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Abstract. We study a phase-field system where the energy balance equation has the
standard (parabolic) form, while the kinetic equation ruling the evolution of the order
parameter X is a nonlocal and nonlinear second-order ODE. The main features of the
latter equation are a space convolution term which models long-range interactions of
particles and a singular configuration potential that forces X to take values in (—1,1).
We first prove the global existence and uniqueness of a regular solution to a suitable
initial and boundary value problem associated with the system. Then, we investigate its
long time behavior from the point of view of w-limits. In particular, using a nonsmooth
version of the Lojasiewicz-Simon inequality, we show that the w-limit of any trajectory
contains one and only one stationary solution, provided that the configuration potential
in the kinetic equation is convex and analytic.

1. Introduction. Let  be a bounded and connected domain in R%, 1 < d < 3, with
a smooth boundary I' := 92. We consider the following coupled system in 2 x (0, +00):

Dy + X — AD = §, (1.1)

where € > 0 is a given constant.
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This system describes the evolution of a two-phase material located in the container €.
It is endowed with given initial conditions and with homogeneous Dirichlet boundary con-
dition for ¢}, even though other boundary conditions might be considered. The unknowns
¥ and X represent the (relative) temperature and the order parameter (or phase-field),
respectively. The term f in (1.1) is a (volumic) heat source, possibly depending on time,
and W is the (density of) potential energy associated with the phase configuration. More
precisely, the values X = +1 represent the pure states and X € (—1, 1) stands for the local
presence of a mushy region. The values outside [—1,1] have no physical meaning and
must be somehow penalized. To exclude them, we actually assume W to be a (Lipschitz
perturbation of) a convex and lower semicontinuous function which is identically +o0
outside (—1,1). We refer to this choice as that of a singular potential in the sequel (see
also Remark 2.3 below). The operator J on the right hand side of (1.2) is defined by
the relation

T(z) = / k( — y)o(y) dy. (1.3)

where k : R* — R is an even and sufficiently smooth convolution kernel. The presence
of k is aimed to take into account long-range interactions between molecules or particles
in the material. Although these interactions are physically justified and observable (e.g.,
in phase transition phenomena), in the mathematical literature, for many years, the
operator J[X] was replaced by a diffusion term like vAX, where v is a positive parameter
related to the thickness of the interface between the components [7] (cf. also [6]). This
almost exclusive attention towards the “diffusive” models was probably motivated more
by the purpose of simplifying the mathematical analysis rather than by physical reasons.
Indeed, the relevance of nonlocal interaction phenomena in phase separation models
was already clear in the pioneering paper [8]. Nevertheless, more recently, phase-field
and phase-separation models containing nonlocal terms like (1.3) have known a growing
interest and have been analyzed in many contributions (see, for instance, [3, 4, 5, 12, 13,
14, 16, 17, 26, 27, 28, 32, 33]). In these papers, the equation governing the evolution of
the phase variable is essentially (1.2) (or its conserved version) with € = 0. In this case,
we recall that, when J[X] is replaced by vAX, we are dealing with a phase field model
of parabolic type (see, e.g., [22]), where the phase relation is obtained as a gradient flow
problem of the form

X, = —0, E(0,X), (1.4)

dy being the variational derivative with respect to X of the free energy E, given (in the
diffusive case) by

E(9,X) = /Q (ZI9X@)P + W (x(2)) - 9(w)x(x)) da. (1.5)

In this regard, the term on the right hand side of (1.4) can be interpreted as a sort of
generalized force driving the evolution of X, that is, the phase transformation. However,
for certain materials, it can be experimentally observed that their responses to this force
are not completely instantaneous, but characterized by some “delay” or “memory” effect
(see, for instance, [15] and references therein). The simplest way to account for this effect
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is to add an inertial term, that is, to replace (1.4) by
EXtt + Xt = —(5XE('[9,X), (16)

for, e.g., € € (0,1]. In the case of the energy given by (1.5), equation (1.6) gives rise to
the so-called parabolic-hyperbolic phase-field model which has been recently analyzed in
a number of papers (see [19, 20, 21, 23, 34]). Instead, if the energy (1.5) is replaced by
the “nonlocal” analog
X(z) X

Ea.0 = [ ([ =4 =™ ay e wine) —o x@) 4 17)
Q NJe

then the relaxed gradient flow (1.6) entails just (1.2). To realize that the above expression
models long range interactions, it is helpful to rewrite the first term on the right hand

side as ) )

Q
where k is smooth enough in order to ensure that x(z) := [, k(z — y) dy is bounded
and continuous. Note that, in one dimension, the nonlocal term in (1.8) can be approx-
imated by the derivative of X at x, provided that k is peaked around 0, recovering an

approximated free energy similar to (1.5).

As we mentioned above, in the diffusive case, parabolic-hyperbolic phase-field systems
have been extensively analyzed both from the point of view of well-posedness and of the
long time behavior of solutions. In particular, in [20, 21, 23, 34] the singular potential
is always replaced by a smooth approximation like W(r) = (r? — 1)%, r € R. In [19],
a singular potential is considered, provided that € is small enough. This restriction is
not necessary here. In fact, our treatment of the singular potential is simpler since the
Laplace operator is replaced by the nonlocal operator 7, so that the equation for X has
to be analyzed by ODE techniques.

