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ON THE STABILITY OF SOLITARY WAVES
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Abstract. Considered herein is the stability of solitary-wave solutions of the Ostrov-
sky equation which is an adaptation of the Korteweg-de Vries equation widely used to
describe the effect of rotation on the surface and internal solitary waves or the capillary
waves. It is shown that the ground state solitary waves are global minimizers of energy
functionals with the constrained variational problem and are deduced to be nonlinearly
stable for the small effect of rotation. The analysis makes frequent use of the variational
properties of the ground states.

1. Introduction. The nonlinear dispersive equation(
ut − βuxxx + (u2)x

)
x

= γu, x ∈ R, (1.1)

with γ > 0 originally derived by Ostrovsky [Os] in dimensionless space-time variables
(x, t) is a model for the unidirectional propagation of weakly nonlinear long surface
and internal waves of small amplitude in a rotating fluid. The liquid is assumed to be
incompressible and inviscid. The subscripts in (1.1) denote partial derivatives. Here x

is the longitudinal coordinate in the horizontal plane and the free surface u(t, x) has
been rendered nondimensional with respect to the constant depth h of the liquid and
the gravitational acceleration g and the parameter γ > 0 measures the effect of rotation.
The parameter β determines the type of dispersion, namely, β < 0 (negative dispersion)
for surface and internal waves in the ocean or surface waves in a shallow channel with
an uneven bottom and β > 0 (positive dispersion) for capillary waves on the surface of
the liquid or for oblique magneto-acoustic waves in plasma [Be], [GaSt], [GiGrSt].

Setting γ = 0 in (1.1) and integrating with respect to x in R and assuming that the
solution u(t, x) and all the derivatives are vanishing at infinity, one obtains the well-
known Korteweg-de Vries equation(KdV)

ut − βuxxx + (u2)x = 0, x ∈ R. (1.2)
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Although the structure of (1.1) is very similar to that of (1.2), but unlike KdV equation
(1.2), the Ostrovsky equation (1.1) is evidently nonintegrable by the method of inverse
scattering transform [GiGrSt], [OsSt]. Invariance, conserved quantities, and solitary-
wave solutions are fundamental features of (1.1). First, we recall the invariances which
can be checked easily by direct computations.

(1) Equation (1.1) is space and time translation invariant. If u(t, x) is a solution of
(1.1), then for all t0 > 0 and x0 ∈ R, w(t, x) = u(t+ t0, x+x0) is also a solution of (1.1).

(2) Equation (1.1) is not Galilean invariant. Moving into a Galilean frame ξ = x − ct

with velocity c, so that u(t, x) = w(t, ξ) + c/2, this equation transforms to(
wt − βwξξξ + (w2)ξ

)
ξξ

= γwξ.

Second, we recall the corresponding conservation laws:

V (u(t)) =
1
2

∫
u2 = V (u(0)) (Momentum), (1.3)

E(u(t)) =
∫

β

2
u2

x +
γ

2
(
D−1

x u
)2

+
1
3
u3 = E(u(0)) (Energy), (1.4)

I1(u(t)) =
∫

u = 0, (1.5)

and

I2(u(u)) =
∫

xu = 0, (1.6)

where the operator D−k
x for any natural integer k acts on functions f ∈ L2(R) such that

ξ−kf̂(ξ) ∈ L2(R). It is defined by the Fourier transform ̂(D−k
x f)(ξ) = (iξ)−kf̂(ξ).

Another interesting fact is that the structure of (1.1) is also similar to that of the
Kadomtsev-Petviashvili equation [KaPe],(

ut − βuxxx + (u2)x

)
x

= γuyy. (1.7)

But unlike equation (1.7), (1.1) is one dimensional and equation (1.7) is completely
integrable.

In what follows, we denote the norm of Lq(R) by | · |q and the Sobolev space Hs(R)
by ‖ · ‖s. We define the space Xs, s ≥ 0, by

Xs =
{
f ∈ Hs(R), D−1

x f ∈ Hs(R)
}

equipped with the norm

‖f‖Xs
= ‖f‖s +

∥∥D−1
x f

∥∥
s
.

Assume f ∈ X1. Note that if D−1
x f ∈ L2(R), then there is a g ∈ L2(R) such that

f = gx at least in the sense of distribution. On the other hand, since f ∈ X1, so
f ∈ H1(R), whence gxx ∈ L2(R). Thus g lies in H2(R). Actually, a very natural space
to look for solutions of the Ostrovsky equation (1.1) is the energy space X1 suggested by
the conservation law (1.4).

An important ingredient needed in our development is a local existence theory for the
initial-value problem. It has been provided by Varlamov and Liu [VaLi].
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Proposition 1.1 ([VaLi]). Let u0 ∈ Xs, s > 3/2, such that ξ−2û0 ∈ L2(R). Then there
exist T > 0 and a unique solution u ∈ C([0, T ), Xs) ∩ C1([0, T ), Xs−3) of (1.1) with the
following property: either T = ∞ or else T < ∞ and lim

t→T
‖u(t)‖Xs

= ∞. Moreover, we

have the conserved functionals (1.3), (1.4), (1.5), and (1.6).

The focus of the development in this section is the solitary-wave solutions of (1.1).
Localized, traveling-wave solutions of nonlinear, dispersive wave equations are known
in many circumstances to play a central role in the long-time evolution of an initial
disturbance.

