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Abstract. In [Math. Meth. Appl. Sci. 19 (1996) 53-62], C. Marchioro examined the
problem of vorticity confinement in the exterior of a smooth bounded domain. The main
result in Marchioro’s paper is that solutions of the incompressible 2D Euler equations
with compactly supported nonnegative initial vorticity in the exterior of a connected
bounded region have vorticity support with diameter growing at most like O(t(1/2)+ε),
for any ε > 0. In addition, if the domain is the exterior of a disk, then the vorticity
support is contained in a disk of radius O(t1/3). The purpose of the present article is to
refine Marchioro’s results. We will prove that, if the initial vorticity is even with respect
to the origin, then the exponent for the exterior of the disk may be improved to 1/4. For
flows in the exterior of a smooth, connected, bounded domain we prove a confinement
estimate with exponent 1/2 (i.e. we remove the ε) and in certain cases, depending on the
harmonic part of the flow, we establish a logarithmic improvement over the exponent 1/2.
The main new ingredients in our approach are: (1) a detailed asymptotic description of
solutions to the exterior Poisson problem near infinity, obtained by the use of Riemann
mappings; (2) renormalized energy estimates and bounds on logarithmic moments of
vorticity and (3) a new a priori estimate on time derivatives of logarithmic perturbations
of the moment of inertia.
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1. Introduction. Two-dimensional incompressible ideal flow can be described as the
active transport of vorticity; see [3]. Vorticity with changing sign may scatter through the
divergent motion of soliton-like vortex pairs (see the discussion in [5] and references there
contained), but single-signed vorticity tends to rotate around, and spreads very slowly.
Studying the rate at which single-signed vorticity spreads is the problem of vorticity
confinement.

In 1996, C. Marchioro presented some results concerning vorticity confinement in the
case of exterior domain flow; see [11]. Marchioro observed cubic-root confinement in
the case of the exterior of a disk, i.e. single-signed, compactly supported, vorticity has
its support contained in a space-time region whose diameter grows like the cubic-root
of time. This result follows from the proof of similar cubic-root confinement obtained
previously by Marchioro for full plane flow; see [10]. For flows in the exterior of a general
connected domain, Marchioro proved (1/2 + ε)-root confinement. The purpose of this
article is to refine Marchioro’s estimates. Our main result is unqualified square-root
confinement for exterior flow. We improve this estimate to a logarithmic refinement
of square-root confinement under certain conditions on the harmonic part of the flow.
In addition, we prove almost fourth-root vorticity confinement in the exterior of a disk
if the initial vorticity is even with respect to its center. Technically, we begin with
the construction of a conformal map between the exterior of a general domain and the
exterior of the unit disk, which behaves nicely up to the boundary, taken from [4]. This
conformal map is used to obtain explicit formulas for the Green’s function of the exterior
domain, the Biot-Savart law and the harmonic part of the velocity. We then prove a
priori estimates: first, a renormalized energy estimate, next, in some cases, estimates
on logarithmic moments of vorticity, and finally an estimate of linear growth in time
for logarithmic perturbations of the moment of inertia. Finally, we use these a priori
estimates to obtain our confinement results.

From a broad viewpoint, the problem of confinement is related with scaling. Roughly
speaking, scaling in an evolution equation is determined by the behavior in time of the
radius of effective influence of a small localized perturbation. For a parabolic system,
the scaling is x ∼

√
t and for a hyperbolic system it is x ∼ t. Incompressible ideal flow

has interesting behavior at hyperbolic scaling, i.e. waves, but this requires vortex pairs,
and therefore vorticity changing sign; see [5, 6, 7] for details. One important issue is
whether there is a natural scaling associated with incompressible, ideal 2D flow with
distinguished signed vorticity. Confinement estimates explore this issue of scaling, and
therefore, are useful in studying the qualitative behavior of solutions. For example, con-
finement estimates have been used in the rigorous justification of point vortex dynamics
as an asymptotic description of the dynamics of highly concentrated vorticity; see [14, 16]
and in the results on vortex scattering in [5, 6]. In addition, the issue of confinement has
attracted attention in other contexts, such as confinement for slightly viscous flow; see
[13]. For axisymmetric flow, see [1, 9, 15], for the Vlasov-Poisson system, see [2], and for
the quasigeostrophic system, see [12].

The point of departure on vorticity confinement research is the 1994 article [10], by
C. Marchioro, in which he proved cubic-root confinement for flows in the full plane.
Marchioro used in an essential way the conservation of the moment of inertia, which
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is associated to the rotational symmetry of full plane flow. This result was improved,
independently by Ph. Serfati, [17] and by D. Iftimie, T. Sideris and P. Gamblin (see [7]) to
nearly fourth root in time. The improvement relied on using, in addition to the moment
of inertia, conservation of the center of vorticity, which is associated to the translational
symmetry of the plane. However, scaling should be a robust qualitative property, and
not dependent on the presence of symmetry. One of the main points of this article is
to further explore the role that symmetry has in the problem of confinement. To this
end we break symmetry by considering exterior domain flows, both in the exterior of a
disk, where only translational symmetry is broken and in more general exterior domains,
where translational and rotational symmetry are broken. We begin with the following two
questions: (1) Is it possible to use the center of vorticity to improve Marchioro’s estimate
for the exterior domain in the same way that Serfati, Iftimie, Sideris and Gamblin did in
the full-plane case? (2) Given that, without symmetry, there are no conserved quantities,
is it still possible to find quantities which remain bounded in time and that could play the
role of the moment of inertia for confinement estimates? Perhaps our most important
result is negative – we have not found coercive quantities like the moment of inertia
for which we could prove boundedness or slow growth. We proved boundedness for
logarithmic moments of vorticity related to conservation of energy, and we proved that
certain logarithmic perturbations of the moment of inertia grow at most linearly in
time. Using these estimates we obtained small improvements over Marchioro’s original
estimate. Our results support the roughly parabolic natural scaling for incompressible
ideal two-dimensional flow with distinguished signed vorticity, obtained originally by
Marchioro.

The remainder of this paper is divided into five sections. In Section 2 we set up the
problem and we collect preliminary information on Riemann mappings and the Laplacian
in an exterior domain. In Section 3 we derive a renormalized energy estimate and we prove
that, under appropriate hypothesis’, boundedness of a logarithmic moment of vorticity
can be deduced from the energy estimate. In Section 4 we obtain a linear-in-time estimate
for logarithmic perturbations of quadratic moments of vorticity. In Section 5 we use the
estimates deduced in Sections 3 and 4 to obtain new confinement estimates for flows in
the exterior of a general connected domain. Finally, in Section 6 we consider flow induced
by even vorticity in the exterior of a disk, obtaining nearly fourth-root confinement.

2. Preliminaries on exterior domain flow. The purpose of this section is to col-
lect information on exterior domain flow, particularly the discussion on Riemann map-
pings and solutions of the Dirichlet and Poisson problems in an exterior domain developed
in [4], supplementing the available results as required.

We begin by discussing the asymptotic behavior, near infinity, of solutions to a 2D
exterior domain Poisson equation. Let Γ ⊆ R

2 be a smooth Jordan curve dividing the
plane into a bounded connected component Ω and an unbounded connected component
denoted Ωc. For x ∈ Γ, denote by n̂(x) the unit exterior normal to Ωc at x. Note that
both Ω and Ωc are open. The Green’s function for the Laplacian in Ωc is denoted by
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GΩc . We consider ω ∈ C∞
c (Ωc) and we introduce:

ψ(x) ≡
∫

Ωc

GΩc(x, y)ω(y)dy. (2.1)

Let S = {|x| = 1} and Dc ≡ {|x| > 1}. Denote the inversion with respect to S by
x �→ x∗ ≡ x/|x|2. The Green’s function in the case of the exterior of the unit disk can
be written explicitly as:

GDc(x, y) =
1
2π

log
|x − y|

|x − y∗||y| .