Our first result on (1.1)—(1.2) concerns the well-posedness of the system in a suit-
able regularity setting. Since we want to treat (1.2) essentially as an ODE, it is con-
venient to work with bounded solutions. This is somehow in contrast with the diffu-
sive case, where one usually works with solutions of bounded energy (i.e., such that
W (X) € L>(0,00; L'(2))). We note that asking that both X and W (X) stay bounded
in the L* norm corresponds to saying that X satisfies almost everywhere a separation
property of the form —1+ 6§ < X <1 —§ for some § > 0, which actually permits us to
get rid of the mathematical difficulties connected with the singular character of W at +1
(see also [22] and references therein). Of course, to implement this approach, we need to
deal with a sufficiently smooth ¢ in order to have ¥(t) € L>°(Q2) for almost any ¢ > 0. It
is also worth pointing out that, as observed in [12] (which deals with system (1.1)—(1.2)
with € = 0), the precise expression (1.3) for the operator J plays no role in the mathe-
matical analysis. What seems necessary is that J be a linear operator defined on L?()
satisfying some compactness properties (see (J1)—(J2) below). If J is a convolution op-
erator as in (1.3), this just means that the kernel & has to fulfill some additional growth
and smoothness properties, depending on the space dimension, so that J can have a
regularizing effect. In particular, kernels which are too singular in a neighborhood of 0
are not allowed (see, e.g., [14, Rem. 2.2] for some meaningful examples).
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The existence proof is essentially based on the Schauder fixed point theorem, which
yields a local in time solution. To apply this theorem, we need to prove the compactness
of the fixed point operator (acting on both unknowns ¥ and X), which is reached by
parabolic regularizing effects for 9 and through the compactness of J and the Ascoli
theorem for X. Indeed, the only spatial regularization effect of (1.2) is due to the presence
of J. We remark that the argument used here is completely different with respect to
the one devised in [12], where the first-order analog of (1.2) was studied by parabolic
regularization. Indeed, when ¢ > 0, adding a Laplace operator would not help at all in
the proof of the existence theorem due to the quoted difficulties in handling hyperbolic
PDEs with singular potentials (see [19]). In this regard, our method of treating (1.2) with
ODE techniques seems to be more natural. After proving the global existence, uniqueness
is obtained via standard methods. However, also at this stage it seems necessary to work
within an L*° framework rather than with energy bounded solutions.

In addition to the well-posedness, we analyze the long time behavior of the solution,
i.e., its w-limit set. Our starting point is the investigation performed in [12] in the first-
order case (¢ = 0). If the potential W is convex and the source f suitably tends to
0 as t /" oo, we show that any trajectory provided by the existence theorem admits
a nonempty w-limit, which only contains pairs (Js, Xoo) Where 9o, = 0 and X, is a
solution to the stationary problem

W' (v) = J[v], in Q. (1.9)

Furthermore, in case W is real analytic, using the nonsmooth version [12, Thm. 5.1] of
the Lojasiewicz-Simon inequality (see, for instance, [9, 11, 25, 29, 30, 31]), we are able to
show that the w-limit reduces to a singleton. Then, following the methods developed in
[10, 24] and refined in [23] for the long time analysis of asymptotically autonomous PDEs,
we also prove that, if the L?2-norm of f(t) decays to 0 as t goes to oo with a prescribed
rate, then also the convergence rate of the L2-norm of X(t) — X, can be quantitatively
estimated.

In order to motivate the convexity assumption on W, we remark that, due to the lack of
spatial regularization effects in (1.2), a strong convergence of X(t) to X, is not immediate
to prove. Also, the passage to the limit has to exploit somehow the compactness of 7. In
fact, comparing terms in (1.9), we deduce that this property is basic to establishing the
strong convergence of W'(X(t)) to its limit, which can be then identified with W’ (X)
by using classical monotonicity tools like, e.g., [2, Prop. 1.1, p. 42|, provided that W' is
increasing, i.e., W is convex. Understanding the structure of the w-limit (i.e., checking
whether it contains only solutions of (1.9)) in case W is not convex is an open (and,
we think, hard) problem, even in the first-order case analyzed in [12]. We conclude by
pointing out that, differently from the standard diffusive case, even for convex W equation
(1.9) may have infinite solutions provided that d > 1 (see the example described in [12,
Sec. 1]). Therefore, it is a nontrivial fact to establish that the w-limit of a (smooth)
solution contains only a single point.

The paper is organized as follows. In the next section, we introduce some notation,
we provide a list of hypotheses, and we state our main results. Well-posedness is then
shown in Section 3 by means of an approximation procedure combined with a fixed point
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argument. Finally, Section 4 is devoted to the analysis of the long time behavior and the
proof of the decay estimates.

2. Main results. Let us start by introducing some notation. Let H := L?(Q) and
V := H}(Q). Denote by (-,-) the scalar product in H and by || - || the induced norm.
In general, || - ||x will indicate the norm in a generic real Banach space X. Let V be
endowed with the norm || - |y := ||V - ||. Let us identify H with its topological dual H’
so that we have the continuous and compact inclusions VC H C V’.

