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Abstract. In the context of wave propagation through acoustic media, an analytical
approach is developed to study the (normal) incidence of a pressure wave into a periodic
array of (thin) elastic membranes. The frequency of this wave is assumed in a range
implying the so-called one-mode (far field) propagation, so that mild approximations
holding in this range can be employed. Thus, the problem is reduced to some integral
equations based on the opening between adjacent membranes and independent of the
frequency. By means of the (analytical) solutions of such equations, an explicit formula
for the transmission coefficient is set up and reflected in some figures for concrete values
of the various parameters involved. The peculiarities of the scattering structure are
discussed.

1. Introduction. The problems of solid-fluid interaction are very important in aero-
acoustics, dynamics of aircrafts, architectural acoustics, active and passive noise control,
as well as in many other fields of engineering science concerning vibrations of flexible
constructions in contact with fluids and gases.

In this ambit, analytical methods certainly deserve great attention, since only they
can provide explicit representations for the relevant unknown fields with respect to the
geometrical or physical parameters involved.

The foundations of the dynamics of elastic constructions, in their interactions with
fluids or gases, were posed by scientists in the theory of hydro-aero-elasticity (for a
survey see, e.g., [1]–[3]). Several qualitatively interesting phenomena were discovered
and studied, both in stationary and transient cases. Mathematically, the problems of
such a kind are described by some system of integro-differential equations. Transient
problems require an application of the Laplace transform with respect to time.

Practical applications of sound-elastic interaction are involved in noise control and
sound insulation of buildings (see [4], Chapter 33). The theoretical basis for investigation
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of these matters, including the theory of sound transmission through thin elastic slabs,
plates and membranes, can be found in [5]–[7]. A survey of simple analytical solutions
and some aspects of direct numerical treatment by FEM, as well as a comparison with
experiments, are presented in [8].

Noise control problems similar to those described above arise also in aeroacoustics in
the ambit of reduction of noise generated by sound fields (see, for example, [9], Chapter
14). With this aim, some authors propose to apply linear arrays of membrane liners. Even
simple impedance estimates show a wide range for efficient noise cancellation. More ad-
vanced theoretical investigations discover the so-called frequency cuts for the transmitted
acoustic energy. This gives an alternative way to obtain noise control and sound insu-
lation, along with an application of traditional absorbing materials. Mathematically,
the “frequency cut” is related to a sudden decreasing of certain transmission coefficients
when sound propagates through an acoustic medium containing some obstacles. Sound
absorbers in the form of periodic collinear structures in room acoustics are called res-
onant absorbers. A special chapter is devoted to such absorbers in the leading book
of Cremer and Müller [10], Chapter IV.9. The authors give many frequency-dependent
graphs, basing their method on some simple approximate theories. They point out the
relation of this approach with the theory of Helmholtz resonators.

An advanced analytical method for scattering problems through periodic structures of
(thin) screens has been developed in our previous papersdouble [11, 12], where we were
able to arrive at explicit representations of the scattered field, including transmission
and reflection coefficients, in the case of absolutely rigid screens. In this connection, the
main purpose of the present paper is to spread our method to the case of thin elastic
screens (namely, membranes), in order to evaluate how significant can be the influence
on the scattering of the flexibility of such (non-rigid) obstacles. The choice to consider
the vibrating structure which interacts with the acoustic medium as (a periodic array
of) elastic membranes is of course a first step towards the modelling of the physical
problem here considered. In fact, some authors consider both the membrane and plate
models when describing the fluid-elastic structures interaction; see, for example, [13]–[16]
and the references therein cited. However, we should note that the modelling through
membranes permits direct evaluation of the sound attenuation obtained by using soft
elements (like curtains) in room acoustics. Indeed, it is well known [10] that to cancel too
high reverberations in some types of halls (like sports halls or churches), the acousticians
place soft thin materials in suitable parts of the hall. Thus, the present study gives a
good mathematical instrument to calculate the level of transmission (and reflection) for
such artificially arranged structures.

Through mild approximations involving the range of frequency under consideration,
the scattering problem is reduced to certain integral equations (independent of frequency)
originating by continuity assumptions and based on the opening between adjacent mem-
branes; such equations are then analytically solved and some related integrals calculated,
so as to provide an explicit formula for the transmission coefficient with respect to fre-
quency. The results are reflected in several figures for concrete values of the geometrical
and physical parameters. The wave properties of the scattering structure are finally
discussed. In an Appendix the main technical transformations are reported.
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2. Formulation of the problem and reduction to integral equations. We
consider an unbounded acoustic medium of density ρa in which there is a periodic distri-
bution of coplanar parallel (thin and flat) elastic membranes, each one subjected to the
same (given) biaxial tension. If z denotes the axis along which such (infinite) membranes
run, Figure 1 shows the section of the structure with (any) normal plane xy. The period
of the array is 2a, while the width of each membrane is 2b (b < a).