By a solitary wave, we mean a traveling-wave solution of (1.1) with the form u(t, x) =
ϕc(x − ct) where c ∈ R is a given parameter and ϕc, or just denoted by ϕ, is a ground
state of the stationary problem{ (

−βϕxx − cϕ + ϕ2
)
x

= γD−1
x ϕ,

ϕ ∈ X1, ϕ �= 0,
x ∈ R. (1.8)

To define a ground state, we introduce some notation:

Lc(u) = E(u) − cV (u) =
∫

β

2
u2

x +
γ

2
(
D−1

x u
)2

+
1
3
u3 − c

2

∫
u2, (1.9)

Ωc = {u ∈ X1, u �= 0, L′
c(u) = 0} = the set of the solutions for (1.8),

and

Gc = {u ∈ Ωc, Lc(u) ≤ Lc(v), ∀v ∈ Ωc} (1.10)

where Gc is called the set of the ground states of (1.8).
It was proved by Liu and Varlamov [LiVa] that if β > 0 and c < 2

√
γβ, then Gc is

not empty.
It is known that equation (1.2) has a unique soliton up to translation in the form

ϕc(x) =
3c

2
sech2

(
1
2

√
c

|β| x

)

for any β < 0 and c > 0. However, it is shown in [GaSt], [GiGrSt], [LiVa] that equation
(1.8) does not admit any nontrivial solitary waves in the energy space provided β < 0 and
for some positive c with c <

√
140γ|β|. Hence, the question of how an initial perturbation

in the form of a KdV soliton will be destroyed is more interesting to investigate. On the
other hand, it is known that the KdV equation (1.2) does not have any nontrivial solitary
waves in the energy space, when β > 0 and c > 0. However, unlike (1.2), the equation
(1.1) does have solitary-wave solutions even for some positive c satisfying c < 2

√
γβ with

any β > 0 [LiVa]. This notable property of the equation makes the search of its stability
of solitary waves highly desirable.

Define the number Iq by

Iq = inf{E(u) : u ∈ X1, V (u) = q}, (1.11)

where q = V (ϕc) for some ϕc ∈ Gc. The set of minimizers for Iq is

Σq = {g ∈ X1 : E(g) = Iq, V (g) = q}. (1.12)
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The Euler-Lagrange equation for the constrained minimization problem solved by the
functions in Σq is

δE(g) = λδV (g),

where λ is the Lagrange multiplier. It is found that if g ∈ Σq, then g is a solution of
(1.8) with wave speed c = λ.

In this paper, we are considering nonlinear stability with respect to arbitrary pertur-
bations of set Σq, since solitary waves might not be unique up to translation.

Definition 1.2. A set S ⊂ X is called X-stable with respect to equation (1.1) if for
a given ε > 0, there exists such a δ > 0 such that for any u0 ∈ X ∩ Xs, s > 3/2, with

inf
v∈S

‖u0 − v‖X < δ, (1.13)

the solution u(t) of (1.1) with initial value u0 can be extended to a solution in C([0,∞),
X ∩ Xs) and satisfies

inf
v∈S

‖u(t) − v‖X < ε (1.14)

for all t ≥ 0. Otherwise we say that the set S is X-unstable. The principal result of the
present paper is the following.

Theorem 1.3 (Nonlinear stability). Let β > 0 and c < 2
√

γβ. Then there exists γ0 > 0
such that for any γ < γ0, the set Σq is X1-stable.

Stability of the set of ground states Gc was proved in [LiVa] under the assumption of
convexity of the action d(c) = E(ϕc)− cV (ϕc) with ϕc ∈ Gc. It can be done by showing
the solitary wave ϕc is a local constrained minimizer of a Hamiltonian functional with this
condition of d(c). However, being different from the case of the KdV or KP equations, the
scaling and dilation technique does not give the description of action d(c) explicitly. To
remove this assumption of convexity of d(c), an alternate approach to proving stability
of solitary waves is that, rather than using local analysis, we start instead with the
constrained variational problem for global minimizer. The proof of Theorem 1.3 is to
employ a modification of the concentration compactness principle [Lio] together with a
rigorous justification of global analysis of minimizers, but the small effect of rotation
γ > 0 is required. An easy corollary of proving such a minimizer is that the set of global
minimizers is a stable set for the associated initial value problem.

The remainder of the paper is organized as follows. In Section 2, we study the prop-
erties of the ground states of (1.8). We consider the associated minimization problem
and employ a refined Fatou Lemma [BrLi] to obtain again the set of ground states. In
Section 3, we show in detail based on an outline of [Lio] how it is used to prove stability
of ground states of (1.1). Finally, in Section 4, as a consequence of global minimizers
of functional E, we are able to prove dynamical stability of global minimizers (Theorem
1.3).

2. The solitary waves. The existence and the qualitative properties of solitary
waves for equation (1.1) are known in part. For example, in [LiVa], Liu and Varlamov
investigate the existence, regularity and decay estimates of solitary waves of (1.8) .

We start with the existence and nonexistence of solutions of solitary waves of (1.1).
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Proposition 2.1. Suppose β < 0 and c <
√

140γ|β|. Then equation (1.1) does not
admit any nontrivial solitary-wave solutions ϕc ∈ X1.

Proof. The proof is given in [LiVa, Theorem 2.1] by using the Pohojaev-type identities.
�

Remark. It is also possible to show the nonexistence of any nontrivial solitary-waves
in X1, if β > 0 and c ≥ 2

√
γβ. In fact, suppose u(t, x) = ϕc(x−ct) is a nontrivial solitary-

wave solution of (1.1) satisfying equation (1.8). Since ϕc ∈ H1, a bootstrap argument
shows the solution ϕc ∈ H∞ and ϕc → 0 together with its derivatives as |x| → ∞. Thus,
to consider the asymptotic state of the solution ϕc of (1.8), it thus suffices to study the
solution φc of the linearized equation by neglecting the nonlinear term (ϕ2

c)xx, that is,

β∂4
xφc − c∂2

xφc − γφc = 0. (2.1)

The characteristic equation of (2.1) is

βλ4 + λ2 + γ = 0 (2.2)

and the roots of (2.2) have the form

λ2 =
−c +

√
c2 − 4γβ

2β
. (2.3)

In the case of β > 0 and c ≥ 2
√

γβ, we obtain from (2.3) that there are only pure
imaginary roots of (2.2). It turns out that the solution φc of (2.1) does not vanish as
|x| → ∞. Since ϕc ∼ φc, as |x| → ∞, this contradicts the fact that ϕc vanishes at
infinity. Note for β < 0 that this result of the nonexistence of solitary waves is sharp in
the following sense.

