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Abstract. We evaluate by direct calculation the Lopatinski determinant for ZND

detonations in Majda’s model for reacting flow and show that on the nonstable (nonneg-

ative real part) complex half-plane it has a single zero at the origin of multiplicity one,

implying stability. Together with results of Zumbrun on the inviscid limit, this recovers

the result of Roquejoffre–Vila that viscous detonations of Majda’s model also are stable

for sufficiently small viscosity, for any fixed detonation strength, heat release, and rate

of reaction.

1. Introduction. In this note, we verify by explicit computation the spectral stabil-

ity in the sense of Erpenbeck [Er] of strong ZND detonation wave solutions of Majda’s

model for reactive gas dynamics [M] with a step-type ignition function.

Consider the inviscid Majda’s model

(u+ qz)t +

(
u2

2

)
x

= 0,

zt + kϕ(u)z = 0,

(1.1)

an analog of the Zeldovich-Von Neumann-Doering (ZND) equations for reactive gas dy-

namics, where u, z, ϕ ∈ R, q ≥ 0 and k > 0. Here, u is a lumped variable modeling the

gas-dynamical quantities of density, momentum, and energy, z is the mass fraction of

the reactant, q ≥ 0 a coefficient of heat release of the reaction, k > 0 reaction rate, and

ϕ(u) is a simple step-type “ignition function” that is assumed to be zero below a certain

value ui > 0 and one above.

A strong detonation wave of (1.1) is a traveling-wave solution

(u, z)(x, t) = (u, z)(x− st), lim
ξ→±∞

(u, z)(ξ) = (u±, z±) (1.2)

Received May 21, 2010.
2000 Mathematics Subject Classification. Primary 76L05; Secondary 76E99, 76N99, 80A32.
The research of S.J. and J.Y. was partially supported under NSF grants number DMS-0070765 and
DMS-0300487. Thanks to Kevin Zumbrun for suggesting the problem and for helpful discussions.
E-mail address: soyjung@indiana.edu
E-mail address: yaoj@indiana.edu

c©2011 Brown University
Reverts to public domain 28 years from publication

69



70 SOYEUN JUNG AND JINGHUA YAO

in the weak, or distributional, sense, smooth except at a single shock discontinuity at

(without loss of generality) x = 0, known as a “Neumann shock”, where u jumps from

u∗ := ū(0−) to ū(0+) as x crosses zero from left to right, and satisfying

z− = 0, z+ = 1, u− > ui > u+ (1.3)

and

u− > s > u+. (1.4)

Computing the Rankine–Hugoniot conditions at the shock at x = 0, we find that

s(ū(0+)− ū(0−)) =
ū(0+)2

2
− ū(0−)2

2
,

z̄(0−) = z̄(0+).

(1.5)

By the various invariances of equations (1.1), we may take without loss of generality

u∗ = 2, u+ = 0, s = 1, (1.6)

letting u−, q > 0, k > 0 vary. From (1.4) and the assumption that (ū, z̄) converges as

x → ±∞, we find further by consideration of the traveling-wave ODE (see Section 2)

that

(ū, z̄)(x) ≡ (u+, z+) = (0, 1) for x > 0 (1.7)

and also u− = 1 +
√
1− 2q, so that

1 ≤ u− ≤ 2, 0 ≤ q ≤ 1

2
, (1.8)

with reaction rate varying in the infinite range 0 < k < +∞.

That is, we have the standard picture of a strong detonation wave as a shock advancing

to the right into a quiescent (i.e., nonreacting) constant state with reactant mass fraction

z = 1, raising u above the ignition level ui, followed by a smooth “reaction tail” in which

combustion (reaction) occurs, in which z decays exponentially to the value z− = 0 and

u to 1 ≤ u− < u∗ as x → −∞. See [LyZ1, LyZ2, JLW, Z1, Z2] for further details.