In the harmonic regime, we assume that a plane pressure wave of given amplitude p0

and circular frequency ω,

pinc = po ei(kx − ωt), (2.1)

is incident from x = −∞ onto the membranes’ array, giving rise to scattered waves on
the left (x < 0) and right (x > 0) sides of the structure. Above, k is the wave number,
and ω/k gives the (constant) wave speed in the medium. Throughout the sequel, the
time dependence factor e−iωt is common and will often be omitted.

Thanks to the natural symmetry and periodicity, the problem can be restricted to the
typical strip |y| < a, in which the (section of a) membrane occupies the segment |y| < b

at x = 0. By the same reason, the following Fourier representations can be given for the
total field in the two main regions of the structure:

pleft(x, y) = p0 eikx + p0 R e−ikx +
+∞∑
n=1

An eqnx cos
πn

a
y, x < 0, (2.2a)

pright(x, y) = p0 T eikx +
+∞∑
n=1

Bn e−qnx cos
πn

a
y, x > 0, (2.2b)

where all capital letters denote unknown constants and

qn =
√

(πn/a)2 − k2, n = 1, 2, ... , (2.2c)

x

y

�b

�b

�a

�a

Fig. 1. Normal incidence of a pressure wave into a periodic array of elastic
membranes (of width 2b) in an acoustic medium. The period is 2a.
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in order that each wave mode in the series above be a trivial solution of the governing
(Helmholtz) equation

∂2p

∂x2
+

∂2p

∂y2
+ k2p = 0. (2.3)

In such a series, we prefer to extract the terms with n = 0, putting A0 = p0 R, B0 = p0 T ;
q0 = −ik by a radiation condition. As it is due, ∂p/∂y = 0 ∀x at y = ±a .

Taking ω in the range such that

(0 <) k < π/a (2.4)

implies qn > 0 ∀n ≥ 1, and thus guarantees the so-called one-mode (far field) propa-
gation, since with distance from the membranes only the wave modes of order zero will
remain non-vanishing in Eqs.(2.2). In this case, the corresponding (non-dimensional)
coefficients R and T are referred to as the scattering parameters of the structure.

The (linear) motion of an elastic membrane surrounded by a pressure field p is governed
by the following equation [7, 8]:

τ∇2ŵ = ρe
∂2ŵ

∂t2
+ p, (2.5)

where ŵ is the (out-of-plane) displacement field, while τ and ρe are positive constants
which denote the given biaxial tension (force per unit length, here along z) and material
density (mass per unit area) of the membrane, respectively. Of course, in the present (lin-
ear) context the pressure wave field interacts with the membranes imposing a vibrating
motion of harmonic type with the same circular frequency ω [7, 8]. As a consequence, the
stationary governing equation for the x-component (only non-trivial) of the displacement
field of the typical membrane, ŵ(y, t) = e−iωtw(y), reads now as

τ
d2

dy2
w(y) + ρeω

2w(y) = pright(0, y) − pleft(0, y), |y| < b. (2.6a)

By symmetry, w(y) is an even function.
The membrane is clamped at |y| = b, so that as a boundary condition we have

w(±b) = 0. (2.6b)

Moreover, the pressure field on the membrane should be coupled with the motion of the
membrane by equating the x-components of the velocities at x = 0 :

∂

∂t
ŵ(y, t) = va(y, t), |y| < b, (2.7)

where that component of the velocity field in the acoustic medium, va , is here governed
by the equation

ρa
∂va

∂t
= −e−iωt ∂p

∂x

∣∣∣∣
x=0

. (2.8)

Such a coupling clearly implies

∂pleft

∂x

∣∣∣∣
x=0

=
∂pright

∂x

∣∣∣∣
x=0

, |y| < b, (2.9)
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which, along with an obvious property of continuity for the above derivatives on b <

|y| < a, finally enables us to put

∂pleft

∂x

∣∣∣∣
x=0

=
∂pright

∂x

∣∣∣∣
x=0

, |y| < a. (2.10)

Recalling Eqs.(2.2), Eq.(2.10) and the orthogonality properties of cosines in |y| < a

directly implies

1 − R = T, Bn = −An. (2.11)

Now, let us go back to Eq.(2.6a), and substitute pright(0, y)−pleft(0, y) from Eqs.(2.2)
taking into account Eqs.(2.11); we get

d2

dy2
w(y) +

ρeω
2

τ
w(y) = (2p0/τ )(T − 1) + (2/τ )

+∞∑
n=1

Bn cos
πn

a
y, |y| < b, (2.12)

which implies the (even) solution

w(y) = c1 cosΩy − 2
τ

+∞∑
n=1

Bn

s2
n

cos
πn

a
y +

2p0

ρeω2
(T − 1), |y| < b, (2.13a)

where we put

Ω =
√

ρeω2/τ , sn =
√

(πn/a)2 − Ω2 . (2.13b)

By using Eq.(2.6b), we obtain the following explicit expression for the displacement field
of the membrane:

w(y) =
2p0

ρeω2
(T − 1) +

[
2p0

ρeω2
(1 − T ) +

2
τ

+∞∑
n=1

Bn

s2
n

cos
πn

a
b

]
cosΩy

cosΩb

−2
τ

+∞∑
n=1

Bn

s2
n

cos
πn

a
y, |y| < b.