Regarding the potential W we suppose

W e C?*((—1,1);R"), lim  W(r) = +oo, (W1)

r—1-,—1%
INER: W' (r)> =), Vre(—1,1). (W2)

It is easy to see that (W1)—(W2) entail

W'(s)s > W(s) — %‘92 —W(0), Vse(-1,1). (2.1)

Moreover, if u € L () is any function such that W (u) € L*°(Q), then
36 =6(W, ||lullp()) suchthat —1+d6<u(z)<1-§ forae z€Q.  (22)
Consider now the operator J. On account of [12], we require the following:
J € L(H;H) is self-adjoint and compact, (J1)
J is compact from L*(Q) to C(€Q). (J2)

Since in the sequel we have to analyze equation (1.1) in an LP-setting, we recall some
basic results. For p € (1,00) and T > 0, we set

X, = X,(T) := LP(0,T; D(A,)) N WHP(0,T; LP(2)), (2.3)

where A, := —A : D(A,) = W22(Q) N W, ?(Q) — LP(€). When p = 2, we simply set
A := A,. The space &), is endowed with the natural (Banach) norm and it is known (see,
e.g., [1, Thm. 4.10.2, p. 181]) that the continuous embedding

X, C BUC([0, T); D, (Q)) (2.4)

holds, where D,(Q2) stands for the interpolation space (LP(2), D(A}))1—1/p,p- For in-

stance, for p > 2, D,(?) coincides with WQi%’p(Q) N Wy P(Q). We now recall the
theorem (see, e.g., [1, Thm. 4.10.7, p. 184]):

THEOREM 2.1. Let p € (1,00), T > 0, and take
up € Dp(9), g € LP(0,T; LP(Q)). (2.5)
Then, the solution u defined on (0,7) to the problem
u + Apu =g, Ujg—0 = U, (2.6)
lies in X}, (T"). Moreover, there exists ¢ > 0 independent of T and such that

lullx, (y < e(lgllzeo.r;ze @) + lluollp, @) (2.7)
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We now formulate our problem (see (1.1)—(1.2)) as

Py + Xy + AY = f, a.e. in Q x (0,7), (2.8)
Xy + Xe + W(X) = T[X] + 9, a.e. in Q x (0,7), (2.9)
Ojmo = 9o, in (2.10)
X|t=0 = Xo, (X¢) =0 = X1, a.e. in €, (2.11)
where
Y eV (init )
and
feL*0,T;H). (f1)
Moreover, we suppose
Xo, X1 € L™(Q), 9 >0: —14+00<Xg<1-§y a.e. in Q, (init X)

where the latter property is equivalent to saying that W (Xg) € L™ ().
Our well-posedness theorem reads

THEOREM 2.2. Let (W1)-(W2), (J1)-(J2), (init9)(initX), (f1) hold. Then, for any
given T > 0, there exists one and only one pair (9, X), with

¥ € Xo(T)NC([0,T]; V), (2.12)

X, X, W(X) € L=(Q % (0,T)), Xy € L*(0,T; L%(92)), (2.13)

that solves (2.8)—(2.11). Moreover, for a.a. t € (0,7), (2.2) holds with w(-) := X(-,t).

Next, given two triplets (Jo,1, Xo,1,X1,1), (Jo,2, Xo,2, X1,2) of initial data satisfying con-

ditions (init¥)—(init X) (the latter w.r.t. possibly different constants do; > 0, i = 1,2)

and denoting the corresponding solutions by (91, X1), (¥2,X2), we have the continuous
dependence estimate

(91 = 92) ()] + V(91 — D2) || 20,601 + Ve (X1 = X2)e ()] + [|(X1 — X2) ()]
< A(H19071 — 190)2| + \ﬁllxl,l — X1)2| + ||X0)1 - Xo)g”), Vte [O,T], (2.14)

where the positive constant A depends on T', Q, W, J, f and on the initial data (in
particular, on dg;, ¢ = 1,2), but it does not depend on e.

REMARK 2.3. The second assumption of (W1) does not cover, for instance, the case
of a potential which is bounded in [—1,1]. A typical case is the logarithmic potential
(cf., e.g., [22, 26])

W(r)y=(0+r)log(l+r)+ (1—r)log(l—r)— %7‘2, re(—1,1), (2.15)

where A € R. In order to handle potentials of this kind when X is ruled by a second-order
dynamics, some restrictions seem to be necessary (for details, see Remark 3.3 below).
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We now consider the long time behavior. The main tool we shall use to prove that
the w-limit is a singleton is the following nonsmooth version of the Lojasiewicz-Simon
inequality (see [12, Thm. 5.1]). For the sake of clarity, we report the precise statement,
which in our notation takes the form

THEOREM 2.4. Let (W1)-(W2) and (J1)—(J2) hold. In addition, suppose that

W is real analytic on (—1,1), (2.16)
and define F': H — R by
1
F):= —E(j[v], v) + (W(v),1), (2.17)

for any v € H. If X, € C(Q) is a critical point for F, then there exist p € (0,1/2), £ > 0
and o > 0 such that

[F(v) = FOG)[T7 <t = Tl] + W ()], (2.18)
for all v € H such that |jv — X,| < o.

REMARK 2.5. Assumption (2.16) can be slightly weakened (see [11]). Indeed, using
assumptions (W1), (J1) and a simple maximum principle argument, it is easy to prove
that any solution X, to (1.9) satisfies a separation property of the form

—140 <Xi(z) <1-14y, for all z € , (2.19)

where ¢; depends only on the expression of W and on || J||z(#;m). Then, it suffices that
W is real analytic on an open interval containing [—1 + 61,1 — d1].
The result about the long time behavior of the solutions is

THEOREM 2.6. Let (W1)-(W2), (J1)-(J2), (init 9)—(init X), (f1) hold. In addition, let

f € L*0,00; H). (£2)

Then, the solution (¢, X) given by Theorem 2.2 satisfies, as t goes to oo,
J(t) — 0 strongly in V, (2.20)
X¢(t), VEXu(t) — 0 strongly in H. (2.21)