It is easy to obtain detailed information on the asymptotic behavior of ψ and its deriva-
tives, in the case of the exterior of the disk, by means of the representation formula
above. The objective of this section is to obtain similar information for general exterior
domains. We begin with a version of Lemma 2.1 of [4].

Lemma 1. There exists a conformal mapping T : Ωc → Dc extending continuously up
to the boundary, mapping Γ to S. Furthermore, there exist β, a positive real number,
and h, a bounded holomorphic function in Ωc, such that

T (z) = βz + h(z).

In addition, there exists a constant M1 > 0 such that |h′(z)| ≤ M1/|z|2, |h′′(z)| ≤
M1/|z|3. Furthermore, if T is regarded as a real mapping between Ωc and {|z| > 1},
then we have ‖DT‖L∞ ≤ M1 and ‖DT−1‖L∞ ≤ M1.

Proof. Most of the facts claimed above are either proved in Lemma 2.1 of [4] or in
the remark following it. One modification is that β can be assumed positive, which we
can obtain by composing T with a rotation, if necessary. The only other difference is
the estimate on h′′ which follows by differentiating the relation h′(z) = −(1/z2)g′(1/z),
together with the fact that, by construction, g′ and g′′ are bounded. �

It is easy to verify that, if x0 ∈ Dc and φ satisfies ∆φ = δ(x − x0) in a neighborhood
of x0, then φ̃ ≡ φ ◦ T satisfies ∆φ̃ = δ(y − T−1(x0)) in a neighborhood of T−1(x0). We
use this fact on the Green’s function GDc in order to write:

GΩc(x, y) =
1
2π

log
|T (x) − T (y)|

|T (x) − T (y)∗||T (y)| . (2.2)

We now formulate precisely the initial value problem for incompressible fluid flow
in an exterior domain. In this, we follow Section 3.1 of [4]. Let us denote by u =
u(x, t) = (u1(x1, x2, t), u2(x1, x2, t)) the velocity of an incompressible, ideal fluid flow in
the exterior domain Ωc. We assume that u is tangent to Γ and u → 0 when |x| → ∞. The
evolution of such a flow is governed by the Euler equations. We write the initial-boundary
value problem as: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut + u · ∇u = −∇p in Ωc × (0,∞),
div u = 0 in Ωc × [0,∞),
u · n̂ = 0 in Γ × [0,∞),
lim|x|→∞ u = 0 for t ∈ [0,∞),
u(x, 0) = u0(x) in Ωc,

(2.3)
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where p = p(x, t) is the scalar pressure. If u0 is sufficiently smooth, global well-posedness
of this problem was proved by K. Kikuchi in [8].

We introduce ω = curl u, the vorticity of the flow. Vorticity satisfies the transport
equation:

ωt + u · ∇ω = 0, in Ωc × (0,∞).

Our purpose is to reformulate problem (2.3) in terms of vorticity. In order to do this
we require a version of the Biot-Savart law, which recovers velocity from vorticity. Since
Ωc is not simply connected, we must use Hodge-deRham theory (see [18]). Recall that
a harmonic vector field in Ωc is a divergence-free, curl-free vector field tangent to Γ and
vanishing at infinity. By Hodge’s Theorem, the vector space of harmonic vector fields, in
our setting, is one-dimensional; see Section 2.3 in [4]. Therefore, every harmonic vector
field is a multiple of a unique harmonic vector field, denoted HΩc , defined by requiring
that ∫

Γ

HΩc · ds = 1.

(Throughout this paper circulation will be computed in the counterclockwise orientation.)
We recall identity (2.11) in [4], which gives an explicit expression for HΩc in terms of T .
We have

HΩc(x) =
1
2π

∇⊥ log |T (x)| =
1
2π

(T (x)DT (x))⊥

|T (x)|2 =
1
2π

DT t(x)(T (x))⊥

|T (x)|2 . (2.4)

With this notation we can show that there exists α ∈ R such that:

u = ∇⊥ψ + αHΩc , (2.5)

where ψ is the stream function introduced in (2.1). Indeed, by (2.8), ∇⊥ψ vanishes at
infinity and, since ψ vanishes on Γ, ∇⊥ψ is tangent to Γ. Clearly ∇⊥ψ is divergence-free
and its curl is ω. Thus u −∇⊥ψ is a harmonic vector field, which must then be a real
multiple of HΩc (see [4, Proposition 2.1]).

In the language of Hodge theory, the vector field αHΩc is called the harmonic part of
the flow u. In principle this harmonic part is time-dependent, but as a consequence of
Kelvin’s Circulation Theorem, it is actually a constant of motion.

Lemma 2. If u is a solution of (2.3), then α is constant in time.

This is Lemma 3.1 in [4]. More precisely, let u0 be such that curl u0 is compactly
supported and set ω0 ≡ curl u0. Then

α ≡
∫

Γ

u0 · ds +
∫

Ωc

ω0dx. (2.6)

With this notation the vorticity formulation of the initial-boundary value problem
(2.3) is: ⎧⎪⎪⎨⎪⎪⎩

ωt + u · ∇ω = 0 in Ωc × (0,∞),
u = ∇⊥ψ + αHΩc in Ωc × [0,∞),
ψ(x, t) =

∫
Ωc GΩc(x, y)ω(y, t)dy in Ωc × [0,∞),

ω(x, 0) = ω0(x) in Ωc.

(2.7)

The fact that vorticity is transported by a divergence free vector field implies that its
Lp-norm is conserved for any 1 ≤ p ≤ ∞.
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We will also require information on the time-dependent stream function ψ = ψ(·, t),
defined by (2.1) with ω = ω(·, t).

Lemma 3. There exists a constant C = C(t) > 0, depending on the diameter of the
support of ω(·, t) such that

sup
x∈Ωc

|ψ(x, t)| ≤ C(t).

Proof. We repeat the argument leading to relation (4.10) in [4], substituting ωt by ω,
to obtain ∣∣∣∣ψ(x, t) +

1
2π

∫
Ωc

log |T (y)|ω(y, t) dy

∣∣∣∣ = O
(

1
|x|

)
.

Since ω(·, t) has compact support, the conclusion follows. �
In addition, we recall estimates (2.8) and (4.11) of [4]:

|∇ψ(x, t)| ≤ C(t)
|x|2 and |∇ψt(x, t)| ≤ C(t)

|x|2 , (2.8)

where, again, C(t) > 0 depends on the diameter of the support of ω(·, t).

3. Generalized energy and logarithmic moment. The purpose of this section
is to derive a new a priori bound on the logarithmic moment of vorticity, in terms of
global conserved quantities of the flow. Our point of departure is the exact conservation
of an energy-like quantity which we will call generalized energy. To define this quantity,
let us consider u = u(x, t) a smooth solution of problem (2.3) with compactly supported
vorticity. Using (2.8) and (2.5) we conclude that:

v(x, t) ≡ u(x, t) − αHΩc(x) = (∇⊥ψ)(x, t) = O(1/|x|2), when |x| → ∞. (3.1)

Definition 4. We define the generalized energy E by:

E ≡
∫

Ωc

(|v|2 + 2αHΩc · v)dx.

The observation on the asymptotic behavior of v as |x| → ∞ allows us to conclude
that E is finite. Indeed v is O(|x|−2), and from (2.4) and Lemma 1 the vector field HΩc

is O(|x|−1) so that the integrand above is O(|x|−3), which is an integrable function at
infinity.

