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Abstract. This note deals with the Laplace transforms of integrands of the form
27 J, (ax) Jg (br), which are found in numerous fields of application. Specifically, we
provide herein both a correction and a supplement to the list of integrals given in 1997
by Hanson and Puja, who in turn extended the formulas of Eason, Noble and Sneddon
of 1956. The paper concludes with an extensive tabulation for particular cases and range
of parameters.

1. Introduction. In a classic 1956 paper, Eason, Noble and Sneddon — henceforth
ENS for short — presented a general methodology for finding integrals involving products
of Bessel functions, and provided a set of closed-form formulas for cases commonly en-
countered in engineering science and in applied mathematics. Although these integrals
extended considerably the repertoire of exact formulas available in standard tables such
as Oberhettinger’s or Gradshteyn and Ryzhik’s, even to this day programs such as Math-
ematica, Maple and Matlab’s symbolic tool seem to have remained unaware of the ENS
paper, for they are unable to provide answers to such integrals. Some four decades later,
Hanson and Puja (1997) — henceforth denoted as HP — reconsidered the ENS paper and
not only extended considerably the formulas therein, but by changing the arguments to
the functions, they arrived at alternative forms which allegedly avoided discontinuities
at certain values of the parameters. Unfortunately, once the arguments in the HP for-
mulas exceed some threshold value, the computations for some of the integrals suffer a
complete breakdown and become useless. This led us to investigate both the reasons for
the erroneous results and also to seek a corrected set of formulas, which constitutes the
subject of this paper.
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To avoid repetitions, the presentation herein will be rather terse, avoiding needless
explanations of well-known facts and/or of details which can be found in the originals of
the papers referred to. Also, to distinguish clearly between the equations and parameters
used by ENS and HP, we have adopted a revised, more general notation. We defer a
description of the problem itself until section 5 so as to summarize first some needed
preliminary definitions and properties.

2. Laplace transform and its properties. The integrals in question are the
Laplace transforms

I()x\ﬁ = Ig‘ﬁ (a,b,s) = / 2 J, (az) Jg (bz) e " dx (2.1)
0

with
a+pB+A>-1 if s>0,
a+B8+1>=-A>-1 if s=0 & a#b,
a+B+1>-A>0 if s=0 & a=0b,

where the parameters «, 8, \ are assumed to be integers and the arguments a,b, s are
real. These integrals satisfy the following symmetries and recursive properties:

\ \ \ (l)’\“p\ (2,1,%)
Iaﬁ ((],, b7 8) = Iﬂa (b7 a, 8)7 Iaﬁ ((l, b7 S) = i, A+1 (;\B b b z (22)
(&) s (1L2:2),
A A1 A1 A A1 A1
ally=Lla (Iatlﬁ + Iaim) . BRs=1b (Ia"g_l + Iajgﬂ) , (2.3)
A A
8Ia5 _1 (I’\“ _ M1 ) alaﬁ _1 (IA+1 _ M ) (2.4)
da 2 a—1,8 a+1,8 ) ob 2 a,f—1 a,B+1) " .
A combination of two of the above yields
A A
Ay S Iy o) 0I5 —_ ﬁlx
da =18 a afs ob ap-1 b ab (2.5)
_ Qo A1 B A1
—Elﬂ_laﬂ,ﬂa _EIaﬂ_Ia,BH'
In addition,
8]/\—1
Dp=——25 2.6
af3 s ( )

It can also be shown via integration by parts that
(a+p-N) Igﬁ_l = alg_lﬁ + blgﬁ_l - sléﬂ + [22Ja (az) Jg (bx)] _,»
Mogt=ay (avrs = Ia-1p) +05 (g = Lp) + 5105 = [22a () T (b)),
(2.7)

provided a 4+ 8+ A > 0. The boundary term at x = 0 vanishes if « + 5+ A > 0. For
example, if A =0, a = =1, then

Ii'=1%(a Ig, + 010, —s17)), (2.8a)
O=2a(I9, —I§,) +5b (10, —IT) + s 171, (2.8b)
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both of which can be useful.

3. Definitions, parameters and fundamental relations.
A=A(a,b,s)=1\/(a+b)>+s2, B=DB(abs)=1/(a—b>+s2, (3.1
Li=Li(a,b,s)=%(A—B), Ly=Ls(a,bs)=1(A+B), (3.2)

WL, 2ab vk (3.3)

K = =
L1+L2 /(a+b)2+82 1+k‘
\/a—b2+5271_k (3.4)

