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Abstract. We study the Dirichlet problem for Stokes equations outside curvilinear

open arcs in a half-plane. We prove existence and uniqueness of a classical solution to

this problem. We obtain integral representation for a solution in the form of potentials,

densities in which can be found as a unique solution of the system of the Fredholm

integral equations of the second kind and index zero. The creeping flow of viscous fluid

over thin profiles is described by the Dirichlet problem studied in this paper.

1. Introduction. The potential theory for the 2-D Stokes equations is constructed

in [1] in the case of smooth closed curves and continuous densities in potentials. This

theory is applied in [1] to the analysis of solvability of boundary value problems for Stokes

equations in interior and exterior simply connected domains bounded by a smooth closed

curve. Results obtained in [1] are extended in [2], [3], and [4] to the case of multiply

connected domains bounded by smooth closed curves. Boundary value problems in [3],

[4] are reduced to the uniquely solvable integral equations. It is known that the problem

on the homogeneous viscous flow over an obstacle does not have a physically reasonable

solution for Stokes equations in a 2-D case (the so-called Stokes paradox). However,

the problem on creeping viscous flow over an obstacle in a half-plane has a solution for

Stokes equations [17, 18, 19]. If the fluid fills the upper half-plane, then the boundary of

a half-plane can be considered as a bottom.

Potentials for velocities and a potential for pressure for Stokes equations are studied in

[7], [8], [9] in the case when the potentials are specified on the open arc while the densities

in potentials belong to the weighted Hölder spaces and may have power singularities at

the ends of the arc. In [7], [8], [9], the properties of smoothness of potentials are studied,

and the limiting formulae for potentials and for their normal and tangential derivatives

on the sides of the open arc are obtained. Moreover, the singularities of the pressure

potential and singularities of the derivatives of velocity potentials at the ends of the

open arc are also studied in [7], [8], [9].
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In the present paper we study the Dirichlet problem for Stokes equations outside open

arcs in a half-plane. The problem models creeping flow of viscous fluid over several thin

curvilinear profiles (open arcs). The fluid is placed in the upper half-plane above the

plane bottom. We prove existence and uniqueness of a solution. We obtain integral

representation for a solution in the form of potentials, densities in which can be found

as part of a unique solution of the system of Fredholm integral equations of the second

kind and index zero (it is proved that this system is uniquely solvable). In addition, we

study singularities of derivatives of velocities at the ends of the open arcs.

The problem of viscous flow over a plate in the form of a half-line has been considered

in [16, chapter VI, §6] for non-linear Navier-Stokes equations, and the first asymptotic

approximations describing behaviour of velocities at the edge have been obtained. It

appears that there are an infinite number of such approximations, but they all satisfy

linear Stokes equations. On the other hand, the linear problem being well-posed is

uniquely solvable. Therefore, it is interesting to solve the linear overflow problem, to

find asymptotics of derivatives of velocities at the edge, and to clarify which asymptotic

among the infinite number presented in [16] really takes place. The answer to this

question is contained in the present paper as well.

2. Formulation of the problem. By a simple open arc we mean a nonclosed smooth

curve of finite length without self-intersections [10]. We introduce the Cartesian coordi-

nates x = (x1, x2) ∈ R2 in a plane. Consider the simple open arcs Γ1, . . . , ΓN of class

C2,λ, λ ∈ (0, 1] in the upper half-plane R2
+ = {x : x2 > 0}, so that the arcs do not

have common points (in particular, endpoints). Denote Γ =
N⋃

n=1
Γn. We assume that the

minimum distance between Γ and the line x2 = 0 is equal to ε > 0. Let contour Γ be

parametrized by the arc length s :

Γn = {x : x = x(s) = (x1(s), x2(s)), s ∈ [an, bn]}, n = 1, . . . , N

in such a way that a1 < b1 < a2 < b2 < ... < aN < bN . Let τx = {cosα(s), sinα(s)} be

a tangent vector to Γ in the point x(s) ∈ Γ, where cosα(s) = x′
1(s), sinα(s) = x′

2(s).

Note that the parameter s increases in the direction of the tangent vector τx. Let

nx = {sinα(s), − cosα(s)} be the normal vector to Γ at the point x(s) ∈ Γ. The normal

vector nx being rotated counterclockwise through an angle of π/2 coincides with the

tangent vector τx. Let Γ denote the set of segments
N⋃

n=1
[an, bn] of the 0s axis as well as

the contour Γ.

Let the upper half-plane R2
+ be slit along the contour Γ. Denote the side of the slits

Γ, which remains on the left while the parameter s increases, by Γ+, and the opposite

side by Γ−. Let X be the set of the ends of the contour Γ: X =

N⋃
n=1

(x(an) ∪ x(bn)).

We say that the function p(x) belongs to the smoothness class K0 if the following

conditions are satisfied:

(1) p(x) ∈ C0
(
R2

+ \ Γ \X
)
∩ C1

(
R2

+ \ Γ
)
,
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(2) for points x /∈ Γ, lying in a small neighbourhood of any point x(d) ∈ X, the

following inequality holds:

|p(x)| < C|x− x(d)|ε, (1)

where C > 0 and ε > −1 are some constants and d = an or d = bn for n =

1, . . . , N .

Remark. The class of functions continuous in R2
+ \ Γ and continuously extensible

onto Γ\X from the left and from the right is denoted by C0
(
R2

+ \ Γ \X
)
. The limiting

values of these functions on Γ \X from the left and from the right can be different; i.e.,

these functions may have a jump if one passes across Γ \X.

We say that the function u(x) belongs to the smoothness class K if u(x) ∈ C0(R2
+) ∩

C2(R2
+ \ Γ) and ∂u(x)

∂xj
∈ K0 for j = 1, 2.

Let us formulate the Dirichlet problem for the Stokes equation in the exterior of open

arcs in the upper half-plane.

Problem U . Find real functions v1(x), v2(x) ∈ K, and p(x) ∈ K0, which obey the

Stokes equations in R2
+ \ Γ,

kΔvj −
∂p

∂xj
= 0, j = 1, 2, k = const > 0, Δ =

(
∂2

∂x2
1

+
∂2

∂x2
2

)
, (2a)

∂v1
∂x1

+
∂v2
∂x2

= 0, (2b)

satisfy the boundary conditions

v1(x)|x(s)∈Γ = F1(s), v2(x)|x(s)∈Γ = F2(s), (2c)

v1(x)|x2=0 = v2(x)|x2=0 = 0, (2d)

and satisfy the following conditions if x2 > 0 and |x| =
√
x2
1 + x2

2 → ∞:

|vj(x)| = o(1), |∇vj(x)| = o(|x|−1), j = 1, 2; |p(x)| = o(|x|−1). (2e)

All conditions of the problem must be satisfied in the classical sense. The edge condi-

tion (1) ensures the absence of point sources at the ends of Γ. The pressure in the fluid

is denoted by p(x), while components of the velocity vector are denoted by v1(x) and

v2(x).

We obtain problem U when studying the slow flow of viscous incompressible fluid

filling an upper half-plane and bounded by a plane bottom x2 = 0 over profiles Γ. It

is assumed that the slow flow of viscous incompressible fluid obeys equations (2a), (2b).