(2.14)

In the assumed harmonic regime, substituting Eq.(2.7) into Eq.(2.8) and considering
Eq.(2.10) give

w(y) =
1

ρaω2

∂pright

∂x
(0, y), |y| < b. (2.15)

Now, the idea is to define a new unknown function g(y) on the opening b < |y| < a, as
follows:

w(y) − 1
ρaω2

∂pright

∂x
(0, y) =

{
g(y), b < |y| < a

0, |y| < b
(2.16)

where by w(y) on the opening we mean the function on the right-hand side of Eq.(2.14)
accordingly extended. Clearly, g(y) is even.

Let us put

G(n) =

a∫
b

g(t) cos
πn

a
t dt , n = 0, 1, 2, ...; G = G(0)

⎛
⎝=

a∫
b

g(t) dt

⎞
⎠ . (2.17)
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By using Eq.(2.2b), we can integrate Eq.(2.16) over the total width |y| < a to obtain the
following formula for the coefficient T (in terms of Bn) :

p0

[
1
ρe

(
1 − sin Ωa

Ωa cosΩb

)
− ik

2ρa

]
T =

ω2

2a

[
G +

2ap0

ρeω2

(
1 − sin Ωa

Ωa cosΩb

)

−2a

τ

sin Ωa

Ωa cosΩb

+∞∑
n=1

Bn

s2
n

cos
πn

a
b

]
.

(2.18)

Repeating the integration of Eq.(2.16) after multiplying by cos(πmy/a), m = 1, 2, ...,

gives (
aqm

2ρaω2
− a

τs2
m

)
Bm = G(m) +

2Ω
ρeω2

sin Ωa

cosΩb

(−1)m

s2
m

p0(1 − T )

+
2Ω
τ

sin Ωa

cosΩb

(−1)m

s2
m

+∞∑
n=1

Bn

s2
n

cos
πn

a
b, m = 1, 2, .... (2.19)

The series above can be substituted from Eq. (2.18), so that we can also deduce a formula
for the coefficients Bn (in terms of T ), as follows:(

aqn

2ρaω2
− a

τs2
n

)
Bn = G(n) +

(−1)n

s2
n

(
Ω2G +

2ap0

τ

)

−a

τ

(−1)n

s2
n

(
2 − ik

ρe

ρa

)
p0T, n = 1, 2, .... (2.20)

Of course, inserting Eq.(2.20) into Eq.(2.18) would give a final formula containing only
T versus the integrals (2.17) of function g, which thus remains the main unknown of the
problem.

3. Integral equation. Quasi-one-mode approximation. An integral equation
to be satisfied by function g arises from the assumption of continuity for the pressure
field along the opening, as follows:

pright(0, y) = pleft(0, y), b < |y| < a. (3.1)

By using Eqs.(2.2) and (2.11), we easily deduce

+∞∑
n=1

Bn cos
πn

a
y = p0(1 − T ), b < |y| < a, (3.2)

in which one could imagine substituting Bn, T from system (2.18,2.20). That would lead
to an (exact) integral equation, which of course could be directly submitted to standard
numerical algorithms for arbitrary values of the geometrical and physical parameters.
However, this paper aims to remain in a full-analytical context, and to this end we agree
to make the following approximation: recalling the range of frequency in (2.4), we assume
to be negligible each term containing (ak)2 when compared with (πn)2 ∀n = 1, 2, ... ;
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this implies that
qn � πn

a
, sn � πn

a
, n = 1, 2, ....1 (3.3)

(In some power expansions, the term Ωa will be retained up to and including the third
power.)

As a consequence, formulas for Bn, T become

Bn � 2ρaω2

π

[
G(n)

n
+

2a3p0

τ

(−1)n

π2n3
− a3

τ

(−1)n

π2n3

(
2 − ik

ρe

ρa

)
p0T

]
, (3.4)

(
a3 − 3ab2

3τ
− aik

ρaω2

)
p0T � G +

a3 − 3ab2

3τ
p0 −

2a3

τπ2

sin Ωa

Ωa cosΩb

+∞∑
n=1

Bn

n2
cos

πn

a
b. (3.5)

In Eq.(3.5) we can substitute Bn from Eq.(3.4) to get[
A − aik

ρaω2
− BCρaω2 sin Ωa

Ωa cosΩb

(
2 − ik

ρe

ρa

)]
p0T

= G + Ap0 − Bρaω2 sin Ωa

Ωa cosΩb

+∞∑
n=1

G(n)
n3

cos
πn

a
b − 2BCρaω2 sin Ωa

Ωa cosΩb
p0

(3.6a)

where for convenience we have put

A =
a3 − 3ab2

3τ
, B =

4a3

τπ3
, C =

a3

τπ2

+∞∑
n=1

(−1)n

n5
cos

πn

a
b, (3.6b)

three structural constants which are free of frequency. The dependence on frequency in
the above formula remains implicit in the terms involving (the integrals of) function g.

