1 = 0.9, σ2 = 0.4, γ/k = 5000 β/dt = 500

1b σ1 = 0.9, σ2 = 0.4, γ/k = 5000 β/dt = 1000

2a σ1 = 0.9, σ2 = 0.875, γ/k = 5000 β/dt = 500

2b σ1 = 0.9, σ2 = 0.875, γ/k = 5000 β/dt = 1000

To conclude this section it is appropriate to highlight the main modelling differences

between the above model and that of Greenspan [6, 7]. Firstly, in Greenspan’s approach,

the gradient of the nutrient concentration was assumed to obey a square root law on

the tumour’s outer boundary whereas in our model we simply assume that the gradient

of the nutrient concentration is proportional to the live cell depth. As a particular

consequence of this it can be shown that the difference between the tumour surface

rate of growth using the Greenspan model and the surface rate of growth in the above

model is O( 1
rP

). Secondly, we assume that in the exterior of the tumour, the pressure

equipotential surfaces are spheres concentric with the spherical tumour and that its trace

on the tumour’s outer boundary is governed by the Young-Laplace relation which is not

reflected in the evolution of the tumour.

4. Numerical simulations. In this section we have carried out a series of numerical

experiments which compare the evolution of different initial ellipsoidal tumours (with the

same initial volume). As a reference we use a spherical tumour (with the same initial

volume).

The numerical experiments examined the time evolution of the volumes of the bound-

aries r = rN , r = rQ and r = rP (for the spherical tumour) and the volumes of the

boundaries ρ = ρN , ρ = ρQ and ρ = ρP (for the ellipsoidal tumours). In all cases

the initial tumours have the same volume but different initial dimensions, as shown in

Table 1.

The simulations have been carried out for the parameter values shown in Table 2. We

present in Figures 4 and 5 only the cases of sets 1a and 2a.

For the set 1a, σ1−σ2 = 0.5 and β/dt = 500 (Figure 3), all spherical boundaries exist

but are relatively smaller than the corresponding ellipsoidal boundaries. Specifically,

the necrotic core boundary for the eccentric ellipsoid assumes the value ρN = h2 which

corresponds to the zero volume of the two-dimensional focal ellipse. For the set 1b,

σ1 − σ2 = 0.5 and β/dt = 1000, the results are much the same except for the eccentric

ellipsoid which maintains the two-dimensional focal ellipse as its necrotic core.
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Fig. 3. Volume time evolution of the boundaries (a) r = rN , r =
rQ and r = rP for a spherical tumor with initial radii 6/1000, (b)
ρ = ρN , ρ = ρQ and ρ = ρP for an ellipsoidal tumor with initial
dimensions a1 = 7.2/1000, a2 = 6/1000, a3 = 5/1000, (c) ρ = ρN ,
ρ = ρQ and ρ = ρP for an ellipsoidal tumor with initial dimensions
a1 = 7.2/1000, a2 = 6/1000, a3 = 5/1000, for the set of parameters
σ1 = 0.9, σ2 = 0.4, γ/k = 5000 and β/dt = 500.

For the set 2a we take σ1 − σ2 = 0.025 and β/dt = 500 (Figure 4) where all the

boundaries are larger. The new observation is that for the eccentric ellipsoid a definite

necrotic core appears which is nevertheless still smaller than that for the sphere or the

quasi-spherical tumour. For the set 2b we take σ1 − σ2 = 0.025 and β/dt = 1000;
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Fig 4. Volume time evolution of the boundaries (a) r = rN , r = rQ
and r = rP for a spherical tumor with initial radii 6/1000, (b)ρ = ρN ,
ρ = ρQ and ρ = ρP for an ellipsoidal tumor with initial dimensions
a1 = 7.2/1000, a2 = 6/1000, a3 = 5/1000, (c) ρ = ρN , ρ = ρQ
and ρ = ρP for an ellipsoidal tumor with initial dimensions a1 =
7.2/1000, a2 = 6/1000, a3 = 5/1000, for the set of parameters σ1 =
0.9, σ2 = 0.875, γ/k = 5000 and β/dt = 500 (set 2a).

here, with a much greater proliferation parameter, there is little qualitative difference as

compared with set 2a except that the resulting tumours are somewhat larger.

From these simulations the difference σ1 − σ2 appears to play a critical role in the

development of the necrotic core of a growing ellipsoidal tumour. That is, for the larger
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difference σ1 −σ2 = 0.5, the necrotic core appears to be confined to the two-dimensional

focal ellipse whereas for the smaller difference σ1−σ2 = 0.025, the necrotic core develops

as an ellipsoid. This is a departure from the growth of a spherical tumour where the

necrotic core is always a sphere.