Let the velocity vector be (U0x2, 0) in the upstream flow as x1 → −∞, where U0 is a

positive constant; then the upstream flow satisfies both nonflow and nonslip conditions

at the bottom, i.e. the upstream flow does not move near the bottom. The fluid in the

upstream flow has to satisfy equations (2a), (2b). Therefore, substituting the velocity

vector (U0x2, 0) into (2a), (2b), we find that the pressure in the upstream flow equals

an arbitrary constant P0. Denote by (U0x2 + v1(x), v2(x)) the total velocity field in the

perturbated flow over profiles Γ, where (v1(x), v2(x)) is the perturbation of the velocity

field. Denote by P0 + p(x) the total pressure in the perturbated flow over Γ, where p(x)
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is a perturbation of pressure. The total velocity field and the total pressure outside Γ

must satisfy equations (2a), (2b). The velocity field (U0x2, 0) and the pressure P0 of non-

perturbated flow obey equations (2a), (2b). Therefore, these equations must be true for

functions v1(x), v2(x), and p(x) as well. We assume that nonflow and nonslip conditions

both hold on profiles Γ and on the bottom x2 = 0; i.e. (U0x2 + v1(x), v2(x))|Γ = 0

and (U0x2 + v1(x), v2(x))|x2=0 = 0. Then for the perturbation of the velocity field

(v1(x), v2(x)), we obtain boundary conditions (2d), (2c), in which F1(s) = −U0x2(s)

and F2(s) = 0, where x = x(s) ∈ Γ. From the physical standpoint, the perturbation

of the velocity field and perturbation of pressure must vanish at infinity; this is assured

by the conditions at infinity (2e). Thus, problem U describes the perturbation of the

velocity field and perturbation of pressure when studying the creeping flow of viscous

incompressible fluid over hard profiles Γ. It is known that for creeping flow (i.e. flow in

the presence of the bottom), the Stokes paradox does not hold in a 2-D case; therefore,

the problem being well-posed should have a solution, which will be constructed below.

At first, we will study the uniqueness of the solution.

Below, by
∫
Γ
. . . ds, we mean

∑N
n=1

∫ bn
an

. . . ds. Using the method of integral equalities,

one can prove

Theorem 1. If Γ ∈ C2,λ, λ ∈ (0, 1], then problem U has no more than one solution.

Proof. Let v01(x), v02(x), p0(x) be an arbitrary solution of the homogeneous problem

U (i.e. these functions belong to the required classes of smoothness and satisfy relations

(2) with F1(s) ≡ F2(s) ≡ 0). Let us show that this solution is trivial. Consider a disc

containing Γ of sufficiently large radius r and with the center in the origin. The part

of the disc which is placed in the upper half-plane x2 > 0, (i.e. upper half-disc) will

be denoted by Cr. Denote by nx the outward normal on ∂Cr. We envelope each slit

Γn (n = 1, ..., N) by the closed curve and write both the first Green’s formula and the

formula of integration by parts for v0j (x)p
0
xj
(x) (j = 1, 2) in the domain bounded by

these curves and ∂Cr. Next we shrink the closed curves to the slits using smoothness of

the solution of problem U . Then these two formulae take the form

∫
Cr\Γ

v0jΔv0j d x = −‖∇v0j ‖2L2(Cr\Γ) +

∫
Γ

v0j

⎛
⎝( ∂v0j

∂nx

)+

−
(
∂v0j
∂nx

)−
⎞
⎠ ds (3a)

+

∫
∂Cr

v0j
∂v0j
∂nx

dl,

∫
Cr\Γ

v0j
∂p0

∂xj
d x =

∫
Γ

v0j
(
(p0)+ − (p0)−

)
cos(nx, xj) ds−

∫
Cr\Γ

p0
∂v0j
∂xj

d x (3b)

+

∫
∂Cr

v0j p
0 cos(nx, xj) dl,

where the condition (1) is used, j = 1, 2, and cos(nx, xj) is the cosine of the angle between

the normal vector nx and the direction of the Oxj axis. The curvilinear integral of the

first kind is taken over ∂Cr. The superscripts + and − denote limiting values of functions

on Γ+ and Γ−, respectively. We multiply identity (3a) by k, subtract (3b), and take into
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account that functions v0j (x) and p0(x) satisfy equations (2a) in R2
+ \ Γ; then we obtain

the identity ∫
Cr\Γ

v0j

(
kΔv0j d x− ∂p0

∂xj

)
d x

= −k‖∇v0j ‖2L2(Cr\Γ) +

∫
Cr\Γ

p0
∂v0j
∂xj

d x+ k

∫
Γ

v0j

⎛
⎝( ∂v0j

∂nx

)+

−
(
∂v0j
∂nx

)−
⎞
⎠ ds

−
∫
Γ

v0j
(
(p0)+ − (p0)−

)
cos(nx, xj) ds

+k

∫
∂Cr

v0j
∂v0j
∂nx

dl −
∫
∂Cr

v0j p
0 cos(nx, xj) dl = 0, j = 1, 2.

Adding these identities for j = 1 and j = 2 and using (2b), we obtain

−k
(
‖∇v01‖2L2(Cr\Γ) + ‖∇v02‖2L2(Cr\Γ)

)

+
2∑

j=1

∫
Γ

v0j

⎧⎨
⎩k

⎛
⎝( ∂v0j

∂nx

)+

−
(
∂v0j
∂nx

)−
⎞
⎠−

(
(p0)+ − (p0)−

)
cos(nx, xj)

⎫⎬
⎭ ds

+
2∑

j=1

∫
∂Cr

v0j

{
k
∂v0j
∂nx

− p0 cos(nx, xj)

}
dl = 0.

We set r → ∞ in the latter identity and take into account (2e). Since the solution of the

homogeneous problem satisfies zero boundary conditions (2c) and (2d), we obtain

−k
(
‖∇v01‖2L2(Cr\Γ) + ‖∇v02‖2L2(Cr\Γ)

)
= 0.

Since k > 0, we have

‖∇v01‖2L2(R2
+\Γ) + ‖∇v02‖2L2(R2

+\Γ) = 0,

whence v01(x) ≡ c1 and v02(x) ≡ c2 in R2
+ \Γ, where c1 and c2 are some constants. These

constants are equal to zero due to zero boundary conditions (2c) in the homogeneous

problem U ; therefore, v01(x) ≡ v02(x) ≡ 0 in R2
+. It follows from equations (2a) that

∇p0 ≡ 0 in R2
+ \ Γ, whence p0(x) ≡ const in R2

+ \ Γ. Owing to conditions at infinity

(2e): const = 0, p0(x) ≡ 0 in R2
+ \ Γ. Thus, the homogeneous problem U has only the

trivial solution. Due to the linearity of problem U , the inhomogeneous problem has at

most one solution. The theorem is proved.

3. Elements of potential theory. We present some results of potential theory for

Stokes equations in this section. These results will be used to solve problem U .
Let x = (x1, x2) be Cartesian coordinates in a plane R2. Consider a simple smooth

open arc γ of class C1,λ, λ ∈ (0, 1], parametrized by the arc length s: γ = {x : x =

x(s) = (x1(s), x2(s)), s ∈ [a, b]}. The tangent vector to γ in the point x(s) directed

to the increment of parameter s will be denoted by τs = (cosα(s), sinα(s)), while the

normal vector coinciding with τs after counterclockwise rotation through an angle of π/2

will be denoted by ns = (sinα(s), − cosα(s)). The chosen parametrization implies that
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cosα(s) = x′
1(s), sinα(s) = x′

2(s). The interval [a, b] on the Os axis will be denoted by

γ as well.

Let F(s) be a function specified on [a, b]. We say that F(s) ∈ Cω
q [a, b] if F0(s) ∈

C0,ω[a, b], where F0(s) = F(s) |s− a|q |s− b|q, and C0,ω[a, b] is a class of Hölder contin-

uous functions with the exponent ω.