Proposition 5. The generalized energy E is a constant of motion for smooth flows on
Ωc.

Proof. We begin this proof by noting that, thanks to (2.8), for each fixed time t ≥ 0
we have

|ut(x, t)| = |vt(x, t)| = |∇⊥ψt(x, t)| = O(1/|x|2), as |x| → ∞.

The construction of HΩc given in (2.4) implies that |DHΩc | = O(1/|x|2) as |x| → ∞.
Hence, the same argument used above for ut yields the conclusion that |Du|(x, t) =
O(1/|x|2) as well. Equation (2.3) implies that the same conclusion holds for the behavior
of |∇p| at infinity. By integrating along rays, recalling that p is only defined up to a
constant, we can conclude that p = O(1/|x|) as |x| → ∞.
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We use the velocity formulation (2.3) and Lemma 2 to compute the time derivative of
E as follows:

dE

dt
=

∫
Ωc

(2v · vt + 2αHΩc · vt)dx

= 2 lim
R→∞

∫
B(0;R)\Ω

[
−v(u · ∇u + ∇p) − αHΩc(u · ∇u + ∇p)

]
dx

= −2 lim
R→∞

(∫
B(0;R)\Ω

u · (u · ∇u)dx +
∫

B(0;R)\Ω
u · ∇pdx

)
= −2 lim

R→∞
(I1 + I2).

We estimate these integrals:

I1 =
∫

B(0;R)\Ω
div

u|u|2
2

dx =
∫
|x|=R

|u|2
2

u · x

R
dS +

∫
Γ

|u|2
2

u · n̂dS = O
(

1
R2

)
,

and

I2 =
∫

B(0;R)\Ω
div (up)dx =

∫
|x|=R

p(u · x

R
)dS +

∫
Γ

p(u · n̂)dS = O
(

1
R

)
.

Thus, dE/dt = 0, as we desired. �
Instead of estimating the logarithmic moment of vorticity directly, we will estimate a

quantity that resembles the logarithmic moment, but which is adapted to the geometry
of the domain under consideration. Recall that T is the conformal map that takes Ωc into
the exterior of the unit disk. We introduce the modified logarithmic moment of vorticity
by:

L(t) ≡ 1
2π

∫
Ωc

(log |T (y)|)ω(y, t)dy. (3.2)

Throughout the remainder of this paper we will assume that ω0 is smooth, nonnegative
and compactly supported. Since ω is a solution of a transport equation with smooth
velocity, it remains compactly supported and nonnegative for positive time. The total
mass of vorticity is a conserved quantity, and we denote it by

m ≡
∫

Ωc

ω0(x)dx =
∫

Ωc

ω(x, t)dx.

Theorem 6. If either α < 0 or α > m, then there exists a constant M2 > 0 such that
L(t) ≤ M2.

Proof. We first rewrite the generalized energy in terms of vorticity. By (3.1) and (2.4)
we have

E =
∫

Ωc

|v|2 + 2αHΩc · vdx =
∫

Ωc

∇⊥ψ · vdx +
α

π

∫
Ωc

(∇⊥ log |T (x)|) · vdx

= −
∫

Ωc

ψωdx − α

π

∫
Ωc

log |T (x)|ωdx,

where the boundary terms vanish since, on Γ, ψ and log |T | vanish, and at infinity we
have, by Lemma 3, that ψ is bounded and, by (3.1), that v decays like O(|x|−2).
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Using (2.1) and (2.2), we rewrite the energy in the following way:

−2πE =
∫∫

log
|T (x) − T (y)|

|T (x) − T (y)∗||T (y)|ω(x, t)ω(y, t) dxdy + 2α

∫
log |T (x)|ω(x, t)dx,

where, in the three integrals, the domain of integration is Ωc. Therefore we have

−2πE =
∫∫

log |T (x) − T (y)|ω(x, t)ω(y, t)dxdy + 2(α − m)
∫

log |T (x)|ω(x, t)dx

+
∫∫

log
|T (x)|

|T (x) − T (y)∗|ω(x, t)ω(y, t)dxdy. (3.3)

We begin by observing that the last integral on the right-hand side of (3.3) is bounded
independently of time. Indeed, if z1, z2 ∈ R

2 with |z2| > 1 and |z1| > 2, then we have
that

2|z1| ≥ |z1| + |z∗2 | ≥ |z1 − z∗2 | ≥ |z1| − |z∗2 | ≥ |z1|/2.

Applying this inequality with z1 = T (x) and z2 = T (y) yields∣∣∣∣∫∫
log

|T (x)|
|T (x) − T (y)∗|ω(x, t)ω(y, t)dxdy

∣∣∣∣
≤ m2 log 2 +

∣∣∣∣∣
∫

1≤|T (x)|≤2

∫
log

|T (x)|
|T (x) − T (y)∗|ω(x, t)ω(y, t)dxdy

∣∣∣∣∣
≤ 2m2 log 2 +

∫
1≤|T (x)|≤2

∫
|log |T (x) − T (y)∗||ω(x, t)ω(y, t)dxdy

≤ 2m2 log 2 + ‖ω‖L∞

∫ (∫
1≤|T (x)|≤2

|log |T (x) − T (y)∗|| dx

)
ω(y, t)dy

≤ 2m2 log 2 + m‖ω‖L∞( sup
1≤|η|<2

| detDT (T−1(η))|−1)
∫
|η|≤3

| log |η||dη,

where we used the boundedness of derivatives of T and T−1 stated in Lemma 1. This
establishes the desired time-independent bound.

Next we decompose Ωc × Ωc as

Ωc ×Ωc = (Ωc ×Ωc ∩ {|T (x)−T (y)| ≤ 1})∪ (Ωc ×Ωc ∩ {|T (x)−T (y)| > 1}) ≡ A1 ∪A2.

An argument similar to the one carried out above implies that∣∣∣∣∫∫
A1

log |T (x) − T (y)|ω(x, t)ω(y, t)dxdy

∣∣∣∣
≤ m‖ω‖L∞ sup

|η|>1

| detDT (T−1(η))|−1

∫
|η|≤1

| log(|η|)|dη.

These estimates, together with (3.3) and conservation of energy imply that

I(t) ≡
∫∫

A2

log |T (x) − T (y)|ω(x, t)ω(y, t)dxdy + 2(α − m)
∫

log |T (x)|ω(x, t)dx (3.4)

is bounded independently of time. Now, if α > m both terms are nonnegative and the
logarithmic moment bound follows immediately.
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Lastly, we treat the case α < 0. Since |T (x)|, |T (y)| ≥ 1 it follows that

log |T (x) − T (y)| ≤ log |T (x)| + log |T (y)| + log 2.

Therefore,∣∣∣∣∫∫
A2

log |T (x) − T (y)|ω(x, t)ω(y, t)dxdy

∣∣∣∣ ≤ m2 log 2 + 2m

∫
log |T (x)|ω(x, t)dx,

which, together with the boundedness of I concludes the proof. �
We conclude this section with an estimate which applies to the extreme case α = 0.

We do not have a logarithmic moment bound in this case, but we can prove another
estimate which we will be able to use in place of a logarithmic moment bound in the
analysis that follows.

Lemma 7. Assume that α = 0. Then there exists a constant M3 > 0 such that∫∫
Ωc×Ωc

log
(

|T (x)||T (y)|
|T (x) − T (y)|

)
ω(x, t)ω(y, t)dxdy ≤ M3.

