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Abstract. The Cauchy problem for the one-dimensional Euler-Boltzmann equations
in radiation hydrodynamics is studied. The global weak entropy solutions are constructed
using the Godunov finite difference scheme. The global existence of weak entropy solu-
tions in L*>° with arbitrarily large initial data is established with the aid of the compen-
sated compactness method.

1. Introduction. In this paper we are interested in the global solution to the one-
dimensional Euler-Boltzmann equations in radiation hydrodynamics. Radiation hydro-
dynamics (cf. [I7, [18]) is concerned with the propagation of thermal radiation and the
effect of this radiation on the hydrodynamics describing the fluid motion.

The theory of radiation hydrodynamics finds a wide range of applications, including
diverse astrophysical phenomena such as waves and oscillations in stellar atmospheres,
nonlinear stellar pulsation, supernova explosions, stellar winds, and many other areas.

The mathematical equations governing the radiation hydrodynamics are the Euler
equations of compressible fluids coupled with the Boltzmann equation of particle trans-
port. It is very important to understand the solutions of the Euler-Boltzmann equations
in order to obtain insights into the radiation hydrodynamics and related physical phe-
nomena as well as applications. However, solving the Euler-Boltzmann equations is
challenging because of the complexity and mathematical difficulty.
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We use I(z,t,v,) to denote the specific intensity of radiation (at time t) at spatial
point z € R, with frequency v > 0 in a direction Q € S2. Then the system of partial
differential equations of one-dimensional isentropic radiation hydrodynamics (cf. [17}[18])
consists of the following Boltzmann equation:

101(v, Q) oI(v,Q) B
PR Ve +9178x =SW) —ou(v,p)I(v,Q)

—|—/ dl// (505(# v, - QI Q) —o(v =1V, Q- p)(v, Q))dQ/,
0 S2
and the Euler equations:

{Pt + (pu)e =0,

(1.1)

(pu+ £F.), + (pu*+ Pr + Py, =0, (12)
where ¢ denotes the light speed, Q; denotes the projection of Q along the x-axis, S(v) =
S(z,t,v,Q) denotes the rate of energy emission due to spontaneous processes, and
ooV, p) = oq(x,t,v,Q, p) denotes the absorption coefficient. Similar to absorption, a
photon can undergo scattering interactions with matter, and the scattering interactions
change the photon’s characteristics v’ and Q' to a new set of characteristics v and €2, which
leads to the definition of the “differential scattering coefficient” os(v/ — v, - Q, p) =
os(z,t, v — v, -Q, p). In the Euler equations (L.2), p = p(z, t) is the density, u = u(z, )
is the velocity, P, = P,(p) is the pressure, F,. and P, represent the radiative flux and

the radiative pressure respectively defined by
oo

F, = I,

0
P.=- /dy/QIVQ
52

In this paper we consider only polytropic ideal gases, in particular,

Pr(p) = p"/7, (1.4)

with v > 1 being the adiabatic index.

The existence of global weak entropy solutions in L°° for the one-dimensional com-
pressible Euler equations and some related applications has been established; see [2] [6, [7]
and [3], @] (5] 16, 19, 20] as well as the references therein. Due to its complexity, there are
few mathematical results on the radiation hydrodynamical system (1.1)-(1.4). For the
local existence of C' solutions and finite-time formation of singularities in solutions to
the system of radiation hydrodynamics (1.1)-(1.4), see [10, 11]. For the studies of some
simplified systems of radiation hydrodynamic models, see [I, 12} [13]. In this paper, we
study the initial-value problem of (1.1)-(1.4) and establish the existence of global weak
entropy solutions in L°° with arbitrarily large data. We will construct the approximate

(1.3)

solutions using the Godunov type finite scheme and apply the compensated compactness
framework to prove the convergence of the approximate solutions. In particular, we show
the L> uniform estimates, the H~! compactness, and the entropy conditions. To obtain
the global existence, we need to overcome the complex structure of the system, especially
from the radiation terms in the Euler equations (1.2), which requires some new ideas and
new ingredients in the proof.
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The rest of this paper is organized as follows. In Section 2, we reformulate the problem
and state the main result. In Section 3, we prove the main result, that is, the global
existence of L solutions, which consists of the construction of approximate solutions,
convergence, and consistency as well as entropy conditions.