Consider γ as a slit in a plane. The side of the slit γ which is positioned on the left as

parameter s increases will be denoted by γ+, while the opposite side will be denoted by

γ−. Let μ1(s), μ2(s) be integrable functions specified on [a, b]. We introduce the column

μ(s) = (μ1(s), μ2(s))
T . Let us study velocity potentials [1, 3, 8] for Stokes equations (2a),

(2b). These potentials can be written in the form:

V1[μ](x) =
1

4πk

{
−
∫
γ

μ1(σ) ln |x− y(σ)|dσ +

∫
γ

μ1(σ)
1 + cos(2ψ(x, y(σ)))

2
dσ

+

∫
γ

μ2(σ)
sin(2ψ(x, y(σ)))

2
dσ

}
, V2[μ](x) =

1

4πk

{∫
γ

μ1(σ)
sin(2ψ(x, y(σ)))

2
dσ

−
∫
γ

μ2(σ) ln |x− y(σ)|dσ +

∫
γ

μ2(σ)
1− cos(2ψ(x, y(σ)))

2
dσ

}
,

where k = const, cosψ(x, y(σ)) =
x1 − y1(σ)

|x− y(σ)| , sinψ(x, y(σ)) =
x2 − y2(σ)

|x− y(σ)| ,

y(σ) = (y1(σ), y2(σ)) ∈ γ, |x− y(σ)| =
√
(x1 − y1(σ))2 + (x2 − y2(σ))2,

and the formulae used are cos(2ψ) = 2 cos2(ψ)−1 = 1−2 sin2(ψ), sin(2ψ) = 2 sinψ cosψ.

The pressure potential related to the above velocity potentials takes the form

P [μ](x) =
1

2π

∫
Γ

μ1(σ)
cos(ψ(x, y(σ)))

|x− y(σ)| dσ +
1

2π

∫
Γ

μ2(σ)
sin(ψ(x, y(σ)))

|x− y(σ)| dσ.

The following theorem holds [8].

Theorem 2. Let γ be a simple open arc of class C1,λ, λ ∈ (0, 1]. Let μ1(σ), μ2(σ) ∈
Cω

q [a, b], ω ∈ (0, 1], q ∈ [0, 1). Then

1) the functions V1[μ](x), V2[μ](x) belong to C0(R2) ∩ C2(R2 \ γ), while ∇V1[μ](x)

and ∇V2[μ](x) belong to C0(R2 \ γ \Xγ), where Xγ = x(a) ∪ x(b) is a set of endpoints

of γ;
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2) the limiting values of normal and tangent derivatives of potentials V1[μ](x) and

V2[μ](x) on γ± \Xγ are given by formulae

∂V1[μ](x)

∂τx

∣∣∣∣
x=x(s)∈γ±

=
∂V1[μ](x(s))

∂s
=

1

4π

{
−
∫
γ

μ1(σ)
cos(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

+

∫
γ

μ1(σ) sin(2ψ(x, y(σ)))
sin(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

−
∫
γ

μ2(σ) cos(2ψ(x, y(σ)))
sin(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

}
,

∂V2[μ](x)

∂τx

∣∣∣∣
x=x(s)∈γ±

=
∂V2[μ](x(s))

∂s

=
1

4πk

{
−
∫
γ

μ1(σ) cos(2ψ(x, y(σ)))
sin(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

−
∫
γ

μ2(σ)
cos(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

−
∫
γ

μ2(σ) sin(2ψ(x, y(σ)))
sin(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

}
,

∂V1[μ](x)

∂nx

∣∣∣∣
x=x(s)∈γ±

=
1

4πk

{
±πμ1(s)(1 + cos(2α(s)))

+

∫
γ

μ1(σ)
sin(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

+

∫
γ

μ1(σ) sin(2ψ(x, y(σ)))
cos(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ ± πμ2(s) sin(2α(s))

−
∫
γ

μ2(σ) cos(2ψ(x, y(σ)))
cos(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

}
,

∂V2[μ](x)

∂nx

∣∣∣∣
x=x(s)∈γ±

=
1

4πk

{
± πμ1(s) sin(2α(s))

−
∫
γ

μ1(σ) cos(2ψ(x, y(σ)))
cos(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ ± πμ2(s)(1− cos(2α(s)))

+

∫
γ

μ2(σ)
sin(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

−
∫
γ

μ2(σ) sin(2ψ(x, y(σ)))
cos(ψ(x, y(σ))− α(s))

|x− y(σ)| dσ

}
,

where the integrals containing cos(ψ(x, y(σ)) − α(s)) are understood in the sense of

principal value;

3) for any point x /∈ γ placed in the small neighbourhood of the end x(d) (d = a or

d = b), the inequalities hold:∣∣∣∣∂V1[μ](x)

∂xj

∣∣∣∣ ≤ const

|x− x(d)|δ ,
∣∣∣∣∂V2[μ](x)

∂xj

∣∣∣∣ ≤ const

|x− x(d)|δ , j = 1, 2,

where δ = q if q ∈ (0, 1), and δ is an arbitrary number from the interval (0, 1) if q = 0.
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Remark 1. The class of functions, which are continuous outside γ and are continu-

ously extensible on the sides of the slit γ \Xγ from the left and the right, is denoted by

C0(R2 \ γ \Xγ). Note that the limiting values of such a function on γ from the left and

the right can be different; i.e. such a function may have a jump when one passes across

γ \Xγ .

Remark 2. The potentials V1[μ](x), V2[μ](x) were studied in [1, 3] with the assump-

tion that the densities μ1(σ), μ2(σ) are continuous on the curve on integration. The

formulae from point 2 of Theorem 2 does not hold under this assumption in general, since

the singular integrals in the formulae may not exist, so the formulae were not derived in

[1, 3].

Theorem 2 straightforwardly follows from results presented in [6, 9]. Properties of the

pressure potential P [μ](x) are presented in [7] and [9, Section 8].

4. Integral equations at the boundary. To construct the solution of problem U ,
we assume that the functions F1(s), F2(s) in the boundary conditions (2c) possess the

following smoothness:

F1(s), F2(s) ∈ C1,λ(Γ), λ ∈ (0, 1]. (4)

Note that here, the Hölder exponent λ is assumed to be the same as in the definition of

the smoothness of the arcs Γ. If in (4) and in the definition of the smoothness of the arcs

Γ these exponents are different, then as λ we may take the least.

We will construct the solution of problem U by the method of potentials. Set

r(x, y1, y2) =
√
(x1 − y1)2 + (x2 − y2)2 = |x− y|,

cos(ψ(x, y1, y2)) =
x1 − y1

r(x, y1, y2)
= cos(ψ(x, y)),

sin(ψ(x, y1, y2)) =
x2 − y2

r(x, y1, y2)
= sin(ψ(x, y)),

Lll(x, y1, y2) = − ln r(x, y1, y2) +
1− (−1)l cos(2ψ(x, y1, y2))

2
, l = 1, 2, (5)

L12(x, y1, y2) = L21(x, y1, y2) =
sin(2ψ(x, y1, y2))

2
,

H1(x, y) = 2x2y2
cos(2ψ(x, y1,−y2))

(r(x, y1,−y2))2
, H2(x, y) = 2x2y2

sin(2ψ(x, y1,−y2))

(r(x, y1,−y2))2
,

H3(x, y) = 2y2
cos(ψ(x, y1,−y2))

r(x, y1,−y2)
.

To find cos(2ψ), sin(2ψ), we use formulae

sin(2ψ) = 2 sinψ cosψ, cos(2ψ) = 2 cos2(ψ)− 1 = 1− 2 sin2(ψ).

