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Abstract. We study the stationary Poiseuille flow in a cylindrical channel of arbitrary
cross-section with temperature dependent viscosity and internal dissipation. We assume
the flow-rate ® given and the axial pressure gradient p unknown. This leads to a non-
local problem. We show the existence in the response diagram, the plane (P, u), of two
turning points.

1. In this paper we study the stationary Poiseuille flow in a pipe, assuming the
viscosity n and the thermal conductivity « to be given functions of the temperature u.
Let Q be an open and bounded subset of R? with a regular boundary I' representing
the section of the pipe. If the axial pressure gradient p is a given constant for the
determination of the z-component v(x,y) of the velocity and of the temperature u, we
have (see []) the following Problem A: find v(z,y) and u(x,y) such that

-V -(nw)Vv) =pin Q, v=0o0nT, (1.1)
—V - (k(u)Vu) = n(u)|Vo[* in Q, u=0onT. (1.2)

The Navier-Stokes system, for the problem at hand, reduces to (ILIl), whereas (L2)) is
the energy equation. In the right hand side of equation (L2]) we have the heating source
corresponding to the viscous forces. We suppose, on physical grounds,

n(u) € CYRY), k(u) € C*RY), n(u) >0, x(u) > 0 for all u € RL. (1.3)

If 4 = 0 it is easily seen that the only solution of Problem A is v(z,y) =0, u(z,y) =0
(see Lemma 1.2). Moreover, if |u| is sufficiently small a branch of small solutions

Received September 28, 2006.
2000 Mathematics Subject Classification. Primary 76D03, 76D05.
Key words and phrases. Poiseuille flow, temperature dependent viscosity, existence and uniqueness of
solutions.
E-mail address: cimatti@dm.unipi.it
(©2007 Brown University

Reverts to public domain 28 years from publication

523



524 GIOVANNI CIMATTI

(functions of ) starts from the trivial solution v = 0, w = 0. This is proved in the
following

THEOREM 1.1. Let (3] hold; then there exists pg > 0 such that, if |u| < po, Problem
A has one and only one solution, (v(u),u(i)) € C*((—po, p10); C>* () x C2¥(Q)).

Proof. We apply the implicit function theorem in Banach spaces. Let
X={uelC*(Q), u=0onT}, Y =0%Q).
Define B=X x X, C =Y x Y and the map G : B x R! — C given by
G(w, 1) = (V- (9(u) V) + 1, V - (5(0) V) + ()| T ), w = (v, ).
We have G(0,0) = 0 and G € C*(B x R';C). The partial derivative of G with respect
to w, Gw(w, u)[W]: Bx R! — L(B x R} C), W = (V,U), is easily computed, and
we find:
Gw(0,0)[W] = (n(0)AV, k(0)AD).

By the properties of the Laplace operator, G« (0, 0) is invertible with a bounded inverse.

Hence there exists po > 0 such that G(w, u) = 0 is locally solvable with respect to w if

|| < po and the solution w = W(u) belongs to C*((—po, to); B). O
We have

LEMMA 1.2. Let w(u) = (v(z,y; 1), u(x,y; 1)) be the solution to Problem A given by
Theorem 1.1 when |u| < po. Then

v(z,y;0) =0, (1.4)
u(z,y;0) =0, (1.5)
v(z,y; 1) = —v(z,y; —p), (1.6)
w(z, y; ) = u(z, y; —p), (1.7)
Wy (z,y;0) = 0 in Q, (1.8)
(2, y;0) =0 in Q. (1.9)

Proof. If ;n = 0, after multiplication by v and integration by parts over 2, we get from

3
[ nwIvefdsdy = o
Q

thus we have ([4). Equation (LX) follows in a similar way from (4]). Define 9(z,y; pu) =
—v(x,y; —p) and 4(x, y; 1) = u(z,y; —p). It is easy to see that 0, 4 satisfies (LII), (T2]).
Since we have |u| < po and therefore Problem A has one and only one solution, we
conclude that (L6), (L) hold. Equations (L8) and (3] are immediate consequences of
the regularity with respect to p and of ([L6]) and (L7]). O

REMARK 1.3. For a proof of existence, but not of uniqueness for Problem A, we refer
to [M].