By substituting (only) Bn from Eq.(3.4), Eq.(3.2) gives an integral equation for g as
follows:

a∫
b

(
+∞∑
n=1

1
n

cos
πn

a
t cos

πn

a
y

)
g(t) dt =

πp0

2ρaω2
(1 − T )

+
a3p0

τπ2

[(
2 − ik

ρe

ρa

)
T − 2

] +∞∑
m=1

(−1)m

m3
cos

πm

a
y, b < y < a.

(3.7)

For technical reasons (connected to the solution of the forthcoming auxiliary integral
equations), we prefer to base Eq.(3.7) over the whole opening (−d, +d), where d = a− b.

Thus, by shifting the x-axis up to y = a and an even extension of the function g from
(−d, 0) to (−d, +d), Eq.(3.7) becomes

1
2

d∫
−d

(
+∞∑
n=1

1
n

cos
πn(t − y)

a

)
g(t) dt =

πp0

2ρaω2
(1 − T )

+
a3p0

τπ2

[(
2 − ik

ρe

ρa

)
T − 2

] +∞∑
m=1

1
m3

cos
πm

a
y, |y| < d,

(3.8)

1In the strict one - mode approximation, similar positions are made only for n ≥ 2 [11, 12]; this

justifies the terminology used in the section’s title.



744 EDOARDO SCARPETTA AND MEZHLUM A. SUMBATYAN

keeping for simplicity the same symbols for g, t, y. Of course, after this transformation,
in Eq.(3.6a) for T it follows that

G =
1
2

d∫
−d

g(t) dt, G(n) =
(−1)n

2

d∫
−d

g(t) cos
πn

a
t dt . (3.9)

Moreover, in the kernel above we can put
+∞∑
n=1

1
n

cos
πn(t − y)

a
= − ln

∣∣∣∣2 sin
π(t − y)

2a

∣∣∣∣ .
Now, it is clear that if one solves the following auxiliary integral equations,

−1
2

d∫
−d

ln
∣∣∣∣2 sin

π(t − y)
2a

∣∣∣∣ gm(t) dt = cos
πmy

a
, m = 0, 1, 2, ..., |y| < d (d < a), (3.10)

each one free of any frequency parameter, then, by linearity, the solution of Eq.(3.8) can
be constructed as

g(t) =
πp0

2ρaω2
(1 − T )g0(t) +

a3p0

τπ2

[(
2 − ik

ρe

ρa

)
T − 2

] +∞∑
m=1

1
m3

gm(t), |t| < d. (3.11)

This gives for constants G, G(n) in Eqs.(3.9) the expressions

G =
πp0

2ρaω2
(1 − T )G0

0 +
a3p0

τπ2

[(
2 − ik

ρe

ρa

)
T − 2

] +∞∑
m=1

1
m3

G0
m, (3.12a)

G(n) =
πp0

2ρaω2
(1 − T )Gn

0 +
a3p0

τπ2

[(
2 − ik

ρe

ρa

)
T − 2

] +∞∑
m=1

1
m3

Gn
m (3.12b)

where we have introduced the constants

Gn
m =

(−1)n

2

d∫
−d

gm(t) cos
πn

a
t dt, m, n = 0, 1, 2, ..., (3.12c)

which are free of frequency. Going back to Eq.(3.6a) and substituting there G, G(n) from
(3.12), we finally have a formula for the transmission coefficient T in which dependence
on frequency appears in explicit form:[

A − aik

ρaω2
− BCρaω2 sin Ωa

Ωa cosΩb

(
2 − ik

ρe

ρa

)]
T = A +

π/2
ρaω2

(1 − T )G0
0

+
a3

τπ2

[(
2 − ik

ρe

ρa

)
T − 2

] +∞∑
m=1

1
m3

G0
m − Bρaω2 sin Ωa

Ωa cosΩb

{
2C (3.13)

+
π/2
ρaω2

(1 − T )
+∞∑
n=1

1
n3

Gn
0 cos

πn

a
b +

a3

τπ2

[(
2 − ik

ρe

ρa

)
T − 2

] +∞∑
m,n=1

1
m3n3

Gn
m cos

πn

a
b

}
.
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4. Analytical solution of auxiliary integral equations and calculation of
constants Gn

m. Let us firstly introduce the new functions

ψ̂m(y) =
∫ y

−d

gm(t)dt , ψ̂m(−d) = 0 , ψ̂m(d) = 2G0
m , m = 0, 1, 2, ..., (4.1)

and apply integration by parts in Eq.(3.10); we get

− ln
∣∣∣∣2 sin

π(d − y)
2a

∣∣∣∣G0
m +

π

4a

d∫
−d

cot
π(t − y)

2a
ψ̂m(t) dt = cos

πmy

a
, |y| < d. (4.2)

By the change of variables

z = eπiy/a , τ = eπit/a (iπdt = adτ/τ ), (4.3)

it follows that

ln
∣∣∣∣2 sin

π(d − y)
2a

∣∣∣∣ = ln(eiπd/a − z) − iπ

2

(
1 +

d

a

)
− 1

2
ln z, (4.4)

cot
π(y − t)

