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Abstract. A half-space constrained Eshelby inclusion (in an infinite elastic matrix)

with general uniform eigenstrain (or transformation strain) is analyzed when the plane

boundary is moving in general subsonic motion starting from rest. The radiated fields

are calculated based on the Willis expression for constrained time-dependent inclusions,

which involves the three-dimensional dynamic Green’s function in an infinite traction-

free body, and they constitute the unique elastodynamic solution, with initial condition

the Eshelby static fields obtained as the unique minimum energy solutions by a limiting

process from the spherical inclusion. The mechanical energy-release rate and associ-

ated “driving force” to create dynamically an incremental region of eigenstrain (due to

any physical process) is calculated for general uniform eigenstrain. For dilatational eigen-

strain the solution coincides with the one obtained by a limiting process from a spherically

expanding inclusion, while for shear eigenstrain the fields are due to the propagation of

the rotation. The “driving force” has the same expression both for expanding and shrink-

ing motions, resulting in expenditure of the energy rate for motion of the boundary in

both cases. By superposition from the half-space inclusions, the fields and “driving force”

for a strip inclusion with both boundaries moving are obtained. The “driving force” con-

sists also of a contribution from the other boundary when it has time to arrive. The

presence of applied loading contributes the counterpart of the Peach-Koehler force of

dislocations, in addition to the self-force.

Introduction. In a recent publication, Markenscoff and Ni (2010) obtained the

energy-release rate required to create dynamically an incremental region of dilatational
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uniform eigenstrain by an expanding spherical inclusion, as well as by an expanding

plane boundary, through a limiting process from the sphere. Here, the energy release

rate to create an incremental region of general uniform eigenstrain ε∗ij by a moving plane

boundary of a constrained inclusion is obtained. Markenscoff and Ni (2010) obtained the

radiated fields from a spherical inclusion with dilatational eigenstrain (constrained in

an infinite linearly elastic matrix) expanding in a general subsonic motion based on the

analysis of Willis (1965) for inclusions with time-dependent eigenstrain (transformation

strain) constrained in an elastic matrix that is traction-free at the boundary at infinity.

It results in an expression for the displacement in terms of the dynamic Green’s function,

analogous to the Eshelby one (1957) for static inclusions. The static Eshelby solution

for a spherical inclusion (1957) was obtained from this elastodynamic expression when

evaluated from t = −∞ to t = 0, and the Hadamard jump conditions were shown to

be satisfied. Using these fields, the energy-release rate required to create an incremental

volume of eigenstrain as the spherical inclusion expands was computed. It may be noted

here that the energy-release rate expression of Atkinson and Eshelby (1968), Rice (1968),

and Freund (1972), derived initially for moving cracks when evaluated for a singularity

that is a jump discontinuity (Stolz, 2003), gives an expression which coincides with that

of the associated “driving force” in the thermodynamic literature (Truskinovky, 1982)

for a system that is purely mechanical. The energy-release rate is equivalent to the path-

independent dynamic J integral derived on the basis of Noether’s theorem (Freund (1990),

Maugin (1990), Gupta and Markenscoff (in preparation)) for an “elastic singularity” for

which the integrals involved exist (as Cauchy Principal Values). The radiated fields and

energy-release rate to move a plane boundary with dilatational eigenstrain were obtained

by Markenscoff and Ni (2010) by a limiting process from the spherically expanding in-

clusion, as the radius of the sphere tends to infinity, and that solution, radiated fields

and self-force is recovered here as a special case of eigenstrain. The energy-release rate,

and associated “driving force”, or “self-force” of the moving plane boundary, has a static

part coinciding with the one based on the expression given by Eshelby (1970, 1977) and

independently calculated by Gavazza (1977) for a spherical inclusion. The dynamic part

of the self-force for a plane boundary depends only on the current value of the velocity,

and not the acceleration, and thus the plane phase boundary has no effective mass, in

contrast to the dislocation (Ni and Markenscoff, 2008). However, for a spherical inclu-

sion the furthermost point of the back of the inclusion, where a discontinuity occurs, also

contributes to the “driving force” on the front boundary.

In the present treatment, the radiated fields from a constrained (in an elastic matrix)

three-dimensional linearly elastic inclusion occupying x1 ≤ R0 for t ≤ 0, and expand-

ing/shrinking in a general subsonic motion of the plane inclusion boundary according

to x1 = R0 + �(t), are calculated based on Willis (1965, equation (26)) for inclusions

with time-dependent boundaries constrained in an elastic matrix that is traction-free on

the boundary. The Willis expression involves the three-dimensional dynamic Green’s

function for a point force in an infinite elastic body, and is the exact dynamic analog to

the static Eshelby expression (1957). The eigenstrain is general, but due to antisymme-

tries in some terms of the dynamic Green’s function, the evaluation of the integrals is

simplified. The solution for the displacement is obtained (modulo rigid body motion),
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from which the strains, rotations, jumps thereof, and “driving force” are obtained for

general uniform eigenstrain. In the dynamic case, here as well as in Markenscoff and Ni

(2010), for the same reason as in the static half-plane inclusion (Dundurs and Marken-

scoff, 2009), the obtained solution is unique, since it is derived by the elasticity solution

for a constrained inclusion in an infinite medium with zero tractions on the boundary

at infinity, having as initial condition the Eshelby static fields. No superposed compat-

ible externally applied fields at infinity are allowed (which would increase the energy,

e.g. Mura (1982), and, which were called by Dundurs and Markenscoff, 2009, “rogue

states”). The “driving force” has the same expression both for expanding and shrinking

motion, resulting in expenditure of energy for motion of the boundary both cases. The

case of shear eigenstrain ε∗12, which is frequently of interest in phase transformations

(e.g. Mura, 1982), is part of the solution. By superposition of the half-space fields, the

radiated fields for a strip inclusion with shear eigenstrain, expanding and shrinking in

either direction, are obtained, and the “driving force” computed. The “driving force”

has a contribution also from the jump discontinuity at the other boundary, when it has

the time to arrive, similar to the contribution to the front boundary from the back of the

spherically expanding inclusion (Markenscoff and Ni, 2010).