Proposition 2.2. Assume that β > 0 and c < 2
√

γβ. Then there exists a ground state
ϕc of (1.8), that is, the solitary-wave solution of (1.1) in X1.

Proof. See Theorem 2.3 in [LiVa]. �
Remark. It is shown in [LiVa] that x2|ϕc|∞ ≤ C0. In fact, we have an optimal decay

result by showing that the solution ϕc of (1.8) decays to zero exponentially as |x| → ∞.

To see this, first we find that the solution ϕc of (1.8) is in H∞ and therefore ϕc ∈ C5(R)
is a classical solution of (1.8). Next, we rewrite (1.8) as a system for 
ϕc = 〈ϕc, ϕ2, ϕ3, ϕ4〉 ,

i.e.
d
ϕc

dx
= A
ϕc + N(
ϕc),

where

A =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

− γ
β 0 − c

β 0

⎞
⎟⎟⎠

and N(ϕc) =
〈
0, 0, 0, 2

β

(
ϕ2

2 + ϕcϕ3

)〉
. From the characteristic equation (2.2) of A , it is

easy to verify that A has two eigenvalues with positive real parts and two with negative
real parts provided β > 0 and c < 2

√
γβ. Hence the exponential decay of ϕc follows
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from the stable-manifold theorem if one can show that ϕc and its first three derivatives
approach zero as x → +∞. Since ϕc ∈ H4(R), it is easy to show by the fact

‖ϕc‖C3([n,n+1]) ≤ C0‖ϕc‖H4([n,n+1]) → 0, as n → ∞.

We next define

P (u) =
∫

βu2
x + γ(D−1

x u)2 − cu2 + u3. (2.4)

Then we can rewrite (1.9) as

Lc(u) =
1
2
P (u) − 1

6

∫
u3. (2.5)

The following result gives a description of ground state as a minimizer of Lc with con-
straint P (u) = 0. This property of ground states will be used to prove the stability result
in Theorem 1.3.

Proposition 2.3. Assume β > 0 and c < 2
√

γβ. Then there exists ϕc ∈ X1 satisfying
P (ϕc) = 0 such that

Lc(ϕc) = inf {Lc(u), u ∈ X1, u �= 0, P (u) = 0} . (2.6)

Such a minimizer ϕc of (2.6) is a ground state of (1.8), that is, ϕc ∈ Gc. Moreover, if
any φ ∈ Gc, then φ is a solution of the minimization problem (2.6).

The proof of Proposition 2.3 is approached via a series of lemmas.

Lemma 2.4 (Fröhlich, Lieb and Loss [FrLiLo]). Let 1 < α < µ < ν and let f(x) be
a measurable function on R such that |f |α ≤ Cα, |f |µ ≥ Cµ > 0 and |f |ν ≤ Cν for
some positive constants Cα, Cµ and Cν . Then for some positive constants η and c0 the
Lebesgue measure meas{x ∈ R, |f(x)| > η} ≥ C0, where c0 depends on α, µ, ν, Cα, Cµ,

and Cν , but not on f.

Lemma 2.5 (Lieb [Lie]). Let {fj} be a bounded sequence in H1(R) such that

meas{x; |fj(x)| > η} ≥ C0

for some positive constants η and C0 > 0. Then there exists a sequence {yj} ∈ R such that
for some subsequence (still denoted by the same letter) and f ∈ H1, fj(· − yj) → f �≡ 0
weakly in H1(R).

The following lemma is called the refined Fatou lemma due to Brézis and Lieb [BrLi].

Lemma 2.6. Let {fj} be a bounded sequence in Lr(R) for 0 < r < ∞. If fj → f a.e. in
R, then

|fj |rr − |fj − f |rr − |f |rr → 0

as j → ∞. When r = 2, the assumption that fj → f a.e. in R is not necessary.

Now we are in the position to prove Proposition 2.3.
Proof of Proposition 2.3. We define

dc = inf{Lc(u), P (u) = 0} (2.7)
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and

mc = inf{L1
c(u), P (u) ≤ 0} (2.8)

where

L1
c(u) = Lc(u) − 1

3
P (u) =

1
6

(
β

∫
u2

x + γ

∫
(D−1

x u)2 − c

∫
u2

)
. (2.9)

By the assumption of Proposition 2.3 and the fact that
∫

u2 = −
∫

uxD−1
x u, it is easy to

verify that

L1
c(u) ≥ C0(β, γ, c)

(
|D−1

x u|22 + |ux|22
)
, ∀u ∈ X1 (2.10)

with some constant C0(β, γ, c). We first claim that dc = mc. Suppose u ∈ X1 satisfies
that P (u) < 0. Since

P (λu) = λ2

(
β

∫
u2

x + γ

∫
(D−1

x u)2 − c

∫
u2

)
+ λ3

∫
u3 > 0 (2.11)

for some sufficiently small λ > 0, there exists λ0 ∈ (0, 1) such that P (λ0u) = 0. Hence it
follows from the definition of mc that

dc ≤ Lc(λ0u) = λ2
0

(
β

2

∫
u2

x +
γ

2

∫
(D−1

x u)2 − c

2

∫
u2

)
+

λ3
0

3

∫
u3

= λ2
0

(
β

2

∫
u2

x +
γ

2

∫
(D−1

x u)2 − c

2

∫
u2

)
− λ3

0

3

(
β

∫
u2

x + γ

∫
(D−1

x u)2 − c

∫
u2

)

=
1
6
λ2

0

(
β

∫
u2

x + γ

∫
(D−1

x u)2 − c

∫
u2

)
(2.12)

<
1
6

(
β

∫
u2

x + γ

∫
(D−1

x u)2 − c

∫
u2

)
= L1

c(u).