2. Reformulation and main result. Using (1.1) and (1.3), we can rewrite (1.1)-
(1.2) as

1

N

pe +mg =0, (2.1)
m2

my + (7 + Per(ﬂ)) =G(p,I),

where m = pu and
F(p,I)=Sv)—o(v,p)I(v,Q) +/Oojlul/92(§as(u’ = v, Q- Q) IV, Q’))dQ’,
Glp.T) = _% (/OOZV/SQ Q1 (S() — (v, p)I(1,2))dQ

+/ du/ dQ/ ' N ZIUS(V/ = u,Q - Q,p)](u’,Q’)dQ’) :
0 52 0 52V
with
o(v,p) = cq(v,p) +/ / os(V =1, Q - Q,p)dYdvV.
0 Js2

We consider the initial-value problem of system (2.1) with the following initial data:

{Ilt—OZIO(x7V7Q)7 LL’ER, V>0’ QES2’ (22)

pli=o = po(x), M=o = mo(x), = €R.
We set V := (p,m) and Ry :=R x [0,T].
DEFINITION 2.1. The bounded measurable function (I,V) = (I(x,t,v,8),p(z,t),

m(z,t)), x € R, t > 0 is a global weak solution of (2.1)-(2.2) if the following integral
identities hold for any fixed T > 0, v > 0, Q € S

T 1 T
/ / (11% + Qllcpz> dxdt +/ —Iop(z,0)dx +/ / F(p,Iedxdt = 0, (2.3)
0 JrR \C€ R € 0 JR

/OT/R(pSOt + mepy)dzdt + /Rpogo(x, 0)dz = 0, (2.4)
/OT/R (mnpt + (m?Q + Pm(P)) %) dxdt + /OT/R G(p, I)pdz + /me(x, 0)dz=0,
(2.5)

for all ¢ € C§°(Ry) satistying ¢(z,T) =0 for z € R.
The main assumptions of this paper are the following:
(MA) Suppose that the initial data (I, po,mo) satisfies the conditions:

[To(z, v, Q)] < My, 0<po(x) <M, |mo(x)] < Mspo(z),
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for some positive constants M;, i = 1,2,3, and suppose F(p,I), G(p,I) satisty the fol-
lowing conditions:

F(p,1)] < G| + Cale”), (2.6)
G
];¢gcsf+cme (27)
for some positive constants C;, i = 1,...,4, and for bounded p;, I;,i = 1,2,
|F'(p1, 1) — F(p2, I2)| < C(I1, I2)|p1 — p2|, if p1 # p2 (2.8)
|[F'(p1, 1) — F(p2, I2)| < ClI — x|, if p1 = po,
|G (p1, 1) — G(p2, I2)| < C(I1, I2)|p1 — p2|, if p1# p2 (2.9)
|G(p1, 1) — G(p2, I2)| < ClI — x|, if p1 = po,

where C' denotes a positive constant, C'(I1, I2) denotes a positive constant C' depending
on I; and I, and 6 = 77_1 These assumptions hold for some class of functions o (in
terms of 0,,0) and are required for the approach of compensated compactness in this

paper. In particular, for o satisfying the following Lipschitz conditions (cf. [I1]):

/ a [ |5

Flor, 1) ~Flpa, )| <o)t ~ o)kl + [ v’ [

lo(p1) — a(p2)| < Clp1 — p2l,

- 0(P2))’d9' < C|p1 — p2ls

one has

= (o(p)h — o(pa) )| A2

<C(Il,fg)|0(p1)—0(p2)|+c Il,IQ/ dI//
< C(h, I2)|p1 — p2l.

(o(p1) = o(pa)) | s

Similarly, (2.9) holds. Now we state the main result of this paper as follows.