In the present treatment, the radiated fields from a constrained (in an elastic matrix)

three-dimensional linearly elastic inclusion occupying x1 ≤ R0 for t ≤ 0, and expand-

ing/shrinking in a general subsonic motion of the plane inclusion boundary according

to x1 = R0 + �(t), are calculated based on Willis (1965, equation (26)) for inclusions

with time-dependent boundaries constrained in an elastic matrix that is traction-free on

the boundary. The Willis expression involves the three-dimensional dynamic Green’s

function for a point force in an infinite elastic body, and is the exact dynamic analog to

the static Eshelby expression (1957). The eigenstrain is general, but due to antisymme-

tries in some terms of the dynamic Green’s function, the evaluation of the integrals is

simplified. The solution for the displacement is obtained (modulo rigid body motion),

from which the strains, rotations, jumps thereof, and “driving force” are obtained for

general uniform eigenstrain. In the dynamic case, here as well as in Markenscoff and Ni

(2010), for the same reason as in the static half-plane inclusion (Dundurs and Marken-

scoff, 2009), the obtained solution is unique, since it is derived by the elasticity solution

for a constrained inclusion in an infinite medium with zero tractions on the boundary at

infinity, having as initial condition the Eshelby static fields. The static Eshelby fields for

the half-space inclusion are unique minimum energy ones, as derived from the minimum

energy solution of the spherical inclusion by a limiting process. No superposed compat-

ible externally applied fields at infinity are allowed (which would increase the energy,

e.g. Mura (1982), and which were called by Dundurs and Markenscoff, 2009, “rogue

states”). The “driving force” has the same expression both for expanding and shrinking

motion, resulting in expenditure of energy for motion of the boundary in both cases.

The case of shear eigenstrain ε∗12, which is frequently of interest in phase transformations

(e.g. Mura, 1982), is part of the solution. By superposition of the half-space fields, the

radiated fields for a strip inclusion with shear eigenstrain, expanding and shrinking in

either direction, are obtained, and the “driving force” computed. The “driving force”

has a contribution also from the jump discontinuity at the other boundary, when it has



532 X. MARKENSCOFF AND L. NI

the time to arrive, similar to the contribution to the front boundary from the back of

the spherically expanding inclusion (Markenscoff and Ni, 2010). The presence of applied

loading contributes the counterpart of the Peach-Koehler force of dislocations, in addition

to the self-force. In the absence of dissipation, the vanishing of the total driving force,

as required by Noether’s theorem (also, Eshelby, 1970), provides the relation between

loading and velocity of the plane inclusion boundary.

The applications are wide-ranging: the obtained result is the supply of work into

the moving interface, by no matter what source of energy rate. Also, the radiated

fields obtained can be used as the external loading on the interaction with other de-

fects. The dynamically expanding Eshelby inclusion may have important applications

in the phenomena of moving phase boundaries, such as in martensitic transformations

due to dynamic loading, and in earthquake modelling. Recently, Yang, Escobar and

Clifton (2009) used a constrained Eshelby inclusion analysis to model the inducement of

martensitic phase transformations from applied loading; we refer to this reference for an

updated review of the literature on this topic. In geophysics, Burridge and Willis (1969)

treated briefly the ellipsoidal inclusion with transformation strain in an anisotropic ma-

terial expanding self-similarly, and suggested that it may be an earthquake source model.

Some transformation strain models applied to geophysics are referenced here and con-

cern: the mechanisms at the focus of deep earthquakes (Randall and Knopoff, 1970),

analysis based on successive transformation strains applied quasi-statically presented by

Mendlguren and Aki, 1978, as a self-organizing mechanism of faulting (Green and Burn-

ley, 1989), fault reactivation at great depth (Houston and Williams, 1991; Wiens and

Snider, 2001), shearing instabilities due to transformation strains modeling the mechan-

ics of deep earthquakes (H.W. Green II, 2007). Also, large locked fault patches modeled

by transformation strain are shown to control the rapture process in earthquakes (Chlieh

et al., 2008, Kanamori, 2008).

Radiated fields from an expanding constrained half-space inclusion with

general eigenstrain. We follow the analysis of Willis (1965) treating constrained in-

clusions with time-dependent eigenstrain, and, more specifically, equation (26) of Willis

(1965) for the displacement field ui(x, t) due to eigenstrain ε∗ij :

ui(x, t) =

∫ +∞

−∞
dt′

∫
D

Cjk�mε∗�m(x, t)
∂

∂xk
Gij(x− x′, t− t′)dV ′, (1)

where D denotes the whole 3-dimensional space, ε∗ij the eigenstrain and Gij the dynamic

Green’s function (e.g., Love, 1944),

Gij(x− x′, t− t′) = gij(c2)− gij(c1) +
δij

4πρc22r̄
δ(t̄− r̄

c2
),

where

gij(c) =

{
t̄

r̄2

(
3r̄i r̄j
r̄3

− δij
r̄

)
H

( r̄
c
− t̄

)
− r̄i r̄j

r̄3
1

c2
δ
(
t̄− r̄

c

)} 1

4πρ
(2)

with

t̄ = t− t′, r̄i = xi − xi
′, r̄2 = (x1 − x′

1)
2 + (x2 − x′

2)
2 + (x3 − x′

3)
2,
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c1 =
√
(λ+ 2μ)/ρ, c2 =

√
μ/ρ.

We will apply equation (1) to a constrained inclusion occupying the half-space x1 ≤ R0

for t ≤ 0 and expanding according to x1 = R0 + �(t), such that �(t) = 0 for t ≤ 0, i.e.,

ε∗�m(x, t) = ε∗�mH(R0 + �(t)− x1). (3)

We will consider the solution of the problem with eigenstrain given by equation (3), as

the superposition of the two problems, so that for Problem II, boundary conditions of

zero tractions at infinity apply:

Problem I. Eigenstrain ε∗ijH(R0 − x1) for t ≤ 0, and corresponding displacement

u0
i (x).

Problem II. Eigenstrain ε∗ij [H(R0+�(t)− x1)−H(R0 − x1)] and corresponding dis-

placement denoted by u∗
i and defined by

u∗
i (x, t) = ui(x, t)− u0

i (x). (4)

We proceed with the solution of Problem II. Considering the fundamental equation

(1), we have

u∗
i (x, t) =

∫ +∞

−∞
dt′

∫ +∞

−∞
dx′

1dx
′
2dx

′
3Cjk�mε∗�m [H(R0 + �(t′)− x′

1)

− H(R0 − x′
1)]

∂

∂x′
k

Gij(x− x′, t− t′)

=

∫ ∞

0

dt′
∫ +∞

−∞
dx′

1dx
′
2dx

′
3Cj1�mε∗�m [δ(R0 + �(t′)− x′

1)

− δ(R0 − x′
1)]Gij(x− x′, t− t′)

(5)

since Gij = 0 at x′
i = ±∞, i = 1, 2, 3, and �(t) = 0 for t < 0.