This implies that dc ≤ mc and therefore dc = mc. As a consequence, to show the
existence of a minimizer of dc, it suffices to show there exists a minimizer of mc. Let
{un} be a minimizing sequence satisfying lim

n→∞
L1

c(un) = mc with P (un) ≤ 0. Then by

the estimate (2.10), the minimizing sequence {un} is bounded in X1. Hence, there exists
a function u0 ∈ X1 such that a subsequence (still denoted by un) weakly converges to u0

in X1. Next we show that such a solution u0 is a minimizer of mc, that is, L1
c(u0) = mc

with P (u0). Toward this end, we split the proof into five steps. �
Step 1. inf

n
|un|33 > 0.

Proof. To prove this statement, we argue by contradiction. If inf
n

|un|33 = 0, then there

exists a subsequence, still denoted by un, such that un �= 0, ∀n ≥ 1 and lim
n→∞

|un|33 = 0.

It follows from P (un) ≤ 0 that

β

∫
(∂xun)2 + γ

∫
(D−1

x un)2 − c

∫
u2

n ≤ −
∫

u3
n ≤ |un|33 → 0 (2.13)
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as n → ∞. On the other hand, using the Sobolev embedding, we have

|un|33 ≤ 4
√

2|un|
3
2
2 |D−1

x un|
1
2
2 |∂xun|2

≤ C0

(
|D−1

x un|22 + |∂xun|22
) 3

4 |D−1
x un|

1
2
2 |∂xun|2 (2.14)

≤ C0

(
|D−1

x un|22 + |∂xun|22
) 3

2

≤ C0

(
β|∂xun|22 + γ|D−1

x un|22 − C|un|22
) 3

2

where C0 represents various constants depending only on β, γ, and c. Combining (2.13)
with (2.15) yields(

β|∂xun|22 + γ|D−1
x un|22 − c|un|22

) (
1 − C0

(
β|∂xun|22 + γ|D−1

x un|22 − c|un|22
) 1

2
)
≤ 0.

(2.15)
This implies that

C0

(
β|∂xun|22 + γ|D−1

x un|22 − c|un|22
)
≥ 1, (2.16)

which contradicts (2.13). �
Step 2. The solution u0 �= 0, a.e. in R.

Proof. Using Step 1, it is simply an application of Lemma 2.4 and Lemma 2.5 for the
choice of α = 2, µ = 3, and ν = 4. �

Step 3. L1
c(u0) = mc.

Proof. By Lemma 2.6, we deduce that

L1
c(un) − L1

c(un − u0) − L1
c(u0) −→ 0, (2.17)

as n → ∞. On the other hand, we have∫
u3

n −
∫

(un − u0)3 −
∫

u3
0 = −

∫ (
−3u2

nu0 + 3unu2
0 − u3

0

)
(2.18)

= 3
∫

u2
nu0 − 3

∫
unu2

0 −→ 3
∫

u3
0 − 3

∫
u0u

2
0 = 0,

as n → ∞, since un → u0 weakly in X1 and un → u0 a.e. in R imply that un → u0

weakly in L4 and u2
n → u2

0 weakly in L2.

It follows from (2.19) that

P (un) − P (un − u0) − P (u0) −→ 0 (2.19)

as n → ∞. Now we claim that P (u0) ≤ 0. Toward this end, we argue by contradiction.
Suppose P (u0) > 0. Then from the fact that P (un) ≤ 0, ∀n and (2.19), we obtain that
P (un − u0) ≤ 0, as n → ∞. By the definition of mc, it turns out that L1

c(un − u0) ≥ mc.

But L1
c(un) → mc as n → ∞. Hence it can be deduced from (2.17) that L1

c(u0) ≤ 0, that
is

β

∫
(∂xu0)2 + γ

∫
(D−1

x u0)2 − c

∫
u2

0 ≤ 0. (2.20)

Since

C(β, γ, c)
(∫

(∂xu0)2 +
∫

(D−1
x u0)2

)
≤ β

∫
(∂xu0)2 + γ

∫
(D−1

x u0)2 − c

∫
u2

0, (2.21)

it implies from (2.21) that u0 = 0 a.e. in R, which is a contradiction. Hence P (u0) ≤
0. �
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Step 4. P (u0) = 0.

Proof. Again we argue by contradiction. Suppose P (u0) < 0. Then choosing some
sufficiently small λ > 0, we have

P (λu0) = λ2

(
β

∫
(∂xu0)2 + γ

∫
(D−1

x u0)2 − c

∫
u2

0

)
+ λ3

∫
u3

0 > 0. (2.22)

By continuity of P, there exists λ0 ∈ (0, 1) such that

P (λ0u0) = 0. (2.23)

Applying (2.16) to the minimization problem of mc would yield a contradiction, that is,

mc ≤ L1
c(λ0u0) =

1
6
λ2

0

(
β

∫
(∂xu0)2 + γ

∫
(D−1

x u0)2 − c

∫
u2

0

)
(2.24)

<
1
6

(
β

∫
(∂xu0)2 + γ

∫
(D−1

x u0)2 − c

∫
u2

0

)
= mc,

and hence, P (u0) = 0. �
Step 5. u0 ∈ Gc, that is, u0 is a ground state of (1.8).
Proof. It follows from the results in Step 3 and Step 4 that

mc = dc = inf{Lc(u), P (u) = 0} = Lc(u0). (2.25)

Hence, by the Lagrange multiplier principle, there exists µ ∈ R such that

L′
c(u0) + µP ′(u0) = 0 (2.26)

where L′
c(u0) and P ′(u0) are the Fréchet derivatives of Lc and P at u0. It is thereby

inferred from (2.26) that

〈L′
c(u0), u0〉 = −µ 〈P ′(u0), u0〉 . (2.27)

But
〈L′

c(u0), u0〉 = P (u0) = 0

and

〈P ′(u0), u0〉 = 2
(

β

∫
(∂xu0)2 + γ

∫
(D−1

x u0)2 − c

∫
u2

0

)
+ 3

∫
u3

0

= 2
(

β

∫
(∂xu0)2 + γ

∫
(D−1

x u0)2 − c

∫
u2

0

)
(2.28)

−3
(

β

∫
(∂xu0)2 + γ

∫
(D−1

x u0)2 − c

∫
u2

0

)

= −
(

β

∫
(∂xu0)2 + γ

∫
(D−1

x u0)2 − c

∫
u2

0

)
< 0.