2a
= i

z + τ

z − τ
,

so that Eq.(4.2) can be rewritten in complex form as

1
iπ

β∫
α

ψm(τ )
τ − z

dτ = Fm(z), z ∈ L(α, β), m = 0, 1, 2, ..., (4.5a)

Fm(z) ≡ Ψm

2a
+

2G0
m

iπ

[
ln(β − z) − iπ

2

(
1 +

d

a

)
− 1

2
ln z

]
+

1
iπ

(zm + z−m) , (4.5b)

where ψm(τ or z) = ψ̂m(t or y), Ψm ≡
∫ d

−d

ψ̂m(t) dt =
a

iπ

∫ β

α

ψm(τ ) dτ/τ , and the

contour L(α, β) =
{
z = eiφ, |φ| < πd/a

}
is an open part of the unit circle in the complex

plane; α = e−iπd/a, β = eiπd/a = α−1, and the symbol
∫ β

α

(...) means throughout

integration over such a contour.
According to the classical theory of singular integral equations of Cauchy type [17],

the general solution of Eq.(4.5) can be given as

ψm(z) =
1

πi
√

(z − α)(β − z)

⎡
⎣C +

β∫
α

Fm(ξ)
√

(ξ − α)(β − ξ)
ξ − z

dξ

⎤
⎦ , z ∈ L(α, β) ,

(4.6)
where C is an arbitrary constant while Ψm, G0

m appear as unknown constants inside
Fm(·).

By requiring boundedness of the solution (4.6) as z → α, we get a particular value for
the constant C,

C = −
β∫

α

Fm(ξ)

√
β − ξ

ξ − α
dξ , (4.7)
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so that Eq.(4.6) itself becomes:

ψm(z) =
1
πi

√
z − α

β − z

β∫
α

Fm(ξ)

√
β − ξ

ξ − α

dξ

ξ − z
, z ∈ L(α, β) . (4.8)

Imposing also boundedness of (4.8) as z → β gives the following condition:

β∫
α

Fm(ξ)√
(ξ − α)(β − ξ)

dξ = 0, (4.9)

which actually implies a linear relation between the two unknowns Ψm, G0
m. Another

linear relation can be obtained by dividing Eq.(4.8) by z and integrating over L(α, β);
the result is

π

a
Ψm =

β∫
α

Fm(ξ) dξ

ξ
√

(ξ − α)(β − ξ)
, (4.10)

where integral (A.5) has been used (see Appendix) and Eq.(4.9) taken into account.
It is clear that, after substituting Fm(·) from Eq.(4.5b), Eqs.(4.9) and (4.10) represent

a 2 × 2 linear algebraic system for determining Ψm, G0
m. To render it explicit implies

evaluation of several integrals, as shown in the Appendix; see integrals (A.b, A.1, A.2,
A.6, A.7, A.8, A.9).

One finally gets

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

2a
Ψm +

2G0
m

i

[
ln
(

sin
πd

2a

)
− πid

2a

]
+

Jm + Jm−1

πi
= 0 ,

π

2a
Ψm − 2G0

m

i

[
ln
(

sin
πd

2a

)
+

πid

2a

]
− Jm + Jm−1

πi
= 0 ,

(4.11)

whose solution is easily given by

G0
m = − Jm + Jm−1

2π ln
(

sin
πd

2a

) , Ψm = 2dG0
m = − d (Jm + Jm−1)

π ln
(

sin
πd

2a

) . (4.12)

By integration by parts and change of variables (4.3), the main constants Gn
m in

Eqs.(3.12c) and (3.13), can be expressed as follows:

(−1)nGn
m = G0

m cos
πnd

a
+

πn

2a

∫ d

−d

ψ̂m(t) sin
πnt

a
dt

= G0
m cos

πnd

a
− n

4

∫ β

α

ψm(τ )
(
τn−1 − τ−n−1

)
dτ .

(4.13)

On using Eqs.(4.8) and (4.9), it is not difficult to get

β∫
α

ψm(τ )
(

τn−1

τ−n−1

)
dτ =

1
iπ

β∫
α

Fm(ξ)√
(ξ − α)(β − ξ)

(
Nn−1(ξ)
N−n−1(ξ)

)
dξ (n = 1, 2, ...) (4.14)



ANALYTICAL RESULTS FOR ACOUSTIC SCATTERING 747

where the integrals

Nn−1(ξ) ≡
β∫

α

√
(τ − α)(β − τ )

ξ − τ
τn−1 dτ

= −

⎛
⎝n−2∑

j=0

⎞
⎠

′

ξn−2−j Ij + πξn − πξn−1 cos
πd

a
, (4.15a)

N−n−1(ξ) ≡
β∫

α

√
(τ − α)(β − τ )

ξ − τ
τ−n−1 dτ = −(1/ξ)Nn−1(1/ξ), n = 1, 2, ..., (4.15b)

are calculated in the Appendix (see (A.10,A.11)); the braces with a prime around the
summation above mean that such a term is absent when n = 1 (also in the forthcoming
Eq.(4.16)).

