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By

GIOVANNI CIMATTI

Dipartimento di Matematica, Largo Bruno Pontecorvo 5, Pisa, Italy

Abstract. We study the stationary Poiseuille flow in a cylindrical channel of arbitrary
cross-section with temperature dependent viscosity and internal dissipation. We assume
the flow-rate Φ given and the axial pressure gradient µ unknown. This leads to a non-
local problem. We show the existence in the response diagram, the plane (Φ, µ), of two
turning points.

1. In this paper we study the stationary Poiseuille flow in a pipe, assuming the
viscosity η and the thermal conductivity κ to be given functions of the temperature u.
Let Ω be an open and bounded subset of R2 with a regular boundary Γ representing
the section of the pipe. If the axial pressure gradient µ is a given constant for the
determination of the z-component v(x, y) of the velocity and of the temperature u, we
have (see [4]) the following Problem A: find v(x, y) and u(x, y) such that

−∇ · (η(u)∇v) = µ in Ω, v = 0 on Γ, (1.1)

−∇ · (κ(u)∇u) = η(u)|∇v|2 in Ω, u = 0 on Γ. (1.2)

The Navier-Stokes system, for the problem at hand, reduces to (1.1), whereas (1.2) is
the energy equation. In the right hand side of equation (1.2) we have the heating source
corresponding to the viscous forces. We suppose, on physical grounds,

η(u) ∈ C4(R1), κ(u) ∈ C4(R1), η(u) > 0, κ(u) > 0 for all u ∈ R1. (1.3)

If µ = 0 it is easily seen that the only solution of Problem A is v(x, y) = 0, u(x, y) = 0
(see Lemma 1.2). Moreover, if |µ| is sufficiently small a branch of small solutions
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(functions of µ) starts from the trivial solution v = 0, u = 0. This is proved in the
following

Theorem 1.1. Let (1.3) hold; then there exists µ0 > 0 such that, if |µ| < µ0, Problem
A has one and only one solution, (v(µ), u(µ)) ∈ C4((−µ0, µ0); C2,α(Ω̄) × C2,α(Ω̄)).

Proof. We apply the implicit function theorem in Banach spaces. Let

X = {u ∈ C2,α(Ω̄), u = 0 on Γ}, Y = C0,α(Ω̄).

Define B = X × X, C = Y × Y and the map G : B × R1 −→ C given by

G(w, µ) = (∇ · (η(u)∇v) + µ,∇ · (κ(u)∇u) + η(u)|∇v|2), w = (v, u).

We have G(0, 0) = 0 and G ∈ C4(B × R1; C). The partial derivative of G with respect
to w, Gw(w, µ)[W] : B × R1 −→ L(B × R1; C), W = (V, U), is easily computed, and
we find:

Gw(0, 0)[W] = (η(0)∆V, κ(0)∆U).

By the properties of the Laplace operator, Gw(0, 0) is invertible with a bounded inverse.
Hence there exists µ0 > 0 such that G(w, µ) = 0 is locally solvable with respect to w if
|µ| < µ0 and the solution w = ŵ(µ) belongs to C4((−µ0, µ0); B). �

We have

Lemma 1.2. Let ŵ(µ) = (v(x, y; µ), u(x, y; µ)) be the solution to Problem A given by
Theorem 1.1 when |µ| < µ0. Then

v(x, y; 0) = 0, (1.4)

u(x, y; 0) = 0, (1.5)

v(x, y; µ) = −v(x, y;−µ), (1.6)

u(x, y; µ) = u(x, y;−µ), (1.7)

wµµ(x, y; 0) = 0 in Ω̄, (1.8)

uµ(x, y; 0) = 0 in Ω̄. (1.9)

Proof. If µ = 0, after multiplication by v and integration by parts over Ω, we get from
(1.3) ∫

Ω

η(u)|∇v|2dxdy = 0;

thus we have (1.4). Equation (1.5) follows in a similar way from (1.4). Define v̂(x, y; µ) =
−v(x, y;−µ) and û(x, y; µ) = u(x, y;−µ). It is easy to see that v̂, û satisfies (1.1), (1.2).
Since we have |µ| < µ0 and therefore Problem A has one and only one solution, we
conclude that (1.6), (1.7) hold. Equations (1.8) and (1.9) are immediate consequences of
the regularity with respect to µ and of (1.6) and (1.7). �

Remark 1.3. For a proof of existence, but not of uniqueness for Problem A, we refer
to [4].

In a different, but equally legitimate formulation of the Poiseuille flow (see [1] and [2])
we may consider the axial pressure gradient µ as an unknown constant and assume the



EXISTENCE OF TURNING POINTS FOR THE POISEUILLE FLOW 525

flow rate

Φ =
∫

Ω

vdxdy

to be given. In this way we have the following non-local Problem B: find v(x, y), u(x, y)
and µ ∈ R1 such that

−∇ · (η(u)∇v) = µ in Ω, v = 0 on Γ, (1.10)

−∇ · (η(u)∇u) = η(u)|∇v|2 in Ω, u = 0 on Γ, (1.11)

Φ =
∫

Ω

vdxdy. (1.12)

If v(x, y; µ), u(x, y; µ) is a given solution to Problem A and we define the function

ϕ(µ) =
∫

Ω

v(x, y; µ)dxdy, (1.13)

the local solutions of Problem B in |µ| < µ0 are in a one-to-one correspondence with the
solutions of the equation

ϕ(µ) = Φ. (1.14)

Aim of this note is to prove that, under suitable hypotheses, the response diagram in the
plane (Φ, µ) has two turning points (see figure below).
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Fig. 1.