It then follows from (2.26) and (2.27) that λ = 0 and L′
c(u0) = 0. On the other hand,

for any nonzero v ∈ X1, if L′
c(v) = 0, then we have P (v) = d

dλLc(λv)
∣∣∣
λ=1

= 〈L′
c(v), v〉 =

0. By the definition of dc, we thus deduce that Lc(u0) ≤ Lc(v), namely, u0 ∈ Gc.

Furthermore, if ϕc ∈ Gc, then L′
c(ϕc) = 0 and Lc(ϕc) ≤ Lc(v) for any v ∈ X1 satisfying

L′
c(u) = 0. Since

P (v) =
d

dλ
Lc(λv)

∣∣∣
λ=1

= 〈L′
c(v), v〉 ,
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for any v ∈ X1, it follows that ϕc is a minimizer of dc, and dc = mc = Lc(ϕc) = d(c).
This completes the proof of Proposition 2.3. �

3. Minimizers of the energy. It was proved in [LiVa] that the set of the ground
states Gc is nonlinearly stable in the energy space X1 under the assumption of d′′(c) > 0,

since the scaling and dilation technique does not give the description of action d(c) ex-
plicitly in terms of the wave’s speed c. We will now use another characterization of the
ground states solutions of (1.8) in order to show that the set of global minimizers is non-
linearly stable. The proof of the existence of a ground state as well as its implications
for stability follows the outline by Cazenave and Lions [CaLi] concerning the stability of
standing waves for the nonlinear Schrödinger equation. In this regard, we consider the
ground states solutions characterized as minimizers of the energy function E constrained
by the constant momentum V. The argument is based on an outline of the concentration
compactness lemma [Lio]. But the difficult part of applying the concentration compact-
ness lemma is that the scaling and dilation technique cannot give the exact description
of the minimization of the energy E with the constant constraint of the momentum V.

To avoid this difficulty, we have to restrict the effect of rotation γ to be small enough.
Suppose that ϕc ∈ Gc for c < 2

√
γβ and β > 0. Define q = V (ϕc). The central role

will be played by minimization problem Iq defined by

Iq = inf {E(u) : u ∈ X1, V (u) = q} . (3.1)

The set of minimizers for Iq is defined by

Σq = {u ∈ X1 : E(u) = Iq, V (u) = q} , (3.2)

and the minimizing sequence for Iq is any sequence {un} of functions in X1 satisfying

V (un) = q, ∀n ≥ 1 (3.3)

and
lim

n→∞
E(un) = Iq. (3.4)

The stability of the set Σq is a natural consequence of the following theorem.

Theorem 3.1. Let β > 0 and c < 2
√

γβ. Then
(1) there exists γ0 > 0 such that if 0 < γ < γ0, then the set Σq is not empty,
(2) any minimizing sequence {un} for Iq is relatively compact in X1 up to transla-

tions, that is, there exists a sequence {yn} and an element g ∈ Σq such that un(· + yn)
has a subsequence converging strongly in X1 to g,

(3) lim
n→∞

inf
g∈Σq, y∈R

‖un(· + y) − g‖X1 = 0,

(4) lim
n→∞

inf
g∈Σq

‖un − g‖X1 = 0, and

(5) each g ∈ Σq with P (g) = 0 is a ground-state solution of (1.1), where P is defined
in (2.4).

Let us denote by Iµ, for µ > 0, the minimization problem

Iµ = inf {E(u) : u ∈ X1, V (u) = µ} . (3.5)
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Recall that
E(u) =

β

2

∫
u2

x +
γ

2

∫
(D−1

x u)2 +
1
3

∫
u3

and
V (u) =

1
2

∫
u2.

The proof of the theorem is approached via a series of lemmas.

Lemma 3.2. For all µ > 0, there exists γ0 > 0, such that if 0 < γ < γ0, then −∞ < Iµ <

0.

Proof. Let φ be a ground state in Gc1 with γ = 1 for c1 < 2
√

β. Then

−
∫

φ3 = β

∫
(∂xφ)2 +

∫
(D−1

x φ)2 − c1

∫
φ2 ≥ (2

√
β − c1)

∫
φ2 > 0.

For µ ≤ 1 we define the function w = aφ, where a > 0 is chosen so that V (w) = µ and∫
w3 = a3

∫
φ3 < 0. For each η > 0, define the function wη by

wη(x) =
√

ηw(ηx).

Then for all η > 0, we have V (wη) = V (w) = µ and

E(wη) =
η2β

2

∫
(∂xw)2 +

η−2γ

2

∫
(D−1

x w)2 +
η

1
2

3

∫
w3.

If we choose η = γ
1
4 > 0 such that γη−2 = η2, then by taking γ0 > 0 sufficiently small,

we get for all γ < γ0,

E(wη) = η
1
2

(
η

3
2 β

2

∫
(∂xw)2 +

η
3
2

2

∫
(D−1

x w)2 +
1
3

∫
w3

)
< 0,

and it follows that Iµ < 0 for any µ ≤ 1.