_ VA
(

)
\/(a+b)* + 52 1+k

K =v1—-kK2=

ey

Ly ab L} 1-+#
poli_ab_Li_ 3.5
Lo L% ab 14K/ (3.5)
2VAB 2V
K =+1-k2= = 3.6
A+B 1+~F (3.6)
4ab L2 a* aly a L2 v bl b
= a:—:—:——:k—7 a:—:—:——:]{j— 3.7
Yot TR T v, | T @ T I3 4l a (3.7)
with
RE<v<l, kE<ng<l, k> <<, nepnp=EFk. (3.8)
These parameters satisfy the following useful relationships:
o 8K T :|a—b| (1—1/)(1/—/{2):|a—b| s
TR T Ty VTV T At > atb Lo(l+k)
(3.9)
Li=i1—r)\(a+0)?+s2  Lo=L11++r)\/(a+b)?+s2 (3.10)
11—+ 1 !
- — " Vab, = " ab,
K K
(Li+ Lo)* = (a+b)* + % (Ly—L1)° = (a—0)" + 2, (3.11)
H/
LI+ L3=1(A*+B*)=a>+V+s*  L3—L}=AB=1L3(1-k%) = dab—,
(3.12)
LiLy=1(A>-B%) =ab, L3=1L3(a®+b*+s) —a’b?, (3.13)
s?ka s2b 52 1 52
ka —b= - - 1 1y, (3.14
“ L2 —a?  b2-L3 a2 —L?  na ’ L2 —a? noa; )
2kb 2 2 1 2
kb—a=—0 = 219 G S S 1w (3.15)

L2 —b2 a2 L% b2 — L2 np L2 — b2



80 EDUARDO KAUSEL anp MIRZA M. IRFAN BAIG

4. Elliptic integrals. All of the transforms considered in this work result in formulas
involving the complete elliptic integrals of the first, second and third kind. In addition,
ENS introduce a A function which coincides with Heuman’s Lambda Naught function
multiplied by %ﬂ'. In the ensuing, we use x, v for the ENS arguments and k, n for the HP
arguments to the elliptic integrals. These functions and their mathematical properties

are:
dx
V1= 221 — k222 .t 1
B /2 &0 1% kind (4.1)
0 V1 — Kk2sin%6 ’
/ V1-—rk*z*dx K222 dx
— 2
Vi-a? 27 kind (4.2)
= / V1 — k2sin?60 do ,
0
! dx
I1 (v, k) =
(v %) /0 (1 —va2) V1 — 221 — k222
P 3™ kind (4.3)
/’T do
0 (1 — Vsin29) V1 — k2sin%6 7
(1—-v)(v—k?)
A = II =TA 9
(V7 KJ) \/17 (V7 K’) 2 0 (w\ ) (ENS*38) (44)

= [E (k) = K(r)] F (O\V') + K () E (P\V') ,

where Ay is Heuman’s function, F' and E are the incomplete elliptic integrals of the
first and second kind, respectively, and both ¥ = arcsink and v are defined by the
unnumbered equations above ENS-3.8:

sin?¢) = VV_T/I;Q, cos®h = % (4.5)
We also define
I, =11 (g, k) , Iy = I (np, k) (4.6)
with ngp, npe given by (3.7).
Landen transformation:
1—+ 1
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In Appendix A we also show that

Av, k) = Li 201 (nap, k) — K (k)] a<b
2 4.9
= (2L (e, k) — K (k)] a>b. 9
Lo

Caveat: Users of advanced software such as Mathematica, Maple and Matlab should
beware the arguments being used by the elliptic functions in these programs, for the
manuals are not crystal clear about the matter. Specifically, in Mathematica the func-
tions EllipticK and EllipticE use m = k? as an argument, i.e. the so-called parameter,
while the same-named functions in Maple and in Matlab’s symbolic tool use instead the
modulus k. To add to the confusion, Matlab’s intrinsic numerical function ellipke also
uses the parameter m instead of the modulus & and restricts it to be real and less than
unity. In the case of multiple solutions for the Laplace transforms, Matlab often gives
only one of these, and also remains silent about some of the underlying assumptions (e.g.
a < b=1 and so forth).

5. Description of the problem. Consider the particular case of the transform I 1_11.
From ENS-4.9, this integral is

o lE(ﬁ)_i(a2+b2+ls2)K(K) az_bzs n(a—0b)A(v, k)
= ab |k 2ab 2 orab P ’
g a>b,
+ = 1 a=>,
7 a < b,

(5.1a)

which can be written compactly as

s (1 R 9 g2 12
m/ab SE(R) = 57 (@ 07+ 55°) K (k) 5.10)

+ﬁ{a2+b2+(a2_b2)sgn(a—b) [2A (v, %) — 1]}

-1 _
Ill -

whereas from HP-25, this same integral is

L3E®E) - (B4 ) KK - (@ ) Inb)]. (.2

1 a s

b =9 T vt
the characteristic n of which coincides with our ngp in (3.7). Observe that HP-25 consists
of a single expression for the transform whatever the relative values of a, b, and also uses
different arguments and coefficients for the elliptic integrals, while ENS-4.9 exhibits an
intrinsic discontinuity at the transition a = b for all values of s. Regrettably, although
the HP expression is indeed continuous, it is not applicable and fails when a > b, as will
be seen.

