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Abstract. This paper is concerned with the global existence of smooth solutions to a
system of equations describing one-dimensional motion of a self-gravitating, radiative and
chemically reactive gas. We have proved that for any arbitrary large smooth initial data,
the problem under consideration admits a unique globally smooth (classical) solution.
Our results have improved those results by Umehara and Tani ([J. Differential Equations,
234(2007), 439-463; Proc. Japan Acad., 84, Ser. A(2008), 123-128]) and also by Qin,
Hu, Huang, and Ma.

1. Introduction. Radiation hydrodynamics [I7], [19], [30] describes the propagation
of thermal radiation through a fluid or gas. Similarly to ordinary fluid mechanics, the
equations of motion are derived from conservation laws for macroscopic quantities. How-
ever, when radiation is present, the classical “material” flow has to be coupled with the
radiation, which is an assembly of photons and needs a priori a relativistic treatment
(the photons are massless particles traveling at the speed of light). The whole problem
under consideration when the matter is in local thermodynamical equilibrium (LTE) is
thus a coupling between standard hydrodynamics for the matter and a radiative trans-
fer equation for the photon’s distribution; through a suitable description, as in plasma
when the radiation is LTE with matter and velocities are not too large, a nonrelativistic
one-temperature description is possible [I7], [30]. Moreover, if the matter is extremely
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radiative opaque, so that the matter-free path of photons is much smaller than the typ-
ical length of the flow, we obtain a simplified description (radiation hydrodynamics in
the diffusion limit) which amounts to solving a standard hydrodynamical (compressible
Navier-Stokes) problem system with additional correction terms in the pressure, the in-
ternal energy and the thermal conduction. To describe richer physical processes, for
simplicity we may consider the fluid as reactive and couple the dynamics with the first-
order chemical kinetics of combustion type, namely the one-order Arrhenius kinetics.
Although it is simplified, this model can be proved to model correctly some astrophysical
situations of interest such as stellar evolution or interstellar medium dynamics (see, e.g.,
).

In this paper, we are concerned with the free-boundary problem describing the mo-
tion of a compressible, viscous and heat-conducting gas which is self-gravitating, radiative
and chemically reactive. Such a gaseous motion, especially in the processes of the uni-
molecular reactions whose kinetic order is one, is described by the following equations in
Lagrangian mass coordinates:

v = U, (L1)
w=(~p+u), ~Ga-3), (1.2)
e = (—p + u%””) Ug + (nev—g”)m + Aoz, (1.3)
5 =d (%) s (1.4)

in 2x (0, c0) with 2 = (0, 1). Here the specific volume v = v(z, t), the velocity u = u(z, t),
the absolute temperature § = 0(x,t) and the mass fraction of the reactant z = z(z,t) are
the unknown quantities, and the positive constants u, G,d and A\ are the bulk viscosity,
the Newtonian gravitational constant, the species diffusion coefficient and the difference
in heat between the reactant and the product, respectively. The pressure p and the
internal energy per unit mass e are defined by

p=pv,0) = RTH + %94, e=e(v,0) = cyf + avh?, (1.5)
where the positive constants R, cy and a are the perfect gas constant, the specific heat
capacity at constant volume and the radiation-density constant, respectively. The second
terms on the right-hand side of both relations in (1.5) stand for the effect of the radiation
phenomena, whose forms are given by the famous Stefan-Boltzmann law. In the radiating
regime, we naturally take into account the heat flux from the radiative contribution, not
only from the heat-conductive contribution. As such a simple one (see [5], [27], [28],
[21]), we assume that the thermal conductivity x = x(v, 0) takes the form

k(v,0) = K1 + koo (1.6)

with positive constants k1,2 and gq. Furthermore we assume that the reaction rate
function ¢ = ¢(0) is defined, from the Arrhenius law, by

P(0) = K0Pe /7, (1.7)
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where the positive constants K and A are the coefficient of rate of the reactant and the
activation energy, respectively, and § is a nonnegative real number.
We consider (1.1)-(1.4) subject to the following boundary condition:

(Ua 92?723:) ‘a’:zo,l: (_peaoao)v t> Oa (18)
with the stress ¢ = —p 4 p“= and the external pressure p. (a positive constant), and the
initial condition

(v,u,0,2) |i=0= (vo(x),uo(x),00(x), z0(x)), = €[0,1]. (1.9)

Without loss of generality, we may assume that (see, e.g., [27], [28], [21])