Thus two different triplets (v1, u1, µ1), (v2, u2, µ2) may correspond to the same flow
rate Φ. From (1.6) we can say that ϕ(µ) is an odd function of class C4(−µ, µ). Therefore

ϕ(0) = 0, (1.15)

ϕ′′(0) = 0. (1.16)
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To make a local study of ϕ(µ) near µ = 0 we also need information about ϕ(0) and
ϕ′′′(0). To this end, we note that vµ(x, y; 0) is given by the solution of the problem

−∇ · (η(0)∇vµ(x, y; 0)) = 1 in Ω, vµ(x, y; 0) = 0 on Γ. (1.17)

By the maximum principle we have, in view of (1.3),

vµ(x, y; 0) > 0 in Ω̄. (1.18)

This implies
ϕ′(0) > 0 (1.19)

and the following

Lemma 1.4. There exist two constants Φ1 > 0 and µ1 > 0 such that, if |Φ| < Φ1,
Problem B has one and only one solution,

(v(x, y; µ), u(x, y; µ), µ) ∈ C2,α(Ω̄) × C2,α(Ω̄) × (−µ1, µ1).

To compute µ′′′(0) we first need uµµ(x, y; 0), which is easily found to satisfy the prob-
lem:

−∇ · (κ(0)∇uµµ(x, y; 0)) = 2η(0)|∇vµ(x, y; 0)|2 in Ω, uµµ(x, y; 0) = 0 on Γ. (1.20)

By the maximum principle we have:

uµµ(x, y; 0) > 0 in Ω̄. (1.21)

Once uµµ(x, y; 0) is known, we obtain vµµµ(x, y; 0) from

−∇ · (η(0)∇vµµµ(x, y; 0)) = 3η′(0)
[
∇uµµ(x, y; 0) · ∇vµ(x, y; 0) − 1

η(0)
uµµ(x, y; 0)

]
in Ω,

(1.22)

vµµµ(x, y; 0) = 0 on Γ. (1.23)

We have

ϕ′′′(0) =
∫

Ω

vµµµ(x, y; 0)dxdy. (1.24)

By (1.18) ϕ(0) is always positive; on the other hand ϕ′′′(0) may be either positive or
negative (see example below). In this second case we have the following

Theorem 1.5. Let (v(x, y; µ), u(x, y; µ)) be the solution to Problem A given by Theorem
1.1 if |µ| < µ0 and

ϕ(µ) =
∫

Ω

v(x, y; µ)dxdy.

Assume
ϕ′′′(0) < 0. (1.25)

Then a constant a > 0 exists such that if

ϕ′(0) < a (1.26)

there are four positive numbers Φ1, Φ2, δ1 δ2 such that, when

Φ1 < Φ < Φ2, (1.27)
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Problem B has exactly two solutions:

(v1(x, y; µ1), u1(x, y; µ1), µ1), (v2(x, y; µ2), u2(x, y; µ2), µ2)

with µ1, µ2 ∈ (δ1, δ2).

Proof. Define

g(µ) = ϕ′(0) − ϕ(µ).

We have g(µ) ∈ C2(−µ0, µ0). Moreover, by (1.16) and (1.25),

g′(0) = −ϕ′′(0) = 0, (1.28)

g′′(0) = −ϕ′′′(0) > 0. (1.29)

Hence there exists a > 0 and µ̄ > 0 such that, if (1.26) holds, the equation

g(µ) = ϕ′(0) (1.30)

has in (0, µ̂) one and only one solution µ∗ i.e.

g(µ∗) = ϕ′(0) (1.31)

and

g′(µ) < 0 in (−µ̄, 0), (1.32)

g′(µ) > 0 in (0, µ̄). (1.33)

On the other hand, (1.31) is equivalent to

ϕ′(µ∗) = 0 (1.34)

and by (1.33) we have

ϕ′′(µ) = −g′(µ) < 0 in (0, µ̄). (1.35)

Therefore, four numbers exist: µ1 > 0, µ2 > 0, Φ1 > 0, Φ2 > 0 with

0 < µ1 < µ∗ < µ2 (1.36)

such that, if (1.27) holds, the equation

ϕ(µ) = Φ (1.37)

has in the interval (δ1, δ2) exactly two solutions, µ1, µ2. By Theorem 1.1, Problem A has
one and only one solution for each of the values µ1 and µ2. Thus we obtain two different
solutions of Problem B corresponding to the same value of Φ. �

Remark 1.6. The constant a entering in Theorem 1.5 depends only on ϕ′′(0). There-
fore condition (1.26) is meaningful.

Crucial in Theorem 1.5 is condition (1.25). To prove that there are situations in which
(1.25) is verified we consider the special, but important case of a pipe of circular cross-
section of radius R. Assuming µ to be in the range of uniqueness for Problem A, v and
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u depend only on r =
√

x2 + y2. It is easily found that

vµ(r; 0) =
1

4η(0)
(R2 − r2),

ϕ′(0) =
1

8η(0)
πR4,

vµµµ(r; 0) = − η′(0)
128η3(0)κ(0)

[r2(r4 − 3R4) + 2R6],

ϕ′′′(0) = − 2πη′(0)R8

512η3(0)κ(0)
.

Thus the sign of ϕ′′′(0) depends only on η′(0). For the absolute majority of fluids we
have η′(0) < 0, however there are special substances (work-hardening fluids) for which
η′(0) > 0 holds.
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