Equation (4.13), by using Eqs.(4.14, 4.15) and substituting Fm(·) from (4.5b), leads
to

(−1)nGn
m = G0

m cos
πnd

a
− n

4πi

β∫
α

Fm(ξ)[Nn−1(ξ) − N−n−1(ξ)]√
(ξ − α)(β − ξ)

dξ (4.16)

= G0
m cos

πnd

a
+

n

4πi

β∫
α

{
Ψm

2a
+

2G0
m

iπ

[
ln(β − ξ) − iπ

2

(
1 +

d

a

)
− 1

2
ln ξ

]

+
ξm + ξ−m

iπ

}

×

⎡
⎣
⎛
⎝n−2∑

j=0

⎞
⎠

′

(ξn−j−2 + ξj−n+1)Ij − π(ξn + ξ−n−1)

+ π(ξn−1 + ξ−n) cos
πd

a

⎤
⎦ dξ√

(ξ − α)(β − ξ)
.

Besides integrals of type J±k (see (A.b, A.1) of Appendix), the new integrals with
logarithmic integrand which now appear,

P±k =

β∫
α

ξ±k ln(β − ξ)√
(ξ − α)(β − ξ)

dξ , Q±k =

β∫
α

ξ±k ln ξ√
(ξ − α)(β − ξ)

dξ, (4.17)

are calculated in the Appendix; see (A.12, A.18, A.20, A.21).
As a result of all the previous calculations, the (analytic) expression of Gn

m can be
used in formula (3.13).
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||

Fig. 2. Transmission coefficient vs. frequency parameter ak < π, for
(relatively) very small tension of membranes: τ̂ ≡ τ/

(
ρec2

)
= 10−4.

Line 1: b/a = 0.1; line 2: b/a = 0.5; line 3: b/a = 0.9.

Fig. 3. Transmission coefficient vs. frequency parameter ak < π, for

(relatively) small tension of membranes: τ̂ ≡ τ/
(
ρec2

)
= 10−3. Line

1: b/a = 0.1; line 2: b/a = 0.5; line 3: b/a = 0.9
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| |

Fig. 4. Transmission coefficient vs. frequency parameter ak < π, for
(relatively) large tension of membranes: τ̂ ≡ τ/

(
ρec2

)
= 10−2. Line

1: b/a = 0.1; line 2: b/a = 0.5; line 3: b/a = 0.9.

| |

Fig. 5. Transmission coefficient vs. frequency parameter ak < π, for

(relatively) very large tension of membranes: τ̂ ≡ τ/
(
ρec2

)
= 10−1.

Line 1: b/a = 0.1; line 2: b/a = 0.5; line 3: b/a = 0.9.
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5. Wave properties of the structure. To reflect the results of our analytical ap-
proach, several examples of propagation have been considered by giving various values to
the geometrical and physical parameters involved. Since we focused our attention upon
dependence with respect to size and tension of the membranes, we have assumed three
values for their (relative) width b/a : b/a = 0.1, 0.5, 0.9; and four values for the (non-
dimensional) parameter τ̂ ≡ k2/Ω2 = τ/

(
ρec

2
)
, which gives a (relative) measure of the

tension assigned to the membrane : τ̂ = 10−4, 10−3, 10−2, 10−1. Thus, many lines for the
transmission coefficient |T | as a function of the frequency parameter ka (in the one-mode
range (0, π)) have been constructed operating by means of Eqs.(3.13), (4.16). For all of
them, we assumed a fixed value of the ratio ρe/(aρa) (= 10), meeting a typical example
for the (elastic and acoustic) materials involved along with the period of the scattering
structure (see Figures 2–5). Of course, in view of the approximation implied by Eqs.(3.3),
the lines are more meaningful in the first half of the range. In this connection, a nu-
merical investigation of the exact integral equation arising from Eqs.(3.2, 2.18, 2.10) has
shown that the (relative) error on |T | is less than 10% up to ka � 1.6 in the (worst) case
b/a = 0.9 , keeping under 5% and 2% in the remaining cases b/a = 0.5 and b/a = 0.1,

respectively.2 The quoted approximation can also be estimated (to a certain extent)
by taking for comparison the results shown in [11], which correspond to absolutely rigid
screens. Indeed, when we have now built up a line for the reflection coefficient R (= 1−T ;
see Eq.(2.11)1) by using a limited large value for the tension τ̂ (and an equivalent ge-
ometry), we practically found the same line marked with n.3 in Fig. 2 of that paper,
which reflects a well-known (analytical) approach developed by Lamb and Miles; see the
remarks and references therein reported.

Looking at the figures, we can observe first of all that the transmission increases with
the tension given to the membrane, whatever the width and frequency of the incident
wave might be. The transmission also appears to increase with respect to the membrane’s
width, except for the case of (relatively) small tension (τ̂ = 10−4 or 10−3), in which the
membrane with b/a = 0.1 allows more transmission than the membrane with b/a = 0.5
(but less than the membrane with b/a = 0.9). Moreover, as reasonably expected, with
small membranes the transmission is less sensitive to the tension’s values.