/1 uo(x)dz = 0. (1.10)
0

The notation in this paper will be as follows: Let m be a nonnegative integer and
0 < a,a/ < 1. By C™*(Q) we denote the spaces of functions u = u(z) which have
bounded derivatives up to order m and d™u/dz™ is uniformly Holder continuous with
exponent «. Let T be a positive constant and Q7 = Q x (0,7). For a function u defined

on Qr, we say that u € C;f‘/ (Qr) if
ul©® = sup |u(x,t)] < oo (1.11)

(w,t)€QT

and wu is uniformly Holder continuous in z and ¢ with exponents o and o', respectively.
Its norm is denoted by |- |4,or. We also say that u € C’i:a’l-‘_am(QT) if u is bounded,

2
has bounded derivative u,, and (ugg,us) € (C;’QQ/Q(QTD . Its norm is denoted by
| fotaitase LP, 1 < p < +oo, W™, m € N, H' = W2, H} = W, denote the
usual (Sobolev) spaces on [0,1]. In addition, || - ||p denotes the norm in the space B; we
also put ||| = |[|-[|z2(0,1)- We use Cy to denote the generic positive constant depending on
the initial data, but independent of ¢t. The constant C' > 0 stands for the generic positive
constant depending only on the initial data and 7" > 0. Without danger of confusion,
we will use the same symbol to denote the state functions as well as their values along a
dynamic process, e.g., p(v,0), p(v(z,t), 0(z,t)) and p(z,t).
Let E = E; U E5 be a set in the (g, 3)-plane in R?, where
B ={(¢.f)€R?: 2<¢<3, 0<5<2q+6},
Ey={(¢,8) €R*: 3<¢q, 0<B<q+9}

Our results read as follows:
THEOREM 1.1. Let (¢,3) € F and « € (0,1). Assume that the initial data
(vo, w0, 00, 20) € CTH(Q) x (C*T(Q))° (1.12)

satisfies the compatibility conditions, (1.10) and wvo(z) > 0, bp(z) > 0, 0 < zp(x) < 1
for any x € [0,1]. Then there exists a unique solution (v, u, 8, z) of the initial boundary
value problem (1.1)-(1.4), (1.8)-(1.9) such that for any T > 0,

(v.vew) € (C22@Qn) . w2 € (G2 Qn) . (11)
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Moreover, for any (z,t) € Qr,
v(z,t) >0, 0(x,t) >0, 0<z(z,t) <1 (1.14)

In recent years, the heat-conducting radiative viscous gas has drawn the attention
of mathematicians (see, e.g., [2]-[15], [21], [23], [24], [27], [28]). For the compressible
viscous and heat-conducting model in one space dimension, the global existence and
large-time behavior of smooth (strong, weak) solutions have been established by many au-
thors. Among them, Antontsev, Kazhikhov and Monakhov [I], Chen [2], Kazhikhov and
Shelukhin [I5], Ducomet [4], Ducomet and Zlotnik [I3]-[I4] studied a one-dimensional
gaseous model similar to ours, i.e., a radiative and reactive model with the free-boundary
in the external force field. However, in a series of papers [4], [13], [14], they adopted
as a self-gravitation, a special form independent-of-time variable explicitly in the La-
grangian mass coordinate system, not the exact form (see (1.8) in [28]), which is called
the “pancakes models” relevant to some large-scale structure of the universe (see, e.g.,
[24]). Qin [20] established the global existence, exponential stability and the existence
of global attractors for a 1D viscous heat-conducting real gas. Moreover, we note the
global existence of solutions to some initial boundary value problem (1.1)-(1.4), not the
pure free-boundary case (1.8), but with partially Dirichlet boundary conditions. For
q >4, 8> 0, Ducomet [5] proved the global existence and exponential decay in H! of
solutions to (1.1)-(1.4) with the boundary conditions

(u, 0z, 22) |z=0,1= 0. (1.15)

However, there exist some defects in the argumentation of the main results in [5]. Re-
cently, Qin et al. [22] corrected these defects in [B] and established the global existence
and exponential stability of solutions in H' (i = 1,2,4) to (1.1)-(1.4) with boundary
condition (1.15), which has improved the range of (¢, ) in [5]. For our problem, Ume-
hara and Tani [27] proved the global solvability of smooth solutions for 4 < ¢ < 16 and
0 < B < 13/2. Later on, they further improved their results in [28] with the larger range
of (¢, 8) € E5 than that in [27]. Recently, Qin et al. [2I] further improved the results in
[27]-[28] with a larger range for

(0,8) €{(¢:8):9/4<q<3,0<8<2¢+6}U{(¢,8):3<¢q,0<B<q+9}

than those in [27]-[28].

The aim of this paper is to further improve those results in [21, [27], [28] with the
larger range of (¢,8) € E = E; U E5 than those in [21], [27]-[28].