Now, HP developed their formulas in the context of a problem in the theory of elasticity
concerning a circular load (i.e. “patch”) applied onto an elastic half-space and thus they
argued for the continuity of the functions on physical grounds. Quoting HP (square
brackets are ours):
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It is apparent that when the integral evaluation does not contain Heuman’s

Lambda function, only one expression is needed to evaluate the integral

for all values of the parameters. However, when the integral evaluation

also contains Heuman’s Lambda function, two different expressions are

given for the integral depending on the relative values of [a,b]. Since

the elastic field inside the half-space is continuous and has continuous

derivatives, it is troublesome that the expressions are different depending

on being inside or outside the radius of loading. Intuition would lead

one to expect a single expression which is valid at every point in the

half-space.
Unfortunately, this appeal to physical continuity did not guarantee that the replacement
formulas proposed by HP would be correct, for they actually provide spurious results
when applied for @ > b. As it turns out, two separate formulas are needed for the intervals
a < b and a > b which, although distinct, maintain the continuity of the solution and
its derivative at a = b. In the ensuing, we establish the correct mathematical connection
between the ENS and HP formulas and provide an extended set of formulas which are
free from this problem.

6. Relationship between ENS and HP. HP provide a transformation formula
HP-24 between the complete elliptic integral of the third kind with arguments v, x and
the elliptic integrals with arguments n, k. In our current notation and after some simple
transformations, their transformation formula would read

(1+k)(a+b){7r_L2

II(v,k) = p—

- H(a—b)+K(k)—2H(n,k)}, (6.1)

which can also be written as

sgn(a —b)A(v,k) =7H (a —b) + Li2 [K (k) — 2II (n, k)], (6.2)
where H (a — b) is the Heaviside function, and n = n,p,. They state that the proof of this
formula is contained in an earlier paper of theirs, but we have been unable to locate any
such derivation in said paper. Furthermore, that equation holds no obvious connection
to the Landen-Gauss transformation 163.02 given on page 39 in Byrd and Friedman
(1971), which appears to be restricted to the “hyperbolic” case n < k? and thus excludes
the “circular” case at hand k? < n. For this reason, we provide a new proof of the
HP translation formula in Appendix A, and in the process show that another formula is
needed when a > b. With reference to Appendix A, the actual transformation formulas
are:

A, k) = L% (2M,, — K (k) a<b (6.3a)

A(v, k) = L% (2, —K (k) a>b (6.3b)
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As also demonstrated in Appendix A, IT,;, and IT;, satisfy the relationship

L
Hab + Hba -K= —T; 2 (64)
S

Taking into account this property, the two transformation formulas (6.3a,b) can be com-
bined into a single expression by means of Heaviside functions as follows:

A, k) = Li2{2nab[1—H(a—b)]+2nbaH(a—b)—K}

:LiQ{mabh—H(a—b)HzVQ—I;—HCLHK}H(a—b)—K} (6.5)
sz(a—b)+Sgn(a—b)Li2(K_2Hab)7
sgn(a—b)A(%H):WH(a—b)‘FL%(K_QHab)’ (6.6)

which does coincide with HP’s translation formula (6.2). Although this shows (6.2) to
be technically correct, HP’s integral transform formulas are still incorrect when a > b.
This is because in their final expressions for the integrals, they failed to include the
Heaviside term, which is absent when a < b, and simply assumed that the resulting
formulas for that case would be valid throughout; i.e., they reasoned that the formulas
had to be “continuous”. In addition, Il,; is ill-conditioned when a > b. In retrospect, it
seems peculiar that HP should have argued against the discontinuous Lambda function
in ENS, only to replace it with yet another discontinuous function and then “forgot” —
or proceeded to deliberately ignore — this very discontinuity.

Fortunately, to circumvent this problem, it suffices to make use of (6.4) and replace
T, in all HP formulas by Iy, = K (k) — Iy, + 5 Lo whenever a > b. This is possible
because for all a,b,s > 0, k < 1, ngp < 1, npe < 1, in which case (6.4) has no singularities
and is a continuous function of the ratio a/b, even if (6.4) itself remains intrinsically
ill-conditioned because either I1,; or I, attains large values, especially when s is small.
This is because for a > b, ng, — 1, and I1,, — oo, and vice versa for IT,.

To demonstrate the application of the preceding transformation formulas, substitute
(6.3a) into the ENS form (5.1), and consider also the equivalences 4.9, which yields

14+ & K2
I_l—i{ Ek——|:l£/+—2a2+2b2+82:|Kk}
U aVab K (k) k(1 +~) 4ab( )| K () 6.7)
LB R ) oty 4 |
7Ly 2ab )T oy
Using the definitions for k, x and other parameters in section 3, it can be shown that
_ 2 |y L (20 +2b* + %) | = L L3+ 1 (a®>+0b%)].  (6.8)
k(14 K) 4ab Vab Ly 2
Hence
L= —— [L2E (k) — (L3 +6°) K (k) — (a® — ) T + % a<b, (6.9

™ rab Ly
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which coincides with HP-25 (i.e. (5.2)). On the other hand, making use of (6.3b) instead,
we obtain

-1 S8 b

7 rab Ly 2a’
which agrees perfectly with the formula that would be obtained by simply exchanging
a,b in (6.9), which must hold because of the symmetry of I il with respect to the Bessel
indices. Finally, if we substitute IT,, = K (k) — ITy, + 35 Lo into (6.9), we once more
recover (6.10). Thus, this shows that all is consistent.