As shown by Erpenbeck [Er], spectral stability of such waves, defined as nonexistence

of normal modes eλtw(x) with 	λ ≥ 0 and λ 
= 0, may be determined by examination

of a certain Lopatinski determinant DZND(λ) whose zeros on 	λ ≥ 0 correspond to

eigenvalues λ. Precisely, spectral stability corresponds to the condition

DZND(·) has a single zero on {	λ ≥ 0} occurring at λ = 0. (D)

The Lopatinski condition (D) has been much studied numerically in both one di-

mension and multi-dimensions, for the full equations of reactive gas dynamics; see, for

example, [KS] and the references therein. However, so far as we know, it has up to now

not been verified analytically for any case. Here, we show by direction calculation that

(D) holds for detonations of the inviscid Majda model with step-type ignition function.

Since linear or spectral stability concerns only behavior near values of the profile (ū, z̄),

it is clear that this result extends also to the slightly more general class of (possibly

smooth) ignition functions identified by Roquejoffre and Vila [RV] that φ(u) ≡ 0 for
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u < ui and φ(u) ≡ 1 for u > ui, provided that u− > ui > ui > u+. That is, we require

in our analysis only that

φ(u) = 0 near u+ and φ(u) = 1 near [u−, u∗]. (1.9)

A very interesting open problem is whether a corresponding stability result holds for

more general ignition functions satisfying only

φ(u) = 0 for u < ui and φ(u) > 0 for u > ui. (1.10)

As discussed in Section 6, these results have implications also for spectral and nonlinear

stability of viscous detonation waves in the ZND limit as viscosity goes to zero.

2. Profile solutions. Observing that

∂tu(x− st) = −su′, ∂xu(x− st) = u′, ∂tz(x− st) = −sz′, ∂xz(x− st) = z′,

we obtain for a detonation solution (1.2)–(1.6) the profile equations

−s(u+ qz)′ +

(
u2

2

)′

= 0,

−sz′ + kϕ(u)z = 0,

(2.1)

valid on the regions of smoothness x > 0 and x < 0. Linearizing (2.1) about the

equilibrium solution (u, z) ≡ (u+, 1), we readily find from s > u+ that this is a repelling

equilibrium, and so the only smooth solution of (2.1) converging to this equilibrium is

the constant solution (1.7).

Integrating (2.1) from −∞ to +∞, we obtain

s(u+ + qz+)−
u+

2

2
= s(u− + qz−)−

u−
2

2
.

Substituting s = 1, (u+, z+) = (0, 1), z− = 0, we find that

−u− + q = −u2
−
2
. (2.2)

Now, integrating (2.1) from −∞ to ξ, we obtain

−s(u+ qz) + s(u− + qz−) = −u2

2
+

u2
−
2
,

from which, by (1.3), (2.2), and s = 1, we obtain

u(ξ) = 1±
√
1− 2q(1− z(ξ)). (2.3)

We choose the sign + because u∗ = 2, that is, 2 is the left-limit at ξ = 0, and z(0) = 1,

yielding in particular u− = 1 +
√
1− 2q. Since ϕ(u) = 1 for ξ < 0 in (2.1), z′ = kz;

hence for ξ < 0,

z(ξ) = z(0)ekξ = ekξ (2.4)

and

u(ξ) = 1 +
√
1− 2q(1− ekξ). (2.5)
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3. Eigenvalue equations. Let (ũ, z̃) be a solution of (1.1) different from (u, z).

Subtracting (ũ, z̃) from (u, z), we obtain for the perturbation variable

(u, z) := (ũ, z̃)− (u, z)

the perturbation equations

(u+ qz)t +

(
ũ2

2
− u2

2

)
ξ

= 0,

zt + k(ϕ(ũ)z̃ − ϕ(u)z) = 0.