Thus, the problem reduces to the evaluation of the integral in (5), namely

u∗
i (x, t) =

∫ ∞

0

dt′
∫ +∞

−∞
dx′

1Cji�mε∗�m [δ(R(t′)− x′
1)

− δ(R0 − x′
1)]

∫ +∞

−∞
dr̄2dr̄3Gij(r̄1, r̄2, r̄3; t̄).

(6)

The evaluation is simplified by noting that the Green’s function Gij(r̄1, r̄2, r̄3; t̄) is an

odd function in r̄2 and r̄3 for i �= j. Hence, the nonzero contributions to (6) are for i = j

only. For an isotropic material the elastic coefficient tensor is

Cjk�m = λδjkδ�m + μ(δj�δkm + δjmδk�),

so that

C11�mε∗�m = C1111ε
∗
11 + C1122ε

∗
22 + C1133ε

∗
33 = (λ+ 2μ)ε∗11 + λ(ε∗22 + ε∗33) = A′

1 (7)

and equation (6) reduces, for i = 1, to

u∗
1(x, t) =

∫ ∞

0

dt′
∫ +∞

−∞
dx′

1A
′
1 [δ(R(t′)− x′

1)− δ(R0 − x′
1)]

∫ +∞

−∞
dr̄2dr̄3G11(r̄1, r̄2, r̄3; t̄).

(8)



534 X. MARKENSCOFF AND L. NI

To evaluate the integral with respect to dr̄2, dr̄3, using (2), we have∫ +∞

−∞
dr̄2dr̄3G11(r̄1, r̄2, r̄3; t̄) =

∫ +∞

−∞
dr̄2dr̄3

[
g11(c2)− g11(c1) +

δ(t̄− r̄/c2)

4πρc22r̄

]
. (9)

We proceed with the evaluation of the following integral for c > 0:∫ +∞

−∞
dr̄3g11(c) =

2t̄

R4

(
1−

√
c2t̄2 −R2H(ct̄−R)

ct̄

)(
r̄21 − r̄22

)
− 2r̄21H(ct̄−R)

R2c
√
c2t̄2 −R2

, (10)

where R2 = r̄21 + r̄22, and∫ +∞

−∞
dr̄2

∫ +∞

−∞
dr̄3 [g11(c2)− g11(c1)] =

∫ +∞

−∞
dr̄2 [φ(c1)− φ(c2)] , (11)

where

φ(c) =
1

4πρ

(
2
(
r̄21 − r̄22

)√
c2t̄2 −R2H(ct̄−R)

R4c
+

2r̄21H(ct̄−R)

R2c
√
c2t̄2 −R2

)
.

Since we have ∫ +∞

−∞
dr̄2φ(c) =

1

2ρ

H(ct̄− |r̄1|)
c

, (12)

then∫ +∞

−∞
dr̄2

∫ +∞

−∞
dr̄3 [g11(c2)− g11(c1)] =

1

2ρ

[
H(c1t̄− |r̄1|)

c1
− H(c2t̄− |r̄1|)

c2

]
. (13)

As for the integration of the last term of G11(x− x′, t− t′), we have∫ +∞

−∞
dr̄2

∫ +∞

−∞
dr̄3

δ(t̄− r̄/c2)

4πρc22
=

∫ +∞

−∞
dr̄2

H(c2t̄−R)

2πρc2
√
c22t̄

2 −R2
=

H(c2t̄− |r̄1|)
2ρc2

. (14)

Therefore, from (10) to (14) we have the evaluation of (9) as∫ +∞

−∞

∫ +∞

−∞
dr̄2dr̄3G11(r̄1, r̄2, r̄3; t̄) =

H(c1t̄− |r̄1|)
2ρc1

=
c1H(c1t̄− |x1 − x′

1|)
2(λ+ 2μ)

. (15)

Substituting (15) into (8) we have

u∗
1(x, t) =

∫ ∞

0

dt′
c1A1

2

[
H

(
t̄− |x1 −R(t′)|

c1

)
−H

(
t̄− |x1 −R0|

c1

)]
, (16)

where

A1 =
A′

1

λ+ 2μ
=

(
ε∗11 +

λ

λ+ 2μ
(ε∗22 + ε∗33)

)
. (17)

Moreover, it can be shown that∫ ∞

0

dt′ H

(
t− t′ − |x1 −R0|

c1

)
=

(
t− |x1 −R0|

c1

)
H

(
t− |x1 −R0|

c1

)
, (18)∫ ∞

0

dt′ H

(
t− t′ − |x1 −R0 − �(t′)|

c1

)
= τ1H

(
t− |x1 −R0|

c1

)
, (19)

where τ1, 0 ≤ τ1 ≤ t, is the unique solution of the equation

f1(τ ) ≡ c1(t− τ)− |x1 −R0 − �(τ)| = 0 (20)
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because the function f1(τ ) is monotonic for subsonic motion |�̇| < c1, and f(0) ≥ 0,

f(t) ≤ 0, since it is solved only for c1t > |x1 −R0|.
From (16), (18) and (19), we have the solution for u∗

1(x, t):

u∗
1(x, t) =

c1A1

2

[
τ1 −

(
t− |x1 − R0|

c1

)]
H

(
t− |x1 −R0|

c1

)
. (21)

Similarly, from (1),

u∗
2(x, t) =

∫ ∞

0

dt′
∫ +∞

−∞
dx′

1dx
′
2dx

′
3Cj1�mε∗�m [δ(R(t′)− x′

1)− δ(R0 − x′
1)]

×G2j(x− x′, t− t′)

=

∫ ∞

0

dt′
∫ +∞

−∞
dx′

1 2με
∗
12 [δ(R(t′)− x′

1)− δ(R0 − x′
1)] (22)

×
∫ +∞

−∞
dr̄2dr̄3G22(r̄; t− t′),

where the last integral factor is written as∫ +∞

−∞
dr̄2dr̄3G22 =

∫ +∞

−∞
dr̄2dr̄3

[
g22(c2)− g22(c1) +

δ(t̄− |r̄|/c2)
4πρc22r̄

]
. (23)

The calculation shows that ∫ +∞

−∞
dr̄2dr̄3g22(c) = 0 (24)

and (22) reduces to the evaluation of the term∫ +∞

−∞
dr̄2dr̄3G22 =

∫ +∞

−∞
dr̄2dr̄3

δ(t̄− |r̄|/c2)
4πρc22r̄

=
H(c2t̄− |r̄1|)

2ρc2
(25)

according to (14). Substituting (25) into (22), we have

u∗
2(x, t) =

∫ ∞

0

dt′
2με∗12
2ρc2

[
H −

(
t̄− |x1 −R(t′)|

c2

)
−H

(
t̄− |x1 −R0|

c2

)]

=
c2A2

2

[
τ2 −

(
t− |x1 −R0|

c2

)]
H

(
t̄− |x1 −R0|

c2

)
, (26)

where A2 = 2ε∗12 and τ2, 0 ≤ τ2 ≤ t, is the unique solution of the equation

f2(τ ) = c2(t− τ )− |x1 −R0 − �(τ )| = 0 (27)

for subsonic motion |�̇| < c2.