[L3E (k) — (L3 + a®) K (k) — (b* — a®) Iy, ] + a>b, (6.10)

7. Tables of integrals. Although many of the integrals listed in the pages that
follow are directly based on the HP and ENS papers, we have seen fit to simplify these
expressions to the extent possible, using for this purpose the very useful equivalences and
properties given in section 3. Hence, they do not quite look like those in HP. This also
meant that each and every formula had to be carefully checked for errors, including tests
against direct numerical integration. Also, since Laplace transforms constitute improper
integrals, it was necessary for us to supplement our numerical quadrature with formulas
for integrating the tails, a task that is presented in Appendix C.

We have made an utmost effort in avoiding mistakes in both the transcription and
proofreading of the typeset document, and believe the formulas to be free from error.
Still, readers are strongly encouraged to carefully verify their own personal implementa-
tion of these formulas, not only to avoid any remaining, hidden errors, but also to avoid
errors that could have crept in during implementation of the formulas from the published
paper.

In addition, some of the integrals could be verified against tabulations such as Ober-
hettinger’s and against Matlab symbolic tools, and we identify the formulas thus checked.
In addition, we have also used the recurrence relations to verify some (but not all) of the
integrals. The reason is that although the recurrence relations involve differentiations
and can in principle be used to reduce the expressions to known integrals, the process
can be very tedious because of the complexity of the derivatives of the elliptic functions.
Indeed, even when the operations are carried out with a computer, say with Matlab, it is
often difficult to collect and factor terms in the resulting expressions, and thus, to reduce
the formulas into a recognizable form.

Finally, because many of the formulas are discontinuous when either s — 0 or a = b,
we have seen fit to provide separate tables for these cases. By and large, the tables list
the integrals in descending value of A and in increasing order of the Bessel functions.
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Table 1: Integrals for « = 0, a = 0, s > 0. All of the formulas in this section have
been obtained with Matlab’s symbolic tool.

LQZ\/b2+82,
o oo 1 b ﬂ
I55(0,b,5) = =% Jz (bx) dox = — , =0,1,2,...,
85009 = [Ty 00) o= (1) 5
_ o Js(bx) 1/ b \°
10,0, :/ sz 2B d ——< > , =1,2,3,...,
0/3( s) ) € . x 3\ Iy +s B
_ © __ Jz(bx) BLy + s b\’
I2 b — sT B d — =2 4, ...
038 (0’ 78) /0 e .’E2 T /8(62_1)<L2+S> ’ B 33a ) )
_ . Jp(bx)
3 _ sz YB
Ios (0,b,8) = ; e wa s
BB —1)(B*—4) Ly+s)’
Table 2: Integrals for s =0, a > 0, b > 0, in dual format.
H:2\/ab§17 b — E, a<b
a+b 2, a>0b,
o 2 1 ZK (%) a<bd
IO b _ b de = = K — b b
botab.0) = [ (e o) o= 2o = { TR )
oo 1 1 a<b
IOl(a7b,0):/ Jo (az) Jy (bx) dx:%[l—H(a—b)]ZE i a=b
0 0 a>b,

I} (a,b,o)—/oooM de = i[(aJrla)E(m)—(a—b)K(m)]

2 B (1) ach
LG -HKE@)+EEQR)] a>b,

 Jy (ax) Jy (bx) 12 a<b
1 _ 1 —— b
I (a,b,O)—/O . dr = 5 g 0> b,

o a+b | a®+b?
I b,0) = br) dx = —E
@b 0) = [ ) ) de = 50K () B ()
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I;7* (a,b,0) = / i (ax) Ju (br) 2”’ L(bo) g,

0 T

= [(@40) (a4 B B(K) ~ (4~ 87) (a— D) K ()
o [ wl@+V)E(F) - (" —a?)K(5)] a<b

=3 2b a="b

Hl@ B Q) - (@ - P)KE)] oz

Table 3: Integrals for a > 0, b > 0, s > 0, in ENS format. Only the integrals
provided by ENS are included in this table. For a more complete list, see the next table.

2v/ab 4ab
R = —, V= =5
\/(a +b)? + s2 (a+0b)
K=K (), E=E(@), A:A(u,m):fl? 52 I (v, k),
(a+b)" +s?
oo sh” E ENS-4.3
00_4#(1—#)6@\/@ ’ ( ~43)
2 2 2 2
1 K K (a —b —s) _
Iwaa\/E[ 10— @b E+K|, (ENS-4.8)
SK 1—41g2
I}, = r b [( - _2H2 >E—K] , (ENS-4.4)
Ioo = — HabK, (ENS-4.1)
1 ks sgn (a — b 1
Ig’oz—EN%K— Sm )A—i—aH(a—b), (ENS-4.7)
2
I?lzm —~ [(1-is*)K-E], (ENS-4.2)
1 |2Vab
Iﬂ)l:%[ \I/j_E—I—(aQ—bz) 2\5%K —I—%sgn(a—b)A—gH(a—b), (ENS-4.6)
1 K
=" 2B E o212y l)K
= abLﬂ 2ab(a+ +35%) ]

1 (ENS-4.9)
+m{a2+b2+ (a® — %) sgn (a — b) [2A-1]} .
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Table 4: Integrals for a >0, b >0, s > 0, in HP format.