Taylor expanding and dropping O(|(u, z)|2) terms, we obtain the linearized equations

ut − suξ + (uu)ξ = qk(dϕ(u)zu+ ϕ(u)z),

zt − szξ = −k(dϕ(u)zu+ ϕ(u)z),

and, finally, the linearized eigenvalue equations

λu− su′ + (uu)′ = qk(dϕ(u)zu+ ϕ(u)z),

λz − sz′ = −k(dϕ(u)zu+ ϕ(u)z),

where ′ denotes ∂ξ.
Expanding and rearranging, we have

(u− s)u′ + (u− s)′u = (qkdϕ(u)z − λ)u+ qkϕ(u)z,

−sz′ = −kdϕ(u)zu+ (−kϕ(u)− λ)z,

which give the matrix equation{(
u− s 0

0 −s

)(
u

z

)}′

=

(
qkdϕ(u)z − λ qkϕ(u)

−kdϕ(u)z −kϕ(u)− λ

)(
u

z

)

=

{(
qkdϕ(u)z qkϕ(u)

−kdϕ(u)z −kϕ(u)

)
− λI

}(
u

z

)
.

Setting

A =

(
u− s 0

0 −s

)
, W =

(
u

z

)
, E =

(
qkdϕ(u)z qkϕ(u)

−kdϕ(u)z −kϕ(u)

)
, Z = AW, (3.1)

we may write the eigenvalue equations as the first-order ODE system

Z ′ = (E − λI)W = (E − λI)A−1Z = GZ, (3.2)

where G = (E − λI)A−1.

4. The Lopatinski determinant. Following [JLW, Z2], define on 	λ ≥ 0 the

Lopatinski determinant

DZND(λ) := det(Z−(λ, 0), λ[W ]− [AW
′
]), (4.1)

where [h] := h(0+) − h(0−) and Z−(λ, ξ) is a bounded exponentially decaying solution

of (3.2), analytic in λ and tangent as ξ → −∞ to the subspace of exponentially de-

caying solutions of the limiting, constant-coefficient equations Z ′ = G−Z. By standard

asymptotic ODE theory (the “gap lemma” [GZ]), Z− is uniquely determined up to a

nonvanishing analytic factor not affecting stability.
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Lemma 4.1. The ZND Lopatinski determinant is given (up to a nonvanishing analytic

factor) by

DZND =
(
2λ+ (2− q − qkΨ)k

)( λ

k + λ

)
, (4.2)

Ψ :=

∫ 0

−∞
e−

∫ 0
y
P (s)ds e(k+λ)y√

1− 2q(1− eky)
dy, P (ξ) :=

λ√
1− 2q(1− ekξ)

. (4.3)

Proof. Combining (2.4), (2.5) and (3.1), we obtain

λ[W ]− [A(W
′
)] = λ

[(
u

z

)]
+ (AW

′
)(0−) = λ

(
−2

0

)
+

(
1 0

0 −1

)(
qk

k

)

=

(
−2λ+ qk

−k

)
,

where we are using W
′
=

(
qkekξ√

1−2q(1−ekξ)
, kekξ

)T

. Computing

G = (E − λI)A−1 =

(
−λ qk

0 −k − λ

)(
u− 1 0

0 −1

)−1

=

⎛
⎝ −λ

u− 1
−qk

0 k + λ

⎞
⎠

and setting Z =

(
Z1

Z2

)
, we have

(
Z1(λ, ξ)

Z2(λ, ξ)

)′

=

⎛
⎝ −λ

u− 1
−qk

0 k + λ

⎞
⎠(

Z1(λ, ξ)

Z2(λ, ξ)

)

or

Z ′
1 = − λ

u− 1
Z1 − qkZ2,

Z ′
2 = (k + λ)Z2.

Solving, we obtain

Z ′
1 = − λ√

1− 2q(1− ekξ)
Z1 − qke(k+λ)ξ,

Z2 = e(k+λ)ξ.