In any case, with a view to the possible applications in problems of noise control
(see the Introduction), the more efficient attenuation of the transmission seems to occur
for membranes occupying about a half of the period in the structure (b/a = 0.5) and
preloaded with (relatively) small tension; see line 2 in Fig. 2. On the contrary, the
greatest transmission is given by wide and well-stretched membranes; see line 3 in Fig.
5.

2In the second half of the range, the error grows up to 30%, 10%, 5% for b/a = 0.9, 0.5, 0.1.
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6. Appendix. We will use the following tabular integrals (see [18]):

Ik =
∫ β

α

ξk
√

(ξ − α)(β − ξ) dξ (A.a)

=
π2(−1)k (β − α)2

(k + 1)(k + 2)

k∑
�=0

α�βk−�

�!(k − �)! Γ
(
−1

2 − �
)
Γ
(
−1

2 + � − k
) , k = 0, 1, 2, ...,

Jk =
∫ β

α

ξk dξ√
(ξ − α)(β − ξ)

(A.b)

= π2(−1)k
k∑

�=0

α�βk−�

�!(k − �)! Γ
(

1
2 − �

)
Γ
(

1
2 + � − k

) , k = 0, 1, 2, ...,

∫ a

0

xλ−1(a − x)µ−1 ln(a − x) dx = aλ+µ−1 Γ(λ)Γ(µ)
Γ(λ + µ)

[ln a + ψ(µ) − ψ(λ + µ)], (A.c)

a∫
0

ln(a − cx)√
x(a − x)

dx = 2π ln
1 +

√
1 − c

2
+ π ln a, (A.d)

∫ a

0

√
a − x

x
ln(d + cx) dx = πa ln

d +
√

d(d + a c)
2

+
πa

2

√
d −

√
d + a c√

d +
√

d + a c
, (A.e)

∫ β

α

√
ξ − α

β − ξ
dξ =

π

2
(β − α),

∫ β

α

√
ξ − α

β − ξ

dξ

ξ
= −π(

√
α/β − 1). (A.f)

In some of them, the (Euler’s) Gamma function appears: Γ(z) ≡
∫ ∞

0

e−t tz−1dt; useful

properties of this function are

Γ(1) = 1, Γ(z + 1) = z Γ(z), Γ(z)Γ(1 − z) = π/ sin(πz).

The logarithmic derivative of Γ(z) gives rise to the so-called psi-function:

Γ′(z)/Γ(z) ≡ ψ(z) = ψ(z + 1) − 1/z;

−ψ(1) = 0.577216 is Euler’s constant. Such special functions can be evaluated by means
of their well-known analytical approximations [18].

By the change ξ = 1/ζ, we deduce from (A.b) that

J−k = Jk−1, k = 1, 2, ...; (A.1)

note also that

J0 =
∫ β

α

dξ√
(ξ − α)(β − ξ)

= π =
∫ β

α

dξ

ξ
√

(ξ − α)(β − ξ)
= J−1. (A.2)

The integral used in Eq.(4.10) is calculated as follows (ξ ∈ L(α, β)) :

β∫
α

√
z − α

β − z

dz

z(ξ − z)
=

1
ξ

⎡
⎣ β∫

α

√
z − α

β − z

dz

z
+

β∫
α

√
z − α

β − z

dz

(ξ − z)

⎤
⎦ ; (A.3)
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the first integral in brackets is given by (A.f)2, while the second is
β∫

α

√
z − α

β − z

dz

(ξ − z)
= (ξ − α)

β∫
α

dz√
(z − α)(β − z)(ξ − z)

−
β∫

α

dz√
(z − α)(β − z)

= −π,

(A.4)
since the first integral in the right-hand side is zero [18, n.2.2.6.8] and the second is J0.

Thus
β∫

α

√
z − α

β − z

dz

z(ξ − z)
= −π

ξ
(
√

α/β − 1) − π

ξ
= −π

ξ

√
α

β
, ξ ∈ L(α, β). (A.5)

Then, by using (A.d) with a = β − α, c = 1, x = ξ − α, we have
β∫

α

ln(β − ξ) dξ√
(ξ − α)(β − ξ)

=

β−α∫
0

ln(β − α − x)√
x(β − α − x)

dx = π ln
β − α

4
. (A.6)

By the same reasoning, but with c = (α − β) /α, it follows that
β∫

α

ln ξ dξ√
(ξ − α)(β − ξ)

=

β−α∫
0

ln(α + x)√
x(β − α − x)

dx

=

β−α∫
0

ln[α/(β − α)] + ln[β − α − x(α − β)/α]√
x(β − α − x)

dx

= π ln
α

β − α
+ 2π ln

1 +
√

1 − (α − β)/α

2
+ π ln(β − α) = 2π ln

√
α +

√
β

2
. (A.7)