A—\/a+b +s2, B=\/(a—b)*+s2, L =2%(A-B), Ly=3%(A+B),

Ly/Lo, Nap = kT, Npa = ka v = checked against
available ENS forms
K:K(k), E:E(k), HabZH(’I’Lab,k), Hba:H(nba,k),
2s 2
Io = E—
0 wL%(lfw)[ R K] ’
1 2 a2 —b? — 52
Lo = raL3 (1 — k2) [(L ) —w T v
I, = v
ﬁabLg 1 — k2)
I = 2 K- Bl + -2 _ (1, -K) a<b
20 — (1 — k2) ki 7Ta2L2 ab ) )

2s 2 4s wLo
= K- E —— I ), b,
WLg(l—kQ)[ 1— k2 ]+7ra2L2<28 b) “=

2 a? (82 +a?— b2)

1 _ 2 (9 1.2y _ 2 972 (1 _ 1.2
Izl_mgbh(lkz){(Lz(Q k*) —a”) K + =5 2L (1 - k%) E}
1 2sLo k? 2
o2 = T {2(E K+ i—e o= X
2
19 = —
00 7TL2K7 v
1?02—25 (Il — K), a <b,
TI'aLQ ‘/
_ 2s 7w Lo
" mals ( 2s Hba)’ a>b,
2
= K-E
11 71'L1( )7 ‘/
2L, a? 252
5= 2 (E-K)+ =K K - II,
20 ) [ ( )+ L2 + L2 ( b) ) a < b,
2L2 2s 2 7|'L2
= — 2 E K K ]-_-[a_ 9 I
Waz[( )+L2 +L ( b 25)} a>b
0 2s b2
I, = p— [E K+L% (M — K) |, a<b,
2s b2 (7wl
= ﬂ—QLl |:E—K+ L_S <—23 — Hba>:| 5 a > b,
%= -2 12K_E)+k(K-2E)
27 3Ly \ k ’
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Iy =
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-2
Ly =
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%[E—KJFZ—;KJFE—Q(K—HM)}, a<b,
% [E—K+Z—;K+Z—2§ <Hba WQ—L;H a>b,
%Ll :E7K+ %(Hab K)+Z—2% <7T2i2 Hab>:|a a <b,
wiLl :E—K+Z—2§ (TTpq K)+2—2%(7r2—];2— Hba>], a>b,
L frocom - e S o]
37rc21—L1 {(2b2—a2—82)(E—K)+angK-i-% (Hba_ﬂ’Q—[:>:|7 a>b,
Gmfb i [(5a2 150 +25)(E—K) + azl;K + i—g(nab -K)

+% <7T2—I:fl'[ab>:, a<b,
#{)Ll [(5(12 +5b° +25°)(E — K) + az§2K+ %(Hba -K)

3" (7L |

+L—§ (2—8—1'[1,@)_, a>b,

37T1L1 {(2& +20° — ) (E-K) + 4622;21{ + 32252 (K — IL,;)
+3Cf§2 (Hab—WQ—L:') , a<b,

B%Ll {(2(12 +20° — 5*)(E ~ K) + 462—2;2K+ 3(2252 (K — TIsa)
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Hab

a <b,

a>b,

- Lo 2 2 2 a’®(6a® — 2b* + 35%)
Ly = 8a® — 4b” +115%)(E — K) + K
20 = g8 _( ) ) 2
35%(3a® — 3b% + 257 1
+S(a 12 S)(Kfnab) )
2 i
Ly [, 2 2 2 a’(6a® — 2b* + 35%)
(8a® — 4b° +115°)(E — K) + K
9mra? | L2
35%(3a% — 302 + 25?) L\
+ 12 I, — %)
-2 a*(3a® 4 5b%)
L = 127TaL1 [ @ — 136" + 26°) (B — K) - L2 — 1z K
3(a® — b))% — 12b%s> 37rL2a
K — IL,)
+ 12 ( b) 2512
_ 2 2 a?(3a® + 5b%)
— 12ML1 [ — 130> 4 25°)(E - K) — — a3 +557)
62) 126252 Lo 3w Loa’
+ L2 <Hba C2s ) 2sL3 }
2 :m {[8(a* = 1%)" + 807" — * (9a° + 98° + 25%) ] (B~ K)
1
4 (a2 + b2 4.2 4.2
¥ aQbQ%K n 15b— (K — L) + 15°5-
2 2
:73%2” {[8(e® = 17)* + 840> — 5 (90 + 90 + 25 )] (E - K)
1
4(a® +v?) — ats? 452
+ aQbQ%K F1555 (K — L) + 15b <
L2 L2

I, — WLQ)} , a>b.