Let g1(s), g2(s) be real integrable functions defined on Γ. Potentials of velocities

and potential of pressure for equations (2a), (2b) are presented in [1, 3] (see also Section

3 and [7]). Potentials of velocities satisfying condition (2d) can be constructed by the
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method of reflection and are given by formulae:

v1[g1, g2](x) (6)

=
1

4πk

∫
Γ

{g1(σ)[L11(x, y1(σ), y2(σ))− L11(x, y1(σ),−y2(σ)) +H1(x, y(σ))]

+g2(σ)[L12(x, y1(σ), y2(σ))− L12(x, y1(σ),−y2(σ))−H2(x, y(σ)) +H3(x, y(σ))]}dσ,
v2[g1, g2](x)

=
1

4πk

∫
Γ

{g1(σ)[L21(x, y1(σ), y2(σ))−L21(x, y1(σ),−y2(σ))+H2(x, y(σ))+H3(x, y(σ))]

+g2(σ)[L22(x, y1(σ), y2(σ))− L22(x, y1(σ),−y2(σ)) +H1(x, y(σ))]}dσ,

where k is a constant from (2a). The corresponding pressure potential is

p[g1, g2](x) (7)

=
1

2π

∫
Γ

{
g1(σ)

(
cos(ψ(x, y(σ))

|x− y(σ)| − cos(ψ(x, y1(σ),−y2(σ)))

r(x, y1(σ),−y2(σ))
+

1

x2
H2(x, y(σ))

)

+ g2(σ)

(
sin(ψ(x, y(σ)))

|x− y(σ)| − sin(ψ(x, y1(σ),−y2(σ)))

r(x, y1(σ),−y2(σ))
+

1

x2
H1(x, y(σ))

)}
dσ.

Properties of potentials for the half-plane follow from properties of potentials for the

whole plane (see [1, 3, 7] and Section 3). It follows from [1, 3] that for any integrable func-

tions g1(s), g2(s), the potentials v1[g1, g2](x), v2[g1, g2](x), p[g1, g2](x) satisfy equations

(2a), (2b) in R2
+ \ Γ. It can be verified directly that for any integrable functions g1(s),

g2(s), these potentials satisfy conditions at infinity (2e) and condition (2d) as well. In

particular, the potentials demonstrate the following behaviour as |x| =
√
x2
1 + x2

2 → ∞:

p[g1, g2](x) = O(|x|−2);

vj [g1, g2](x) = O(|x|−1),
∂vj [g1, g2](x)

∂xl
= O(|x|−2), j, l = 1, 2.

We say that the function Φ(s) belongs to the space Cω
q (Γ) with ω ∈ (0, 1], q ∈ [0, 1)

if Φ(s)
N∏

n=1
|s− an|q |s− bn|q ∈ C0,ω(Γ), where C0,ω(Γ) is a space of Hölder continuous

functions with the exponent ω. The norm in the Banach space Cω
q (Γ) is defined by the

formula ‖Φ(s)‖Cω
q (Γ) =

∥∥∥∥Φ(s) N∏
n=1

|s− an|q |s− bn|q
∥∥∥∥
C0,ω(Γ)

.

Further on, we assume that densities g1(σ), g2(σ) belong to the Banach space Cω
q (Γ)

for some ω, q, so that ω ∈ (0, 1], q ∈ [0, 1).

It follows from Theorem 2 and from [7] that for such densities g1(σ), g2(σ), the po-

tentials of velocities v1[g1, g2](x), v2[g1, g2](x) belong to the class K, while the potential

of pressure p[g1, g2](x) belongs to the class K0.

We will look for the solution of problem U in the form

{v1[g1, g2](x), v2[g1, g2, ](x), p[g1, g2](x)};

i.e. we look for velocities and for pressure in the form of corresponding potentials for

velocities and for pressure from (6), (7).
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It was mentioned above that the densities g1(s), g2(s) will be sought in the space

Cω
q (Γ) with ω ∈ (0, 1], q ∈ [0, 1). It follows from the above arguments that for such

densities g1(s), g2(s), the functions v1[g1, g2](x), v2[g1, g2](x) and p[g1, g2](x) satisfy all

conditions of problem U except for boundary conditions (2c).

To satisfy boundary conditions (2c), we substitute (6) into (2c) and obtain two integral

equations for densities g1(s), g2(s):

v1[g1, g2](x(s)) = F1(s), v2[g1, g2](x(s)) = F2(s), s ∈ Γ, (8)

where v1[g1, g2](x), v2[g1, g2](x) are potentials of velocities from (6), in which we have

to set x = x(s). Differentiating each equation (8) in s (see Theorem 2), we obtain two

singular integral equations with respect to functions g1(s), g2(s):

∂v1[g1, g2](x(s))

∂s
=

1

4πk

∫
Γ

{
g1(σ)

(
−cos(ψ(x(s), y(σ))− α(s))

|x(s)− y(σ)| (9a)

+ sin(2ψ(x(s), y(σ)))
sin(ψ(x(s), y(σ))− α(s))

|x(s)− y(σ)| − ∂L11(x(s), y1(σ),−y2(σ))

∂s

+
∂H1(x(s), y(σ))

∂s

)
+ g2(σ)

(
− cos(2ψ(x(s), y(σ)))

sin(ψ(x(s), y(σ))− α(s))

|x(s)− y(σ)|

−∂L12(x(s), y1(σ),−y2(σ))

∂s
− ∂H2(x(s), y(σ))

∂s
+

∂H3(x(s), y(σ))

∂s

)}
dσ

=
dF1(s)

ds
= F ′

1(s), s ∈ Γ,

∂v2[g1, g2](x(s))

∂s
=

1

4πk

∫
Γ

{
g2(σ)

(
−cos(ψ(x(s), y(σ))− α(s))

|x(s)− y(σ)| (9b)

− sin(2ψ(x(s), y(σ)))
sin(ψ(x(s), y(σ))− α(s))

|x(s)− y(σ)| − ∂L22(x(s), y1(σ),−y2(σ))

∂s

+
∂H1(x(s), y(σ))

∂s

)
+ g1(σ)

(
− cos(2ψ(x(s), y(σ)))

sin(ψ(x(s), y(σ))− α(s))

|x(s)− y(σ)|

−∂L21(x(s), y1(σ),−y2(σ))

∂s
+

∂H2(x(s), y(σ))

∂s
+

∂H3(x(s), y(σ))

∂s

)}
dσ

=
dF2(s)

ds
= F ′

2(s), s ∈ Γ.

The first terms in equations (9a) and (9b) are Cauchy singular integrals. Functions

Ljl(x, y1,−y2) with j, l = 1, 2 and Hm(x, y) with m = 1, 2, 3 are defined by formulae (5),

while α(s) is an angle of inclination of the tangent vector τx to the 0x1 axis. In order

that equations (9) be equivalent to equations (8), it is necessary to supply equations (9)

with the following additional conditions:

v1[g1, g2](x(an)) = F1(an), v2[g1, g2](x(an)) = F2(an), n = 1, ..., N. (10)

From the above arguments follows

Theorem 3. Let Γ ∈ C2,λ, F1(s), F2(s) ∈ C1,λ(Γ), λ ∈ (0, 1]. If the system of equations

(9), (10) has a solution {g1(s), g2(s)} such that g1(s), g2(s) ∈ Cω
q (Γ) with ω ∈ (0, 1],
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q ∈ [0, 1), then the solution {v1[g1, g2](x), v2[g1, g2](x), p[g1, g2](x)} of problem U exists

and is given by the formulae (6), (7).