Putting ξ = 1/ζ and recalling: (A.6) with β − ξ = ζ − α, (A.2), (A.7), we get
β∫

α

ln(β − ξ) dξ

ξ
√

(ξ − α)(β − ξ)
=

β∫
α

ln(ζ − α) − ln α − ln ζ√
(ζ − α)(β − ζ)

dζ

= π ln
β − α

4
− π ln α − 2π ln

√
α +

√
β

2
= π

[
ln

β − α

α
− 2 ln(

√
α +

√
β)
]

;

(A.8)

moreover, putting ξ = 1/ζ and recalling (A.7):
β∫

α

ln ξ dξ

ξ
√

(ξ − α)(β − ξ)
= −

β∫
α

ln ζ dζ√
(ζ − α)(β − ζ)

= −2π ln
√

α +
√

β

2
. (A.9)

Then, we need to calculate the integrals Nk(ξ), k = 0, 1, 2, ... (see Eqs.(4.15)). Let us
begin with N0(ξ); it follows that

N0(ξ) =

β∫
α

√
(τ − α)(β − τ )

ξ − τ
dτ = (β − ξ)

β∫
α

√
τ − α

β − τ

dτ

ξ − τ
+

β∫
α

√
τ − α

β − τ
dτ

= (β − ξ)(−π) +
π

2
(β − α) = π(ξ − cos

πd

a
), (A.10)
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thanks to the integrals (A.4), (A.f)1. For k = 1, 2, ..., writing

τk

ξ − τ
=

ξk

ξ − τ
−

k−1∑
j=0

ξk−j−1 τ j ,

we have

Nk(ξ) = ξk N0(ξ) −
k−1∑
j=0

ξk−j−1 Ij , k = 1, 2, .... (A.11)

Let us pass to the integrals in Eq.(4.17), for k = 1, 2, ... (for k = 0 see (A.6,A.7));
writing

ξk =
k∑

j=0

(
k

j

)
(ξ − α)k−j αj ,

and using (A.c) with a = β − α, x = ξ − α, λ = 1/2 + k − j, µ = 1/2, we get

Pk =
k∑

j=0

(
k

j

)
αj

β∫
α

ln(β − ξ) (ξ − α)k−j−1/2(β − ξ)−1/2 dξ =
k∑

j=0

(
k

j

)
αj(β − α)k−j

×
{

Γ(1/2 + k − j)Γ(1/2)
Γ(1 + k − j)

[ln(β − α) + ψ(1/2) − ψ(1 + k − j)]
}

. (A.12)

To calculate Qk , let us introduce the following notation:

Tk =

β∫
α

ξk

√
β − ξ

ξ − α
ln ξ dξ , Rk =

β∫
α

ξk

√
ξ − α

β − ξ
ln ξ dξ , Sk =

β∫
α

ξk
√

(ξ − α)(β − ξ) ln ξ dξ.

(A.13)
In particular, putting ξ = x + α, it follows that

T0 =

β∫
α

√
β − ξ

ξ − α
ln ξ dξ =

β−α∫
0

(β − α − x)√
x

ln(α + x)dx

= π

[
(β − α) ln

√
α +

√
β

2
+ 1 − α + β

2

]
, (A.14)

thanks to (A.e) with a = β − α, d = α, c = 1. We easily get

2Qk = (α + β)Qk−1 + (Rk−1 − Tk−1) ; (A.15)

moreover, by suitable integration by parts in Tk, we can deduce that

Tk = −2k Sk−1 − 2Ik−1 + Rk , (A.16)

where integrals of type (A.a) appear. It follows that

Sk−2 =

β∫
α

ξk−2 (ξ − α)(β − ξ)√
(ξ − α)(β − ξ)

ln ξ dξ = −Qk + (α + β)Qk−1 − Qk−2, (A.17)

so that Eqs.(A.15,A.16, A.17) finally give an iteration formula for Qk from k ≥ 2 :

2kQk = (2k − 1)(α + β)Qk−1 − (2k − 2)Qk−2 + 2 Ik−2. (A.18a)



754 EDOARDO SCARPETTA AND MEZHLUM A. SUMBATYAN

The starting values are (see (A.7,A.14)):

Q0 = 2π ln
√

α +
√

β

2
, Q1 = −T0 + βQ0. (A.18b)

Continuing on, we have (putting ξ = 1/ζ and then ζ − α = β − η) :

P−k =

β∫
α

ζk−1 ln(ζ − α) − ln α − ln ζ√
(ζ − α)(β − ζ)

dζ

=

β∫
α

[(α + β) − η]k−1 ln(β − η)√
(η − α)(β − η)

dη − (lnα)Jk−1 − Qk−1. (A.19)

The first integral on the right-hand side is calculated by expanding the term in the power
k − 1, so that we easily get:

P−k =
k−1∑
j=0

(
k − 1

j

)
(α + β)k−1−j(−1)j Pj − (lnα)Jk−1 − Qk−1 , k = 1, 2, ... (A.20)

Moreover, it follows that (putting ξ = 1/ζ) :

Q−k = −Qk−1, k = 1, 2, .... (A.21)
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