89
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Appendix A. Proof of transformation formula. Eason, Noble and Sneddon de-
fine the scaled Heuman function

(1-v)(v—r?) la — b 5
A(’(/}V%): H(Vﬂ‘ﬁ): H(%H)
Vv (a+b) (a+b)° + 52 (A.1)
= [E (k) —K (&) F (¥,r") + K (k) E (¢, ),
where
sinzb:% V_VHQ:%, cosq/):g 1;V:|a;b|, tanw:mib'. (A.2)

Thus, we need expressions to move from one set of parameters to the other. From
Gradshteyn and Ryzhik, page 907, formulas 8.121-3, 8.121-4, and page 908, formulas
8.125, 8.126, the Landen-Gauss transformations which are relevant to this proof are:

o f% K= (1 +WKH] [E() = Bk - 1-HK®)| (A3)
W=ior [P = (4R FeF)
5 — (A.3b)
E@W,r) = 137 [E(@K) +EF (0, k)] = g sing
where
‘tan (W —¢) = ktamp‘ (A.3c)

Substituting these into the expansion of the scaled Heuman function above, we obtain

A, k) =[E(r) - K (&) F (¥, &) + K (r) E (¢, 1)

_ HLkE(k) S O (1+I<:)K(k)] (1+k) F (0. K') "
(LMK (k) {Hik B (o, k) + k F (o, k)] — 1;Zsinw}
=2{[E (k) —K (k)] F (¢,k') + K (k) E (¢, k')} — (1 — k) sin) K (k) .
But
mp=(1-B) 5 _ s
(1 —k)siny = <1 L2> I, L. L, (A.5)
A, k) = 2A (0, k) — Li2K (k) (A.6)
Also, expanding the expression for tan (v — ¢), we obtain
ktanytan®p + (1 + k) tan ¢ — tane) = 0, (A.7)

which is a quadratic equation in tan ¢. Its solution is

1+k 4k
tanp=———<1 1+ tan?
A e ws)

= —m{l$\/l+m2tan2w}.
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But

ktanty = V1 — k/? 5 (A.9)

o = b

4abs?
\/1+ k2tany = |1+ a5

[(a +b)%+ 52} (a—b)?

and

(a+b)2(a —b)* + s2(a — b)* + 4abs?

= A.10
{(a +b)° + 82} (a —b)? ( )
a+b\/(a_b)2+52 a+b ,
= = K.
ja— b (a+b)* + 52 ja— bl
Hence, taking into account that k = (1 — k') / (1 + «'), then
|a — b a+b , 1 ,
tang = — 1+ - “la—b b
ane (1—+)s |a—b|l€ (1—/@’)8{ la —b| F (a+b)r'}
(A.11)
_sgn(a—b) [ bk—a
B ks b—ak.

A) Let’s consider the first of the two solutions above. In this case,

bk —a s2kb

s
t = —b)=—5—75" —b)=—"7-— - A.12
an @ sgn (a —b) =0k sgn (a —b) b —1) sgn(a—0), ( )
0
s >1 a<b
t =) 1—na _1-Fkjg
an _ _ [a—D] _ nab _ ab s Yoo a=0b (A.13)
tan ¢ b(nab—l)Sgn(a_b) 1-3% 1-% <0 a>b
Case 1: a <b

Here tant) > tanp, i.e., ¥ > ¢ and ¥ — ¢ > 0. Also, ktany > 0, in which case the
angle transformation formula tan (¢ — ¢) = ktan is satisfied with positive angles in
the range [O, %ﬂ'] Thus, in this case,

1 [ng — k2 s
— = Al4
k 1 — Nab b(l —nab)’ ( a)

tanp =
) 1 [ng — k2 s
- = A.14b
sy k! Nab k' Lov/T —ngy ( )
1-— 1-—
cosp = = Tap _ bV~ nay (A.14c)

k' ney k' Lo
Also

_ _ 2
A ((p7 k‘) — Aab _ \/(1 nab) (nab k )1—[ (nab7 ]f) — iHaba (A15)
Nab Ly
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SO

AW, k) = Lig oI, —K|| a<b. (A.16)

Case 2: a > b
Now tan ¢ < 0, i.e. ¢ < 0, which we reject.

B) Consider next the second solution for tan ¢:

b—ak sa S
tanp = o sen (a—10b) = e sgn(a—1b) = I sgn(a—10), (A.17)
S0)
s b <0 a < b
t a— 1- a 1—kg
any _ - la—b] = n: = == oo a=b (A.18)
tang  ortosgn(a—b)  1-2 1-3 >1 a>b.