It remains to show that Iµ < 0 for any µ > 1 as well. To see this, let w1 be the
function constructed as above for µ = 1 so that E(w1) < 0 and V (w1) = 1. For any given

µ > 1, we define w2 =
√

µw1. Since
√

µ > 1 and
∫

w3
1 < 0, we have

E(w2) =
µβ

2

∫
(∂xw1)2 +

µγ

2

∫
(D−1

x w1)2 +
µ

3
2

3

∫
w3

1

≤ µ

(
β

2

∫
(∂xw1)2 +

γ

2

∫
(D−1

x w1)2 +
1
3

∫
w3

1

)
= µE(w1) < 0.

But V (w2) = µV (w1) = µ, and so it has been proved that Iµ < 0 for all µ > 0.

To prove that Iµ > −∞, let v denote any function in X1 satisfying V (v) = µ. Note
from a standard Sobolev embedding and the interpolation theorem that we have∣∣∣∣

∫
v3

∣∣∣∣ ≤ |v|33 ≤ C0‖v‖3
1
6
≤ C0|v|

5
2
2 ‖v‖

1
2
1

where C0 denotes a universal constant which is independent of v. Then applying Young’s
inequality ∣∣∣∣

∫
v3

∣∣∣∣ ≤ ε‖v‖2
1 + Cε|v|

10
3

2
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for a small ε > 0 yields

E(v) = E(v) + βV (v) − βV (v)

=
β

2

∫
v2

x +
γ

2

∫
(D−1

x v)2 +
β

2

∫
v2 − 1

3

∫
v3 − βµ

≥ min{β, γ}
2

‖v‖2
X − min{β, γ}

4
‖v‖2

1 − Cβ,γ |v|
10
3

2 − βµ

≥ min{β, γ}
4

‖v‖2
X − 2Cβ,γµ

5
2 − βµ > −∞

where ε is chosen sufficiently small such that 0 < ε <
min{β, γ}

4
. �

Lemma 3.3. Let β > 0 and c < 2
√

γβ. If {un} is a minimizing sequence for Iq, then
there exist constants K > 0 and δ > 0 such that

(a) ‖un‖X1 ≤ K, ∀n ≥ 1,

(b) |un|3 ≥ δ for all sufficiently large n, and
(c) there is a subsequence, still denoted by un, such that lim

n→∞
‖un‖2

X1
= α > 0.

Proof. To prove statement (a), we observe that

1
2

(
β

∫
(∂xun)2 + γ

∫
(D−1

x un)2 − c

∫
u2

n

)

= E(un) − cV (un) +
1
3

∫
u3

n (3.6)

≤ sup
n

E(un) − cq + C0|un|
5
2
2 ‖un‖

1
2
X1

≤ C0

(
1 + ‖un‖

1
2
X1

)
where C0 is a universal constant which is independent of n. Since c < 2

√
γβ, we have

C0

(
|∂xun|22 + |D−1

x un|22
)
≤ β

∫
(∂xun)2 + γ

∫
(D−1

x un)2 − c

∫
u2

n (3.7)

where the constant C0 satisfies that 0 < C0 ≤ min
{

cδ2

4 , γ2δ
1+γδ

}
with δ = 2β

c2 − 1
2γ . It

then follows from the estimate (3.6) and (3.7) that ‖un‖X1 ≤ K where the constant
K = K(c, β, γ, q) but is independent of n.

To prove statement (b), we argue by contradiction. If no such constant δ exists, then

lim
n→∞

inf |un|33 = 0. (3.8)

So

Iq = lim
n→∞

(
β

2

∫
(∂xun)2 +

γ

2

∫
(D−1

x un)2 +
1
3

∫
u3

n

)

≥ −1
3

lim
n→∞

inf |un|33 = 0,

contradicting Lemma 3.2.
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To prove statement (c), using (a), we obtain that lim
n→∞

‖un‖X1 = α exists for a subse-

quence {un}. It then follows from (b) that

0 < δ3 ≤ |un|33 ≤ C0|un|
3
2
2 |D−1

x un|
1
2
2 |∂xun|2 ≤ C0‖un‖3

X1
.

It thus transpires that α > 0. �

Lemma 3.4 (Subadditivity). For all µ1, µ2 > 0, suppose µ1 + µ2 = µ. Then

Iµ < Iµ1 + Iµ2 .

Proof. First we claim that for any µ0, µ > 0 with µ0 < µ,

Iµ0 >

(
µ0

µ

) 5
3

Iµ. (3.9)

To see this, associated to each function u ∈ X1 with V (u) = µ, the function w(x) is
defined by w(x) = au(bx) for a, b > 0 to be chosen later. Then

V (w) =
a2b−1

2

∫
u2 = a2b−1µ (3.10)

and

E(w) =
a2bβ

2

∫
u2

x +
a2b−3γ

2

∫
(D−1

x u)2 +
a3b−1

3

∫
u3. (3.11)

Let a2b = a3b−1, or, equivalently, a = b2. Then

E(w) = b5

(
β

2

∫
u2

x +
b−4γ

2

∫
(D−1

x u)2 +
1
3

∫
u3

)
. (3.12)

On the other hand, for any µ0 < µ, choose the constant b by b =
(

µ0
µ

) 1
3

. Then b < 1

and a2b−1µ = µ0, or V (w) = µ0 by (3.10). It then follows from ((3.12) that

E(w) > b5E(u) =
(

µ0

µ

) 5
3

E(u). (3.13)

This implies that

Iµ0 ≥
(

µ0

µ

) 5
3

Iµ. (3.14)

As a consequence, for any µ1, µ2 > 0 satisfying µ1 + µ2 = µ, we have

Iµ1 + Iµ2 ≥
[(

µ1

µ

) 5
3

+
(

µ2

µ

) 5
3
]

Iµ > Iµ,

which is the expected result. �
Proof of Theorem 3.1. To show statement (1), we basically apply the concentration

compactness lemma [Lio] with

ρn = |D−1
x un|2 + |un|2 + |∂xun|2 (3.15)

where {un} is a minimizing sequence for Iq with
∫

ρn = ‖un‖2
X1

−→ α > 0 as n → ∞,

as proved in Lemma 3.3(c).