In view of the symmetry between the x2 and x3 coordinates, we have

u∗
3(x, t) =

c2A3

2

[
τ2 −

(
t− |x1 − R0|

c2

)]
H

(
t̄− |x1 −R0|

c2

)
, (28)

where A3 = 2ε∗13.

Thus, we finally obtain the solution for the displacement of the dynamic half-space

constrained expanding inclusion (superposition of Problem I plus Problem II):

u1(x, t) =
c1A1

2

[
τ1 −

(
t− |x1 −R0|

c1

)]
H

(
t− |x1 −R0|

c1

)
+ u0

1(x), (29)
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u2(x, t) =
c2A2

2

[
τ2 −

(
t− |x1 −R0|

c2

)]
H

(
t− |x1 −R0|

c2

)
+ u0

2(x), (30)

u3(x, t) =
c2A3

2

[
τ2 −

(
t− |x1 −R0|

c2

)]
H

(
t− |x1 −R0|

c2

)
+ u0

3(x), (31)

where

A1 = ε∗11 +
λ

λ+ 2μ
(ε∗22 + ε∗33),

A2 = ε∗12 + ε∗21 = 2ε∗12,

A3 = ε∗13 + ε∗31 = 2ε∗13 (32)

and τi, 0 ≤ τi ≤ t, is the unique solution for subsonic motion |�̇| < c2 of the equation

ci(t− τi) = |x1 − R0 − �(τi)| (33)

for i = 1, 2, respectively, and u0
i (x) for i = 1, 2, 3 are the displacement solutions (modulo

rigid body motion) for the static constrained half-space inclusion ε∗ijH(R0−x1) that are

obtained here for general eigenstrain. In Markenscoff and Ni (2010), the static half-space

inclusion solution was obtained only for dilatational eigenstrain.

The static solution for a half-space inclusion was first obtained in 2D by Dundurs and

Markenscoff (2009) on the basis of a limiting procedure as the radius of a circular inclusion

tends to infinity. This limit corresponds to the Eshelby (1957) solution for the interior

domain, plus the Hill (1961) jump conditions for the outside domain. This is the mini-

mum energy solution for the half-space inclusion, since any superposed self-equilibrated

and compatible tractions at infinity (“rogue states”, Dundurs and Markenscoff, 2009)

increase the total energy of the system (Mura, 1982, p. 83, Eqn. (13.8)). In three

dimensions, similarly, the fields for the half-space inclusion with uniform general eigen-

strain are the Eshelby ones for the interior domain for the sphere (Mura, 1982, p. 68,

Eqn. (11.21)a), plus the Hill (1961) jump conditions for the exterior, or equivalently,

continuity of tractions and compatibility of the deformation at the interface (see, also,

Markenscoff, 1998). They constitute the solution of Problem I.

Radiated stress field and jump relations for an expanding/shrinking half-

space inclusion. Now we analyze and obtain the stress field for the dynamic half-space

inclusion, either for motion with �(t) > 0, or for motion with �(t) < 0, including all

possible subsonic motions with velocities of any sign, which would correspond to both

expanding and shrinking motions.

The total dynamic deformation (strain) field is obtained from the dynamic displace-

ment solution (29)-(31):

ε11 =
∂u1

∂x1
=

∂u∗
1

∂x1
+

∂u0
1

∂x1
, ε22 =

∂u2

∂x2
, ε33 =

∂u3

∂x3
,

ε12 =
1

2

(
∂u1

∂x2
+

∂u2

∂x1

)
=

1

2

(
∂u0

1

∂x2
+

∂u∗
2

∂x1
+

∂u0
2

∂x1

)
=

1

2

∂u∗
2

∂x1
+ ε012,

ε13 =
1

2

∂u∗
3

∂x1
+ ε013, ε23 = ε023, (34)
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where ε0ij for i, j = 1, 2, 3 are the total strain fields for the static half-space inclusion

with the eigenstrain ε∗ijH(R0 − x1), which in the interior are given from the eigenstrain

and the Eshelby tensor for the sphere (e.g., Mura, Eqn. (11.21)), and at the exterior are

calculated from the coupled system of equations that express the continuity of tractions

and compatibility of deformation at the interface.

By using (34) in the strain-stress relation for inclusions,

σij = λδij(εkk − ε∗kk) + 2μ(εij − ε∗ij), (35)

we calculate the stress components for the dynamic fields:

(a) Stress σ11:

σ11 = (λ+ 2μ)(ε11 − ε∗11H(R(t)− x1)) + λ(ε22 − ε∗22H(R(t)− x1))

+ λ(ε33 − ε∗33H(R(t)− x1))

= (λ+ 2μ)ε11 + λ(ε22 + ε33)((λ+ 2μ)ε∗11 + λε∗22 + λε∗33)H(R(t)− x1))

= (λ+ 2μ)
∂u∗

1

∂x1
+
(
(λ+ 2μ)ε011 + λ(ε022 + ε033)

)
− (λ+ 2μ)A1H(R(t)− x1)

= (λ+ 2μ)
∂u∗

1

∂x1
+ σ0

11 − (λ+ 2μ)A1 [H(R(t)− x1)−H(R0 − x1)] . (36)

From (21), we have, for c1t > |x1 −R0|,

∂u∗
1

∂x1
=

⎧⎨
⎩

c1A1

2

(
∂τ1
∂x1

+ 1
c1

)
, x1 > R0,

c1A1

2

(
∂τ1
∂x1

− 1
c1

)
, x1 < R0.