The main mathematical difficulty arises from the higher-order nonlinearities of the
temperature 6 in p(v,0), e(v,6) and x(v,0) in (1.5)-(1.6). To overcome this difficulty,
we shall first use the delicate interpolation techniques to reduce the order of 6, and then
bound the norms of (v,u, 0, z) and their derivatives in terms of expressions of the form

At = ( - ||9<s>|Lm)A (1.16)

0<s<t

with A being a positive constant depending only on ¢ and S.
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The local existence of solutions can be established by the standard method (see, e.g.,
[25]-[26]). Therefore to prove our results, it suffices to continue the local solutions by
establishing the following a priori estimates.

THEOREM 1.2. Let T' > 0 be an arbitrarily given constant. Under the assumptions of
Theorem 1.1, we assume further that problem (1.1)-(1.4), (1.8)-(1.9) possesses a solution
(v,u, 0, z) such that

von) € (C27@n) L w2 (C2 @) . (D)
Then there exists a positive constant C' depending on the initial data and 7' such that
|(V, V2, V)| ayar2 + (1,0, 2)|24a,14a/2 < C (1.18)
and for any (z,t) € Qr,
v(z,t),0(z,t) > C™1 >0, 0< z(x,t) < 1. (1.19)

2. Proof of Theorem 1.1. To prove Theorem 1.1, we only need to prove Theorem
1.2. To this end, we shall establish several lemmas concerning the estimates of the
solution and its derivatives. Our methods are mainly based on the techniques in Qin
[20)-[21]; that is, we estimate delicately the solution and its higher derivatives in terms
of functions A, X, Y and Z (see their definitions below) and by means of the delicate
interpolation techniques.

Now define the following functions:

lul©@ = sup |u(x,t)], A= A(t):= sup 10(5)] Loe ()
(z,t)€QT 0<s<t
t 1 1
X=X ::/ / (1+6973)02dxds, Y =Y(T) := max / (1+6°1)0%dz,
o Jo te(0,7] Jo
Z=2(T) = tg%(?,);“] ||uxx(t)||2

LEMMA 2.1. For any t € [0,T], we have

A< |01 < C 4 Y=, (2.1)

e |u.||> < C + CZ3, (2.2)

lug|® < C+CZ5, (2.3)

u|@ <C+Czs. (2.4)

Proof. See, e.g., [27]-28]. O

LEMMA 2.2. For any t € [0,T], we have
1
1
/ (§u2 +e+ Az + f(x)v)dx = Ey, (2.5)
0

U(t) + /Ot V(r)dr < Cy, (2.6)
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1 1
/ zdfc—i—/ ¢Zd$d7_/ zodx,
/ —22d3:—|—/ / —z + 22 dsz—/ —zodas

mag@dTgC, 0<r<q+4,q2>0,
0 xZEQ

t
lu(t)]2 + / s (7)]Pdr < C.
t 1
loa (I + / / bulddr < C, q>2,
0 0

t ol
/ / uidde <C, q>4,
o Jo

0 < z(x,t) <1,
0<C™t<w(z,t)<C,

where

1
1
Ey:= / (Eug +eo + Azo + f(z)vo)de,
0

Ult) = /O v (6 — 1 —log(6)) + R(v — 1 — logv)]dz,

1,2 2
- puz | kOz ¢
V(t).f/o(ve +U92+ ez)d:ﬂ,

1
e :=cyby+ aU09§7 f(@) =pe + §Gx(1 —x).

(2.10)
(2.11)

(2.12)

(2.13)

Proof. For the proof of this lemma we mainly use the standard energy methods (see,

e.g., [27]-28]).

From Lemma 2.2 we can easily obtain the following estimates (see, e.g.,

LeEmMA 2.3. For any ¢t > 0, we have
t
/ |ul|2<ds < C,
0

1
/ 0"dx < C, 0<r<4,
0

1
vO”
de <C, 0<r< 4.
/01+110‘1x_ ’ ST+

O

(2.14)
(2.15)

(2.16)

Proof. By the Gagliardo-Nirenberg interpolation inequality and (2.5), (2.10), we have

/O ()12 s < C / () a(5) s

t

<C [ us(s)]ds
0

<C
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For 0 < r <4, by the Holder inequality (2.5) and (2.13), we derive that

/HTxtdx</94a:tda:£/ 1dz)'—1

< C'(/ 0%(z,t)dz) 4
0
<C.
For 0 < r < g+ 4, we infer from (2.13) and (2.15) that

Looper !
dr < 1+0)""14
/0 1T 007 x_/o( +6) T

<C.