Proof. First recall the definition of I(t) given in (3.4). Next observe that, if α = 0,
then the integral we wish to estimate is equal to

−I(t) −
∫∫

A1

log |T (x) − T (y)|ω(x, t)ω(y, t)dxdy,

in this case. Finally, the proof of Theorem 6 shows that both of these terms are bounded
independently of the choice of α. �

Remark 8. If either α ≤ 0 or α > m, then there exists a constant M4 > 0 such that∫∫
Ωc×Ωc

[log min(|T (x)|, |T (y)|)]ω(x, t)ω(y, t)dxdy ≤ M4. (3.5)

Indeed, if α < 0 or α > m, then the relation above is an immediate consequence of
Theorem 6. If α = 0, then (3.5) follows from Lemma 7 after we observe that

log
(

|T (x)||T (y)|
|T (x) − T (y)|

)
≥ log

(
min(|T (x)|, |T (y)|)

2

)
.

4. Other moment bounds. The purpose of this section is to derive bounds on log-
arithmic perturbations of the moment of inertia, which will later be used to improve
Marchioro’s confinement estimate. We begin with a technical lemma regarding the con-
formal map T .

Lemma 9. Let x, y ∈ Ωc. We have

|T (x) · (T (y))⊥| ≤ min
{
|T (x)|, |T (y)|

}
|T (x) − T (y)|, (4.1)

and there exists M5 > 0 such that

||T ′(x)|2 − |T ′(y)|2| ≤ M5
|T (x) − T (y)|

min{|T (x)|, |T (y)|}2
. (4.2)
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Proof. Let us first prove (4.1). We observe that

|T (x) · (T (y))⊥| = |(T (x) − T (y)) · (T (y))⊥| ≤ |T (x) − T (y)||T (y)|.

Similarly,

|T (x) · (T (y))⊥| = |T (x) · (T (x) − T (y))⊥| ≤ |T (x) − T (y)||T (x)|.

Hence, (4.1) follows from both of these inequalities.
Next we prove (4.2). We use Lemma 1 to compute

||T ′(x)|2 − |T ′(y)|2| = |2βRe(h′(x) − h′(y)) + |h′(x)|2 − |h′(y)|2|
≤ C|h′(x) − h′(y)| + ||h′(x)|2 − |h′(y)|2|
≤ C|h′(x) − h′(y)|(1 + |h′(x)| + |h′(y)|)
≤ C|h′(x) − h′(y)|,

since, by Lemma 1, |h′| is bounded.
Therefore, to conclude our proof it is enough to show that |h′(x) − h′(y)| is bounded

by the right-hand side of (4.2).
We first remark that a uniform bound on the first derivatives of a map defined on Ωc

implies a global Lipschitz bound. Next note that, since, by Lemma 1, h′′ is bounded,
the argument above implies that h′ is globally Lipschitz and therefore |h′(x) − h′(y)| ≤
C|x − y|. Furthermore, |x − y| ≤ C|T (x) − T (y)|, with C being the Lipschitz constant
associated to T−1, and again using the global bound on the derivatives of T−1. Therefore,
if either x or y is contained in a ball of radius R, then

|h′(x) − h′(y)|
|T (x) − T (y)| ≤ C ≤ C(R)

1
min{|T (x)|, |T (y)|}2

.

It remains only to prove this inequality assuming both |x| > R and |y| > R. In this case,
there exists a smooth path γ : [0, 1] → {|z| ≥ R}, whose length is less than 2|x− y|, and
such that γ(0) = x, γ(1) = y. Suppose first that |x| ≤ |y|. We can also assume that
γ(s) ∈ {z | |x| ≤ |z| ≤ |y|} for all s ∈ [0, 1]. We then have:

|h′(y) − h′(x)| =
∣∣∣∣∫ 1

0

d

dt
h′(γ(t))dt

∣∣∣∣ ≤ ∫ 1

0

|h′′(γ(t))||γ′(t)|dt

≤ C

|x|2 Length(γ) ≤ C|x − y|
(min |x|, |y|)2 ≤ C|T (x) − T (y)|

(min |x|, |y|)2 ,

where we have used, in the second inequality, the decay estimate for |h′′| from Lemma 1.
A similar argument holds for |y| ≤ |x|. This completes the proof. �
The final result in this section is an estimate on the growth of logarithmic perturbations

of the moment of inertia.
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Theorem 10. There exists a constant M6 > 0 such that∫
Ωc

|T (x)|2 (log |T (x)|)ω(x, t)dx ≤ M6(1 + t),

for all t ≥ 0. Moreover, if either α ≤ 0 or α > m, then∫
Ωc

|T (x)|2
(
log2 |T (x)|

)
ω(x, t)dx ≤ M6(1 + t),

for all t ≥ 0.

Proof. Let σ : (1,∞) → R be a smooth function and define

Jσ(t) ≡
∫

Ωc

σ(|T (x)|2)ω(x, t)dx.

Clearly it is enough to prove that, for the appropriate choice of σ (either σ(s) = s log s

or σ(s) = s log2 s), the time-derivative of Jσ is bounded independently of time. We
estimate directly

J ′
σ(t) = −

∫
Ωc

σ(|T (x)|2) div(uω)(x, t)dx

=
∫

Ωc

∇(σ(|T (x)|2)) · u(x, t)ω(x, t)dx

=
∫

Ωc

∇(σ(|T (x)|2)) · v(x, t)ω(x, t)dx + α

∫
Ωc

∇(σ(|T (x)|2)) · HΩc(x)ω(x, t)dx

≡ I1 + I2.

We begin by observing that I2 = 0. Indeed,

HΩc(x) =
1
2π

∇⊥ log(|T (x)|) =
1
4π

∇⊥ log |T (x)|2.

Clearly, σ(|(T (x)|2) and log(|T (x)|2) are functionally dependent, which implies that their
gradients are proportional everywhere. Therefore, the integrand in I2 vanishes identically.

Next, we estimate |I1|. We use the explicit expression of the Biot-Savart kernel in [4],
equation (2.5) to write

v(x, t) =
∫

Ωc

(
[(T (x) − T (y))DT (x)]⊥

2π|T (x) − T (y)|2 − [(T (x) − T (y)∗)DT (x)]⊥

2π|T (x) − T (y)∗|2

)
ω(y, t)dy.

We write I1 ≡ I11 − I12 with

I11 ≡
∫∫

Ωc×Ωc

∇(σ(|T (x)|2)) · [(T (x) − T (y))DT (x)]⊥

2π|T (x) − T (y)|2 ω(x, t)ω(y, t)dxdy,

and

I12 ≡
∫∫

Ωc×Ωc

∇(σ(|T (x)|2)) · [(T (x) − T (y)∗)DT (x)]⊥

2π|T (x) − T (y)∗|2 ω(x, t)ω(y, t)dxdy.

We estimate I12 first. We further decompose

I12 =
∫

1≤|T (x)|≤2

∫
Ωc

· · · dydx +
∫

2≤|T (x)|

∫
Ωc

· · · dydx ≡ I121 + I122.
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We have

|I121| ≤ Cm sup
|η|≤1

(∫
1≤|T (x)|≤2

ω(x, t)
|T (x) − η|dx

)
≤ Cm‖ω‖L∞ sup

|η|≤1

(∫
1≤|ζ|≤2

dζ

|ζ − η|

)

≤ Cm‖ω‖L∞

∫
|ζ|≤3

dζ

|ζ| ≤ Cm‖ω‖L∞ .

Next we treat I122. Suppose first that σ(s) = s log2 s. Then

∇(σ(|T (x)|2)) = 2σ′(|T (x)|2)T (x)DT (x)

= 4[log2(|T (x)|) + log(|T (x)|)]T (x)DT (x) ≡ [o(|T (x)|)]T (x)DT (x).