If W is convex (i.e., A = 0 in (W2)), then (9, X) admits a nonempty w-limit set which
consists of pairs (0, X« ), where X, satisfies (1.9). More precisely, if (0, X ) is an element
of the w-limit and ¢ oo, we have

a subsequence of X(t) — Xo weakly in H, (2.22)

where the convergence (2.22) is strong if (W2) holds for some A < 0. If there exists g > 0
such that

sup £+ / 1£()]2 ds < oo (13)
>0 t

and if W is strictly convex (i.e., A < 0 in (W2)) and satisfies (2.16), then the w-limit
reduces to {(0, X )} and X(t) converges to X in H as t goes to co. Besides, if

> 2.2
HZ 1o, (2.23)
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one can find t* =t*(¢) > 0 and ¢ > 0 independent of ¢ such that
IX(t) = Xoo| < ct™ =20, for all ¢ > ¢*. (2.24)

Otherwise, for any pg € (0, p) such that

2p0
> o 2.25
nZ o (2.25)
one can find t** = t**(¢) > 0 and ¢ > 0 independent of € such that
IX(£) = Xoo|| < ct T2, forall ¢ > ¢, (2.26)

REMARK 2.7. By analyzing the following proofs, it is not difficult to realize that they
can be easily adapted to the case e = 0 (compare with [12], where a different approach
is used). Consequently, Theorems 2.2 and 2.6 can be rephrased for the case ¢ = 0.

3. Proof of Theorem 2.2. We start proving the existence of a local (in time) so-
lution to our problem by means of the Schauder fixed point theorem. In this argument,
we need to work with Holder continuous solutions to (1.1) and continuous solutions to
(1.2). Thus, we have to approximate the initial data in the following way. Regarding 9
and f, on account of Theorem 2.1, we will assume

190 € Dq(Q)v f € Lq(OaT; Lq(Q))a (31)
with ¢ € (2,00) large enough to have the inclusion
X,(T) € C*([0,T); C** (), (32)

with compact embedding, for some a > 0. Here we recall that the admissible exponents
q depend, of course, on the space dimension. For instance, if d = 3, ¢ can be any value
strictly greater than % as can be shown by standard interpolation tools. We also observe
that the embedding constant in (3.2) can be taken independent of T' on bounded time
intervals; in other words, it does not explode as T' \, 0 (while it does explode as T' /" 00).
As far as the initial values for X are concerned, in addition to (init X), we will suppose

Xo, X1 € C(Q). (3.3)
Let us now set, for ¢ > 0, Q; := Q x (0,t), and define B = B(R,T) as
B :={(u,v) € C([0,T}; C**(Q)) x C(Qr) :
lullcomycoa@y) < B IWlo@r) < 1s wi=o = Yo, vji=o = Xo}, (3.4)
where R is a positive number such that
R > 2ol co.e oy, (35)

Observe that B is a nonempty convex, closed set with respect to the natural (Banach)
topology. In order to introduce the fixed point procedure, we assume that (J,X) € B is
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“frozen” on the right hand side of (2.9). Then the fixed point map is constructed in the
following

LEMMA 3.1. Let (W1)-(W2), (J1)-(J2), (init X), (3.1), and (3.3) hold. Let R, T > 0 be
fixed and let B be defined as in (3.4). For any given (¥,X) € B, there exists a unique
pair (9,X) : Q7 — R? such that

¥ e X,(T),
X, X¢, Xet € C(Qr), (3.7)
which solves
9 + Xy + AY = f, (3.8)
Xyt + Xo + W (X) = TX] + 9, (3.9)

almost everywhere in Qp together with (2.10)—(2.11). Moreover, X enjoys the separation
property, that is,

36 =0(R, T, W,80) >0: —1+6 <X(z,t) <14, V(z,t) € Qr, (3.10)
where ¢ is independent both of x € Q and of T.

Proof. Here and in the sequel of the paper, we shall indicate by ¢ a generic positive
constant which may vary even within the same line. This constant may depend on €,
e, J, W, f and on the initial data, but it is independent of T'. In any case, any further
dependency will be explicitly pointed out. Let us denote by m = m(x,t) the right hand
side of (3.9). Thanks to (3.4) and the properties of J, we have that m € C(Qr). In
particular, there exists M > 0, only depending on R and J, such that

|m(x,t)] < M, Y (z,t) € Qr. (3.11)
Then, fixing = € €, it is clear that the Cauchy problem for the ODE obtained from (3.9)

admits one and only one local in time classical solution X. To show that such a solution
is in fact global, one can, e.g., test (3.9) by X; + nX, for n > 0 to be chosen, and, still for
fixed z, integrate in time. Using (2.1), we get

d
&+ A=l +aw(x)

A 1—¢
< M+ + g W(0) + SN < =L+ W(0) +e(Mn, 0, (312)

where
13
o= §|Xt|2+g|x\2+snxxt+W(x). (3.13)

Then, it is easy to realize that n can be chosen in a way independent of ¢ € (0,1) and
such that, for some k > 0,

%Q)(x,t) + kO (z,t) < (M, N), for all (z,t) € Qr, (3.14)

and
1 1
i\xtﬁ PP W) <@ < el + X + W), (3.15)
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Thus, using the Gronwall lemma in the differential form, we get

€ 1 1 —k

=P + 16 XOP + W) < (Pl + 1ol + W))e ™ 4e, (316)
where the dependence on z of all functions is omitted. Thanks to assumption (init X),
we then get (3.10) (regarding 0, we stress that M depends only on R and 7).