We see that when a < b we obtain a negative solution ¢ < 0, so we reject it as well. On
the other hand, for a > b this leads us to

1 [npg — k2 s
tamo — L] _ A9
WMY=r\ T — Npg a(l—npg)’ ( 2)

Npag — k2 S

1
1 = — = A.19b
e k! Nba k' Loy/T —npg ( )
ok [T—mpe a1 —1np,
oS = o T WL, (A.19¢c)
and
1 —npa) (npg — k2 S
A, k) = Apy = \/( ba) (Mba )H(nba,k) = —1II,,, (A.20)
N Ly
SO
A, k) = Li 200, —K|| a>b. (A.21)
2

An additional useful formula is derived next. From section 3, the characteristics of
I, Iy are ngp = kg > k% and ny, = k% > k2, which together satisfy the relation-
ship nqp npe = k2. Hence, the special addition formula 117.02 on page 13 in Byrd and
Friedman applies to these functions:

ko
IO (k% k) + T0 (kb k) = K (k) + ~ b

R e

(A.22)
T 1
—K (k) + =
()+2\/k2—(%+é)k+1
Also
2 2 2 2 2 2 G2 2

"L, ab 12 L2 Ly
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SO

L3+ L3 —s% L3 2 s
1—k(2+ k2 = B S W R S B A24
Vimk(+8) \/ I T \E L (A.24)
Hence
L
I, + I, = K (k) + % (A.25)

Appendix B. Derivatives and continuity of Lambda function. It can be shown
that
oIl (nab, k‘) o 8Hab 8nab + 8Hab % o 8Hab <E g%) 8Hab ok
Oa Ong Oa ok Oa Onap b Oa Ok Oda’

2
N m (’” 2’;) (K (k) + ﬁE(zf) - bklk_bi(__)nab>

b E (k) \ ok
T <H“b_ 1—k2>%’

(B.1a)

8Hba o 8Hba 8nba + 8Hba ok b ( ok k‘) 8Hba 8Hba ok

da ~ Onp, Oa ok 0a a2\ oa ONpa + ok Oa

_ ;) <aa—k - k:) ( (k) + %E(k) - kﬂnba> (B.1b)

2k (kb da k—b E—b
a E (k) \ 0k
+b—ak <Hba_ 1—](?2) %
When a = b, then
Ol N 1 ok 1
da |,_, 2kb(1—Fk) (k“’a _b) —1_kE(1f)—K(k))
' ’ (B.2a)
Lok (g _ E®
1—kda|,_, "™ 1-#.2)"
8]-_[ba . 1 ok 1
Oa :b_ka(l—k) <b8a _b_k> (1_kE(k)_K(k))
' i (B.2b)
Lokl (p E®)
T—kda|,_,\" "™ 1-k)"

and from their difference,

al_Iab al_Iba _ 1 1 1 ok
( da  Oa ) wep DA k) (1—kE(k) K(k)>+1—k dal, b(H“b Tho0)lo:
(B.3)
Since (Ilgp — Ipg)|,_, = 0, then
OIl,, OIl, B 1 1
( Oa - da >a—b_ b(l_k) <1_kE(k)_K(k)) (:L:b$£07 (B4)

which shows that Il,;, IT;, do not continue one into the other at a = b, but have distinct
slopes at this transitional value.
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Consider next the ENS Lambda function:

(1-v)(v—k?
N

When a = b, then v = 1 with k < 1 if s > 0, in which case II(1,k) = co. However,

A (v, k) remains finite because of the factor y/(1 — v) — 0. The proof of this relies on the

relationship between the ENS Lambda function and Heuman’s function. Indeed, when

1/:1—>cos2w=O—>1/J:%7r, we have

A(l,n):%ﬂAo(%ﬂ\ﬁ)zgxlzg, for any k < 1 (19<%7r), a=b,

A, k) = I (v, k) = TAo (¥\V). (B.5)

so the Lambda function remains finite at a = b. On the other hand, in Appendix A we
found the equivalence

A S { 211, — K (]f) , a<b (BG)

A = = —
(v, %) { Ava Lo | 2IL, —K(k), a>b,
which we have verified to be true by numerical testing. Since Ilg|,_, = Ilpal,_,
it follows that Agp|,_p = Aval,_py = A(LK) = %71', so the Lambda function itself is
continuous at a = b. However, as we have already found out in (B.4),

OIl,, 0TIy,

da da |,y

Hence, A exhibits a discontinuity of slope when a = b. On the other hand, the modified
function

(B.7)

a=b

a—>b s
a+bLy(1+k)
jumps from —1 through 0 to +1 in the neighborhood a = [b—e, b, b+ ¢]|. Hence, the
equivalence

sgn(a—b)A (v, k) = II (v, k) (B.8)

sgn (a —b) A (v, k) = — { K (k) —2ILy, a<b

Ly | 2, — K (k), a>b
is intrinsically discontinuous, so HP’s use of the upper expression in the domain a > b led
them necessarily to an erroneous branch. Nonetheless, despite the intrinsic discontinuity
of the Lambda function, many of the integrals and particularly those that affect HP’s
elasticity problem are still continuous up to first order; i.e., strains and stresses are
continuous. For example, in (5.1b), the discontinuous fragment is

f(a,b,s) =sgn(a—0b)[2A(v,r) —1]. (B.10)

Since as we have just seen that 2A (1,k) = 1, then f (a,a,s) =sgn(a —b) x 0 = 0, both
when approaching from the left or from the right, so the primitive fragment is continuous.