Hence, using the fact that T (x) = βx +O(1) and DT (x) = βId +O(1/|x|2) (see Lemma
1), we obtain, when |T (x)| > 2, that:

|I122| =

∣∣∣∣∣C
∫
|T (x)|≥2

∫
Ωc

[o(|T (x)|)]T (x)DT (x) · [(T (y)∗)DT (x)]⊥

2π|T (x) − T (y)∗|2 ω(x, t)ω(y, t)dxdy

∣∣∣∣∣
≤ m2 sup

{|T (x)|≥2}

o(|T (x)|)
|T (x)| ,

which shows that |I122| is bounded independently of time.
A similar argument may be used in case σ(s) = s log s.
Finally, we must estimate I11. First we observe that if we consider the holomorphic

map T as a real map from R
2 to itself, we have that (vDT )⊥ = v⊥DT t. We also note

that, by the Cauchy-Riemann relations, the matrix DT has the form[
a b

−b a

]
,

and therefore, DT (x)DT t(x) = det(DT (x))Id = |T ′(x)|2Id. Consequently,

∇(σ(|T (x)|2)) · [(T (x)−T (y))DT (x)]⊥

= 2σ′(|T (x)|2)[T (x)DT (x)] · [(T (x) − T (y))⊥DT (x)]

= 2σ′(|T (x)|2)[T (x)DT (x)DT t(x)] · (T (x) − T (y))⊥

= −2σ′(|T (x)|2)|T ′(x)|2T (x) · T (y)⊥.

Plugging this expression in the definition of I11 we get

I11 = −
∫∫

σ′(|T (x)|2)|T ′(x)|2 T (x) · T (y)⊥

π|T (x) − T (y)|2 ω(x, t)ω(y, t)dxdy

=
∫∫ [

σ′(|T (y)|2)|T ′(y)|2 − σ′(|T (x)|2)|T ′(x)|2
] T (x) · T (y)⊥

2π|T (x) − T (y)|2 ω(x, t)ω(y, t)dxdy

≡
∫∫

A(x, y)ω(x, t)ω(y, t)dxdy.
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To obtain the second line in the previous relation, we observed that

T (x) · T (y)⊥ = −T (y) · T (x)⊥

and we symmetrized, by adding half of the integrand with half of the same expression,
but with x and y interchanged.

We see that, to conclude the proof, it is sufficient to prove that if σ′(s) = 1+log s, then
|A| is bounded by a constant and, in view of (3.5), if σ′(s) = log2 s + 2 log s, then |A| is
bounded by C + C log min(|T (x)|, |T (y)|). Observe next that, since A(x, y) is symmetric
in x and y, we can assume for example that |T (y)| ≤ |T (x)|. Using Lemma 9 we first
bound

2π|A(x, y)| =
∣∣∣∣{[

σ′(|T (x)|2) − σ′(|T (y)|2)
]
|T ′(x)|2

+ σ′(|T (y)|2)
[
|T ′(x)|2 − |T ′(y)|2

]} T (x) · T (y)⊥

|T (x) − T (y)|2

∣∣∣∣
≤

∣∣σ′(|T (x)|2) − σ′(|T (y)|2)
∣∣‖DT‖2

L∞
|T (y)|

|T (x) − T (y)| + σ′(|T (y)|2) M5

|T (y)|

≤ C
∣∣σ′(|T (x)|2) − σ′(|T (y)|2)

∣∣ |T (y)|
|T (x) − T (y)| + C,

where the last inequality holds since, for both choices σ′(s) = 1 + log s and σ′(s) =
log2 s + 2 log s, we have |σ′(T (y))| = o(|T (y)|).

Let us now consider the case σ′(s) = 1 + log s. We will use the elementary inequality

| log a − log b| ≤ |a − b|
min(a, b)

, a, b > 0, (4.3)

to observe that ∣∣σ′(|T (x)|2) − σ′(|T (y)|2)
∣∣ |T (y)|
|T (x) − T (y)| ≤ 2

which implies that A is bounded.
Finally, if σ′(s) = log2 s + 2 log s, we use the inequality

| log2 a + 2 log a − log2 b − 2 log b| ≤ 2|a − b| [1 + log min(a, b)]
min(a, b)

(4.4)

together with (4.3) to deduce that∣∣σ′(|T (x)|2)−σ′(|T (y)|2)
∣∣ |T (y)|
|T (x) − T (y)| ≤12+8 log |T (y)| ≤ C[1+log min(|T (x)|, |T (y)|)].

The proof is completed. �

5. Dispersion of vorticity. In this section, we use the bounds on the logarithmic
moments of inertia obtained in Section 4 to deduce some confinement results for the
support of vorticity. We start with a useful estimate.

Lemma 11. Let S ⊂ Ωc and ζ : S → R
+ be a function belonging to L1(S) ∩ L∞(S).

There exists a constant C > 0 such that∫
S

ζ(y)
|x − T (y)| dy ≤ C‖ζ‖1/2

L1(S)‖ζ‖
1/2
L∞(S) ∀x ∈ R

2
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and ∫
S

ζ(y)
|x − T (y)∗| dy ≤ C‖ζ‖1/2

L1(S)‖ζ‖
1/2
L∞(S) + C‖ζ‖L1(S) ∀|x| > 1.

Proof. The case T = Id of the first relation is [7, Lemma 2.1]. The general case follows
from this particular case in the following manner:∫

S

ζ(y)
|x − T (y)| dy ≤ C

∫
T (S)

1
|x − z|ζ(T−1(z))dz

≤ C‖ζ‖
1
2
L∞(S)

(∫
T (S)

ζ(T−1(z))dz
) 1

2

≤ C‖ζ‖
1
2
L∞(S)

(∫
S

ζ(y)dy
) 1

2
.

Above we used the fact that the Jacobians of T and T−1 lie between two positive constants
to deduce the first and third lines; we also used the particular case T = Id to obtain the
second line.

The second inequality follows from the first one after we observe that if |x| ≥ 2 or
|T (y)| ≥ 2, then |x − T (y)∗| ≥ 1

2 , while if |x| ≤ 2 and |T (y)| ≤ 2, then |x − T (y)∗| =
|x||x∗ − T (y)|/|T (y)| ≥ |x∗ − T (y)|/2. �

We now prove following theorem.

Theorem 12. Assume that the initial vorticity ω0 is nonnegative, bounded, compactly
supported and let ω(x, t) be the solution of (2.7). There exists a constant M7 > 0 such
that the support of ω(x, t) is confined in the set |x| ≤ M7(1+ t)

1
2 . Furthermore, if either

α ≤ 0 or α > m, then the support of ω(x, t) is confined in the set

|x| ≤ M7(1 + t)
1
2 [log(2 + t)]−

1
4 .

Proof. We introduce the following parameter θ: we set θ = 2 if either α ≤ 0 or α > m

and θ = 1 otherwise. According to Theorem 10, there exists a constant M6 > 0 such
that ∫

Ωc

|T (x)|2 logθ |T (x)|ω(x, t) dx ≤ M6(1 + t) (5.1)

for all t. The conclusion of Theorem 12 is tantamount to proving that there exists a
constant M7 > 0 such that the support of ω(x, t) is confined in the set

|x| ≤ M7(1 + t)
1
2 [log(2 + t)]

1−θ
4 .