To explore this a little further we have plotted (Figure 5), for spherical tumours, the

functions

fN,s =
1

rN (σ∞ − σ2)

and

fQ,s =
1

rQ(σ∞ − σ1)
,

for a range of values of rN and rQ from which we see that (58) holds for nonzero values

of rN and rQ.

Similarly, for ellipsoidal tumours we make the analogous plots (Figure 5) of

fN,e =
I10 (ρN )

(σ∞ − σ2)

and

fQ,e =
I10 (ρN )

(σ∞ − σ1)

valid for ρ ≥ h2. Again we see that there is a range of values of ρN and ρQ for which the

necessary equality

I10 (ρN )

(σ∞ − σ2)
=

I10 (ρQ)

(σ∞ − σ1)
(65)

holds.

5. Conclusions. Ellipsoidal avascular tumours have been observed to grow as a con-

sequence of tissue stress as for example in breast cancer in women. Although a number

of analytical studies have been made of spherical tumours, this is the first study of the

more complex ellipsoidal tumour. By basing the modelling on the fundamental work of

Greenspan we have formulated the growth of ellipsoidal tumours in an ellipsoidal coor-

dinate geometry setting. Although the resulting differential equations can be solved by

separation of variables techniques, the underlying functions are the more complex Lamé

functions. It is shown that, in contrast to the spherical tumour, the necrotic core, de-

pending on critical nutrient levels, may simply be a two-dimensional focal ellipse. This

is a feature not observed in the spherical case. Unlike the case of a spherical tumour in

which a linear stability analysis can be easily carried out, the ellipsoidal case is much

more demanding and will be considered in future work. Since the work of Greenspan

there have been substantial advances in our understanding of avascular tumour develop-

ment. This has led to a number of modifications to the original models. Nevertheless the

techniques used to study these later spherical models have remained essentially the same.

We believe the same to be true in the case of an ellipsoidal tumour model. However,

here we expect to uncover new phenomena which are not present in the constraints of

spherical geometry. We shall explore these aspects in future research.
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Fig. 5. Diagrams (a)–(c)

Appendix A. Ellipsoidal coordinates and Lamé products. The spherical co-

ordinate system is completely specified if we know a centre and the radius of the unit

sphere, i.e. a single unit of length. On the other hand, the ellipsoidal coordinate system,

which is intrinsically three-dimensional, is specified by its centre and the three princi-

pal axes of the fundamental ellipsoid, which acts as its unit ellipsoid. Given any three

numbers α1, α2, α3, with 0 < α3 < α2 < α1 < ∞, we define the fundamental ellipsoid

x2
1

α2
1

+
x2
2

α2
2

+
x2
3

α2
3

= 1, 0 < α3 < α2 < α1 < +∞, (A.1)
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Fig. 5. Relation between the quiescent boundary and the bound-
ary of necrotic core (a) r = rQ, r = rN , obtained by the equal-

ity 1
rQ(σ∞−σ1)

= 1
rN (σ∞−σ2)

, for a spherical tumor with initial

radii 6/1000, (b) and (c) ρ = ρQ and ρ = ρN , obtained by the

equality
I10 (ρQ)

rQ(σ∞−σ1)
=

I10 (ρN )

rN (σ∞−σ2)
for an ellipsoidal tumor with

initial dimensions a1 = 7.2/1000, a2 = 6/1000, a3 = 5/1000 and
a1 = 9/1000, a2 = 6/1000, a3 = 4/1000 correspondingly, for the set
of parameters σ1 = 0.9, σ2 = 0.4, γ/k = 5000. The relation between
the quiescent boundary and the boundary of the necrotic core for
the set of parameters σ1 = 0.9, σ2 = 0.4, γ/k = 5000 is represented

in (d), (e) and (f).
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where the three semi-axes α1, α2, α3, specify the semi-focal distances

h2
1 = α2

2 − α2
3, h

2
2 = α2

1 − α2
3, h

2
3 = α2

1 − α2
2, (A.2)

which are related by

h2
1 − h2

2 + h2
3 = 0. (A.3)

Obviously, the foci ±h2 and ±h3 are located on the x1-axis and the foci ±h1 are located

on the x2-axis. The axis x3, hosting the shortest semi-axis, carries no foci. The centre of

the ellipsoidal system is represented by the focal ellipse, i.e., an ellipse on the (x1, x2)-

plane with semi-focal distance h3 and semi-axes h1 and h2.