Below we prove that the system (9), (10) has a solution {g1(s), g2(s)} such that

g1(s), g2(s) ∈ Cω
q (Γ) with ω ∈ (0, 1], q ∈ [0, 1). Moreover, we reduce the system (9),

(10) to the uniquely solvable Fredholm integral equation of the second kind and with

index zero. This Fredholm integral equation can be solved numerically by standard

codes.

It is shown in [6, lemmas 2, 3] that(
− cos[ψ(x(s), y(σ))− α(s)]

|x(s)− y(σ)| − 1

σ − s

)
∈ C0,λ(Γ× Γ),

sin(ψ(x(s), y(σ))− α(s))

|x(s)− y(σ)| ∈ C0,λ(Γ× Γ),

since Γ ∈ C2,λ. Besides, according to [9],

cos(2ψ(x(s), y(σ))), sin(2ψ(x(s), y(σ))) ∈ C0,1(Γ× Γ).

It can be shown that
∂Ljl(x(s), y1(σ),−y2(σ))

∂s
,
∂Hm(x(s), y(σ))

∂s
∈ C1(Γ× Γ) for j, l =

1, 2 and m = 1, 2, 3, since the functions Ljl(x, y1,−y2) with j, l = 1, 2 and functions

Hm(x, y) with m = 1, 2, 3 do not have singularity as x → y ∈ Γ. Consequently, we may

rewrite equations (9) in the form

1

π

∫
Γ

g1(σ)
dσ

σ − s
+

2∑
l=1

∫
Γ

Y1l(s, σ)gl(σ)dσ = 4kF ′
1(s), s ∈ Γ, (11a)

1

π

∫
Γ

g2(σ)
dσ

σ − s
+

2∑
l=1

∫
Γ

Y2l(s, σ)gl(σ)dσ = 4kF ′
2(s), s ∈ Γ, (11b)

where

Yll(s, σ) =
1

π

{(
− cos[ψ(x(s), y(σ))− α(s)]

|x(s)− y(σ)| − 1

σ − s

)

−(−1)l sin(2ψ(x(s), y(σ)))
sin(ψ(x(s), y(σ))− α(s))

|x(s)− y(σ)|

−∂Lll(x(s), y1(σ),−y2(σ))

∂s
+

∂H1(x(s), y(σ))

∂s

}
, l = 1, 2,

Y12(s, σ) =
1

π

{
− cos(2ψ(x(s), y(σ)))

sin(ψ(x(s), y(σ))− α(s))

|x(s)− y(σ)|

−∂L12(x(s), y1(σ),−y2(σ))

∂s
− ∂H2(x(s), y(σ))

∂s
+

∂H3(x(s), y(σ))

∂s

}
,

Y21(s, σ) = Y12(s, σ) +
2

π

∂H2(x(s), y(σ))

∂s
,

and Yjl(s, σ) ∈ C0,λ(Γ × Γ), λ ∈ (0, 1], for j, l = 1, 2. Here we took into account that

L12(x(s), y1(σ),−y2(σ)) = L21(x(s), y1(σ),−y2(σ)), owing to (5).
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5. Fredholm integral equation and the solution of the problem. Inverting a

singular integral operator in the equations (11), we obtain two integral equations of the

second kind [10]:

g1(s)−
1

Q(s)

2∑
l=1

∫
Γ

gl(σ)A1l(s, σ)dσ +
1

Q(s)

N−1∑
n=0

Gns
n =

f1(s)

Q(s)
, s ∈ Γ, (12a)

g2(s)−
1

Q(s)

2∑
l=1

∫
Γ

gl(σ)A2l(s, σ)dσ +
1

Q(s)

N−1∑
n=0

Gn+Nsn =
f2(s)

Q(s)
, s ∈ Γ, (12b)

where

Ajl(s, σ) =
1

π

∫
Γ

Yjl(ξ, σ)

ξ − s
Q(ξ)dξ, j = 1, 2, l = 1, 2,

Q(s) =

N∏
n=1

∣∣∣√s− an
√
bn − s

∣∣∣ sign (s− an),

fj(s) = −4k

π

∫
Γ

Q(ξ)F ′
j(ξ)

ξ − s
dξ, j = 1, 2,

and G0, . . . , G2N−1 are arbitrary constants, which must be defined when solving the

problem. It is assumed that sign (s − an) = 1 if s = an; then sign (s − an) belongs to

C∞(Γ) in variable s for n = 1, ..., N .

Note that if functions g1(s), g2(s) ∈ Cω
q (Γ) satisfy equations (12) for certain constants

G0, . . . , G2N−1, then they also satisfy equations (11). (This can be easily shown if we

apply the singular integral operator with the kernel (σ− s)−1 to equations (12); then we

obtain equations (11).)

Let us study properties of functions in (12). The densities of singular integrals in

expressions for functions Ajl(s, σ), fj(s) (j, l = 1, 2) are Hölder continuous on Γ, and

densities in Ajl(s, σ) are Hölder continuous in both variables. In particular, these den-

sities are Hölder continuous on Γ in variable ξ with the exponent β = min{λ, 1/2}
(uniformly with respect to σ in the case of Ajl(s, σ)) and are equal to zero if ξ is an end

of Γ (since the function Q(ξ) belongs to the class C0,1/2(Γ) and equals zero at the ends

of Γ). Using properties of singular integrals [10, §18], we arrive at

Lemma 1. Let Γ ∈ C2,λ(Γ), λ ∈ (0, 1]. Then functions Ajl(s, σ) with j = 1, 2, l = 1, 2

are Hölder continuous on Γ in both variables. In particular, these functions are Hölder

continuous on Γ in variable s with the exponent β = min{λ, 1/2} uniformly with respect

to σ ∈ Γ. If, in addition, conditions (4) hold, then f1(s), f2(s) ∈ C0,β(Γ).

It follows from Lemma 1 that integrals in (12) are Hölder continuous in s on Γ with

the exponent β = min{λ, 1/2} for any functions g1(s), g2(s) from the space Cω
q (Γ) with

ω ∈ (0, 1] and q ∈ [0, 1). It can be verified directly using Lemma 1 that if functions

g1(s), g2(s) of the space C
ω
q (Γ) with ω ∈ (0, 1] and q ∈ [0, 1) satisfy equations (12), then

g1(s), g2(s) ∈ Cβ
1/2(Γ) with β = min{λ, 1/2}. Therefore, we will look for functions g1(s),

g2(s) in the space Cβ
1/2(Γ) with β = min{λ, 1/2} below.
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Instead of functions g1(s), g2(s) ∈ Cβ
1/2(Γ), we introduce the new unknown functions

g1∗(s), g2∗(s) ∈ C0,β(Γ) by the formula gj∗(s) = gj(s)Q(s), j = 1, 2 and rewrite (12) in

the form

g1∗(s)−
2∑

l=1

∫
Γ

A1l(s, σ)gl∗(σ)Q
−1(σ)dσ +

N−1∑
n=0

Gns
n = f1(s), s ∈ Γ, (13a)

g2∗(s)−
2∑

l=1

∫
Γ

A2l(s, σ)gl∗(σ)Q
−1(σ)dσ +

N−1∑
n=0

Gn+Nsn = f2(s), s ∈ Γ. (13b)

We rewrite conditions (10) in terms of functions g1∗(s), g2∗(s):

Ln,1g1∗ + Ln,2g2∗ = F1(an), n = 1, ..., N, (14a)

Ln,1g1∗ + Ln,2g2∗ = F2(an−N ), n = N + 1, ..., 2N, (14b)

where

Ln,1g1∗ =
1

4πk

∫
Γ

g1∗(σ)Q
−1(σ)[L11(x(an), y1(σ), y2(σ)) (15)