At this point, noting that W’(X) is bounded in C(Q7) by a constant independent of

T, (init X) and standard regularity and continuous dependence results for ODEs (applied
here uniformly with respect to the variable z) entail (3.7). More precisely, we have

Xlle@r + IXelle@r) + IXetllo@ry < e (3.17)

Dragging now the known value of X; into (1.1) and applying Theorem 2.1, we obtain
the existence of one and only one function ¥ satisfying (3.6) and (2.10) and such that

19 2,1y < c(Ilf = XellLaco,rpa@)) + 1Pollpy @) < (T +1). (3.18)

The proof is thus concluded. O
Lemma 3.1 allows us to define the operator S : B — C([0,T]; C%%(Q)) x C(Qr) by
setting
(0,X) =: S(9,X) = (81(9,X),S2(9, X)).
The aim of the next result is to prove the local (in time) existence of a (smooth) solution
to our problem by means of the Schauder theorem applied to S.

LEMMA 3.2. Let (W1)—-(W2), (J1)—(J2), (init X), (3.1), and (3.3) hold. Let R be any
number fulfilling (3.5). Then, there exists Tp > 0 depending on f, R, J, W such that
problem (2.8)—(2.11) admits at least a solution (1J, X) defined for ¢ € (0,Tp). Moreover,
this solution satisfies

¥ e Xy (Th), (3.19)
X, Xi, X € C(Qr,), (3.20)
and the component X fulfills (3.10).

Proof. Let us first prove that, for a suitable To > 0, S maps B(R,Tp) into itself. As
far as X is concerned, it is easy to see that everything works thanks to (3.7), (2.11) and
(3.10). Considering the component ¥, by (3.18), (3.2), and (3.5), we have that

1) [l 0.0 @y < 19() = Vollco.e @y + 1P0llgoamy < T(TY7+1)+ R/2. (3.21)

Thus, we can choose T = T so small such that S(B(R,Ty)) € B(R,Tp). For sim-
plicity we set again B = B(R,Tp). The proof will now be achieved by means of the
Schauder fixed point theorem. Let us prove first that S(B) is relatively compact with
respect to the topology of B. On account of estimate (3.18) and compactness of the em-
bedding (3.2), the relative compactness of S;(B) in C%%([0,Tp]; C%%(Q)) holds. As
far as Sy is concerned, let us show that the Ascoli theorem can be applied to the
set S2(B) yielding relative compactness in C(Qr,). By definition of B and estimates
(3.17), the equiboundedness of Sy(B) follows. The proof of equicontinuity is slightly
more difficult. We start noting that, by (3.4), the properties of J, and the compact
embedding C%(Q) C C(Q), there exists a set K compactly embedded into C(Q) and
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such that m(-,t) == 9(-,t) + J[X](-,t) € K for all t € [0,7p] and (J,X) € B. Letting
(9,X) = 8(9,X), for (z,t), (y,s) € Qr,, we have
)

[X(x,t) — X(y, s)| < |X(x,t) — X(y, )| + |X(y,t) — X(y, 8)|- (3.22)

Thus, we have to show that, as |(z,t)— (y, s)| — 0, the right hand side goes to 0 uniformly
with respect to the choice of (J,X) € B. Actually, the second term can be handled easily,
owing to (3.17). Instead, to deal with the first term, let us set, for t € [0,7p] and ¢ = 0, 1,

m(t) := m(z,t) — m(y,t), %(t) = X(z,t) — X(y,t), Xi:=X;(x) — X;i(y)-

Then, consider equation (3.9) (whose right hand side, we recall, has been noted as m)
at the space points 2 and y, take the difference, and test it by X; + n%, for some 1 > 0.
Using the uniform bound on W (X), it is not difficult to obtain
d
dt
whence, by the Gronwall lemma, for ¢ € [0, Tp] we get

€~ ~ ~~ - ~ ~
[SIKf2 + ZR 4+ en XX < elml? + (X2 + %), (3.23)

) + X2 < o(To) (K0 + [Kof? + / (s) ds). (3.24)

Using (uniform) continuity of Xy and Xy (cf. (init X)) and equicontinuity of the functions
m(-, s) with respect to s € [0, Tp] (remember that they take values in the compact set K),
it is then easy to conclude the equicontinuity of Sa(B), as desired. It remains to demon-
strate that S is a continuous mapping. Letting {(¢J,,, X,,)} be a sequence in B converging
to an element (¥, X), by compactness of S we can extract a subsequence (not relabelled)
of {(9n,Xn)} = {8V, X,)} C B converging to some (9,X) € B. Writing (3.9) for the
index n and using the uniform convergence of {X,} (holding by compactness of S3) in
Qr, and the separation property (3.10) (which holds uniformly in n), it is apparent that
we can pass to the limit in the nonlinear term W’(-), so that the limit equation (3.9)
holds for (¥,X) and (9,X). Next, the passage to the limit in (3.8) is trivial due to the
linearity. Finally, thanks to the uniqueness property stated in Lemma 3.1, convergence
to (¢, X) holds for the whole sequence {(¥,,X,)}. This clearly entails continuity of S.
Therefore S has a fixed point in B and this ends the proof. O

Existence. We can now complete the proof of existence. Namely, we need to extend
the local solution up to any fixed time 7' > 0 and remove the regularity assumptions
(3.1) and (3.3). Take ¥y and f satisfying (init+}) and (fl), respectively. Then, consider
two approximating sequences {Jg ,} C D,(R?) and {f,} < L9(0,T; L1(?)) such that, as
n goes to oo,

Yo.n — o strongly in V, f,, — f strongly in L?(0,T; H). (3.25)