The ellipsoidal coordinate system (ρ, μ, ν) [9], associated with the fundamental el-

lipsoid is connected to the Cartesian system (x1, x2, x3) by

x1 =
ρμν

h2h3
, h2 < ρ < +∞,

x2 =

√
ρ2 − h2

3

√
μ2 − h2

3

√
h2
3 − ν2

h1h3
, h3 < μ < h2, (A.4)

x3 =

√
ρ2 − h2

2

√
h2
2 − μ2

√
h2
2 − ν2

h1h2
, 0 < ν < h3.

As depicted in Figure 6, the variable ρ, which corresponds to the radial spherical coordi-

nate, defines a family of confocal ellipsoids while the variables μ and ν, which correspond

to the angular spherical coordinates, define two confocal families of hyperboloids of one

and two sheets, respectively.

Fig. 6 Confocal ellipsoidal coordinates

The matrix coefficients of the ellipsoidal system are given by

hρ = ‖rρ‖ =

√
(ρ2 − μ2)(ρ2 − ν2)√
(ρ2 − h2

3)(ρ
2 − h2

2)
,

hμ = ‖rμ‖ =

√
(ρ2 − μ2)(μ2 − ν2)√
(μ2 − h2

3)(h
2
2 − μ2)

, (A.5)

hν = ‖rν‖ =

√
(ρ2 − μ2)(μ2 − ν2)√
(h2

3 − ν2)(h2
2 − ν2)

,
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where the lower index in r denotes partial differentiation with respect to the indicated

variable.

Lamé used an ingenious technique to separate variables for Laplace’s equation. In fact,

he proved that for all three separated ordinary differential equations, the only difference

among them is the domain wherein each one is defined. Hence, an interior eigensolution

of Laplace’s equation has the form

IEmn (ρ, μ, ν) = Em
n (ρ)Em

n (μ)Em
n (ν), (A.6)

where Em
n is the Lamé function of the first kind, of degree n = 0, 1, 2, . . . , and order

m = 1, 2, . . . , 2n+ 1.

Similarly, an exterior eigensolution has the form

IFmn (ρ, μ, ν) = Fm
n (ρ)Em

n (μ)Em
n (ν), (A.7)

where Fm
n is the Lamé function of the second kind, which is given by the elliptic integral

Fm
n (ρ) = (2n+ 1)Em

n (ρ)

∫ ∞

ρ

dx

[Em
n (x)]2

√
(x2 − h2

3)(x
2 − h2

2)
. (A.8)

The functions IEmn (ρ, μ, ν) and IFmn (ρ, μ, ν) are called Lamé products or interior and ex-

terior ellipsoidal harmonics, respectively. Note that, just as with the case of spherical

geometry, there are 2n+ 1 independent ellipsoidal harmonics of degree n.

The surface ellipsoidal harmonics

Sm
n (μ, ν) = Em

n (μ)Em
n (ν), n = 0, 1, 2, . . . , m = 1, 2, . . . , 2n+ 1, (A.9)

form a complete set of eigenfunctions over the surface Sρ of any ellipsoid ρ = constant

and satisfy the orthogonality relation∮
Sρ

Sm
n (μ, ν)Sm

′

n′ (μ, ν)lρ(μ, ν)dsρ(μ, ν) = γm
n δn,n′δm,m′, (A.10)

with respect to the weight function

lρ(μ, ν) =
1√

(ρ2 − μ2)(ρ2 − ν2)
, (A.11)

where

dsρ(μ, ν) = hμhνdμdν (A.12)

defines the differential surface element on the ellipsoid. Actually the weight function lρ
on any ellipsoid is a constant multiple of the support function. The constant γm

n is the

normalisation constant of the surface harmonic Sm
n .

Any smooth function f defined over Sρ has the expansion

f(μ, ν) =

∞∑
n=0

2n+1∑
m=1

cmn Sm
n (μ, ν), (A.13)

with coefficients cmn given by

cmn =
1

γm
n

∮
Sρ

f(μ, ν)Sm
n (μ, ν)lρ(μ, ν)dsρ(μ, ν). (A.14)

The harmonics Sm
n (μ, ν) over the surface of the ellipsoid correspond to the harmonics

Y m
n (θ, φ) over the surface of the sphere.
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In the sequel we write down explicitly the harmonics of degree less than or equal to

two.