The proof is now complete. ([l

LEMMA 24. Ifg>2, 0<m< %, for V¢ € (0, 7], the following inequalities hold:
t ol
/ / (1 +6)*™vidads < C, (2.17)
o Jo
t 1
/ / (14 0)*™u’dxds < C. (2.18)
o Jo

Proof. Since there exist constants b(t) € [0,1] and 1, r2 > 0, such that
1
0<rm < / O(z,t)de = 0(b(t),t) := 01 < ro,
0
by (2.6), (2.16) and the Holder inequality, we deduce that for 0 < m < ‘IT,

1
0t =07 <C [ 1m0,
0

<ot ([ 5 an!
< C(R(1)*.
Here we denote R(t) := fol ko —%dz, which implies
C —C1R(t) < 6*™(x,t) < C+ C1R(t), 0<m< %4. (2.19)

If 0 < m < 2%, then by (2.6), (2.11) and (2.19), we have

// (1+6)*™v 2dxds<0// 2dxds+0/ ()/ v2dxdds

< C+C/ R(s)ds
0

<,
t el t 1 t el
//(1—1—9)2’”u2dxd8§0/ / u2dxds+C/ / u*dzR(s)ds
0 Jo 0 Jo 0 Jo

<C
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Thus the proof is complete. O

LEMMA 25. If g >2and 0 <m < #, for any € > 0 and any t € (0,7}, the following
estimates hold:

t
[l (£)]2 +/ |tee (5)]|?ds < C +eX + CA® + CZ§, (2.20)
0
t 1 )
/ / (1+60)*"uldzds < C +eX +CA® +CZ53, (2.21)
0 JoO

where ¢ = max(8 — ¢,0), ¢z = max(3 — ¢,0), g3 = max(q1,2¢2, 3)-
Proof. Multiplying (1.2) by u., and integrating it on (0,1) x (0,t), t € (0, T}, we arrive

at
t ol t ol 2
rYxrYrx 1
[ st [ [} e oy
o Jo o Jo v v 2

t pl 2 t
1

:/ / (—pwum+uuﬁ—uwmxds—/ G(x — = )ugads
0 Jo v v 0 2

whence, by Lemmas 1.1-1.4,

t t t
s (8)]2 + / ltza(s)|Pds < C + C / el e s ]| o 2y s + C / | = s

t 1
0 JO

Using Lemmas 2.1-2.4, the Gagliardo-Nirenberg interpolation inequality, Young’s in-
equality, and Holder’s inequality, we easily derive that for any € > 0,

t el t el t el
/ / (1 + 603)|02pe|drds < 5/ / u?, drds + C’/ / (1+ 6°)%02dxds
o Jo o Jo o Jo

t el 1+ 03)262 t
Sa/ / u2,drds + C sup ||M||Loo(g)/ R(s)ds
0 Jo 0

0<s<t k

t ol

< 5/ / u?, drds + C + CA®, (2.22)
0 Jo

t el t 1 t el

/ / |0V Uy |dads < 6/ / uirdxds—i—C/ / 02vidxds

o Jo 0 Jo 0o Jo
t 1

<e / / u?, dxds + C, (2.23)
0 Jo

t 1 t 1 t el
// |uzvmum\dxds§£/ / uirdmds—i—C/ / uvdrds
0 Jo 0 Jo 0 Jo
t 1 t
Ss/ / ufmdzds+0/ a2 0 2ds
0 Jo 0

t 1 t
< 5/ / u?, dads + C’/ [tz | taa || ds (2.24)
0 Jo 0

t ol
< 25/ / u?,dxds + C,
o Jo
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t el ¢
// |um|dxds§5/ |tz ||?ds + C, (2.25)

/IIUtIILwIIumIILde<C/ (luell 2 eaell = + el a2 uael + llu)ds

t 3 t 3

sc( / (s llfuel) + e 2)d ) ( / (||ux|||um|+||ux||2>ds)
t

so(< [ elasytc / lrtas 2ds)* + / g Pds) )

0

t 1 1 1
([ tzat ([ uirast+ [ uleas? )
<s/ |ugm||2ds—|—0</ et dsé/nutn ds)} + ( / g 2ds) )
+c(/ Jetar] ds%/nutn ds)} + /||ut|| ds) %)
<e / g ds + C + O / luze2ds) ¥ ( / e [2ds)
0 0 0

t
el / e [2ds)
0

t t
< [ fuaelfs 40 0| fuaas)® sup (o) 2
0 0 0<s<t

+ Cos<u];<)t||ut(s)|\4/3. (2.26)