For notational convenience we assume without loss of generality that t ≥ 2. We will
repeatedly use in the sequel that, for a > 0 and b ∈ R, there exists a constant C > 0
such that ∫ t

2

sa(log s)b ds ≤ Cta+1(log t)b. (5.2)

It suffices to prove that there exists a sufficiently large constant C1 such that if |x| ≥
C1t

1
2 (log t)

1−θ
4 , then

x

|x| · u(x, t) ≤ C1t
1
2 (log t)−

θ
2 |x|−2.
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This will imply that a fluid particle cannot escape the region |x| ≤ M7t
1
2 (log t)

1−θ
4 for

a sufficiently large constant M7. To see this we reason by contradiction, following the
trajectory of a fluid particle in a region like |x| ≥ C1t

1
2 (log t)

1−θ
4 ; we note that x

|x| · u

is the radial velocity of said particle, and we integrate the resulting ODE using (5.2) to
deduce that the trajectory will remain in the region |x| ≤ C2t

1
2 (log t)−

θ
6 for some C2 > 0.

The conclusion follows since C2t
1
2 (log t)−

θ
6 ≤ M7t

1
2 (log t)

1−θ
4 for some M7 > 0.

Let ω̃(x, t) = ω(x, t)
(∫

Ωc ω(x, t) dx
)−1. Since the function [1,∞) � s �→ σ(s) =

s2 logθ s is convex and the integral of vorticity is a conserved quantity, we deduce from
the Jensen inequality that

σ
(∫

Ωc

|T (x)|ω̃(x, t) dx
)
≤

∫
Ωc

|T (x)|2 logθ |T (x)|ω̃(x, t) dx ≤ M6(1 + t)‖ω0‖−1
L1 .

Next, one easily checks that σ−1(ρ) ∼ 2
θ
2 ρ

1
2 (log ρ)−

θ
2 as ρ → ∞. Therefore, there exists

a constant C3 such that ∫
Ωc

|T (x)|ω(x, t) dx ≤ C3t
1
2 (log t)−

θ
2 . (5.3)

We now assume that |x| ≥ C1t
1
2 (log t)

1−θ
4 for a sufficiently large constant C1 to be

determined later. We decompose u = v + αHΩc where

v(x, t) =
∫

Ωc

(
[(T (x) − T (y))DT (x)]⊥

2π|T (x) − T (y)|2 − [(T (x) − T (y)∗)DT (x)]⊥

2π|T (x) − T (y)∗|2

)
ω(y, t)dy

≡
∫

Ωc

K(x, y)ω(y, t)dy,

where K(x, y) is the kernel from the first integral in the formula above. We first estimate
v. From the identity

∣∣∣ a
|a|2 − b

|b|2

∣∣∣ = |a−b|
|a||b| , we deduce that

|K(x, y)| ≤ ‖DT‖L∞
|T (y) − T (y)∗|

2π|T (x) − T (y)||T (x) − T (y)∗| ≤ ‖DT‖L∞
2|T (y)|

π|T (x) − T (y)||T (x)| .

Above we used the fact that the constant C1 may be chosen sufficiently large so as to
have |T (x)| > 2 > 2|T (y)∗|. We infer that

|v(x, t)| ≤ C

|T (x)|

∫
Ωc

|T (y)|
|T (x) − T (y)|ω(y, t)dy

=
C

|T (x)|

∫
|T (x)−T (y)|>|T (x)|/2

|T (y)|
|T (x) − T (y)|ω(y, t)dy

+
C

|T (x)|

∫
|T (x)−T (y)|<|T (x)|/2

|T (y)|
|T (x) − T (y)|ω(y, t)dy

≡ I1 + I2.

Next, by (5.3) we have that

I1 ≤ C

|T (x)|2
∫

Ωc

|T (y)|ω(y, t)dy ≤ Ct
1
2 (log t)−

θ
2 |T (x)|−2,
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and from Lemma 11 we deduce that

I2 ≤ C
(∫

|T (y)|>|T (x)|/2

ω(y, t)dy
) 1

2
.

Next we estimate the radial component of αHΩc . From the explicit formula for the
harmonic vector field HΩc given in relation (2.4) and from Lemma 1, we infer that

x

|x| · HΩc(x) =
x

|x| ·
( x⊥

2π|x|2 + O
(
|x|−2

))
= O

(
|x|−2

)
.

According to Proposition 13 below, if the constant C1 is large enough, then the term I2

is also O
(
|x|−2

)
, so we finally deduce that

x

|x| · u(x, t) ≤ |v(x, t)| + α
x

|x| · HΩc(x) ≤ Ct
1
2 (log t)−

θ
2 |x|−2,

with C = C1.
This completes the proof of Theorem 12 once Proposition 13 below is proved. �

Proposition 13. Under the hypothesis of Theorem 12 we have that, for all k > 0 there
exists a constant M8 > 0 such that∫

|T (x)|>r

ω(x, t) dx ≤ M8

rk

for all r > M8t
1
2 (log t)

1−θ
4 .

Proof. As before we assume t ≥ 2.
Let us introduce the following approximation for the mass of vorticity in the region of

interest:

fr(t) =
∫

Ωc

η
( |T (x)|2 − r2

λr2

)
ω(x, t) dx,

where λ = λ(r) ∈ (0, 1) is to be chosen later, and η(s) = es

1+es verifies that

|η′(s)| ≤ min{η(s), e−|s|}, |η′′(s)| ≤ η(s). (5.4)

To simplify notation, we set ηr(x) = η
(

|T (x)|2−r2

λr2

)
and η′

r(x) = η′
(

|T (x)|2−r2

λr2

)
. Clearly,

it suffices to prove that fr(t) ≤ r−k for r > M8t
1
2 (log t)

1−θ
4 and M8 sufficiently large.

We differentiate fr to obtain

f ′
r(t) =

∫
Ωc

ηr(x)∂tω = −
∫

Ωc

ηr(x)u · ∇ω =
∫

Ωc

u · ∇ηrω

=
∫∫

Ωc×Ωc

∇ηr(x) · K(x, y)ω(x, t)ω(y, t) dx dy.

Above we used the fact that ∇ηr ·HΩc = 0 pointwise; this follows after noticing that the
first term is proportional to ∇|T | while the second one is proportional to ∇⊥|T |. Using
the explicit formula for K(x, y) we finally obtain that

πf ′
r(t) =

1
λr2

∫∫
Ωc×Ωc

η′
r(x)[T (x)DT (x)] ·

[
K̃(x, y)DT (x)

]⊥
ω(x, t)ω(y, t) dx dy,
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where

K̃(x, y) =
T (x) − T (y)
|T (x) − T (y)|2 − T (x) − T (y)∗

|T (x) − T (y)∗|2 .

From Lemma 1, one can deduce that DT = βId + O
(

1
|T (x)|2

)
. On the other hand,

Lemma 11 implies that
∫
Ωc |K̃(x, y)|ω(y, t) dy ≤ C. We infer that

πf ′
r(t)−

β2

λr2

∫∫
Ωc×Ωc

η′
r(x)T (x) · K̃(x, y)⊥ω(x, t)ω(y, t) dx dy≤ C

λr2

∫
Ωc

η′
r(x)

|T (x)|ω(x, t) dx.

Using (5.4), for |T (x)| < r/
√

2 we bound η′
r(x)

|T (x)| ≤ e−
1
2λ , while for |T (x)| ≥ r/

√
2 we

bound η′
r(x)

|T (x)| ≤ ηr(x)
√

2/r. This implies that

πf ′
r(t) ≤ J +

C

λr3
fr(t) +

C

λr2
e−

1
2λ , (5.5)

where

J =
β2

λr2

∫∫
Ωc×Ωc

η′
r(x)

T (x) · [T (x) − T (y)]⊥

|T (x) − T (y)|2 ω(x, t)ω(y, t) dx dy

− β2

λr2

∫∫
Ωc×Ωc

η′
r(x)

T (x) · [T (x) − T (y)∗]⊥

|T (x) − T (y)∗|2 ω(x, t)ω(y, t) dx dy

≡ J1 + J2.