(37)

From equation (27) defining τ1, we have

∂τ1
∂x1

=

{
1

�̇(τ1)−c1
, x1 > R0 + �(τ1),

1
�̇(τ1)+c1

, x1 < R0 + �(τ1).
(38)

It is proved that, for the subsonic motion, i.e.,
∣∣∣�̇∣∣∣ < ci, x1 < R0 + �(τi) if and only if

x1 < R0 + �(t), for i = 1, 2, respectively, so that (38) implies

∂τ1
∂x1

=

{
1

�̇(τ1)−c1
, x1 > R0 + �(t),

1
�̇(τ1)+c1

, x1 < R0 + �(t).
(39)

We consider separately the two cases, of motion �(t) > 0 and of motion �(t) < 0:

For �(t) > 0, so that R(t) > R0, we have for the total stress σ11 the solution

σ11 = σ0
11 + (λ+ 2μ)

c1A1

2

(
1

�̇(τ1) + c1
− 1

c1

)
H(R0 − x1)H

(
t− |x1 −R0|

c1

)

+ (λ+ 2μ)
c1A1

2

(
1

�̇(τ1) + c1
+

1

c1

)
[H(R(t)− x1)−H(R0 − x1)]

+ (λ+ 2μ)
c1A1

2

(
1

�̇(τ1)− c1
+

1

c1

)
H(x1 −R(t))H

(
t− |x1 −R0|

c1

)
− (λ+ 2μ)A1 [H(R(t)− x1)−H(R0 − x1)]

= σ0
11 +

[
(λ+ 2μ)

c1A1

2

(
1

�̇(τ1) + c1
− 1

c1

)
H(R(t)− x1)
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+ (λ+ 2μ)
c1A1

2

(
1

�̇(τ1)− c1
+

1

c1

)
H(x1 −R(t))

]
H

(
t− |x1 −R0|

c1

)

= σ0
11 −

[
(λ+ 2μ)A1

2

�̇(τ1)

�̇(τ1) + c1
H(R(t)− x1)

− (λ+ 2μ)A1

2

�̇(τ1)

�̇(τ1)− c1
H(x1 −R(t))

]
H

(
t− |x1 −R0|

c1

)
. (40)

For motion with �(t) < 0, R(t) < R0, we have

σ11 = σ0
11 + (λ+ 2μ)

c1A1

2

(
1

�̇(τ1) + c1
− 1

c1

)
H(R(t)− x1)H

(
t− |x1 −R0|

c1

)

+ (λ+ 2μ)
c1A1

2

(
1

�̇(τ1)− c1
− 1

c1

)
[H(R0 − x1)−H(R(t)− x1)]

+ (λ+ 2μ)
c1A1

2

(
1

�̇(τ1)− c1
+

1

c1

)
H(x1 −R0)H

(
t− |x1 −R0|

c1

)
− (λ+ 2μ)A1 [H(R(t)− x1)−H(R0 − x1)]

= σ0
11 +

[
(λ+ 2μ)

c1A1

2

(
1

�̇(τ1) + c1
− 1

c1

)
H(R(t)− x1)

+ (λ+ 2μ)
c1A1

2

(
1

�̇(τ1)− c1
+

1

c1

)
H(x1 −R(t))

]
H

(
t− |x1 −R0|

c1

)
. (41)

Hence, for both �(t) > 0 and �(t) < 0, σ11 is given by (40), which is the same expression

as (41).

Noting that the static traction is continuous, we have

(σ0
11)

(ex) = (σ0
11)

(in) = σ0
11, (42)

where

σ0
11 = −32μ(λ+ μ)

15(λ+ 2μ)
ε∗11 −

2μ(7λ+ 2μ)

15(λ+ 2μ)
(ε∗22 + ε∗33) (43)

so that from (40) the jump relation for the dynamic stress component σ11 across the

moving inclusion boundary follows:

[[σ11]] = σ+
11 − σ−

11 = ((λ+ 2μ)ε∗11 + λε∗22 + λε∗33)
�̇2(t)

�̇2(t)− c21
, (44)

where the brackets denote jumps and

σ±
11 = lim

x1→R(t)±
σ11. (45)

(b) Stresses σ22 and σ33:

σ22 = λ [ε11 − ε∗11H(R(t)− x1)] + (λ+ 2μ) [ε22 − ε∗22H(R(t)− x1)]

+ λ [ε33 − ε∗33H(R(t)− x1)]

= λ

(
∂u∗

1

∂x1
+

∂u0
1

∂x1

)
+ (λ+ 2μ)

∂u0
2

∂x2
+ λ

∂u0
3

∂x3

− [(λ+ 2μ)ε∗22 + λ(ε∗11 + ε∗22)]H(R(t)− x1)
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= σ0
22+λ

∂u∗
1

∂x1
−[(λ+ 2μ)ε∗22 + λ(ε∗11 + ε∗22)] [H(R(t)−x1)−H(R0−x1)] . (46)

The static part is obtained from Mura (Eqn. (11.21)) for the interior field quantities,

while the exterior ones are calculated from the coupled system of equations that express

the continuity of tractions and compatibility of deformation at the interface, and the

constitutive relations (35), from which is obtained:

σ0
22 = σ0

22
(in)

+

[
4μ(λ+ μ)

λ+ 2μ
ε∗22 +

2λμ

λ+ 2μ
ε∗33

]
H(x1 −R0). (47)

Assuming first motion with �(t) > 0 and, consequently, R(t) > R0,

σ22 = σ0
22

(in)
+

[
4μ(λ+ μ)

λ+ 2μ
ε∗22 +

2λμ

λ+ 2μ
ε∗33

]
H(x1 −R0)

+
λc1A1

2

(
1

�̇(τ1) + c1
− 1

c1

)
H(R0 − x1)H

(
t− |x1 −R0|

c2

)

+
λc1A1

2

(
1

�̇(τ1) + c1
+

1

c1

)
[H(R(t)− x1)−H(R0 − x1)]

+
λc1A1

2

(
1

�̇(τ1)− c1
+

1

c1

)
H(x1 −R(t))H

(
t− |x1 −R0|

c2

)
− [λε∗11 + (λ+ 2μ)ε∗22 + λε∗33] [H(R(t)− x1)−H(R0 − x1)]

=

[
σ0
22

(in)
+

λc1A1

2

(
1

�̇(τ1) + c1
− 1

c1

)
H

(
t− |x1 −R0|

c2

)]
H(R0 − x1)

+

[
λc1A1

2

(
1

�̇(τ1) + c1
+

1

c1

)
+

4μ(λ+ μ)

λ+ 2μ
ε∗22

+
2λμ

λ+ 2μ
ε∗33 − (λε∗11 + (λ+ 2μ)ε∗22 + λε∗33)

]
[H(R(t)− x1)−H(R0 − x1)]

+

[
σ0
22

(ex)
+

λc1A1

2

(
1

�̇(τ1)− c1
+

1

c1

)
H

(
t− |x1 −R0|

c2

)]
H(x1 −R(t))

=

[
σ0
22

(in) − λA1

2

(
�̇(τ1)

�̇(τ1) + c1

)
H

(
t− |x1 −R0|

c2

)]
H(R(t)− x1)

+

[
σ0
22

(ex)
+

λA1

2

(
�̇(τ1)

�̇(τ1)− c1

)
H

(
t− |x1 −R0|

c2

)]
H(x1 −R(t)). (48)

Similarly, calculating σ22 for �(t) < 0, it is verified that for �(t) < 0, the expression of

σ22 is also given by (48).