In order to estimate the inequality (2.27), we differentiate (1.2) with respect to ¢, multiply
it by u; and integrate it with respect to z. Then we have

d ['1 L 2 ' Koo
E 2 td(E—f—/ Eumtdx —/O (ptuzt + ;umumt)dm,

which gives
t t 1
e (1) + / luse|?ds < C + C / / (petiat] + [t t1ge])dds
0 0 0

t t 1
<e / ezt ()] 2ds + C / / (77 + u)deds + C.
0 0 0

Here € > 0 is small enough.
Note the following facts:

t ol t el
/ / pidads < C/ / (14 6%)267 + |0uy|*)dzds
o Jo o Jo

t 1
<C1+A)2X4+C+ CAQ/ / u?dxds (2.28)
0o Jo

<C(l+A)2X +CA*+C,

(2.27)
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t 1 t

/ / wlduds < C / (et Ptz | + Il |4z
0 0 0

t t
e/ ||um||2ds+C’/ e Ods
0 0

t t
6/ ||um||2ds+C max ||uz\|4/ ||um||2ds (2.29)
0 tE[O,T] 0

IN

IN

IA

t
6/ |tzz ||?ds + C + CZ.
0

We insert (2.29)-(2.30) into (2.28) to derive

t t
sup ||ut(s)|\2+/ Iluzt|l2d8§6/ [tes||?ds + C + CZ + CA? + C(1 + A)® X,
0<s<t 0 0

(2.30)
which, inserted into (2.27), implies that
¢ ¢
/ [ug|| Loe || Loeds < 26/ tge||?ds + C + CAS + CZ3 +eX + CA%2.  (2.31)
0 0

From (2.23)-(2.26) and (2.32), we can easily get the inequality (2.20). By (2.20) we can
easily prove the inequality (2.21). O

LEMMA 2.6. If ¢ > 2, then the following inequality holds:
t ol
16+ 6% + / / (14 0)17302dzds < C + CA%® +cX? + CZ3, (2.32)
0o Jo

where g9 = max(4 — ¢,0), ¢4 = max(7 — 2q,qp), ¢« = max((12 — ¢)/2,0), and g5 =
maX(q47 %/27 47 q*)

Proof. Multiplying (1.3) by e and integrating the resulting equation over Q; = (0,1) x
(0,%), we arrive at

1 1 t t 1 t 1 u2€
Slel? =3 leall + [ peyulias — [ [ (-persudads + [ [ "= duas
0 o Jo o Jo v

t 1k0 t 1
—// —xewdzds+/ / Apzedxds,
oJo VU o Jo
whence

t el t 1
HeH2 —|—/ / (1+ 0)q+30§d;z:ds <C+ C/ / [|(pe)zul + |6ui\ + |k0w94vw|
0 0 0 0 (233)

t
+ |)\¢ze|]dmds+/ lpewl| . ds.
0

By Lemmas 2.1-2.5, Young’s inequality and the Gagliardo-Nirenberg interpolation in-
equality, we infer that for any ¢ > 0,

t 1 t 1
// \(pe)xu|d;vds§0/ / [+ 07)[0su] + (1 + 0% [vsu] + (1 + 6%)[v,ulldeds
0 0 0 0

t 1 : 1
S 5/ / (1 + 9)q+30§d£ﬂd$ + C/ / [(1 + e)llquQ
0 Jo o Jo
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+ (14 0°)|vpu| + (1 + 6%) v ulldeds

t 1
<e / / (1+60)77302dxds + C + C Amx(T-2¢.0)
0 0
t 1 t 1
+C/ / (1+9)8v3dxds+c/ / (1 + 0)%u’dzds
0 0 0 0
t 1
<e / / (1+0)73¢2dxds + C + CA™>(7720:0) 4 A%
0 0
t 1
< 5/ / (1+6)7"302dxds + C A% + C, (2.34)
0 0
t 1 t 1
// |eui|dmds§0/ ||um|\2Loo/ edxds
0 JO 0 0
t
< C’/ |tz ||% o ds
0
t
<€ [ (uellussl + e 2)ds (2.35)

t
< C(/ o [2ds) + C
0

<C+eX?+CA% +CZ3,
t 1 t 1
/ / |k0,0%,|dxds < C/ / (1+60)1740,v,|dxds
0 JO 0 JO
t 1 t 1
< 5/ / (1+0)7302dxds + C’/ / (1+0)7v2dxds (2.36)
0 JO 0 JO

t 1
< 5/ / (1+6)91T302dxds + C + CA,
0 JO

t el ¢ el
/ / [Apzeldrds < C/ / pedzds
o Jo o Jo

t 1
< C sup HeHLoc/ / pdxds (2.37)
0 Jo

0<s<t
< C + CAY,

t 1 t t
/ / Ipeull = dads < ( / ul3 o ds) ¥ ( / Ipell3nds)®
0 0 0 0

t
<o / lpell3 ds) (2.38)

. !
<c (/ I +94)2||%oods)
0

< C+CA™.