584 YUE LIU

(i) The “vanishing” case is avoided. We argue by contradiction. Assume that
“vanishing” occurs, that is, for any r > 0,

lim
n→∞

sup
x∈R

∫ x+r

x−r

(
|D−1

x un|2 + |un|2 + |∂xun|2
)

= 0. (3.16)

Applying Sobolev’s inequality, we obtain

∫ x+r

x−r
|un|3 ≤ 4

√
2
(∫ x+r

x−r

|un|2
) 3

4
(∫ x+r

x−r

|D−1
x un|2

) 1
4

(∫ x+r

x−r

|∂xun|2
) 1

2

(3.17)

≤ 4
√

2
(

sup
x∈R

(∫ x+r

x−r

(
|D−1

x un|2 + |un|2 + |∂xun|2
))) 3

2

.

Now, covering R by intervals with the length 1, in such a way, each point in R is
contained in at most two intervals. We get∫

|un|3 ≤ 8
√

2
(

sup
x∈R

∫ x+r

x−r

(
|D−1

x un|2 + |un|2 + |∂xun|2
)) 3

2

−→ 0 (3.18)

as n → ∞. So, it turns out that

Iq = lim
n→∞

(
β

2

∫
(∂xun)2 +

γ

2

∫
(D−1

x un)2 +
1
3
u3

n

)

≥ lim
n→∞

(
−1

3

∫
|un|3

)
= 0,

which contradicts Lemma 3.2.
(ii) In the “dichotomy” case, we claim by following the idea from [Lio] that for some

0 < η < α and any ε > 0, there exists δ(ε) > 0 (with δ(ε) → 0 as ε → 0), two sequences
{wn} and {vn} in X1, and an integer n0 > 0 such that for n ≥ n0,

‖wn + vn − un‖X1 ≤ δ(ε),∣∣∣‖wn‖2
X1

− η
∣∣∣ ≤ δ(ε),∣∣∣‖vn‖2

X1
− (α − η)

∣∣∣ ≤ δ(ε),∣∣∣|un|22 − |wn|22 − |vn|22
∣∣∣ ≤ δ(ε),

and
dist (supp (wn), supp (vn)) −→ +∞

as n → ∞. In fact, assume that “dichotomy” occurs, i.e. that

lim
t→+∞

Q(t) = η < α

where for t ≥ 0,

Q(t) = lim
n→+∞

sup
x0∈R

∫
x0+Bt

ρn

and BR denotes the ball of radius R centered at 0. Then for any fixed ε > 0, there are
R0 > 0 and Rn > 0 with Rn ↗ +∞ and xn ∈ R such that

η ≥
∫

xn+BR0

(
|un|2 + |hn|2 + |∂xun|2

)
≥ η − ε
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and Qn(2Rn) ≤ η + ε for n ≥ n0, where un = ∂xhn and

Qn(t) = sup
x0∈R

∫
x0+Bt

(
|un|2 + |hn|2 + |∂xun|2

)
.

It then follows that ∫
R0≤|x−x0|≤2Rn

(
|un|2 + |hn|2 + |∂xun|2

)
≤ 2ε.

Let ξ and θ ∈ C∞
0 (R) such that 0 ≤ ξ ≤ 1, 0 ≤ θ ≤ 1, ξ ≡ 1 on B1, supp ξ ⊂ B2, θ ≡ 1

on R \ B2, and supp θ ⊂ R \ B1. Define ξn = ξ
(

·−xn

R1

)
and θn = θ

(
·−xn

Rn

)
. Now let us

consider
wn = ∂x(ξ0(hn − an)), vn = ∂x(θn(hn − bn))

where an and bn are sequences which will be chosen later. Moreover, let us set

w1
n = D−1

x wn = ξn(hn − an)

and
v1

n = D−1
x vn = θn(hn − bn).

Then we deduce that∣∣w1
n + v1

n − hn

∣∣
2
≤ |ξn(hn − an)|2 + |θn(hn − bn)|2 +

√
2ε

and

|ξn(hn − an)|2 =

(∫
R1≤|x−xn|≤2R1

|ξn|2|hn − an|2
)1/2

≤ |ξn|∞

(∫
R1≤|x−xn|≤2R1

|hn − an|2
)1/2

.

Now choosing

an =
1

Vol(Ωx0,R1)

∫
R1≤|x−x0|≤2R1

hn = mR1(hn)

with Ωx0,R1 = {x ∈ R; R1 < |x − x0| < 2R1}, we have

|ξn(hn − an)|2 ≤ C

(∫
R1≤|x−x0|≤2R1

|un|2
)1/2

≤ C
√

ε.

In the same way, choosing bn = mRn
(hn) leads to the bound

|θn(hn − bn)|2 ≤ C

(∫
Rn≤|x−x0|≤2Rn

|un|2
)1/2

≤ C
√

ε.

Hence the desired estimate on
∣∣w1

n + v1
n − hn

∣∣
2

can be obtained by the above inequalities
and the estimate on |wn + vn − un|2 is obtained in the same way. Attention is now turned
to estimate |∂xwn + ∂xvn − ∂xun|2 . It is found that

|∂xwn + ∂xvn − ∂xun|2 =
∣∣∂2

x(ξ(hn − an)) + ∂2
x(θn(hn − bn)) − ∂2

xhn

∣∣
2

≤
∣∣(∂2

xξn)(hn − an)
∣∣
2

+
∣∣(∂2

xθn)(hn − bn)
∣∣
2

+ |(1 − ξn − θn)∂xun|2
+2|(∂xξn)un|2 + 2|(∂xθn)un|2.
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The first three terms in the right hand side of the above inequality are bounded as the
preceding ones. For the last two terms, we have

|(∂xξn)un|2 ≤ |∂xξn|∞

(∫
R1≤|x−x0|≤2R1

|un|2
)1/2

≤ C
√

ε.