The jump relation for the stress σ22 is

[[σ22]] =

(
4μ(λ+ μ)

λ+ 2μ
ε∗22 +

2λμ

λ+ 2μ
ε∗33

)
+

(
λε∗11 +

λ2

λ+ 2μ
(ε∗22 + ε∗33)

)
�̇2(t)

�̇2(t)− c21
. (49)

In view of symmetry between the x2 and x3 coordinates, σ33 and its jump are obtained

by interchanging the indices 2 and 3 in the expression for σ22.

(c) Stresses σ12 and σ13:

σ12 = 2μ [ε12 − ε∗12H(R(t)− x1)]H(R0 − x1)
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= 2μ

[
1

2

(
∂u1

∂x2
+

∂u2

∂x1

)
− ε∗12H(R(t)− x1)

]

= μ

[(
∂u0

1

∂x2
+

∂u∗
2

∂x2
+

∂u0
2

∂x1

)
− 2ε∗12H(R(t)− x1)

]

= σ0
12 + μ

[
∂u∗

2

∂x1
− 2ε∗12 (H(R(t)− x1)−H(R0 − x1))

]
. (50)

In a similar manner, as in deriving the stress σ11, we have, for c2t > |x1 −R0|,

∂u∗
2

∂x1
=

⎧⎨
⎩

c2A2

2

(
∂τ2
∂x1

+ 1
c2

)
, x1 > R0,

c2A2

2

(
∂τ2
∂x1

− 1
c2

)
, x1 < R0

(51)

and

∂τ2
∂x1

=

{
1

�̇(τ2)−c2
, x1 > R0 + �(t),

1
�̇(τ2)+c2

, x1 < R0 + �(t).
(52)

Assuming first �(t) > 0, we obtain

σ12 = σ0
12 +

μc2A2

2

(
1

�̇(τ2) + c2
− 1

c2

)
H(R0 − x1)H

(
t− |x1 −R0|

c2

)

+
μc2A2

2

(
1

�̇(τ2) + c2
+

1

c2

)
[H(R(t)− x1)−H(R0 − x1)]

+
μc2A2

2

(
1

�̇(τ2)− c2
+

1

c2

)
H(x1 −R(t))H

(
t− |x1 −R0|

c2

)
− μA2 [H(R(t)− x1)−H(R0 − x1)]

= σ0
12 +

[
μc2A2

2

(
1

�̇(τ2) + c2
− 1

c2

)
H(R(t)− x1)

+
μc2A2

2

(
1

�̇(τ2)− c2
+

1

c2

)
H(x1 −R(t))

]
H

(
t− |x1 −R0|

c2

)

= σ0
12 −

[
με∗12

�̇(τ2)

�̇(τ2) + c2
H(R(t)− x1)

− με∗12
�̇(τ2)

�̇(τ2)− c2
H(x1 −R(t))

]
H

(
t− |x1 −R0|

c2

)
. (53)

It is verified by the analogous calculation that for motion with �(t) < 0, σ12 is also given

by (53).

Noting that (σ0
12)

(in) = (σ0
12)

(ex), we evaluate for the dynamic stress component σ12

the jump across the moving plane inclusion boundary

[[σ12]] = με∗12
�̇2(t)

�̇2(t)− c22
. (54)

By symmetry,
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σ13 = σ0
13 −

[
με∗13

�̇(τ2)

�̇(τ2) + c2
H(R(t)− x1)

− με∗13
�̇(τ2)

�̇(τ2)− c2
H(x1 −R(t))

]
H

(
t− |x1 −R0|

c2

)
,

[[σ13]] = με∗13
�̇2(t)

�̇2(t)− c22
. (55)

(d) Stress σ23:

σ23 = 2μ

[
1

2

(
∂u2

∂x3
+

∂u3

∂x2

)
− ε∗23H(R(t)− x1)

]

= 2μ

[
1

2

(
∂u0

2

∂x3
+

∂u0
3

∂x2

)
− ε∗23H(R(t)− x1)

]
= μ

[
σ0
23 − 2ε∗23 (H(R(t)− x1)−H(R0 − x1))

]
. (56)

Noting that the static component is

σ0
23 = σ0

23
(in) − 2με∗23H(x1 −R0), (57)

we have for the total stress σ23,

σ23 = σ0
23

(in)
H(R(t)− x1) + σ0

23
(ex)

H(x1 −R(t)), (58)

[[σ23]] = 2με∗23, (59)

σ0
23

(ex)
=

8μ(6λ+ 11μ)

15(λ+ 2μ)
ε∗23. (60)

Thus, all the three-dimensional stress components radiated from a half-space contained

inclusion with general uniform eigenstrain moving from rest in general subsonic expand-

ing or shrinking motion �(t) have been evaluated at any field point (x1, t), and the jumps

across the moving plane boundary have also been evaluated. The Hadamard jump con-

ditions can be easily shown to be satisfied, as in Markenscoff and Ni (2010).

The dynamic rotation field and its jumps for an expanding half-space in-

clusion under shear eigenstrain. By the fundamental Clebsch theorem of elastody-

namics (Sternberg, 1960), any dynamic displacement solution of the Navier equations

can be uniquely decomposed into a dilatational part propagating with the dilatational

wave speed c1, and a rotational part with the shear wave speed c2. We calculate here

the rotation as a function of (x1, t, �(t)), as well as its jump at the moving inclusion

boundary, since, for shear eigenstrain inclusion, what propagates is the rotation.

It may be noted here that the rotation inside a spherical static inclusion with general

eigenstrain is zero (Eshelby, 1961), and that, for shear eigenstrain, there is a jump on

the boundary, so that in the outside domain the rotation is nonzero, and is calculated

from the jump conditions.