Moreover, consider Xg, Xy satisfying only (init X) and take an approximating sequence
{(Xon, X1.0)} C C(Q) x C(Q), bounded in L>(Q) x L>(£2) and such that

(Xo,n, X1,n) — (X0, X1) strongly in H x H. (3.26)

The above sequences can be explicitly constructed by standard mollification. Let us
denote by (¥, X,,) a sequence of (local) in time solutions corresponding to the initial data
(Yo,n, Xo,ns X1,n) and to the source f,,. Their final times Tp ,, are yielded by Lemma 3.2
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and may depend on n. Nevertheless, in what follows we shall prove some a priori estimates
independent of n in order to remove both the approximation and the restriction on the
final time. Thus, let T > 0 be arbitrary and let us show that the limit of (9., Xy,)
can be extended up to T. For simplicity, we shall write the forthcoming estimates for
the approximating solutions by referring directly to times ¢ < T. In the sequel C' will
indicate a generic positive constant, similar to ¢ (see above), which however may depend
on T (but not on n). In addition, from this point on, we shall assume both ¢ and C
independent of €.

As a first estimate, we multiply (2.8) by ¥, and (2.9) by (X, ): (both equations are here
intended for the n-approximation). Adding the resulting identities together, integrating
over @y, and using (J1), (f1), we obtain

d
G IV0Rl? + [Xodl* < (O, f), (3.27)

where
1 5 € 9 1
G = 9P+ S el = 5 (TB, Xa) + (W), 1),
The functional G is bounded from below by (W1) and (J1). Then, using the Young and
the Poincaré inequalities on the right hand side, we easily get the bounds
|9nll Lo 0,751y + [19nllL20,13v) < C, (3.28)
51/2||Xn,t||L°°(O7T;H) + I Xn,ellz2 0,75y < C, (3.29)
W (X0 )l oo (0,721 (02)) < C. (3.30)

In particular, (3.30) entails that —1 < X,,(z,t) < 1 almost everywhere in Q7. Bound
(3.28) and the standard Hilbert theory applied to (2.8) yield

|9l 210,781 + [9nllcoo, 13y + 19nllL2 0,132 (0)) < C- (3.31)

Then, let us test (2.9) by (X, )¢+ 17Xy, for some n > 0 to be chosen properly. Here, we do
not integrate over . Adding the inequality |X,|?> < 1, noting that there exists M > 0
such that J[X,] < M for almost every (z,t) € Qr, and using (2.1), the continuous
embedding H?(Q2) C L®°(f2), and the elementary Young inequality, we get

dre
S22 4 02 + e X Xt + W) | + (1= em)Xoa > + 1 W (X)) + X2
dt L2 2
1
< 3 Padl? + COL ) + clldalFra o). (3.32)

where all terms (but the latter) are evaluated at a generic (x,t) € Qr, while the latter
is evaluated at the (same) time ¢ < T'. Choosing now 7 small enough and denoting by
®,, = @, (x,t) the function in square brackets on the left hand side, it is easy to see that

d
3 on (@) + 5O (2, t) < C(M) + cl|9n ()| 72, (3.33)

for all (z,t) € Qr and some k > 0 independent of € € (0,1). Here n has been chosen so
small that ®,, satisfies a relation analogous to (3.15). Applying now a generalized form
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of the differential Gronwall lemma (cf., e.g., [18, Lemma 2.5]) to (3.33), we deduce

@, (z,t) < @, (z,0)e " + 20(

) 42 / 10 () 2oy ds <, (3.34)
for all (z,t) € Qr, where in the last inequality we exploited the boundedness (init X)
and the third estimate in (3.31). Using (3.15) (written for ®,,) and taking the (essential)
supremum with respect to (x,t) € Q7 on the left hand side of (3.34), we readily get

1Xnll Lo (@r) + €2 1 Xntll oo (@) + W (X)) |l e (@) < C- (3.35)

REMARK 3.3. We notice that the latter bound and (W1) entail an L estimate also
for the functions W'(X,,) and W”(X,,). This is no longer true if the latter condition in
(W1) is not satisfied (as for the potential (2.15)). Nevertheless, as will be seen in the
uniform estimates below (cf., in particular, (4.5)), the constant C' in (3.35) is computable
and depends only on ¥, Xo, X1, W(Xo), f, and J. If these data (and consequently C' in
(3.35) and ¢ in (4.3) below) are sufficiently small, then clearly the separation property
(2.2) and the L* bounds on W’(X,,) and W"(X,,) still hold. This means that, in fact, if
we drop the latter of (W1), then we need to require some compatibility relation between
the “smallness” of the above data and the “coercivity” of W. On the other hand, on
account of [19], we guess that a more careful analysis should show that potentials like
(2.15) can be handled, provided that ¢ is sufficiently small. Indeed, in this case, a solution
to our problem (2.8)-(2.11) should be “close” to the corresponding one with ¢ = 0, for
which a comparison argument can be used (see, e.g., [27]).