−L11(x(an), y1(σ),−y2(σ)) +H1(x(an), y(σ))]dσ, n = 1, ..., N ;

Ln,2g2∗ =
1

4πk

∫
Γ

g2∗(σ)Q
−1(σ)[L12(x(an), y1(σ), y2(σ))

−L12(x(an), y1(σ),−y2(σ))−H2(x(an), y(σ)) +H3(x(an), y(σ))]dσ, n = 1, ..., N ;

Ln,1g1∗ =
1

4πk

∫
Γ

g1∗(σ)Q
−1(σ)[L21(x(an−N), y1(σ), y2(σ))

−L21(x(an−N), y1(σ),−y2(σ))

+H2(x(an−N), y(σ)) +H3(x(an−N ), y(σ))]dσ, n = N + 1, ..., 2N ;

Ln,2g2∗ =
1

4πk

∫
Γ

g2∗(σ)Q
−1(σ)[L22(x(an−N), y1(σ), y2(σ))

−L22(x(an−N ), y1(σ),−y2(σ)) +H1(x(an−N), y(σ))]dσ, n = N + 1, ..., 2N.

When deriving relations (14), functions from (6) are used.

Thus, the system of equations (9), (10) for the functions g1(s), g2(s) is reduced to

the system of equations (13)–(14) for the functions g1∗(s), g2∗(s) and 2N constants

G0, ..., G2N−1.

It follows from the above arguments that any solution of the system (13)–(14) yields

the solution of the system (9), (10).

Note that if g1∗(s), g2∗(s) are continuous functions on Γ and satisfy equations (13),

then they are Hölder continuous on Γ, owing to Lemma 1. Namely, from Lemma 1 follows

Lemma 2. Let Γ ∈ C2,λ, λ ∈ (0, 1], and f1(s), f2(s) ∈ C0,β(Γ), β = min{1/2, λ}. If the

functions g1∗(s), g2∗(s) from C0(Γ) obey equations (13), then g1∗(s), g2∗(s) ∈ C0,β(Γ).

By Lemma 1, condition f1(s), f2(s) ∈ C0,β(Γ) holds if conditions (4) hold. Thus, we

will look for functions g1∗(s), g2∗(s) in C0(Γ) below. If we find such functions satisfying

equations (13), then these functions automatically belong to C0,β(Γ) by Lemma 2.
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Since Ajl(s, σ) ∈ C0(Γ× Γ) by Lemma 1, the integral operators from (13):

(Ajlgl∗) (s) =

∫
Γ

Ajl(s, σ)gl∗(σ)Q
−1(σ)dσ, j = 1, 2, l = 1, 2,

are compact operators in C0(Γ). This can be verified directly using the Arzela-Ascoli

theorem.

Let us introduce the column G = (G0, ..., G2N−1)
T , consisting of 2N constants. We

will consider column G as an element of the finite-dimensional space E2N . We rewrite

equations (13a) and (13b) in the operator form

g1∗ −A11g1∗ −A12g2∗ − P1G = f1, (16a)

g2∗ −A21g1∗ −A22g2∗ − P2G = f2, (16b)

where P1 is an operator of multiplication of the row containing 2N elements P1 =

(−s0, . . . ,−sN−1, 0, ..., 0) by the column G = (G0, . . . , G2N−1)
T ; P2 is an operator of

multiplication of the row containing 2N elements P2 = (0, ..., 0,−s0, . . . ,−sN−1) by the

column G = (G0, . . . , G2N−1)
T . Note that the operators P1 and P2, acting from E2N

into C0(Γ), are finite-dimensional, and thus compact [12, p. 64].

Let F = (F1(a1), ..., F1(aN ), F2(a1), ..., F2(aN ))T be a column containing 2N con-

stants. The column F, as well as the column G, is considered as an element of the space

E2N of the dimension 2N . By I2N we denote the unit matrix of dimension (2N)× (2N).

The matrix I2N is the unit operator in the space E2N . We rewrite equations (14) in the

form of one vector equation

G− L1g1∗ − L2g2∗ − I2NG = F . (17)

The operator I2N is a compact operator, since any operator acting in finite-dimensional

space is compact [11, p. 222]. Operators L1 and L2 are represented as columns of 2N

linear continuous functionals:

Ll = (−L1,l, . . . ,−L2N,l)
T , l = 1, 2.

Each functional acts from C0(Γ) into E1, so that

Llgl∗ = (−L1,lgl∗, . . . ,−L2N,lgl∗)
T , l = 1, 2,

where functionals Ln,lgl∗ are introduced in (15) for l = 1, 2 and n = 1, ..., 2N . The

operator Ll with l = 1 or l = 2, acting from C0(Γ) into E2N , is finite-dimensional, and

thus compact [12, p. 64].

The first N rows in (17) are equations (14a), while next N rows are equations (14b).

Consider columns g = (g1∗(s), g2∗(s),G)T and f = (f1(s), f2(s),F)
T in the Banach

space C0(Γ)× C0(Γ)× E2N with the norm

‖g‖C0(Γ)×C0(Γ)×E2N
= ‖g1∗‖C0(Γ) + ‖g2∗‖C0(Γ) + ‖G‖E2N

.

Let us write the system (16), (17) in the form of one equation

(I −R)g = f , R =

⎛
⎝ A11 A12 P1

A21 A22 P2

L1 L2 I2N

⎞
⎠ , (18)

where I is the unit operator in the space C0(Γ)× C0(Γ)× E2N .
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It is shown above that all operators forming R are compact, so R is a compact operator

acting from C0(Γ) × C0(Γ) × E2N into C0(Γ) × C0(Γ) × E2N (i.e. mapping C0(Γ) ×
C0(Γ)×E2N into itself). It follows from the compactness of operator R and from results

presented in [12, p. 67], [13, p. 472], [14, p. 221] that equation (18) is a Fredholm equation

of the second kind and with index zero in the space C0(Γ)×C0(Γ)×E2N . In other words,

Fredholm’s alternative holds for equation (18).

Let us show that the homogeneous equation (18) has only a trivial solution in the

space C0(Γ)×C0(Γ)×E2N ; then nonhomogeneous equation (18) is uniquely solvable in

this space due to Fredholm’s alternative. Let g0 = (g01∗(s), g
0
2∗(s),G

0)T , be an arbitrary

solution of the homogeneous equation (18) in the space C0(Γ) × C0(Γ) × E2N , where

G0 = (G0
0, . . . , G

0
2N−1)

T . Hence, the functions g01∗(σ), g
0
2∗(σ) ∈ C0(Γ) and the vector G0

convert homogeneous equations (13), (14) into identities.

By Lemma 2, g01∗(σ), g
0
2∗(σ) ∈ C0,β(Γ), β = min{λ, 1/2}. Consequently, functions

g01(σ) = Q−1(σ)g01∗(σ) ∈ Cβ
1/2(Γ), g02(σ) = Q−1(σ)g02∗(σ) ∈ Cβ

1/2(Γ)

and the vectorG0 convert homogeneous equations (12), (10) into identities. In particular,

the functions g01(σ), g02(σ) convert homogeneous equations (10) into identities.

Applying the singular integral operator with the kernel (s−σ)−1 to (12a) and (12b), we

obtain that the functions g01(σ) and g02(σ) satisfy homogeneous singular integral equa-

tions (11), which are equivalent to homogeneous equations (9). Therefore, the func-

tions g01(σ), g
0
2(σ) ∈ Cβ

1/2(Γ) satisfy homogeneous equations (9), (10). By Theorem 3,

{v1[g01 , g02 ](x), v2[g
0
1 , g

0
2 ](x), p[g

0
1 , g

0
2 ](x)} is a solution of the homogeneous problem U .