The dynamic rotation field is evaluated below. The rotation is defined by

ω�m =
1

2

(
∂u�

∂xm
− ∂um

∂x�

)
for �,m = 1, 2, 3. (61)



542 X. MARKENSCOFF AND L. NI

We examine first the rotation ω12, for �(t) > 0,

ω12 =
1

2

(
∂u1

∂x2
− ∂u2

∂x1

)
=

1

2

(
∂u0

1

∂x2
− ∂u∗

2

∂x1
− ∂u0

2

∂x1

)
=

1

2

(
∂u0

1

∂x2
− ∂u0

2

∂x1

)
− 1

2

∂u∗
2

∂x1

= ω0
12 −

1

2

[
c2A2

2

(
1

�̇(τ2) + c2
− 1

c2

)
H(R0 − x1)

+
c2A2

2

(
1

�̇(τ2) + c2
+

1

c2

)
(H(R(t)− x1)−H(R0 − x1))

+
c2A2

2

(
1

�̇(τ2)− c2
+

1

c2

)
H(x1 −R(t))

]
H

(
t− |x1 −R0|

c2

)
. (62)

The initial rotation in the interior of a spherical static inclusion is zero (Eshelby, 1961),

while the jump is determined from the jump in the deformation gradient:

∂u2

∂x1
=

1

2

(
∂u2

∂x1
+

∂u1

∂x2

)
+

1

2

(
∂u2

∂x1
− ∂u1

∂x2

)
, (63)[[

∂u2

∂x1

]]
= ε∗ij +

1

2

[[
∂u2

∂x1

]]
, (64)

so that the initial rotation is

ω0
12 = ε∗21H(x1 −R0). (65)

From (62) and (65) we have for the total rotation (61) and its jump across the moving

boundary:

ω12 = ε∗21H(x1 −R(t)) +
ε∗21
2

[
�̇(τ2)

�̇(τ2) + c2
H(R(t)− x1)

+
�̇(τ2)

c2 − �̇(τ2)
H(x1 −R(t))

]
H

(
t− |x1 −R0|

c2

)
, (66)

[[ω12]] = ε∗12
c22 + �̇2(t)

c22 − �̇2(t)
. (67)

The rotation ω13 can be obtained by replacing the index 2 by 3 in the expression of ω12.

Moreover, for the third component of the rotation,

ω23 =
1

2

(
∂u2

∂x3
− ∂u3

∂x2

)
=

1

2

(
∂u0

2

∂x3
− ∂u0

3

∂x2

)
= ω0

23 = 0. (68)

Driving force on a plane half-space expanding/shrinking inclusion bound-

ary with general eigenstrain. The “driving force” on the dynamic half-space inclusion

with boundary {x |x1 = R0 + �(t)} and with general eigenstrain ε∗ijH(R(t)− x1) will be

defined in terms of the energy-release rate for a moving singularity in a purely mechanical

system, as obtained in the context of moving cracks by Atkinson and Eshelby (1968),

Rice (1968), and Freund (1972).

For the moving plane boundary {(x1, x2, x3)|x1 = R0 + �(t)}, the integral surface Sε

enclosing the boundary consists of the plane {(x1, x2, x3)|x1 = R0 + �(t)± ε} on either

side of the moving boundary for an infinitesimal number ε > 0 (plus the areas at lateral
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boundaries at infinity which will give negligible contribution), so that the total energy-

release rate is

ε̇= lim
ε→0

∫
Sε

[njσij u̇i + vn(W + T )] dS

=

∫ ∞

−∞

∫ ∞

−∞

(
nj [[σij u̇i]] + �̇ [[W ]] + �̇ [[T ]]

)
dx2dx3, (69)

where n = (n1, n2, n3) is the outward normal of the moving boundary, vn = (vd,n), W

and T are the potential and kinetic energy densities, respectively (as in Markenscoff and

Ni, 2010).

The energy-release rate expression (69) further reduces for the moving plane boundary

to the expression (Stolz, 2003, Markenscoff and Ni, 2010)

ε̇ =

∫ ∞

−∞

∫ ∞

−∞
�̇(t)

(
[[W ]]− 〈σij〉

[[
∂ui

∂xj

]])
dx2dx3, (70)

where we defined the symbol 〈 〉 by

〈A〉 = 1

2
(A+ +A−).

Since the integrand in (70) is uniform and independent of (x2, x3), the “driving force”

per unit area in the direction to the boundary is defined to be

f = [[W ]]− 〈σij〉
[[

∂ui

∂xj

]]
. (71)

Noting that for static or moving inclusions,

W =
1

2
σij

(
∂ui

∂xj
− ε∗ij

)
, (72)

with

σij = Cijkm

(
∂uk

∂xm
− ε∗km

)
,

equation (71) reduces (Markenscoff and Ni, 2010) to

f = −〈σkm〉 [[ε∗km(x, t)]] . (73)

This expression is evaluated here for general eigenstrain, rather than only dilatational

in Markenscoff and Ni (2010), with the values of the stresses obtained in equations (40),

(48), (53), (58) and (60) above.

Thus, the “driving force”, or “self-force”, and energy-release rate (according to (70))

of a constrained half-space inclusion boundary moving in general expanding or shrinking

motion is obtained as:

f =−〈σkm〉 [[ε∗km(x, t)]]

=
3∑

i=1

1

2
ε∗11(σ

(in)
ii + σ

(ex)
ii ) + ε∗12(σ

(in)
12 + σ

(ex)
12 ) + ε∗13(σ

(in)
13 + σ

(ex)
13 ) + ε∗23(σ

(in)
23 + σ

(ex)
23 )

= f0 −
1

2

[(λ+ 2μ)ε∗11 + λ(ε∗22 + ε∗33)]
2

(λ+ 2μ)

c1�̇(t)

c21 − �̇2(t)
− 2μc2�̇(t)

c22 − �̇2(t)

[
(ε∗12)

2 + (ε∗13)
2
]
, (74)
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where f0 is the “self-force” or “driving force” on the boundary of a static half-space

inclusion given by

f0 = ε∗11σ
0
11 +

1

2
ε∗22(σ

0
22

(in)
+ σ0

22
(ex)

) +
1

2
ε∗33(σ

0
33

(in)
+ σ0

33
(ex)

)

+ 2σ0
12ε

∗
12 + 2ε∗13σ

0
13 + ε∗23(σ

0
23

(in)
+ σ0

23
(ex)

)

= −32μ(λ+ μ)

15(λ+ 2μ)
(ε∗11)

2 − 2μ(λ+ μ)

15(λ+ 2μ)

(
(ε∗22)

2 + (ε∗33)
2
)
− 4μ(7λ+ 2μ)

15(λ+ 2μ)
ε∗11(ε

∗
22 + ε∗33)

+
2μ(λ− 4μ)