For n = 0, the Lamé function E1
0(x) = 1, and the ellipsoidal harmonic IE10(ρ, μ, ν) = 1,

and

IF10(ρ, μ, ν) =

∫ ∞

ρ

dx√
(x2 − h2

3)(x
2 − h2

2)
. (A.15)

For n = 1, we have the Lamé functions

E1
1(x) = x,

E2
1(x) =

√
|x2 − h2

3|, (A.16)

E3
1(x) =

√
|x2 − h2

2|,

and the ellipsoidal harmonics

IE11(ρ, μ, ν) = ρμν = h2h3x1,

IE21(ρ, μ, ν) =
√
ρ2 − h2

3

√
μ2 − h2

3

√
h2
3 − ν2 = h1h3x2, (A.17)

IE31(ρ, μ, ν) =
√
ρ2 − h2

2

√
h2
2 − μ2

√
h2
2 − ν2 = h1h2x3,

as well as

IF11(ρ, μ, ν) = 3IE11(ρ, μ, ν)

∫ ∞

ρ

dx

x2
√
(x2 − h2

3)(x
2 − h2

2)
,

IF21(ρ, μ, ν) = 3IE21(ρ, μ, ν)

∫ ∞

ρ

dx

(x2 − h2
3)
√
(x2 − h2

3)(x
2 − h2

2)
, (A.18)

IF31(ρ, μ, ν) = 3IE31(ρ, μ, ν)

∫ ∞

ρ

dx

(x2 − h2
2)
√
(x2 − h2

3)(x
2 − h2

2)
.

For n = 2, we have the Lamé functions

E1
2(x) = (x2 + Λ− α2

1),

E2
2(x) = (x2 + Λ

′ − α2
1),

E3
2(x) = x

√
|x2 − h2

3|, (A.19)

E4
2(x) = x

√
|x2 − h2

2|,

E5
2(x) =

√
|x2 − h2

2|
√
|x2 − h2

3|,

where Λ and Λ
′
are the roots of the quadratic equation

3∑
i=1

1

Λ− α2
i

= 0.
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We also have the ellipsoidal harmonics

IE12(ρ, μ, ν) = (ρ2 + Λ− α2
1)(μ

2 + Λ− α2
1)(ν

2 + Λ− α2
1)

= (Λ− α2
1)(Λ− α2

2)(Λ− α2
3)

[
3∑

i=1

x2
i

Λ− α2
i

+ 1

]
,

IE22(ρ, μ, ν) = (ρ2 + Λ
′ − α2

1)(μ
2 + Λ

′ − α2
1)(ν

2 + Λ
′ − α2

1)

= (Λ
′ − α2

1)(Λ
′ − α2

2)(Λ
′ − α2

3)

[
3∑

i=1

x2
i

Λ′ − α2
i

+ 1

]
, (A.20)

IE32(ρ, μ, ν) = ρμν
√
(ρ2 − h2

3)
√
(μ2 − h2

3)
√
(h2

3 − ν2)

= h1h2h
2
3x1x2,

IE42(ρ, μ, ν) = ρμν
√
(ρ2 − h2

2)
√
(h2

2 − μ2)
√
(h2

2 − ν2)

= h1h
2
2h3x1x3,

IE52(ρ, μ, ν) =
√

(ρ2 − h2
3)
√
(μ2 − h2

3)
√
(h2

3 − ν2)
√
(ρ2 − h2

2)
√
(h2

2 − μ2)
√
(h2

2 − ν2)

= h2
1h2h3x2x3,

and

IF12(ρ, μ, ν) = 5IE12(ρ, μ, ν)

∫ ∞

ρ

dx

(x2 + Λ− α2
1)

2
√
(x2 − h2

3)(x
2 − h2

2)
,

IF22(ρ, μ, ν) = 5IE22(ρ, μ, ν)

∫ ∞

ρ

dx

(x2 + Λ′ − α2
1)

2
√
(x2 − h2

3)(x
2 − h2

2)
,

IF32(ρ, μ, ν) = 5IE32(ρ, μ, ν)

∫ ∞

ρ

dx

x2(x2 − h2
3)
√
(x2 − h2

3)(x
2 − h2

2)
, (A.21)

IF42(ρ, μ, ν) = 5IE42(ρ, μ, ν)

∫ ∞

ρ

dx

x2(x2 − h2
2)
√
(x2 − h2

3)(x
2 − h2

2)
,

IF52(ρ, μ, ν) = 5IE52(ρ, μ, ν)

∫ ∞

ρ

dx

(x2 − h2
3)(x

2 − h2
2)
√
(x2 − h2

3)(x
2 − h2

2)
.
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