Inserting (2.35)-(2.39) into (2.34), we can readily get the inequality (2.33). O
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Next we denote the function H by the following:

0
H = H(v,0) ;:/ Mdf.
0 v
Since (1.3) is rewritten as
egly + Opous, = %ui + (%91,)1, + Az, (2.39)

multiplying (2.39) by H; and integrating it over Q x [0,] yields

t el t pl t pl
k
//egﬁthdxds—F// —Gmetdxds:/ / (—Hpgux—l-ﬁui—l—)\gbz)tho:ds.
o Jo o Jo v o Jo v

(2.40)
Here
k
Ht = Hvux + Eet’

k0 k
Hﬁt = ( UJC )t + Hvu;ﬂw + H’vaxum + (E)'vaeta

|Hy|, |How| < C6.

LEMMA 2.7. f 2 <¢g<3and 0 < 8 <2¢+6o0rqg>3and 0<f < q+9, then there
exists a number §, 0 < d < 1 such that

X+Y <Cl+2°%. (2.41)
Proof. From (2.13) and the definitions of X and Y, we can immediately derive the
inequalities
t 1 L t 1 k kovf?
/ / egby—0:dxds :/ / (ev —|—4av93)1+7209§dxd5 (2.42)
0 Jo v 0o Jo v
> CX,
L[ e e was = [ ey (243
— xds =— — x .
o Jo v v t 2 0 v 0
>CY - C.

In the same way as that in [22], by Young’s inequality and Hoélder’s inequality, for any
e > 0, it is not difficult to get the following estimates by using Lemmas 1.1-1.6:

t el t el
/ / el Hyu,drds < C’/ / (1+ 0)*0,u dzds
o Jo o Jo

t 1

<eX + C/ / (1+0)°" 2dxds (2.44)
0 JO

<eX+C+CA® +CZ35

<e(X+Y)+C+CZ5,

t 1 t el
/ / (Opouy, — ﬁui)Hqudzds < C’/ / (14 6°)u2 + 0u3]dxds
0 Jo v 0o Jo
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t 1
< C+eX +CA® +CZ3 +C/ / ud dads
0o Jo

< C+CA%® +CZ5 +eX + CAluy|© (2.45)
< C+CA® +CZ3 +eX +CA+CZSA
<e(X+Y)+C+CZ3,

t 1 i k t 1
/ / (Opouy — —uZ)~0;dxds < C’/ / (1 + 0)7*0,u,|dxds
0 Jo v v 0o Jo

t 1
+ C/ / (1+0)7)0u2 |dzds
o Jo

IN

t 1
eX + C/ / [(1+60)7T5u2 + (1 + 0)7 *ul]dxds
0 JO

IN

t 1
eX +C(1+ AT+ + c/ / (1+0)73uldzds
0 JO

IN

t 1
eX+Y)+C+ C/ / (1+0)7 3utdads,
0 Jo

which gives, for 2 < ¢ < 3,

t el t el
/ / (Opouy — Eui)EOtd:vds <C+H+e(X+Y)+ C/ / (1+0)7 3utdrds
0 Jo v v 0o Jo

IN

t 1
eX+Y)+C+ C/ / urdrds
0o Jo (2.46)

IA

t 1
s(X+Y)+C+C\u§|<0>/ / W2duds
0 0

IA

(X +Y)+C+CZ1,

or for 3 < ¢ < 4,

t 1 t 1
/ / (Opouy, — Hui)ﬁﬂtdxds <C+eX+Y)+ C’/ / (1+0)7 3utdrds
0o Jo v 0 Jo
t 1
ge(X+Y)+C+C/ / (1 + 0)uldrds
0o Jo

t 1
gs(X+Y)+C+C(1+A)|u§,|<°>/ / uldads

0o Jo
<e(X+Y)+C+CZ5 +CA+CAZE

< (X +Y)+C+ Oz,
(2.47)

or for ¢ > 4,
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t el t ol
/ / (Opouy — Hui)ﬁﬂdwds <eX+Y)+C+ C/ / (1+0)7 3utdrds
0 Jo v v 0 Jo

t 1
gs(X+Y)+C+C(1+A)q’3\ux\(°)/ / B dads
0 0

IA

(X +Y)+C+C(1+A)I3Z8 4 CZ5

(g+3)
<X +Y)+C+ Oz, (2.48)

t 1 ke t 1
/ / L Hyuzpdzrds < C/ / (1 —|—9)q+1|9$um\d9&ds
oJo U o Jo
t el [ 3
<C </ / (1+ 0)q+393dxds)
o Jo
t el 3
X (/ / 1+ 9)q1uimdxds)
o Jo
¢ el 3
<C (/ / (1+ 9)q+39§dxds)
0o Jo