THEOREM 2.1. Under the above assumption (MA), for 1 < v < 2, the Cauchy problem
(2.1)-(2.2) has a global weak entropy solution (I(z,t,v,Q), p(z,t), m(z,t)), z € R, t > 0,
for any fixed v > 0, Q € S2, satisfying the following estimates and entropy condition: on
Ry =R x [0,T] for any fixed T > 0,

I <COT), 0<p<CT), |m|<C(D)p, (2.10)

for a constant C'(T") > 0 which depends on T', and

// n(p, m)Yy + q(p,m)iy) d:cdt—i—//nm (p,m)G(p, Itpdzdt > 0 (2.11)

for all weak and convex entropy pairs (7, ¢) of the Euler equations in (2.1) and for all
nonnegative test functions ¢ € C§°(Ryr), with ¢(z,0) = ¢(z,T) = 0.
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3. Proof of the main result: Theorem [2.T]1 In this section, we prove our main
result in Theorem 2.1l We divide the proof of the theorem into three steps. The first
step is to construct the approximate solutions by the fractional Godunov schemes, the
second step is to show the convergence by the compensated compactness framework, and
the final step is to prove that the limit function is a weak entropy solution. We recall
that the homogeneous system:

pt+mgy =0
m? 3.1
me + <—+Pm(p)> =0 3.1)
p x
has two eigenvalues
m m
AM=—-p" d=—+)p"
P p
and Riemann invariants
0 0
_m_r _m_r
w = P + R z P R

with 6 = 21,

3.1. Construction of approzimate solutions. In this section, we construct the approx-
imate solutions (I, V') = (I',p',m!) with VI = (p!,m!) of (2.1)-(2.2) in the strip
0 <t < T for any fixed T" > 0, where [ and h are the space mesh length and the
time mesh length, respectively, satisfying the Courant-Friedrichs-Lewy condition:

l
Ni(ph,mh| ) < —.
max (sggl i(p',m )> <
We now use the Godunov scheme to construct a sequence of approximate solutions of
(2.1). Namely, we solve the Riemann problems of (3.1) in the region

Ri={(z,t): xj_1jp <x <@jp1y2, 0<E<h}, @jp1p=(jE1/2):

(bh)e + (mp)a =0,
m 2
(mb)e + (25 + Pu(oh)) =0,

1 [ _

7/ 1 l(po(x),mo(a:))dx, x < jl,
(p%),mé”t:O: 1 (J(;+)1)l
/

[ (lw)mo@)da, @ i

il

for all integers j > 1. We also solve the following problem in the strip: z € R, 0 <t < h,
() + ()2 =0,
I|i=o = Io().

Then, we set

I, ,8) = T, 0, ) + F (b, IO, )
V! (@, t) = Vi (2,t) + Gloh, Ih)t, '
forz € R, 0 <t < h, where V{ = (pl,m}) and G = (0,@)T. We continue the construction

to the next time step recursively as follows.
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Suppose that we have defined approximate solutions (I', V) for 0 < t < ih, with i > 1
an integer. We then define

{zz(y, Qx,t) = I (v, Q, m,t) + F(ph, IL) (t — ih), 33)

Vi, t) = Vi(a,t) + Glpb, I3)(t — ih),

for ih <t < (i+1)h, where V{(x,t) are piecewise smooth functions defined as a solution
of the Riemann problem in the region R;H ={(z,t) 1 xj_10 S @ < xjpye,th <t <
(i+1)h}:

(Ph)e + (mp)e = 0,
oy ()’ p o) —
(mO)t ) M(po) )

x

el
7 / (p'(z,ih — 0),m!(z,ih — 0))dz, z < jl, (3.4)
(Ph, M) lt=in = 1 (](;41-)11)1
7/ (p'(z,ih — 0),m!(z,ih — 0))dz, x> jl,
5l

and I} (v, Q, x, t) is the solution of following problem in the region z € R, ih <t < (i+1)h:

() + 2 (Ih)z =0,
Li=in = I'(v,Q, z,ih — 0).

Then the approximate solutions (I'(v, (2, z,t), V!(x,t)) are well-defined for + € R, 0 <
t < T and any fixed v > 0, Q € S2.

3.2. Conwvergence via compensated compactness method. We now show the convergence
of the approximate solutions constructed in Section 3.1 with the aid of the compensated

compactness method. The following is the compensated compactness framework (cf.
[2, 7, 14, [15]):

THEOREM 3.1. Suppose that a sequence of measurable functions

(Viz,t), I'(v,Q,2,1)) = (p'(x,t),m (z, 1), I'(v,Q,2,t), x € R, t >0, v >0, Q€ 5%
satisfies the following conditions, for each fixed pair of parameters (v, Q).

(1) There is a constant C' > 0 such that, for (z,¢) € RY := R x (0, 00),

111, Q2,t)] <O, 0<p(,t) <O, (2, )] < Cpl(x,1).