All the other terms in (ii) can be estimated in a similar way and the last bound follows
from the first one, the fact that supp w1

n ∩ supp v1
n = ∅ and the injection of X1 into L2.

Now taking subsequences if necessary, we may assume

lim
n→∞

∫
R

(wn)2 = λ1(ε), lim
n→∞

∫
R

(vn)2 = λ2(ε)

with |λ1(ε) + λ2(ε) − q| ≤ δ(ε). Then in view of the estimates in (ii), we deduce that
limε→0 λ1(ε) > 0, limε→0 λ2(ε) > 0 and

Iλ1 + Iλ2 ≤ Iq + δ(ε).

We then reach a contradiction by letting ε tend to zero and the subadditivity property
of Iq in Lemma 3.4. This rules out the “dichotomy” case.

(iii) The only remaining possibility is then the “concentration” of the sequence {un}
up to translations. That is, there exists a sequence {yn} with yn ∈ R for all n ≥ 1, such
that for any ε > 0, there exists r > 0 and n0 > 0, for all n ≥ n0, i.e.∫ yn+r

yn−r

(
|D−1

x un|2 + |un|2 + |∂xun|2
)
dx ≥ α − ε. (3.19)

This implies that for n large enough,∫ yn+r

yn−r

|un|2 ≥
∫
R

|un|2 − 2ε. (3.20)

Since un is bounded in X1, one may assume that a subsequence of un (still denoted by
un) converges weakly in X1 to some g ∈ X1. It then follows that∫

R

|g|2 ≤ lim
n→∞

inf
∫
R

|un|2 ≤ lim
n→∞

inf
∫ yn+r

yn−r

|un|2 + 2ε. (3.21)

On the other hand, using the relative compactness of the injection X1 ⊂ L2
loc, it then

follows from (3.21) that some subsequence of {un(·+yn)} with yn ∈ R converges strongly
in L2(R). By interpolation

|u|33 ≤ 4
√

2|u|
3
2
2 ‖u‖

3
2
X1

,

and one obtains that the sequence un(· + yn) also converges to g strongly in L3. As a
consequence, it follows that

E(g) ≤ lim
n→∞

inf E(un) ≤ E(g) = Iq.

This shows that g is a solution of Iq and the set Σq is not empty. Note that from the
above proof, we also obtain that a subsequence of {un(· + yn)} is strongly convergent
to g ∈ X1. This proves statement (2). Now suppose that statement (3) does not hold.
Then there exists a subsequence {unk

} of {un} and a small number δ > 0 such that

inf
g∈Σg, y∈R

‖unk
(· + y) − g‖X1 ≥ δ (3.22)
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for all k ≥ 1. Since {unk
} is itself a minimizing sequence for Iq from statement (1), it

follows that there exists a sequence {yk} and g0 ∈ Σq such that

lim
k→∞

‖unk
(· + yk) − g0‖X1 = 0.

This contradicts (3.22). For statement (4), we note that the functionals E and V are
invariant under translations. This implies that g(· − y) ∈ Σq for any y ∈ R provided
g ∈ Σq. It then turns out that

lim
n→∞

inf
g∈Σq

‖un − g‖X1 ≤ lim
n→∞

inf
g∈Σq

‖un − g(· − y)‖X1 = lim
n→∞

inf
g∈Σq

‖un(· + y) − g‖X1 = 0.

This completes the proof of statement (4). For statement (5), it follows from Proposition
2.3 that ϕc ∈ Gc and therefore if g ∈ Σq, then

Lc(g) ≤ Lc(ϕc) ≤ Lc(f)

for any f ∈ Ωc. By the definition of Σq and the Lagrange multiplier principle, for each
g ∈ Σq there exists λ ∈ R such that

δE(g) = λδV (g), (3.23)

where the Fréchet derivatives δE(g) and δV (g) are given by

δE(g) = −βgxx − γD−2
x g + g2

and

δV (g) = g.

Therefore g solves (1.8) with the wavespeed λ. In view of (3.23), we have∫
βg2

x + γ(D−1
x g)2 + g3 = λ

∫
g2. (3.24)

As a consequence, we obtain from (3.24) that

P (g) + c

∫
g2 = λ

∫
g2. (3.25)

In view of P (g) = 0, it is concluded that λ = c as claimed and the proof of Theorem 3.1
is complete. �

4. Dynamical stability. We are now in the position to prove the dynamical stability
result, Theorem 1.3. It is an immediate consequence of Theorem 3.1.

Proof of Theorem 1.3. Suppose the set Σq is not stable. Then there exists a real
number ε > 0, a sequence {φn} in X1, and tn ≥ 0 such that

inf
g∈Σq

‖φn − g‖X1 <
1
n

and

inf
g∈Σq

‖un(·, tn) − g‖X1 ≥ ε
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for all n ≥ 1, where un(x, t) solves (1.1) with un(x, 0) = φn. Since φn → g in X1 and
since E(g) = Iq and V (g) = q for some g ∈ Σq, we have E(φn) → Iq and V (φn) → q, as
n → ∞. But E(un) = E(φn) → Iq and V (un) = V (φn) → q. Choose

αn =
(

q

V (φn)

) 1
2

.

Then αn → 1 and V (αnun) = q for all n, and un(·, tn) is uniformly bounded, say, by M.

Therefore, fn = αnun is a minimizing sequence of Iq. It then follows from Theorem 3.1
that for all n sufficiently large there exists gn ∈ Σq such that ‖fn − gn‖X1 < ε

2 . But then

ε ≤ ‖u(·, tn) − gn‖X1 ≤ ‖un(·, tn) − fn‖X1 + ‖fn − gn‖X1

≤ |1 − αn|‖un(·, tn)‖X1 +
ε

2
< |1 − αn|M +

ε

2
and taking n → ∞ gives ε ≤ ε

2 , a contradiction. This completes the proof of Theorem
1.3. �
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