¢ 2
X < max ||ug.||? [ max(1+ 0)q1d5>
t€[0,T] 0 z€Q

1

< C(1+Aq6+Z%+eX%)§Zi
C

77+ CA®Z2 +eXi7% +COZ%

<X +Y)+CO+CZ. (2.49)
Here we require
gs <2q+6 (2.50)

in order to make A7 <eY +C,and 0 < § = max(3, ﬁ) < 1 hold.
Similarly,

t 1 L0 t 1
/ / L Hypvpugdrds < C/ / (14 0)7 |0, v, u,|deds
oJo Y 0o Jo
t o1 3
<C (/ / (1+ 0)q+30§dxds>
o Jo
t 1 3
X (/ / (1+ G)qlvfcuidxds)
0o Jo
t 1 3
<C (/ / (1+ 9)q+39§dmds> (2.51)
0o Jo

1
t ol 3
X (|ui(0)/ / (1+9)q_1v§dxds)
0 Jo

S CO(l+ A% + 75 +eX3)3 (1 + Z%)
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<CHCAT +0OZ6 +eXi+0Z5 +OZ3AT
+CZ% + X178
<e(X+Y)+C+C2%,

where §; = max($2, m). By (2.51), we know that /2 < 2¢ + 6 and A%/2 <
eY+C,0<6 <1.

By (2.39), we have

kO u
( vx )z = eabs + Opou, — ﬂf — Aoz,

which gives
t ke t
L UER s < C [ heot + loporel + 10212 + s

t 1
gc// 14+ 0)%07 + (14 0)%u2 + u}l + ¢*]dxds
| 0[( 707 + (1+0) 7] (2.52)

t 1
< C(1+A)‘I2X+C+CA8+CA5+C\u§|<°>/ / uldzds
0 JO

<SCH+C(1+A)"=X +CA*+CAP + CZ%.

Here we have used the fact that

t 1 t 1
/ / d*dzds < C AP / / pdxds
0 0 0 0

< C+CAP.
Then we infer from (2.52),

1 t 1
K6 E)qﬂ)ggﬁ,gdgcdsg C/ / (14 6)910,v,0¢|dxds

14 6)73
5X+C/ ||—||Lo<, (/ %vidm) ds

ex+c/ 1522 (X, s

IN

IN

1
2

IA

1
eX 4+ C(1+ A)7/? (/ / (1+ 0)q+30§dxds>
0 JO

([ ||<%>$n2ds)%

X+ 01+ AF (C +CA® 4+ X7 + cz%)

N|=

IN

)

IN

eX + (C +CAF)C +CA® +ext 1028

(C+C(1+A) X34 CAY + CAS +CZ%)
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a6+a7

<eX+ (C+5X%Aq77 +CA™= +CA477Z%)

x (c FO(+A)FXE +CAY + CA% + CZ%)

B+ar

< 2X + (A2(¢Z2+Q7) + A%(‘H‘%) + A%( 7 7) + A%tastar

AT L AT (25 4 AT 25 4 Anta s
+AYF 75 4 AT 75 4 AT 73
<2(X+Y)+C+0Z%, (2.53)

where g7 = max(q — 3,0), and

5 _max(ﬁ qg+3 2¢+6 qg+3
2 247 2¢+6— 27 3(2g+6—q2—qr)’ 3(2¢+2—- %)’
g+3 13(q +3)

3oq+ 6 5 122416 5)

Here in order to make (2.54) hold and 0 < d2 < 1, we must demand

0<q2+gs+q7r <2q+6,
0 <4+ B39 < 2g+6,
0 S ﬂ+qS+Q7 < 2q—|—6,
0<2(g2+q7) <2q+6,
0<3(4+%)<2¢+6,

0< 2889 <2g+6,

that is,

0<q2+qs+q7 <2q—+6,
0<gs+qr <4q+4,
0<qgs+qgr+ 8 <4q+12,
0<q@+qgr<q+3,
0<4gqr<3¢+1,
0<qgr+8<3¢+9

(2.54)

or

0<qr <3(q+3),
0<B+qr <*(q+3), (2.55)
0<qp+qgr < %(Q+3)
and
0< 3 ~ 1,
20+6
0= 3(2q+f;1—q2—q7) <1
+3