(2) The measure sequence
NV +a(V,

is compact in H;,} ('), for all weak entropy pairs (1, q) of (3.1), where Q' C R? is any
bounded and open set. Then, for 1 < v < 2, there exist functions (p,m, I) € L>(R%) and
a convergent subsequence (still labeled) (V! I'), such that as I — 0, VI(x,t) — V(z,t) =
(p(z,t),m(z,t)) almost everywhere in R2, and Iy, Q,z,t) = I(v,Q,z,t) weakly- in
R3 for each fixed pair of parameters (v, ).

We now prove that the approximate solutions (V', I') satisfy the above framework,
i.e., the L™ estimate and the H~! estimate.
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3.2.1. L> estimate. First, we prove that the approximate solutions (V! I') have a
uniform bound.

THEOREM 3.2. Suppose that the initial data (Iy, pg, mo) satisty the following conditions:
|Io($,7/,Q)‘ SC(), ngo(ﬂﬁ) SC(M |m0(x)| SCO/)O(J")7 'TER’ V>0; QESQ;

for some constant Cy > 0, and F(p,I), G(p,I) satisfy (2.6)-(2.7). Then, there exists a
positive constant C(T), independent of [ and h, such that

(' <O(T), 0<pl(e,t) <C(T), |m!|<C(T)p', (x,t)€ Rp =Rx[0,T]. (3.5)
Proof. For x € R, ih <t < (i + 1)h with ¢ > 0 integers,
[, 6)] < (gl Lo + || F |~ (¢ — ih)
< ol + CU e + [1(25)° | o= )R
< 13llee + C(I gl Lo + [lwh — 25l L=)h
< | IE(v, Q, 2, ik + 0)||

+C <||Ié(u,ﬂ,x,ih+ 0)||z + sup w) (z,ih + 0) — inf 2} (z, ih + O)) h,

where w} and 2} are Riemann invariants corresponding to the Riemann solutions V{. For
the Riemann invariants, we have the following estimates:

wl(a:, t) = wé(;v,t) + gl(t —ih)
Po

G
Ssupwé(a&,ih—l—O)—l—‘—l h
x

Po Il oo
< sup wo (@, ih + 0) + C(|[Il| L= + [lwh — 2p|[zo< )
x

< supwh(z,ih + 0)
x

+C <||Ié(u,Q,m,ih+ 0)|| o + sup w)(z,ih + 0) — inf 2} (z, ih + 0)) h
x T
and

S t) = b, t) + (e — i)
o

> inf 2} (x,ih + 0) + —- h

Po ll oo
> ingé(xvih +0) — O] e + |Jwh — 2b|| )R

> inf 2} (x,ih + 0)

-C (|I(l)(1/,Q,x,ih +0)|| 4 supwh(x, ih + 0) — inf 2} (x, ih + O)) h.
Let

o; = max{|[é(1/, Q, x,ih + 0)| p, sup wh(x, ih + 0), — inf 2} (z, ih + 0)} )
x x
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Then
max {”Ié(l/, Q,x, (i 4+ 1)h — 0)|| o, supw' (x, (i + 1)h — 0), —inf 2} (z, (i + 1)h — O)}
< Coji(1+h).

It follows that

a1 < C(1+ h)a;.
Thus
i1 <C(1+h)a; <C(1+h)"ay, 0<i<n=
We can deduce that

T
m oy < Cel g,

where og = max{||Io|| o, sup wo(x), — inf 2o(z)}. Then
x x

w'(z,t) < Celag, 2(x,t) <Celag, w'—2'>0.
Then, there is a constant C'(T') > 0 independent of [ and h such that
0, Q2. 8) < CT), 0< pla,) < CT), | (w,8)] < C(T)pa, b).
Now, we can choose the time mesh length h = h(l). Let

=12 | 0<p<C(T),[m|<C(T)p

A—maX{ sup |)‘i(pvm)|}v

and take h = %, where n = [‘D‘TT] + 1. Then the Courant-Friedrichs-Lewy condition
holds. ]
3.2.2. H~' estimate. In order to prove the H ! estimate, we need some useful lemmas.

LEMMA 3.1. Let V!(x,t) be the approximate solution. Then, there is a positive constant
C independent of [ such that

gl .