(5.6)

We first bound J2. Clearly we may assume, without loss of generality, that r2 > 8.
We decompose the integral in J2 into an integral over {|T (x)| ≤ 2} and an integral over
{|T (x)| ≥ 2}, and we write J2 = J21 + J22 for each portion.

Now, if |T (x)| ≤ 2 < r/
√

2 we estimate∣∣∣η′
r(x)

T (x) · [T (x) − T (y)∗]⊥

|T (x) − T (y)∗|2
∣∣∣ =

∣∣∣η′
r(x)

T (y)∗ · [T (x) − T (y)∗]⊥

|T (x) − T (y)∗|2
∣∣∣ ≤ e−

1
2λ

|T (x) − T (y)∗| .

Hence, by Lemma 11, we have

|J21| ≤ C
β2

λr2
e−

1
2λ .

Next, if |T (x)| > 2, then, since |T (y)∗| < 1, we find∣∣T (x) · [T (x) − T (y)∗]⊥
∣∣

|T (x) − T (y)∗|2 =

∣∣T (x) · [T (y)∗]⊥
∣∣

|T (x) − T (y)∗|2 ≤ 4
|T (x)| .

Hence, after further decomposing the integral in J22, we repeat the argument used to
obtain (5.5) to find

|J22| ≤
C

λr2
e−

1
2λ +

C

λr3
fr(t).

Putting these two estimates together we infer that

|J2| ≤
C

λr3
fr(t) +

C

λr2
e−

1
2λ . (5.7)

We now turn to the estimate of J1. Using the change of variables (x, y) ↔ (y, x) we
next write

J1 =
β2

2λr2

∫∫
Ωc×Ωc

L(x, y)ω(x, t)ω(y, t) dx dy (5.8)
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where

L(x, y) = [η′
r(x) − η′

r(y)]
T (x) · [T (x) − T (y)]⊥

|T (x) − T (y)|2 .

We divide the domain of integration Ωc ×Ωc in three pieces: A = {
∣∣|T (x)|− |T (y)|

∣∣ ≥
r/4}, B = {|T (x)| and |T (y)| �∈ (r/2, 3r/2)} and C = {|T (x)| and |T (y)| ∈ [r/4, 5r/4]}.
Clearly Ωc × Ωc = A ∪ B ∪ C.

For (x, y) ∈ A we use (4.1) and (5.4) to bound

|L(x, y)| ≤ [η′
r(x) + η′

r(y)] min[|T (x)|, |T (y)|] 4
r
≤ [ηr(x)|T (y)| + ηr(y)|T (x)|] 4

r
,

so that, in view of (5.3)

β2

2λr2

∫∫
A

|L(x, y)|ω(x, t)ω(y, t) dx dy ≤ C
fr

λr3
t

1
2 (log t)−

θ
2 . (5.9)

In the region B, as a consequence of (5.4) both η′
r(x) and η′

r(y) are less than e−
3
4λ .

Therefore, by Lemma 11

β2

2λr2

∫∫
B

|L(x, y)|ω(x, t)ω(y, t) dx dy

≤ C
e−

3
4λ

λr2

∫
Ωc

|T (x)|
(∫

Ωc

1
|T (x) − T (y)|ω(y, t) dy

)
ω(x, t) dx

≤ C
e−

3
4λ

λr2

∫
Ωc

|T (x)|ω(x, t) dx

≤ C
e−

3
4λ

λr2
t

1
2 (log t)−

θ
2 .

(5.10)

Next, by the mean value theorem, relation (5.4) and since η is increasing, one has that

|η′
r(x) − η′

r(y)| =

∣∣|T (x)|2 − |T (y)|2
∣∣

λr2
|η′′(ξ)| ≤

∣∣|T (x)|2 − |T (y)|2
∣∣

λr2
[ηr(x) + ηr(y)],

for some ξ between |T (x)|2−r2

λr2 and |T (y)|2−r2

λr2 . Therefore, in view of (4.1), for (x, y) ∈ C

we can bound

|L(x, y)| ≤
∣∣|T (x)|2 − |T (y)|2

∣∣
λr2

[ηr(x) + ηr(y)]
min[|T (x)|, |T (y)|]
|T (x) − T (y)| ≤ 25

8λ
[ηr(x) + ηr(y)]

so that

β2

2λr2

∫∫
C

|L(x, y)|ω(x, t)ω(y, t) dx dy ≤ 25β2

8λ2r2
fr(t)

∫
|T (x)|> r

4

ω(x, t) dx ≤ Ctfr

λ2r4 logθ r
,

(5.11)
where we used (5.1) to bound the mass of vorticity in the region |T (x)| > r/4 by
M6(1 + t)16r−2

[
log(r/4)

]−θ.
Collecting relations (5.5) to (5.11) we finally deduce the following differential inequality

verified by fr:

f ′
r(t) ≤ Cfr

( t
1
2

λr3(log t)
θ
2

+
t

λ2r4 logθ r

)
+ C

e−
1
2λ t

1
2

λr(log t)
θ
2
, t ≥ 2.
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Since ω(·, 2) is compactly supported, choosing r sufficiently large one has that fr(2) ≤
e−

1
2λ ‖ω0‖L1 . Applying the Gronwall lemma in the inequality above for t ≥ 2 and using

(5.2), we deduce that there exists a constant C1 such that

fr(t) ≤ C1

(
1 +

t
3
2

λr(log t)
θ
2

)
exp

( C1t
3
2

λr3(log t)
θ
2

+
C1t

2

λ2r4 logθ r
− 1

2λ

)
.

We finally choose λ = 1
4n log r and r sufficiently large such that

C1t
3
2

λr3(log t)
θ
2

+
C1t

2

λ2r4 logθ r
≤ 1

4λ
.

It is a straightforward calculation to check that the above restriction is implied by the
condition r > C2t

1
2 (log t)

1−θ
4 for some large constant C2. For this choice one has that

exp
( Ct

3
2

λr3(log t)
θ
2

+
Ct2

λ2r4 logθ r
− 1

2λ

)
≤ r−n.

For a large enough constant n this term dominates C1 + C1t
3
2

λr(log t)
θ
2
, and we obtain fr(t) ≤

r−k as desired. �

6. Even vorticity on the exterior of the disk. We now consider the case when
Ω = D(0, 1). The conformal map T is simply the identity, so that the Biot-Savart law
becomes:

2πu(x, t) =
∫ [ (x − y)⊥

|x − y|2 − (x − y∗)⊥

|x − y∗|2
]
ω(y, t) dy + α

x⊥

|x|2 , (6.1)

where α is a real constant and y∗ = y
|y|2 . It is an easy calculation to show that the

moment of inertia is conserved. We prove the following theorem:

Theorem 14. Suppose that the initial vorticity is nonnegative and even (ω0(−x) =
ω0(x) ∀x). There exists a constant M9 > 0 such that

suppω(·, t) ⊂
{
|x| ≤ M9

[
(1 + t) log(2 + t)

]1/4}
for some constant M9.