(B.9)

Also, the first derivative will contain a term of the form
[2A(v,k) — 1] 6 (a—b), (B.11)

which despite the Dirac-delta factor is also zero at the transition, so again the first deriv-

ative of the fragment is continuous. Higher derivatives, however, will be discontinuous.
The previous results led to an interesting corollary. Since at a = b, Ayq = %ﬂ' and

IT,, = II(k, k), then

Ly

201 (k. k) — K (k) = 75-

(B.12)
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where
S 2 S S 2 S
Ll—b< 1+ (5) —%>, L2_b< 1+ (5) +%> (B.13)
and
25 s b Ly — 14 Ly
22 =92 =9 =2(1—=]=2(1- B.14
Ly by Lo ( Lg) (1=k), (B-14)
Ly L2 12
_hh LY B.1
k Pl (B.15)
SO
™
UL (k, k) — K (k) = B.1
(R =K (B) = 575 (8.16)
or
(1— k) [2IL (k, k) — K (k)] = g (B.17)

which is valid for any 0 < k£ < 1. Of course, this is nothing but an alternative represen-
tation of Heuman’s lambda function satisfying the limiting condition

Ao (v, K)|,_y = Ao (37\0) = 1. (B.18)

Appendix C. Numerical integration. To avoid mistakes, all of the integration
formulas given earlier have been verified by direct numerical integration. To this purpose,
the improper integrals are divided into two integration ranges [0, 2] and [zq, co], where
xo defines the start of the tail. The body is integrated by an appropriate numerical
quadrature which accounts for the rate of change of the integrands, while the tail is
obtained in closed-form using asymptotic expansions as follows:

2

JIm (az) = s l[az — 17 (14 2m)], (C.1)
I (bx) =~ :% cos [bx — 1w (1 + 2n)], (C.2)
Im (ax) Iy, (bz) =~ %x\}% cos [az — 37 (1 +2m)] cos [bz — 17 (1 + 2n)]. (C.3)
But
cospcost) = 3 {cos (¢ — 1) + cos (¢ + 1)}, (C.4)
0
cos [az — 37 (1 + 2m)] cos [bz — 17 (1 + 2n)]
= 1 {cos [(a — :r—%;r(m—n)]+c.()s[(a—|—b):1:—%17r(m+n—|—1)]} ©5)
= 3 {cos(a—b)x cosim(m —n)+sin(a—b)z singm(m —n)
+cos(a+b)z cosgm(m+n+1)+sin(a+b)z singr(m+n+1)}.
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Also
l .
cos = 7r 2 m —n is even
0 m —n is odd,
(C.6a)
1 ( 1) m +n is even
cos5m(m+n+ l
: )2 (mant ) 4o is odd,
m — n is even
sin = 7r (m ) .
)2 m —n is odd,
(C.6b)
(m+n) .
sinir(m+n+1)= (-1)2 m +n is even
0 m+n is odd.

Then again, m 4+ n is even if both m,n are even, or both are odd, and it is odd if one is
even and the other one is odd. Hence,

1

wxzvab

I (az) J,, (bx) =~ [(—1)%(7”") cos(a—b)x + (—1)%(m+") sin (a + b) x}

(C.7a)

even m +n,

Im (az) Jp, (bx) =~

1 Lo 1
NG [(—1)2(m "Din (a — b) x + (—1)2m D cos(a—i—b):c}
mzva

odd m=£n.
(C.7b)
3 (me+n) 3(m=n) 3(m=n)
Observe that (—1)2'"""™ = (=1)2""7™(=1)" #£ (=1)2""".
We now define the following exponential integrals:
R scos Axg — A sin Azg J—
Co(A,s) = /xo e P cos Az dx = YERRE , (C.8a)
R Acos Azg + s sin Axg J—
So (A, s) = /mo e *cos Az dr = A2 2 °, (C.8b)
o0 A
C 1 (As) = / e AT gy = Re {By o (5 + A)]} (C.80)
zo
S\ (As) :/ e SBAT B [mo (s + i A)}, (C.84)
Zxo x
Coo(As) = / sz cos;‘lx de = & ocos Axg — Re{xo (s +3A) By [xo (s + ZA)]}7
x0 x Zo
(C.8¢)
S 5 (A, s) = / 678I31n§1:1: d — e sin Azg + Im {zo (s + 1A) E1 [z (s + zA)]}’
) T Zo
(C.8f)

where E; (z) = exponential integral, which can readily be evaluated using Matlab. We
can now express the tail T\ (a, b, s) of the integrals as:
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Even m £ n:

(o)
T, (a,b,s) = / e 522, (ax) J, (bx) dx
xo

1 l(m_") l(’rn-i—n)
= \/@ (_1)2 Cr-1 (a_b, 3)+(_1)2 Si_1 (a+b7s)
™

(C.9a)

Odd m £ n:

oo
T2, (a,b,5) = / e 522, (az) J, (bx) dx
T

0

1 L e Limtn
- - {(_m( V8 1(a—b,s)+ (=12 +1)C’,\_1(a+b,s)}
™ a

(1]
2]

(3]

(4]
(5]

[6]

[7]

(C.9b)
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