/ [V (z,ih —0) - Vi[2dz < C, (3.6)
i Y @=Di
where

o1t

Vi= —/ Vi(z,ih — 0)dz.
1]
(G-l

Proof. Consider the mechanical entropy pair

SO S U
2 p Ay-1)" T 2p 41

For ih <t < (i + 1)h, Green’s formula implies that

it N | .,
;j /(jl)l (77*(V0)_ - 77*(‘/] )) dx + /() Z {0’[17*] — [q*]} dt (3 7)
= [ (00~ (Ve - o)

P im.

U
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where (V{)t = V{(z,ih — 0), o is the propagating speed of the shock wave, and
(0] = . (Vg ((t) + 0, 1)) — 0. (Vg (2() — 0,1)),
(0] = @ (Vg (@(t) +0,1)) = q. (Vg (x(t) = 0,8)), ih <t < (i + 1)h.

From the uniform bound of V¢, the right-hand side of (3.7) is dominated by a constant
C > 0 independent of [; i.e.,

> / RO A A DA RO LY

We decompose the first term of (3.8) into two parts:

it . |
| o= v
(4—=1)
gl 3l ) )
- / (e (VY2 — (V) + / (e (V) — 0 (V1))
(G=1)1 (=)
= A;- + R;—,

where (V1) = V!(x,ih — 0). For A’ we take the Taylor expansion for 7. (V1 to get
1 (V= 0. (V) + Vi (V) (V) = V) + 5((‘/1)i = V)TV (VI = V), (3.9)

where £} is a mean value. Integrating (3.9) on the cell ((j — 1)I,5l) and using the fact
that V; is the average value of (VY% on this cell, we have

N L . ) ) ) )
=g [ O VT Ve (3.10)
j—1
For R;, we have
. il 1 . . .
R = /( . ([ vt oy - vyan (i - 09 o
-
it 1 _ _ _ _ ‘ (3.11)
=/ ( / U (VY + (V) = (V1)))d6 Gl(bY, (Ié)i)) d.

From the uniform bound of approximate solutions, we get |R;| < Clh, where C' is inde-

pendent of [ and h.
Summing over all cells, by (3.8), (3.10) and (3.11), we have

gl ) ) ) ‘ ) T
SO T = Ve 2 [ ot ~ ey <

ij @Dl

Since (7, ¢«) is a convex entropy pair, o[n.] — [g«] > 0 holds across the shock waves.

Thus .
/O S (ol — g}t < ©

and

> / V)T V3. (€) (V)= V)da < C. (3.12)
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In particular, n, is strictly convex; i.e., there is a constant o > 0 such that
VIVnV > oV

It follows from (3.12) that (3.6) is true. O
The proofs of the following three lemmas can be found in [6] [§].

LEMMA 3.2. Assume that 0 < p < C, |m| < Cp. Then, there is a constant C’ > 0 such
that

V| <C', Vgl <C', VIV <C'VIVLY, (3.13)
for every weak entropy pair (7, q) of (3.1).

LEMMA 3.3. For every weak entropy pair (7, q) of (3.1), there is a constant C' > 0 such
that

lo[n] — [dl] < C{on.] — la:]}- (3.14)
LEMMA 3.4. Let Q c RY be a bounded open set. Then,
(compact set of W~?(Q)) N (bounded set of W~1"(€2)) C (compact set ole;i(Q)) ,
for some constants p and r satisfying 1 < p <2 < r < oc.

Now, we can prove that the sequence of entropy dissipation measures n(V'); + q(V'),
is compact in H, fOCl

THEOREM 3.3. For the approximate solution {V!}, the measure sequence
n(VY; 4+ q(V'), is a compact subset of H,, (')
for all weak entropy pairs (7, q), where Q' is any open bounded subset in R = R x [0, T7.

Proof. For any ¢ € C5°(§Y'), we consider

T
| [ @06+ aVeodedt = Ae)+ Ri) + Blo) + 20) +5(0). (315)

where

gl ) )
Alg) = / (Ve = n(VE)) (e, ih)d,

iy 2 (@—DI
3l ) )
Rp) =Y / (n(VE)E — n(VY)p(a, ih)d,

i, Y @=Di

B(o) = [ (V. D))l T) = n(V (. 0)p(a,0)) .
T
Se) = [ Yool = labela(t). 0.

T
S = [ [ @)= a0 = avi)yes) dode.