By Theorem 1, the homogeneous problem U has only a trivial solution, i.e.

v1[g
0
1 , g

0
2 ](x) ≡ 0, v2[g

0
1 , g

0
2 ](x) ≡ 0, p[g01 , g

0
2 ](x) ≡ 0, x ∈ R2

+ \ Γ. (19)

Using limiting formulae for the pressure potential [7, 9] on Γ+ and Γ−, and using limiting

formulae from Theorem 2 for normal derivatives of velocity potentials on Γ+ and Γ−, we

obtain

k

(
∂vj [g

0
1 , g

0
2 ](x)

∂nx

∣∣∣∣
x(s)∈Γ+

− ∂vj [g
0
1 , g

0
2 ](x)

∂nx

∣∣∣∣
x(s)∈Γ−

)
(20)

−
(
p[g01 , g

0
2 ](x)|x(s)∈Γ+ − p[g01 , g

0
2 ]|x(s)∈Γ−

)
cos(nx, xj) = g0j (s), s ∈ Γ, j = 1, 2.

When deriving (20) we used the fact that derivatives in x1, x2 of functions Ljl(x, y1,−y2)

and Hm(x, y) from (5) are continuous as x → y ∈ Γ for j, l = 1, 2 and m = 1, 2, 3. In

addition, we took into account that functions

cos(ψ(x, y1(σ),−y2(σ)))

r(x, y1(σ),−y2(σ))
,

sin(ψ(x, y1(σ),−y2(σ)))

r(x, y1(σ),−y2(σ))
,

H1(x, y(σ))

x2
,

H2(x, y(σ))

x2

are continuous as x → y ∈ Γ.

It follows from (19), (20) that g01(s) ≡ 0, g02(s) ≡ 0 for s ∈ Γ, so g0j∗(s) = g0j (s)Q(s) ≡ 0

for j = 1, 2 and for s ∈ Γ.

Since the functions g01∗(s), g02∗(s) and the vector G0 = (G0
0, . . . , G

0
2N−1)

T satisfy

the homogeneous equations (13) and convert them into identities, we observe that these
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identities take the form
N−1∑
n=0

G0
ns

n ≡ 0,
N−1∑
n=0

G0
n+Nsn ≡ 0, s ∈ Γ.

It follows from the main theorem of algebra on a number of roots of a polynomial that

all coefficients of both polynomials are equal to zero, i.e. G0
n = 0 for n = 0, ..., 2N − 1.

Consequently, all elements of the vector g0 equal zero; i.e. g0 is a trivial solution of

the homogeneous equations (18). So we proved that the homogeneous equation (18) has

only the trivial solution in the space C0(Γ) × C0(Γ) × E2N . As shown above, equation

(18) is a Fredholm equation of the second kind and with index zero in this space. By

Fredholm’s alternative, the non-homogeneous equation (18) is uniquely solvable in this

space [12, p. 67], [13, p. 472], [14, p. 221]. From the above arguments follows

Theorem 4. If Γ ∈ C2,λ, λ ∈ (0, 1], then (18) is a Fredholm equation of the second kind

and with index zero in the space C0(Γ)× C0(Γ)× E2N . Moreover, equation (18) has a

unique solution g = (g1∗(s), g2∗(s),G)T ∈ C0(Γ)×C0(Γ)×E2N for any right-hand side

f = (f1(s), f2(s),F)
T ∈ C0(Γ)× C0(Γ)× E2N .

From Theorem 4 and Lemma 2 we obtain

Corollary. If Γ ∈ C2,λ, λ ∈ (0, 1], and if

f = (f1(s), f2(s),F)
T ∈ C0,β(Γ)× C0,β(Γ)× E2N ,

where β = min{λ, 1/2}, then the unique solution g = (g1∗(s), g2∗(s),G)T of equation

(18) in C0(Γ) × C0(Γ) × E2N ensured by Theorem 4 belongs to the space C0,β(Γ) ×
C0,β(Γ)× E2N .

Let us turn to the analysis of the solvability of system (9), (10). Let conditions

(4) hold. Then by Lemma 1, the functions f1(s), f2(s) belong to the class C0,β(Γ)

with β = min{1/2, λ}. According to the corollary to Theorem 4, equation (18) with

such functions f1(s), f2(s) has the unique solution g = (g1∗(s), g2∗(s),G)T in the space

C0(Γ)×C0(Γ)×E2N , and this solution automatically belongs to C0,β(Γ)×C0,β(Γ)×E2N .

It follows from derivation of equation (18) that the functions

g1(σ) = Q−1(σ)g1∗(σ) ∈ Cβ
1/2(Γ), g2(σ) = Q−1(σ)g2∗(σ) ∈ Cβ

1/2(Γ)

and the vector G convert equations (12), (10) into identities. In particular, functions

g1(σ), g2(σ) convert equations (10) into identities. Applying a singular integral operator

with the kernel (s − σ)−1 to identities (12a) and (12b), we obtain that the functions

g1(σ) and g2(σ) satisfy singular integral equations (11), which coincide with equations

(9). Thus, we have proved

Theorem 5. Let Γ ∈ C2,λ; F1(s), F2(s) ∈ C1,λ(Γ); λ ∈ (0, 1]. Then the system of

equations (9), (10) has a solution {g1(s), g2(s)} such that g1(s), g2(s) ∈ Cβ
1/2(Γ) with

β = min{λ, 1/2}. The functions g1(s), g2(s) in this solution are given by formula

gj(s) = gj∗(s)Q
−1(s), j = 1, 2, where the functions g1∗(s), g2∗(s) ∈ C0,β(Γ) are ele-

ments of the unique solution g = (g1∗(s), g2∗(s),G)T = (g1∗(s), g2∗(s), G0, ..., G2N−1)
T

of equation (18) in the space C0(Γ) × C0(Γ) × E2N , existence of which is ensured by

Theorem 4.
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Remark. Using the technique of the proof of Theorem 4, one can show that the system

(9), (10) has no more than one solution {g1(s), g2(s)} such that g1(s), g2(s) ∈ Cω
q (Γ) with

ω ∈ (0, 1] and q ∈ [0, 1). So, the solution ensured by Theorem 5 is unique.

The existence theorem for problem U follows from Theorem 5 and from Theorem 3.

Theorem 6. Let Γ ∈ C2,λ, F1(s), F2(s) ∈ C1,λ(Γ), λ ∈ (0, 1]. Then the solution

{v1[g1, g2](x), v2[g1, g2](x), p[g1, g2](x)} of problem U exists and is given by the formulae

(6), (7), where {g1(s), g2(s)} is a solution of the system of equations (9), (10), ensured

by Theorem 5.

By Theorem 1, a solution of problem U obtained in Theorem 6 is unique. It follows

from Theorem 2 that if {v1[g1, g2](x), v2[g1, g2](x), p[g1, g2](x)} is a solution of problem U
obtained in Theorem 6, then the function p[g1, g2](x) and functions

∂vl(x)

∂xj
with l, j = 1, 2

satisfy condition (1) with ε = −1/2. The explicit formulae for singularities of the gradient

of the solution at the ends of the open arcs Γ will be presented in the next section.