In a different, but equally legitimate formulation of the Poiseuille flow (see [I] and [2])
we may consider the axial pressure gradient p as an unknown constant and assume the
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flow rate

@:/vdxdy
Q

to be given. In this way we have the following non-local Problem B: find v(x,y), u(z,y)
and p € R! such that

=V ((u)Vv) =pinQ, v=0onT, (1.10)
—V - (n(u)Vu) =n(uw)|[Vo[* in Q, u=0onT, (1.11)
o= / vdxdy. (1.12)

Q

If v(z,y; p), u(z,y; 1) is a given solution to Problem A and we define the function

o(p) = /Qv(x, y; p)dzdy, (1.13)

the local solutions of Problem B in |u| < po are in a one-to-one correspondence with the
solutions of the equation

o) = 2. (1.14)

Aim of this note is to prove that, under suitable hypotheses, the response diagram in the
plane (@, 1) has two turning points (see figure below).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fic. 1.
Thus two different triplets (v, w1, 1), (v2, ug, u2) may correspond to the same flow
rate ®. From ([LH) we can say that (u) is an odd function of class C*(—p, u). Therefore

©(0) =0, (1.15)
©"(0) = 0. (1.16)



526 GIOVANNI CIMATTI

To make a local study of p(u) near p = 0 we also need information about ¢(0) and
¢""(0). To this end, we note that v, (z,y;0) is given by the solution of the problem

-V - (m(0)Vu,(z,y;0)) =1in Q, v,(z,y;0) =0on I. (1.17)
By the maximum principle we have, in view of (3],
vu(z,;0) > 0 in Q. (1.18)
This implies
©'(0) >0 (1.19)

and the following

LEMMA 1.4. There exist two constants ®; > 0 and py; > 0 such that, if |®| < Py,
Problem B has one and only one solution,

(v(a, s 1), ul, s 1), 1) € C22(Q) x C2(Q) x (—pn, ).

To compute 1"’ (0) we first need w,,,(z,y;0), which is easily found to satisfy the prob-
lem:

—V - (k(0) V. (z,y;0)) = 21(0)| Vo, (z,y;0)[* in Q, u,,(z,y;0) =0o0nT.  (1.20)
By the maximum principle we have:
Uy (z,y;0) > 0 in Q. (1.21)

Once u,,(x,y;0) is known, we obtain v,,,,(x,y;0) from

1 .
=V - ((0)Vuuu(z,y;0)) = 31'(0) {Vuw(x,y; 0)- Vo, (z,y;0) — —upu,(z,y;0)| in Q,

n(0)
(1.22)
Vppp(2,9;0) =0 on T (1.23)
We have
¢"(0) = /Q Opupupe (@, 3 0)dzdly. (1.24)

By ([IX) (0) is always positive; on the other hand ¢"/(0) may be either positive or
negative (see example below). In this second case we have the following

THEOREM 1.5. Let (v(z,y; p), u(x, y; 1)) be the solution to Problem A given by Theorem
1.1if |p| < po and

p(p) = /Qv(% y; p)dzdy.

Assume

©""(0) < 0. (1.25)
Then a constant a > 0 exists such that if

¢©'(0) <a (1.26)

there are four positive numbers ®1, ®5, §; d5 such that, when

0 <@ < 0y, (1.27)
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Problem B has exactly two solutions:
(i@, 5 1), wa (2,95 1), ), (v2(2, 5 p2), w2 (@, ys p2), pe2)
with M1, ta € (51,52).
Proof. Define
9() = ¢'(0) — o(p).
We have g(u) € C%(—po, pto). Moreover, by (LI6) and (L25]),

g'(0) = —"(0) =0,
g'(0) = —¢"(0) > 0.

Hence there exists a > 0 and g > 0 such that, if (L26]) holds, the equation
9(n) = ¢'(0)

has in (0, 1) one and only one solution p* i.e.

and

g'(n) <0 in (—4,0),

g'(n) > 0in (0, ).
On the other hand, (L31]) is equivalent to

¢'(n) =0
and by (I33) we have
¢" (1) = —g'(1) < 0in (0, ).

Therefore, four numbers exist: @1 > 0, puo > 0, &1 > 0, P53 > 0 with

0<pr <p” <p

such that, if (L27) holds, the equation

p(p) =@

527

(1.37)

has in the interval (d1, d2) exactly two solutions, u1, po. By Theorem 1.1, Problem A has
one and only one solution for each of the values p1 and po. Thus we obtain two different

solutions of Problem B corresponding to the same value of .

O

REMARK 1.6. The constant a entering in Theorem 1.5 depends only on ¢”(0). There-

fore condition (26) is meaningful.

Crucial in Theorem 1.5 is condition (.25]). To prove that there are situations in which
(23] is verified we consider the special, but important case of a pipe of circular cross-
section of radius R. Assuming p to be in the range of uniqueness for Problem A, v and
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u depend only on r = y/x2 + y2. It is easily found that
1
v, (r;0) = 0 (R% —1?),
1
80/(0) = 77TR47

n'(0) 2/, 4 4 6
. Y 0 S _ 2
Vppup (150) 1287%(0)e(0) [r<(r* — 3R"%) + 2R"],
(pm(O) _ 27T77/(0)R8 )
51213(0)x(0)
Thus the sign of ¢”’(0) depends only on 7'(0). For the absolute majority of fluids we

have 7(0) < 0, however there are special substances (work-hardening fluids) for which
7’(0) > 0 holds.
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