Finally, a comparison in (2.9), the continuous embedding H2(2) C L>°(£2), and (3.28)—
(3.29) yield

el Xn,eell 20,7y < C. (3.36)

We are now in a position to pass to the limit as n " co. First, we observe that,
from (3.28)—(3.29), (3.31), (3.35), (3.36), some weak or weak star convergence properties
to suitable limits (9, X) can be deduced at least for subsequences of (¥,,X,,) (they will
actually hold for the whole sequence thanks to the uniqueness property proved below).
Moreover, from (3.30) we get that W’(X,,) tends to some w weakly star in L= (Qr). At
this point, thanks also to (J1), it is easy to pass to the limit both in (2.8) and in (2.9).
We only need to check that it is w = W’ (X) almost everywhere in Q7. To prove this, we
first note that, by (3.35),

Xn(t) — X(t) weakly in H for all t € [0,T]. (3.37)
On the other hand, by (J1) and the Lebesgue theorem, it follows that
JXn] — J[X] strongly in L2(0,T; H), (3.38)

whence the sequence m,, of the right hand sides of (2.9) tends to m = J[X] + 9 strongly
in L2(0,T; H). Let us now set, for ny,ny > 0,

m:= Mpy — Mpy, X = Xpp — Xay,



464 MAURIZIO GRASSELLI, HANA PETZELTOVA, axp GIULIO SCHIMPERNA

write (2.9) for n; and ng, take the difference, test it by X, and integrate over @Q); for
t € (0,7]. Then, adding to the result the trivial relation

- 1~ -
IXOIP < X000 = Xoma I + 7IXellZ2 0. + 41X N 220,071y for £ € [0, 7] (3:39)

and splitting the W’-term by Holder’s inequality (note that W’ can be regarded as a
Lipschitz continuous function thanks to (3.35) which entails uniformly in n and ¢ the
separation property), it is not difficult to obtain, for ¢ € [0, T,

t
€~ ~ ~ ~
§II><t(t)II2 + [IX@OI? < 2[X0,m, = Xom, I* + C/O (Im(s)I? + 1X(s)[1?) ds. (3.40)

Thus, applying the Gronwall lemma, we obtain that, for all ¢ € [0,7], the sequence
{X,(t)} satisfies the Cauchy property in the H-norm. Consequently, recalling (3.29) and
using once more the Lebesgue theorem, we have

X, — X strongly in L?(0,T; H), (3.41)

whence by the local Lipschitz continuity of W' we get w = W’(X). This concludes the
proof of the existence part.

Uniqueness and continuous dependence. Referring to the notation of Theorem 2.2, we
set

’322’(91—192, SZZZXl—XQ.

Then, we write both (2.8) and (2.9) for ¢ = 1,2, take the differences, and test them,
respectively, by J and X;. Noting that a pair of terms cancels out, integrating over
for t < T, adding a relation analogous to (3.39) in order to get the norm of X on the
left hand side, recalling (J1), and using the separation property with the local Lipschitz
continuity of W’ (as above) and the Young inequality, it is then easy to get

1, ~ ~ €~ 1~ ~ 1
ST + 199010 00, + SIROI + 51Kel 0,y + IROIP € 51901 — Do

t
g ~
+5lXi =X 2+ [1Xo0,1 — X021 + C/ IX(s)]|? ds, (3.42)
0

where we point out that C, depending on W and 7, is independent of € due to the
separation property. Then, the claim follows via the Gronwall lemma.

4. Proof of Theorem 2.6. Let ¢ be fixed and let (J,X) be a solution. We shall
prove first that (2.20) and (2.21) hold. With assumption (f2) at our disposal, we can
come back to (3.27) and note that now the right hand side can be dominated uniformly

in time thanks to the Young and Poincaré inequalities. This leads us to the bounds
(cf. (3.28)—(3.30))

191 oo (0,00: 1) + 19 2(0,005v) < € (4.1)
eV 2||Xel| L 0,0051) + 1Xell22(0,00:0) < €5 (4.2)
W) Los (0,001 (2)) < € (4.3)

Note indeed that (3.28)—(3.30), which are proved for the approximations, are preserved
when we pass to the limit with respect to n by the semicontinuity of the norms with
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respect to the weak and weak star convergences. Proceeding along the lines of the
previous section, we can realize that also (3.31) and (3.35) can be made uniform in time,
so that

91| £1. (0,005 1) + 11910 (0,00)5v) + 1011 220,00, 52 (02)) < € (4.4)
IXI| Los (2% (0,00)) T 21Xl s (9 (0,00)) F W (X) | L= (@2 (0,00)) < € (4.5)

Moreover, differentiating (2.9) in time and testing the result by X, thanks to (4.4) and
(4.5) together with (W1) and (J1), it is a standard matter to deduce

Xzl 2(0,00:) < - (4.6)

Finally, a comparison of terms in the time derivative of (2.9) gives

EHXtttHLZ(O,oo;H) S C. (47)

From the above estimates, we infer (2.21). As far as o is concerned, if we multiply
equation (2.8) by ¢; and integrate over ), using the Green’s formula, we obtain

1
9 dt”VﬁH2 + 1912 = (f = X, 0¢) < *HﬁtHQ + in — X

Then, setting h(t) := [|[VI(t)||?, we can deduce (2.20) from (f2), (4.4), (4.5), and [35
Lemma 6.2.1]. Concerning X, we have, up to a subsequence {t,},

X(tn) — Xoo weakly star in L*(2), (4.8)

where Xo, € L () is a suitable limit function, depending on {t¢,}. Thus the w-limit of
the solution under consideration is not empty.