Proof. The proof follows the lines of the argument given in [7] with the modifications
induced by the new terms in the Biot-Savart law. Indeed, the two keys facts used in [7]
are also true in this situation: both the moment of inertia and the center of mass are
conserved quantities (the center of mass is at 0 since the vorticity is even). It suffices to
assume that t ≥ 2 and to prove that there exists a constant C1 such that

x

|x| · u(x, t) ≤ C1

|x|3 , (6.2)

for any |x| ≥ C1(t log t)1/4 such that x is a point in the support of ω(·, t) whose distance
to the origin is the largest possible.
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Note that ω(−x, t) = ω(x, t) for all x, t. Next, let x be a point as described above.
Then,

2π
x

|x| ·u(x, t) =
x

|x| ·
∫ ( y∗⊥

|x − y∗|2 − y⊥

|x − y|2
)
ω(y, t) dy =

x

|x|3 ·
∫ (

y∗⊥−y⊥)
ω(y, t) dy

+
x

|x| ·
∫ [

y∗⊥
( 1
|x − y∗|2 − 1

|x|2
)
−y⊥

( 1
|x − y|2 − 1

|x|2
)]

ω(y, t) dy.

For symmetry reasons, ∫ (
y∗⊥ − y⊥)

ω(y, t) dy = 0. (6.3)

We also observe that, for any x and z we have

1
|x − z|2 − 1

|x|2 =
z · (2x − z)
|x|2|x − z|2 .

We deduce that

2π
x

|x| ·u(x, t) =
∫

x · y∗⊥ y∗ · (2x − y∗)
|x|3|x − y∗|2 ω(y, t) dy︸ ︷︷ ︸

I1

−
∫

x · y⊥ y · (2x − y)
|x|3|x − y|2 ω(y, t) dy︸ ︷︷ ︸

I2

. (6.4)

Recall that, by assumption, we always have that |y| ≤ |x| in the integrands above. To
bound the first integral, note that |y∗| < 1 so that |x − y∗| ≥ |x|/2 and |2x − y∗| ≤ 3|x|.
Consequently,

I1 ≤ 12
|x|3

∫
|y∗|2ω(y, t) dy ≤ 12

|x|3
∫

ω(y, t) dy. (6.5)

We now go to the estimate of I2 and split the domain of integration in two pieces:
{|y| < |x|/2} and {|x|/2 ≤ |y| ≤ |x|}. For |y| < |x|/2, we still have that |x − y| ≥ |x|/2
and |2x − y| ≤ 3|x|, so as in the estimate for I1, we can bound∣∣∣x · y⊥ y · (2x − y)

|x|3|x − y|2
∣∣∣ ≤ 12|y|2

|x|3 ∀|y| <
|x|
2

.

Next, for |x|/2 ≤ |y| ≤ |x| we write∣∣∣x · y⊥ y · (2x − y)
|x|3|x − y|2

∣∣∣ =
∣∣∣(x − y) · y⊥ y · (2x − y)

|x|3|x − y|2
∣∣∣ ≤ |y|2|2x − y|

|x|3|x − y| ≤ 3
|x − y| .

We infer that

|I2| ≤
12
|x|3

∫
|y|2ω(y, t) dy + 3

∫
|y|≥|x|/2

1
|x − y|ω(y, t) dy

≤ 12
|x|3

∫
|y|2ω0(y) dy + C‖ω‖

1
2
L∞

(∫
|y|≥|x|/2

ω(y, t) dy
) 1

2
,

(6.6)

where we used that the moment of inertia is conserved and also Lemma 11.
Clearly relation (6.2) now follows from (6.4), (6.5), (6.6) and from Lemma 15 below.

This completes the proof of Theorem 14 once Lemma 15 is proved. �

Lemma 15. For every k ∈ N there exists a constant M10(k) such that∫
|x|≥r

ω(x, t) dx ≤ M10

rk
for r ≥ M10(t log t)1/4.
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Proof. Let

fr(t) =
∫

ϕr(x)ω(x, t) dx,

where

ϕr(x) = η
( |x|2 − r2

λr2

)
, η(s) =

es

1 + es
,

and λ = λ(r) ≤ 1 is a positive function to be chosen later. It suffices to prove that
fr(t) ≤ C(k)

rk .
As in the proof of Proposition 13, we deduce that f ′

r(t) can be written under the form

2πf ′
r(t) =

∫∫ ( y∗⊥

|x − y∗|2 − y⊥

|x − y|2
)
· ∇ϕr(x)ω(x, t)ω(y, t) dx dy

=
∫∫ ( 1

|x − y∗|2 − 1
|x|2

)
y∗⊥ · ∇ϕr(x)ω(x, t)ω(y, t) dx dy︸ ︷︷ ︸

J1

−
∫∫ ( 1

|x − y|2 − 1
|x|2

)
y⊥ · ∇ϕr(x)ω(x, t)ω(y, t) dx dy︸ ︷︷ ︸

J2

(6.7)

where we have used relation (6.3).
If we follow the analysis from relation (8) to the bottom of page 1720 of [7], then we

find that the second term can be estimated by

J2 ≤ C
fr

λ2r4
+

C

λr2
e−

1
2λ . (6.8)

It remains to estimate

J1 =
∫∫

|x|≤r/2

( 1
|x − y∗|2 − 1

|x|2
)
(y∗ − x)⊥ · ∇ϕr(x)︸ ︷︷ ︸

L1(x,y)

ω(x, t)ω(y, t) dx dy

+
∫∫

|x|≥r/2

y∗ · (2x − y∗)
|x|2|x − y∗|2 y∗⊥ · ∇ϕr(x)︸ ︷︷ ︸

L2(x,y)

ω(x, t)ω(y, t) dx dy.

From the definition of ϕr, we have that

∇ϕr(x) =
2x

λr2
η′

( |x|2 − r2

λr2

)
. (6.9)

For |x| ≤ r/2, one has that |x|2−r2

λr2 ≤ − 1
2λ . Since |η′(s)| ≤ es, it follows that∣∣∣η′

( |x|2 − r2

λr2

)∣∣∣ ≤ e−
1
2λ

so that, using also that |x|, r ≥ 1,

|L1(x, y)| ≤
( 1
|x − y∗|2 +

1
|x|2

)
|x − y∗|2|x|

λr2
e−

1
2λ ≤ Ce−

1
2λ

λr|x − y∗| +
C

λ
e−

1
2λ ,
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which, in view of Lemma 11, implies that∣∣∣∫∫
|x|≤r/2

L1(x, y)ω(x, t)ω(y, t) dx dy
∣∣∣ ≤ C

λ
e−

1
2λ . (6.10)

To estimate L2(x, y), we again use equation (6.9) and the facts that |y∗| < 1 and |η′| ≤ η

to deduce that, for |x| ≥ r/2,

|L2(x, y)| =
∣∣∣y∗ · (2x − y∗)
|x|2|x − y∗|2 y∗⊥ · 2x

λr2
η′

( |x|2 − r2

λr2

)∣∣∣
≤ C

|x|2λr2
η
( |x|2 − r2

λr2

)
≤ C

λr4
ϕr(x).

We infer that ∣∣∣∫∫
|x|≥r/2

L2(x, y)ω(x, t)ω(y, t) dx dy
∣∣∣ ≤ C

λr4
fr(t). (6.11)

Relations (6.10) and (6.11) now imply that

|J1| ≤
C

λ
e−

1
2λ +

C

λr4
fr(t).

Combining this with (6.7) and (6.8) we get

f ′(r) ≤ Cfr

λ2r4
+

C

λ
e−

1
2λ .

After integration, we obtain

fr(t) ≤ (fr(2) + λr4e−
1
2λ )e

Ct
λ2r4 ≤ e

Ct
λ2r4 −C1

λ (C + λr4).

Lemma 15 now follows by choosing λ log r sufficiently small as we did at the end of the
proof of Proposition 13. �

Let us conclude with the remark that, although we assumed that ω0 was smooth, our
results hold, with minor modifications, if ω0 ∈ Lp

c for some p > 2.
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