15(λ+ 2μ)
ε∗22ε

∗
33 −

4μ(9λ+ 14μ)

15(λ+ 2μ)

(
(ε∗12)

2 + (ε∗13)
2
)
− 2μ(3λ− 2μ)

15(λ+ 2μ)
(ε∗23)

2. (75)

We compare the value of the “driving force” from equation (74) for the case of dilata-

tional eigenstrain ε∗ij = δijε
∗ to the one obtained by Markenscoff and Ni (2010) by the

limiting process from a spherically expanding inclusion. Expression (74) for dilatational

eigenstrain reduces to

f = −2μ(3λ+ 2μ)

(λ+ 2μ)
(ε∗)2 − (3λ+ 2μ)

2
(ε∗)

2

2(λ+ 2μ)

c1�̇(t)

c21 − �̇2(t)

in agreement with (Markenscoff and Ni, 2010). The first static term in the above ex-

pression coincides with the value obtained by Gavazza (1977), also Eshelby (1977). The

“driving force”, or “self-force” is negative, implying expenditure of the energy rate to

move the plane boundary, either in expanding or shrinking motion.

It may be noted that in the presence of externally applied loading σappl
ij , equation (73)

will yield the additional term to the driving force:

−〈σappl
k� 〉 [[ε∗k�(x, t)]] , (76)

which is the counterpart to the Peach-Koehler force of dislocations. This includes the

interaction energies in (72) and shows that the applied loading is associated only with the

eigenstrain, and not the velocity of the boundary, similarly as in dislocations. Moreover,

when the term given in (76) is added to equation (74), the total driving force is obtained,

and, in the absence of dissipation, the vanishing of it, as required by Noether’s theorem

(also, Eshelby, 1970), provides the kinetic relation between loading and velocity of the

plane inclusion boundary. The inclusion boundary remains at rest until the applied force

term given by equation (76) overcomes the static self-force f0 of equation (75) (Eshelby,

1977; Gavazza, 1977), at which point it becomes unstable and starts moving.

Radiated fields and “driving forces” on moving strip boundaries. The fun-

damental radiated fields solution for the half-space inclusion allows for the calculation

of the fields of an expanding/shrinking strip of general eigenstrain (see Fig. 1). Here,

only the strip with shear eigenstrain will be calculated explicitly, as this appears more

frequently in applications.

At rest, a strip is situated in the interval R2 ≤ x1 ≤ R1 with the eigenstrain

ε∗ij = εij [H(R1 − x1)−H(R2 − x1)] .

We assume that, starting from rest, the boundary x1 = R1 is expanding with velocity

�̇1(t) > 0, while the boundary x1 = R2 is expanding with velocity −�̇2(t), �̇2(t) > 0.
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The expanding strip is considered as a superposition of two dynamic half-space inclu-

sions:

(I): x1 ≤ R1 expanding in velocity �̇1(t) with ε∗ij ;

(II): x1 ≤ R2 < R1 shrinking in velocity −�̇2(t), �̇2(t) > 0, and with eigenstrain

−ε∗ij , assuming that the eigenstrain has only shear component ε∗21 = ε∗12 �= 0; then,

by superposition of equations (53), valid both for expanding and shrinking motions, we

have, as the total radiated stress,

σ12 = σ
(I)
12 − σ

(II)
12

= −με∗12

[
�̇1(τ3)

�̇1(τ3) + c2
H(R1 + �1(t)− x1)

− �̇1(τ3)

�̇1(τ3)− c2
H(x1 −R1 − �1(t))

]
H

(
t− |x1 −R0|

c2

)

+ με∗12

[
�̇2(τ4)

−�̇2(τ4) + c2
H(R2 − �2(t)− x1)

+
�̇2(τ4)

�̇2(τ4) + c2
H(x1 −R2 + �2(t))

]
H

(
t− |x1 −R0|

c2

)
, (77)

where τ3 is the unique solution of

c2(t− τ3) = |x1 −R1 − �1(τ3)|

and τ4 is the unique solution of

c2(t− τ4) = |x1 −R2 + �2(τ4)|

provided that the motion is subsonic, i.e., |�̇1|, |�̇2| < c2.

Moreover, from the continuity of the traction of the static problem we have
(
σ0
12

)(in)
=(

σ0
12

)(ex)
, so that σ

(I)0
12 = σ

(II)0
12 and these two terms cancel each other on the right-hand

side of equation (77), and the static fields do not contribute to the total stress for the

strip. It may also be noted that the stress σ21 = σ12 has discontinuities at the boundaries

x1 = R1 + �1(t) and x1 = R2 − �2(t) (Fig. 1).

Considering the value of the stress in equation (53), for early times when R2 + c2t <

R1 + �1(t), i.e., when the contribution from the other boundary x1 = R2 − �2(t) has no

time yet to reach the boundary x1 = R1 + �1(t), the “driving force” on the boundary

x1 = R1 + �1(t) is

f = −〈σ12〉 [[ε∗12(x, t)]] = −2μc2�̇1(t)ε
∗
12

2

c22 − �̇21(t)
. (78)

At the time t when R2+ c2t = R1+ �1(t), the contribution from the back boundary is

just reaching the front one, and the “driving force” on the boundary x1 = R1 + �1(t) is

f = −2μc2�̇1(t)ε
∗
12

2

c22 − �̇21(t)
+

μ�̇2(0)ε
∗
12

2

�̇2(0) + c2
(79)
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Fig. 1. An expanding strip with shear eigenstrain

and, immediately after, when R2+c2t > R1+�1(t), and the waves emitted from the back

boundary surpass the front one, the “driving force” on the boundary x1 = R1 + �1(t) is

f = −2μc2�̇1(t)ε
∗
12

2

c22 − �̇21(t)
+

2μ�̇2(τ
∗)ε∗12

2

�̇2(τ∗) + c2
, (80)

where τ∗ is the unique solution of

|R1 −R2 + �1(t) + �2(τ
∗)| = c2(t− τ∗).

As it appears from the last term in equations (79) and (80), the driving force on the

boundary of the strip also has a contribution from the motion of the other boundary

of the strip, when it has the time to reach it. The driving force on the back boundary

is similarly obtained. For expanding/shrinking strips of general eigenstrain, the driving

force can be similarly obtained by superposition of two half-space expanding/shrinking

inclusions, for which all the fields have been obtained here. A finite number of strips of

general eigenstrain, expanding/shrinking independently, can be obtained from the fields

obtained here, by superposition of all the contributions that have the time to reach the

boundary in question.
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