Let us now see that X is a solution to (1.9). By (4.5), there exists w € L*(Q2) such
that, possibly up to a further extraction, W’(X(t,)) — w weakly star in L>°(Q2). More-
over, from the linearity and compactness of J (cf. (J1)-(J2)), we have that J[X(t,)] —
J[Xoo] strongly in C(Q2). Recalling now (2.20) and (2.21), by comparison we readily
get w = J[Xo]. Moreover, the convergence W'(X(t,)) — w turns out to be strong in
H. Thus, to identify w with W/ (X ), we can use (4.8), the monotonicity of W’  and,
e.g., [2, Prop. 1.1, p. 42]. Finally, it is easy to see that, if W is strictly convex (i.e.,
A < 0in (W2)), then (W’)~! is a Lipschitz continuous function. We can thus infer from
equation (2.9) that X(t,) — X strongly in H. In other words, the orbit | J,~,{X(t)} is
precompact in H. -

In order to complete the proof, we must demonstrate that the w-limit of the solution
(9, X) reduces to one point provided that W is strictly convex and (2.16) holds. We can
argue as in the proof of [23, Thm. 3.5] (see also [10, Proof of Thm. 2.3]); therefore we
just outline the main argument.
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Let (0,Xo) be in the w-limit set of our solution (&, X) and suppose (2.23). Then,
introduce the unbounded set

= {t >0 [X() = Xeo|l < %}

where o is given by Theorem 2.4. For every t € 3, define

T(t):=sup{t' >t : sup [X(s) — Xl <0},
sE[t,t’]

and note that 7(t) > t.
On account of (2.20) and (2.21), we can take ty € ¥ large enough such that

WOIv + X <1, Vi=to,

and consider the sets

J = [to,’r(to)),

00 1-p
Iy = {t €T NW,X({) > (/t |f(s)||2ds> }
JQ = J\ Jl,

Jy:={t=0: BIlI@)| < £},
where
N@,X) () = WO + @) + | - TXOI + W (X@)ll,  vt>0,

and (> 0 is to be fixed later on. For every ¢t € J, we introduce the functional

L(t) = %(Ilﬁ(t)ll2 +ellXe()IP) + FX(#)) — F(Xoo)

7(to)
+ /t (F(5),0(5) T s (5) ds 4 ae(Xo(t), =T [X(8)] + W (X(1))),

T j, being the characteristic function of J; and a > 0 is a small parameter which will be
fixed below. Then we observe that

D= I~ Il + (1)1~ T
+ ae(Xy, [T X] + W' (X)]s) — a(Xe, =T [X] + W'(X))
—all = IX+WX)|? + @, —TX] + W (X)). (4.9)

On account of (W1), (2.2), (J1), and taking advantage of the Poincaré and the Young
inequalities, it is not difficult to deduce

(f7 19)(1 - TJz) < cﬁHﬂH‘Q/,
a(Xe, [T+ W' (0)]) < callXi]|?,

—a(X, —IX] +W'(X)) < %II = T+ W) + cal x|,

a(d, =JNX] + W'(X)) < %H = JIX] + W X)|* + cal|9]>.
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Collecting the above estimates, from (4.9) we infer
d o
L~ —ca=eB)|95 — (1 —ca)Xe* = Sl = TP+ W%,
which yields, for o and 3 sufficiently small,
d
&z < —eN(9,X)2. (4.10)

Therefore £ is decreasing. This entails that |£]|?sgn £ is decreasing as well, due to the
identity

%(|E(t)|psgn£(t)) = p|£(t)|p’1%£(t), teld (4.11)
Using now (2.18), we deduce that, for every t € Jp, it holds that
IL(t)|*F < eN (@, X)(). (4.12)
Consequently, thanks to (4.11), we infer
[ N < —c/T(tO) %(w(mp sgn £(1)) (4.13)
1 to

< c(|L(t0)]” + |L(T(0))),

where |L(7(t9))] = 0 if 7(to) = cc.
Let now ¢ € Jy. Then, on account of (£3), we have

9] 1—p
N, X)(t) < ( / ||f(8)|2d3> S (4.14)

and recalling (2.23), we easily obtain
N, X)(t)dt < cty#trter,
Ja

Hence ||X;(-)| is integrable over J. Moreover, we get

7(to)
0 < limsup / I () || dt

to€X, tg—oo Jtg

<c limsup (|L(to)|” + |L(7(to))|? +to " FPHPH) = 0. (4.15)
toEX, to— 00

Here we have used (2.20), (2.21), (f3) and the fact that F takes the same value on any
point X, such that (0, X,) belongs to the w-limit set of the solution (¥4, X).
Observe now that, for every ¢ € J,

IX(t) — Xool| < / 1) | ds + [X (o) — Xool., (4.16)

and suppose that 7(tg) < oo for any ¢y € X. By definition, we have
||X(T(t0)) - Xoo” =0, Vt() €.

On the other hand, we have proved above that there exists an unbounded sequence
{tn}nen C X such that

lim [[X(tn) = Xool| = 0.

n—oo
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However, due to the precompactness of |J;~,{X(t)} in H, we can find a subsequence

{tn, }xen and an element X, which is a stationary point for F such that ||[Xoo —Xoo|| = &

and

Tim X7 (t,)) — Tl = 0.

Thus, from (4.15) and (4.16), we deduce the contradiction

N T(tny)
0 < [Xoo = Xeol| < lim sup (/ Xt ()]l ds + [[X(tn, ) — Xoo”) = 0.
—00 t

nk

This entails that 7(tg) = oo for some ¢y > 0 sufficiently large. Consequently [|X:(-)|| is
integrable over (to,00). Hence, using once again the precompactness of | J,~,{X(¢)} in H,
we conclude that X(t) strongly converges to Xo so that the w-limit set of (9, X) contains
(0, Xs) only. Of course, when (2.25) holds, we can argue in the same way. To show

the

convergence estimates (2.24) and (2.26), we can proceed exactly as in [23, Proof of

Thm. 3.5].
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