We now make estimates for each of these terms.
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(1) We decompose A(yp) into two parts:
T

Z oo

= Al( )+ Az(p),

where @} = ¢(jl,ih) and @' = o(x,ih). For A;(p), using (3.9), (3.10), (3.12) and Lemma
321 we have

gl ) .
VI ViDde+ 30 [ V= ) - e

(G-1)

l T2 1 i T
e Z /( VT (V- v
_ (3.16)
<CH¢HL°°Z / VATV, (€)(VYE — Vi)da
< Cliglz~.

For As(yp), using Lemma BTl and Lemma B2 we have

gl )

As(p)] < (Z [ ey ) (Z / n<v;>>2da:>
Jl )

< Cllellce (Z/('—l)l |z —jl|2adx) <Z/( o |Vn((VHE ij)|2dac)

2

N|=

2

Jt , ,
< CI2 gl |Vl e (Z /( , l)l«vl)l— V;>2dx)
i,j “U~

< 1Y gllcy,

(3.17)
where % <a<l
(2) For R(yp), with the help of Theorem B2 and Lemma [B2] we deduce that
A<y [ TN (Vs
(-1
< Ml lells= 3 / ()"l da (3.15)
< OhHVW”LwH‘PHLw||G((Po)‘7( 15)9|z=n
< Cllellzee-
(3) For B(yp), we have
B < lellew [ (n(V3 )]+ (Vi (. 0) iz
Q (3.19)

< Cllell e
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(4) Tt follows from Lemma B3 that

T
2(0)] < llgllze / S o] — [q)ldt

< Cliel [ 3 toln] - et (3:20)
0
< Cllgllz~.
(5) Using Lemma [32] we have
T
1S(0)] < / / (Ve el + IVa(E)llpaDIV! — V| dudt
0 JY
(3.21)

T
< G(eh. Il IVl + 19ali=) [ [ (i + lolact
< Clllell ap oy
Since C§°(€') is dense in HJ (€Y'), it follows that

||SHHL;£(Q/) S Cl — O as l — O

Thus S is compact in H;,}(Q'). From (3.16) and (3.18)-(3.20), we have
|A1 + R+ B+ E”(Co)* <C.

By the embedding theorem, (Cp(Q'))* — W~1Po is compact for 1 < py < 2. Thus,
Ay 4+ R+ B + X is compact in W17 (Q). By the Sobolev theorem, Wy?*(Q) —
C&(Q), p1 > 12 and the estimate

«
|4s(0)] < C1o % || cg,

we have
a1
|[A2(p)| < CI1*72 ”‘:O”WOLPI )
It follows from duality that

2
HA2||W—1,p2(Q/) < CZO(_% —0 as [ —0 for 1< P2 < 1—|——a < 2.

Then, Aj is compact in W=1P2(Q'). So A+ R+ B + X is compact in W~=17()'), where
1 < p < min(pg, p2) < 2.
Next, from the uniform boundedness of V!, we have the following fact:

n(VHh: 4+ q(Vh, —S is bounded in WLo(Q).
Since ' is bounded, the above statement implies that
n(Vh +q(Vh, —S is bounded in WLT(Q), for r>1.
That is, A+ R+ B+ Y is bounded in W~17(Q'), r > 1. It follows from Lemma [3.4] that
A+R+B+Y is compact in H, ().

loc

So
n(VHhe4+q(Vh, —S is compact in H;, '(Q). (3.22)

loc
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Since S is also compact in H,_. L), we conclude that n(V!); + ¢(V'), is compact in
loc (Q/) O

Therefore, Theorem [B.1] follows from Theorem and Theorem [3.3]

3.3. Ewistence of weak solution. By Theorem [BI] we obtain that as | — 0 the approxi-
mate solutions V!(x,t) — V(z,t) = (p(z,t), m(z,t)) almost everywhere, and I' (v, Q, x,t)
— I(v,Q, x,t) weakly-* in R? for each fixed pair of parameters (v, ). Now, we will show
that (V,I) is a weak entropy solution of (2.1)-(2.2). We first recall the following useful
lemma (cf. 7, 20]):

LEMMA 3.5. Consider the following Riemann problem:

Pt +my = Oa
m2
mt (54 Pal)) =0

(plaml)a r < 07

(3.23)
(psm)|t=0 =

(pr,my), x>0,

where p;, my, pr, m, are constants satisfying 0 < py, p,, |%| |22 < oo. For any € > 0,

there exist constants [ > 0 and h > 0 such that the solution of (3.23) in the region
{(z,t) : |x] < 1,0 <t < h} satisfies

/|pxt p(x,0)|de < Cle, 0<t<h,
where C depends only on the bounds of p and |m/|, and the mesh lengths [ and h satisfy

max( sup |\;(p, < —.
max( s [\l m) < 5

THEOREM 3.4. Suppose that the conditions of (MA) are satisfied. Then the bounded
measurable function (V,I) is a weak entropy solution of (2.1)-(2.2); i.e., (V,I) satisfies
(2.3)-(2.5) and (2.11).