Theorem 6 ensures existence of a classical solution of problem U if Γ ∈
C2,λ, F1(s), F2(s) ∈ C1,λ(Γ), λ ∈ (0, 1]. The uniqueness of this solution follows from

Theorem 1. On the basis of our analysis, we suggest the following scheme for solving

problem U . First, we find the unique solution g = (g1∗(s), g2∗(s),G)T of the Fredholm

equation (18), in which G = (G0, ..., G2N−1)
T and g1∗(s), g2∗(s) ∈ C0(Γ). The functions

g1∗(s), g2∗(s) in this solution belong to C0,β(Γ), β = min{1/2, λ} automatically. Second,

we construct the solution g1(s), g2(s) of equations (9), (10) from Cβ
1/2(Γ) by the formula

gj(s) = gj∗(s)Q
−1(s), j = 1, 2. Finally, substituting g1(s), g2(s) into (6), (7), we obtain

the solution of problem U .

6. Behaviour of derivatives of velocities at the ends of Γ. Let x(d) be one of the

endpoints of the contour Γ: x(d) ∈ X; d = an or d = bn, n = 1, . . . , N . Let velocities

v1(x) = v1[g1, g2](x), v2(x) = v2[g1, g2](x) be elements of the solution of problem U
obtained in Theorem 6. Let us study the asymptotic behaviour of the derivatives

∂v1(x)

∂x1
,

∂v1(x)

∂x2
,
∂v2(x)

∂x1
,
∂v2(x)

∂x2
in a neighbourhood of the point x(d) slit along Γ. We introduce

the system of polar coordinates (|x − x(d)| cosϕ, |x − x(d)| sinϕ) in the neighbourhood

of the point x(d). We assume that ϕ ∈ (α(d), α(d) + 2π) if d = an and ϕ ∈ (α(d) −
π, α(d)+π) if d = bn. We remind the reader that α(s) is an angle between the direction

of the Ox1 axis and the tangent vector τx to the contour Γ in the point x(s). We set

α(d) = α (an + 0) if d = an, and α(d) = α (bn − 0) if d = bn. Thus, the angle ϕ varies

continuously in the neighbourhood of the point x(d) slit along the contour Γ. Denote

gdj (s) = gj(s)|s− d|1/2 = Q−1
1/2(s)gj∗(s)|s− d|1/2, j = 1, 2,
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whence for j = 1, 2 we have at the ends of Γ: gdj (d) = gan
j (an) = gan

j (an + 0) if d = an

and gdj (d) = gbnj (bn) = gbnj (bn − 0) if d = bn. We set

Cj(ϕ, d) = cos

(
1

2
ϕ+

1

2
α(d)

)
+ (−1)j cos

(
3

2
ϕ+

3

2
α(d)

)
cos(ϕ− α(d)), j = 1, 2,

Sj(ϕ, d) = sin

(
1

2
ϕ+

1

2
α(d)

)
+ (−1)j sin

(
3

2
ϕ+

3

2
α(d)

)
cos(ϕ− α(d)), j = 1, 2.

Analyzing the behaviour of derivatives
∂v1(x)

∂x1
,

∂v1(x)

∂x2
,

∂v2(x)

∂x1
,

∂v2(x)

∂x2
at the ends of

the contour Γ with the help of asymptotic formulae obtained in [6], [9], we arrive at

Theorem 7. Let v1(x), v2(x) be components of the solution of problem U obtained in

Theorem 6, and let x(d) be one of the endpoints of the contour Γ, i.e. x(d) ∈ X, d = an
or d = bn, n = 1, . . . , N . Then the following formulae describing asymptotic behaviour

of derivatives
∂v1(x)

∂x1
,

∂v1(x)

∂x2
,

∂v2(x)

∂x1
,

∂v2(x)

∂x2
as x → x(d) hold for points x lying in

the neighbourhood of the point x(d) outside Γ.

If d = an, then

∂v1(x)

∂x1
=

1

4k|x− x(an)|1/2

{
gan
1 (an)

[
sin

(
1

2
ϕ+

1

2
α(an)

)
− 1

2
S1(ϕ, an)

]

+
1

2
gan
2 (an)C1(ϕ, an)

}
+Ω11(x, an),

∂v2(x)

∂x1
=

1

4k|x− x(an)|1/2

{
gan
2 (an)

[
sin

(
1

2
ϕ+

1

2
α(an)

)
+

1

2
S1(ϕ, an)

]

+
1

2
gan
1 (an)C1(ϕ, an)

}
+Ω21(x, an),

∂v1(x)

∂x2
=

1

4k|x− x(an)|1/2

{
gan
1 (an)

[
− cos

(
1

2
ϕ+

1

2
α(an)

)
− 1

2
C2(ϕ, an)

]

− 1

2
gan
2 (an)S2(ϕ, an)

}
+Ω12(x, an),

∂v2(x)

∂x2
=

1

4k|x− x(an)|1/2

{
gan
2 (an)

[
− cos

(
1

2
ϕ+

1

2
α(an)

)
+

1

2
C2(ϕ, an)

]

− 1

2
gan
1 (an)S2(ϕ, an)

}
+Ω22(x, an).
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If d = bn, then

∂v1(x)

∂x1
=

1

4k|x− x(an)|1/2

{
gbn1 (bn)

[
− cos

(
1

2
ϕ+

1

2
α(bn)

)
+

1

2
C1(ϕ, bn)

]

+
1

2
gbn2 (bn)S1(ϕ, bn)

}
+Ω11(x, bn),

∂v2(x)

∂x1
=

1

4k|x− x(an)|1/2

{
gbn2 (bn)

[
− cos

(
1

2
ϕ+

1

2
α(bn)

)
− 1

2
C1(ϕ, bn)

]

+
1

2
gbn1 (bn)S1(ϕ, bn)

}
+Ω21(x, bn),

∂v1(x)

∂x2
=

1

4k|x− x(an)|1/2

{
gbn1 (bn)

[
− sin

(
1

2
ϕ+

1

2
α(bn)

)
− 1

2
S2(ϕ, bn)

]

+
1

2
gbn2 (bn)C2(ϕ, bn)

}
+Ω12(x, bn),

∂v2(x)

∂x2
=

1

4k|x− x(an)|1/2

{
gbn2 (bn)

[
− sin

(
1

2
ϕ+

1

2
α(bn)

)
+

1

2
S2(ϕ, bn)

]

+
1

2
gbn1 (bn)C2(ϕ, bn)

}
+Ω22(x, bn).

By Ωlj(x, d) with l, j = 1, 2, we denote functions that are continuous in x in the neigh-

bourhood of the point x(d) slit along Γ and are continuously extensible onto Γ \ x(d)

from the left and from the right from this neighbourhood, but these functions may be

unbounded in the point x(d) and satisfy the following inequality:

|Ωlj(x, d)| ≤
const

|x− x(d)|q1 , l, j = 1, 2 (21)

for all points x lying in the neighbourhood of the point x(d) outside Γ. Here const is

some constant and q1 is any number such that q1 ∈ (1/2− β, 1/2), β = min{1/2, λ}.

It follows from Theorem 7 that the derivatives
∂vl(x)

∂xj
, l, j = 1, 2 behave near the

end x(d) of the contour Γ as O
(
|x− x(d)|−1/2

)
in the general case. However, if gd1(d) =

gd2(d) = 0, then these derivatives have less singularity in the point x(d), since they satisfy

the inequality ∣∣∣∣∂vl(x)∂xj

∣∣∣∣ ≤ const

|x− x(d)|q1 , l, j = 1, 2 (22)

for any q1 pointed out in Theorem 7, i.e. for any q1 ∈ (1/2 − β, 1/2). Inequality (22)

holds for any x lying near x(d) outside Γ. Note that if λ ∈ [1/2, 1] in Theorem 6, then

β = 1/2 and inequalities (21), (22) hold for any q1 ∈ (0, 1/2).
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