Now setting P (ξ) :=
λ√

1− 2q(1− ekξ)
and Q(ξ) := −qke(k+λ)ξ, we have

∫
P (ξ)dξ = − 2λ

k
√
1− 2q

ln

(√
1− 2q(1− ekξ) +

√
1− 2q√

2qekξ

)
, (4.4)
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which gives
∣∣∣e− ∫ 0

−∞ P (ξ)dξ
∣∣∣ ≤ 1 for 	λ ≥ 0, and hence, integrating by parts,

Z1(λ, 0) = e−
∫ 0
−∞ P (s)ds

(∫ 0

−∞
e
∫ y
−∞ P (s)dsQ(y)dy

)

=

∫ 0

−∞
e−

∫ 0
y
P (s)dsQ(y)dy

= −e−
∫ 0
y
P (s)ds qk

k + λ
e(k+λ)y

∣∣∣∣
0

−∞
+

∫ 0

−∞
e−

∫ 0
y
P (s)dsP (y)

qk

k + λ
e(k+λ)ydy

= − qk

k + λ
(1− λΨ) ,

(4.5)

where Ψ is as in (4.3). By (4.1), (4.4), and (4.5),

DZND(λ) = det(Z−(λ, 0), λ[W ] +A(W
′
)(0−))

= det

(
Z1(λ, 0) −2λ+ qk

Z2(λ, 0) −k

)
= −kZ1 + 2λ− qk

=
qk2(1− λΨ) + (2λ− qk)(k + λ)

k + λ

=
−qk2λΨ+ 2kλ+ 2λ2 − qkλ

k + λ

=
(
2λ+ (2− q − qkΨ)k

)( λ

k + λ

)
.

(4.6)

�

5. Verification of spectral stability.

Theorem 5.1. For a step-type ignition function, or, more generally, any ignition function

satisfying (1.9), DZND has a single zero of multiplicity one on {	λ ≥ 0}, located at λ = 0;

that is, the Lopatiski condition (D) is satisfied for all ZND detonations of Majda’s model,

independent of the choice of q ≥ 0, k > 0, or u±.

Proof. By (4.3), we have for 	λ ≥ 0,

|Ψ| ≤
∫ 0

−∞
e−

∫ 0
y
�P (s)ds e(k+�λ)y√

1− 2q(1− eky)
dy

≤
∫ 0

−∞

eky√
1− 2q(1− eky)

dy

=
1

qk

∫ 0

−∞

d

dy

(√
1− 2q(1− eky)

)
dy

=
1−

√
1− 2q

qk
,

giving

	(2− q − qkΨ) ≥ 2− q − qk|Ψ| ≥ 1− q +
√

1− 2q > 0
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by the fact (see (1.8)) that 0 ≤ q ≤ 1
2 . In particular,

2− q − qkΨ 
= 0 for 	λ ≥ 0. (5.1)

Combining (4.6) and (5.1), we obtain the result. �

6. Viscous stability and a result of Roquejoffre–Vila. Our results have impli-

cations also for stability of “viscous” detonation waves, i.e., smooth analogs of traveling

waves (1.2) satisfying the “viscous” or parabolic regularization of (1.1):

(u+ qz)t +

(
u2

2

)
x

= εqzxx + εuxx,

zt + kϕ(u)z = εzxx,

(6.1)

with ε > 0. It is shown in [Z2] that stability of viscous detonation waves in the ZND

limit as ε → 0 with other parameters held fixed is equivalent to Lopatinski stability of

the limiting ZND detonation (1.2) together with Evans (equivalently, linearized) stability

of the viscous Burgers shock corresponding to the Neumann shock contained in the ZND

detonation profile, as is well known to hold by properties of scalar traveling-waves (see,

e.g., [Sa]).

Thus, our results together with those of [Z2] yield the result for (6.1) of spectral

stability of viscous detonation waves in the ZND limit, similar to an earlier result of

Roquejoffre–Vila [RV] for the corresponding equations with regularization εuxx in the

u equation alone and applying to the same class of ignition functions (1.9). A very

interesting open problem would be to extend our results to the more general class of

ignition functions (1.10), which would give new information for the viscous stability

problem as well.

We remark that results of [LRTZ] (for Majda’s model) and [TZ] (for the physical

reactive Navier–Stokes equations) show that spectral stability of viscous detonation waves

in the (Evans function) sense of [Z2] implies linearized and nonlinear orbital stability;

hence stability of strong viscous detonation waves reduces for viscosity sufficiently small

to a study of spectral ZND stability as carried out here.
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