0% s <1 (2.56)
q+3
0= 32qro- 52) L

13(¢+3)
0< 22016 T) < 1.
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Similarly,

t pl t pl
k
//A¢2thxds§0/ / O|Hyu, + —0¢|dxds
0o Jo 0 Jo v

t 1
C 14+ 0)|ugo|+ (14 60)26:0|ldxd
/0/0[( Vuad| + (1 + 0)1(0,]]dds
t 1 t 1
s/ / (1+9)q+3efdxds+c/ / (1+60)73¢?dxds
0 0 0 0

+C(/Ot/01(1+0)2uidxds>% </Ot/01¢2dxds>%

X +C+CATT 4 O (CheX +CA® +CZ8)" (C+CA)

IN

IN

1
2

IA

IN

eX +C + CATHF 4 (C+CA“73 +CZ3 +sX%) (C+CA§)

az+8

eX +C+CAT B L OAF 4+ CZ% + CXE +CA% + CA™"
+CAZZ% + CAZX?

IN

< eX +C+CA™F 4 CA™" 4073 + CAT 73
<e(X+Y)+C+0CZ%,
(2.57)
where d3 = max(3, ﬁ). Here in order to make the inequality (2.57) hold and
2

0 < d3 < 1, we must require

0<gqr+ B <2q+6,
0< 2f8 <2¢+6,
0< 5 <2¢+6,

0< —2446
= 3(2¢46-5) T 7

which implies
0<gqr+p<2¢+6,
0<qgs+pB<4q+12, (2.58)
0<B<3(qg+3).
Inaword, for2<¢g<3and 0< 8 <2¢g+6o0rqg>3and0< < q+9, we can prove
that (2.51), (2.55)-(2.58) hold, i.e.,

0<d,81,02,05 < 1.
Combining (2.42)-(2.57) and taking ¢ small, we obtain (2.41). Here if 2 < ¢ < 3, then
we may take

2 %76/761752763)-

0= max(g,

If 3 < ¢ < 4, then we choose
2 3(qg+3)

5= max(g, mﬁ , 01, 62, 63)
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and if ¢ > 4, then we may pick

2 3(g+3) o

6= - ——=,0,01,62,03).

max(374(q+9)7 5 01,02, 3)

The proof is now complete. ([l

LEMMA 2.8. If2<¢g<3and0< 8 <2¢+6org>3and0< 3 <q+09,ie., (¢,p)€E,
then for any ¢ € [0, 7],

t
||um;uxmauta9w791w79tazmvzmwazt”2+/ Huwtvextazmt||2d5 S 07 (259)
0
|, Ju] @, 16]) < €, (2.60)
O(z,t) > C, Y(x,t) € Qr. (2.61)

Proof. Differentiating (1.2) with respect to ¢, multiplying it by u; and integrating it
with respect to x, we have

d [*1 ! '
pm ; 5u?dw+/0 Huitda?Z/O (ptuxt""vﬂzuium)dx‘

v

Since p; = (% + %a93)9t — U%Hug;, for 6 > %, we get

t t 1 t
e (8)]2 + / g |2ds < C / / (1 -+ 6%)02duds + Clu2|©® / (6] + [lus12)ds
< C(1+A)2X +C+CZ3

< C+Cz%0Fte),
(2.62)

From Lemma 2.7, by squaring (1.2) and noting p, = (% + %a@g’)em — U%HU,;, it follows
from (2.62) that for any ¢ € [0, 77,

[l < CIL+ [Jug])® + /01(1 +0%)02dx + (107 + |ug| ) vz ]|?]
< C+020%3%) 4 071 + CA2+ O(1 + A)*®Y
< C+CZ5(1+%),
whence
Z < O+ 0700t aits).

f2<qg<3,0<B<2q+6,thengy=4—-¢q, ¢ =8~q, 2=3—q, 3=8—q, ¢4 =

7T—2q, g = 12;(17 qe = 122_7117 g7 = 0. We can easily prove that when 2 < ¢ < 3 and

0<B<2q+6,

2q2
2q+6

0<d(1+ ) <1,

which thus gives

zZ<C. (2.63)
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If¢g>3and 0 < B < g+ 9, we can also prove that

2qo

0<d(1
( +2q+6

) <1

and
Z < C,

which also implies (2.63). Hence we conclude that Z is bounded, and we can see
from Lemma 2.7 and the definitions of A, X,Y,Z that ||ug,uee,us, 0z, |u,0]?) and
f(f |luze, 0¢]|?ds are also bounded. For the boundedness of other quantities in (2.59)-
(2.61), whose proofs are very standard and so we omit them here, we can refer to the
proofs of Lemmas 10-13 in [27].

The proof of Theorem 1.2, and hence of Theorem 1.1, is complete. (]
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