Proof. (1) For every test function ¢ € C§°(Ry) satisfying ¢(x,T) = 0, we consider
the following integral identity:

T 1 1 T
| [Grosaurtoisier [ 1100w 0do+ [ [ PG pdadt = o)+ R(),
oJr € RC 0 JR

where

-2 1 / %lnl(ué)i ~ede+ Y [[ P thgdat
Z//( Yo+ Qu(I' = I )d:zcdt

// F(p' I') = F(p, I))pdxdt.
“1)
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First for R(p), by (2.8) we have
jl
peeny | /( e+ Lol LG
7,7 -
jl
)y [ 10 = dhledudt
7 S
il
<ony / / el + Lo DI (o, )l
i, '71

+C’h2// G (ph, 1Y) | pdxdt

< Chllpllen < czugpncl 50 as [ —0.

(3.24)

To estimate A(p), we decompose A(yp) into three parts:

-3 L ) - )

(i+1)h . . )
+ Z/h /F(po,fo)(so — @' )dadt
%7 g

(i+1)h . _ _
+Z/h /(F(pé,fé) — F((ph)" (I6)Y) pydadt
= Ai(p) + Az(p) + As(p).

For A;(p), we have

[SIE
[SIE

<Ch|> / F2((ph)1, (Ié)i)dx Z /( 1)1 )2dx (3.25)

< CT||F*(oh, )12 x 12|l e

<CM?|gller =0 as 1—0,

and for As(p), one has

A<><Z//ﬂ b (120 o=
A= [ TN = =

< CUF||z=llellcr
< Clll¢llcr =0 as 1 —0.

(3.26)
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By (2.8) and Lemma B35 we have

(i+1)h ) . .
el =[S | Pk ah) = Py 15))) el
C(Ig, (Iy)* IIsDIILwZ//_ [po — (bl (3.27)
(i+1)h
<Clloli= Y [ et
B ih

< Ceflell -,

where € > 0 is an arbitrarily small constant. It follows from (3.24)-(3.27) and the
assumption (2.8) that, as [ — 0,

// —ITps + Igpw)dazdt—l-/ —Iyp(z,0) dz—l—// (p, Idxdt = 0.

(2) For every test function ¢ € C§°(Ryr) satisfying ¢(z,T) = 0, we consider the
following integral identity:

T
/ / (Pt + mlps)dudt + / P (2, 0o, 0)dz = A(g) + R(p).
0JR R

where

gl . .
A =2 [ (@i s

=1l

(i+1)h
R(p) = Z/ R(ml — mb) g dadt.

We claim that A(y), R(¢) — 0, as I — 0. For A(p), one has

gt S .
A= [ (6 =) e

=

IN

i - 2 ji o
I [ =P
Zz,j:/(jl)l ! zz: (-1 !

(3.28)

=

gl )
<Clgller (X [ Jojifds > / (o) — pi)Pda
i (@@=l (G- 1)l

< CM?pller =0 as 1 —0.
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It follows from the uniform bound for (V! I') that

(i+1)h
/ / (ph, Ih) o (t — ih)dadt

(3.29)
< et B~ [ [ Iz
< Clll¢llcr =0 as 1 —0.
Then (3.28)-(3.29) imply that
T
lim/ /(plgot —l—ml(pw)dxdt—l—/pl(as,O)go(:c,O)dx =0. (3.30)
1—0 0 R R

Applying the dominated convergence theorem to (3.30), we have

T
//(psot+mwm)dwdt+/pos@(ﬂc,0)dfﬂ:0~
0 JR R

(3) For every test function ¢ € C§°(Ryr) satistying ¢(z,T) = 0, we consider the
following integral identity:

/ / (mlor + F(VY) o + G(pl, I o) dadt + / (2, 0)p(z, 0)dz = A() + R(p),
0 JR R

2

where f(V) = ™= 4 £, and
= Z/ ((mg)t—m}) p'de + Z // G (phy, IY)pdadt,
.5 ,J
p) = Z/ ((m" =m)pe + (F(V) = F(Vo))pa + (G(p', T') = Glph, I)) ) dadt.
0,J
We estimate R(y) first. By (2.9), we have
5l
Rl <ny [ /( GG ez
iy 0

gl . o
" hZ//(j_l . IV FEDNG(po, L) pa|ddt

// pOaIO ||| dadt

SC’ZH@H@ —0 as [ —0,

(3.31)

where ¢! is the mean value of V! on the region ((j — 1)1, j1) x (ih, (i + 1)h).
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We decompose A(p) into three parts:

M) =Y [ - mi) et - gy

j—1)

(i+1)h o ‘
+Z/h /G(po,fo)(so—<ﬁ§-)dxdt

(i+1)h _ ‘ ‘
2 /h / (G(po: T5) = G((po)*, (1)) jddt

= A1() + Az2(p) + As(e).
For A;1(y), using Lemma [3.1] we have

[Ai(e) =3 / (RG((ph)E, (IL)E) + (mh)E — mi) (o — h)da

.7

gl :
C—@h)da | R G*((ph)", (1)) da
g(z [N ) (Z JERCORTS ) .

’L" de
Z/(J 1)l ])

< CU2Jgller (TIG* (oo, To)lls + C) < CU2|gller =0 as L0,
and for As(p), one has

lo* — il e — ¢
As(p)] < // , L4 2 ) dad
Aale)l < 2 IRl ey (3.33)

< ClHG||Loo||<p||C1 <Clellct =0 as 1 —0.
By (2.9) and Lemma B35, we have

(i+1)h A L
sl 0|3 | (G = Gltoby (1)) o
C(I5, (1))l oo Z// 1pb — (p)*ldadt (3.34)
(i+1)h
<Clleli~ Y. [ e
P ih

< Cellpl e

[N

where € > 0 is an arbitrarily small constant.
It follows from (3.31)-(3.34) that

T
lim/ /R(mlgpt—kf(vl)%c+G(pl,Il)<p)d;1:dt—|—/le(:zr,O)gp(z,O)dx:O.

=0 Jo
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Using the dominated convergence theorem, we have

NAC

Pm<p>>%) st + [ T/R Glp.T)

pdx + / mop(z,0)dr =
R

(4) For every weak and convex entropy pair (7,q) and every nonnegative smooth

function ¢ that has compact support in region Ry satisfying ¢ (x,0) =

consider the following integral identity:

Y(x,T) =0, we

T
/0 /R (VYo + (V)b dadt = A() + R() + S(8) + S(4),

where A(),
entropy pair and ¥ > 0, we have

R(¢),X(v), S(¥) are similar to those of (3.15).

Since (n,q) is a convex

() =0, (3.35)
A =3 /(jl VT E (V- Ve
+ Z /(j_l)l( (VY =n(V))(' = ¥)da
> Z / 0N~ e (3.36)
> —Cl1*7 2|y, % <a<l.
As in (3.21), we have
S@W) =z =Cl[Y| mz, (3.37)

0 =3 f (] m ey

:—hZ/(/ Y4 0((VhHE
X(G((Z) (1)) =

—hZ/</ M (VHE+0((VG)*

Gpl

dﬁ) G((

)L (IN) ¢'dz

Y)ide

e+ 0((VYE — (VHYD) de) (D) (1yda.

(3.38)
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It follows from (3.35)-(3.38) that

T
/O /R(TI(VZ)% + q(Vap, ) dxdt
h Z/ (/0 i (VOE+6((Ve): = (V1Y) d9) G((PHE, (THDpide  (3.39)

1
> =0 (Wlleg + 271+ Wlluy) ) 1272 5 <a<l.

Letting [ — 0 in (3.39) and using the fact that V! — V a.e. and I' — I weakly- in R%
for each fixed pair of parameters (v, (1), we obtain the following entropy condition:

T T
/O / (np M) + qpy m)s)dedt + / / (s m)G(p, Dbt > 0.

This completes the proof of the main result in Theorem 2.1. O
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