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Abstract. Using a certain finite-dimensional stable range of the nonlinear terms, we
obtain large families of exact solutions parameterized by functions for the equation of
nonstationary transonic gas flows discovered by Lin, Reissner and Tsien and its three-
dimensional generalization.

1. Introduction. Lin, Reissner and Tsien [LRT] found the equation
Uty + Uplgy — Uyy =0 (1.1)

for two-dimensional nonsteady motion of a slender body in a compressible fluid, which
was later called the “equation of nonstationary transonic gas flows” (cf. [M1]). Mamontov
obtained the Lie point symmetries of the above equation in [M1] and solved the problem
of existence of analytic solutions in [M2]. The three-dimensional generalization

Uiz + UpUgy — Uyy — Uz = 0 (1.2)

was studied by Kucharczyk [Kpl] and by Sukhinin [Sv]. Indeed, the Lie point symmetries
of the equation (1.2) were found in their works. Sevost’janov [Sg] found explicit solutions
of the equation (1.1), describing nonstationary transonic flows in plane nozzles.

In this paper, we present a new approach based on the fact that the nonlinear terms
keep some finite-dimensional polynomial space in x stable. We obtain a family of solu-
tions of the equation (1.1) blowing up on a moving line y = f(¢), which reflect partial
phenomena of gust, and a family of smooth solutions parameterized by six smooth func-
tions of t. Moreover, we find a family of solutions of the equation (1.2) blowing up
on a rotating and translating plane cosa(t) y + sina(t) z = f(¢), which reflect partial
phenomena of turbulence, and a family of solutions polynomial in x parameterized by
time-dependent harmonic functions in y and z, whose special cases are smooth solutions.
In particular, we find all the solutions polynomial in z and y for the equation (1.1) and
all the solutions polynomial in z, y and z for the equation (1.2). Since our solutions

Received October 2, 2006.
2000 Mathematics Subject Classification. Primary 35C05, 35Q35; Secondary 35C10, 35C15.
Research for this article was supported by China NSF 10431040.
(©2007 Brown University
529



530 XTAOPING XU

contain parameter functions, it can be used to solve certain boundary-value problems for
these equations.

The Lie group method is one of the most important ways of solving differential equa-
tions. However, the method only enables one to obtain certain special solutions. It is
desirable to find more effective ways of solving differential equations. Indeed, we do find
one way of solving the above nonlinear partial differential equations.

On Mamontov’s list of the Lie point symmetries of the equation (1.1) (e.g., cf. page
296 in [I]), the most sophisticated ones are those with respect to the following vector
fields:

X1 = 3a(t)d; + (o' () + o (t)y?) 0 + 20/ (t)yd,

+ =/ (Ou+ o (t)a? + 27" (t)wy? + %a(‘l) (t)y‘*} Ou, (1.3)
Xa = 8000, + 500, + |26 (o + 30 (05° | 0 (1.9
X5 =v(t)0 + 29 (t)x + 27" (£)y*)0u, (1.5)

where «, # and 7 are arbitrary functions of ¢. Among the known Lie point symmetries
of (1.2) (e.g., cf. page 298 in [I]), the most interesting ones are those with respect to the
following vector fields:

X, = gt23t + <t:1: + g(y2 + 22)> O + 3tyd, + 320, + (2% — 3tu)d,, (1.6)

, 3
Xo =g/ (000s + 900, + (20" 0+ 4”0 (% +022) o (D
/ 2’3
Xg = ' (t)20, + hd. + <2h"(t):cz +4" () (3 + zy2>) D, (1.8)
X7 = ady + 20 (t)z + o' () (v° + 22)]0u, (1.9)

where g, h, o and « are arbitrary functions of ¢. Ryzhov and Shefter [RS] found
some invariant solutions of the equation (1.2), which represent time-dependent flows in
a circular or plane Laval nozzle.

First we find that the group invariant solutions with respect to the vector fields X;—
X7 are polynomial in = with degree < 3. Then we examine the equations (1.1), (1.2)
more closely and observe that this phenomena is essentially caused by the fact that the
nonlinear term w,u,, keeps the following polynomial subspace stable:

R + Rz 4+ Rz? + Ra3, (1.10)

where R stands for the field of real numbers. This observation suggests a new ansatze
of solving the equations (1.1) and (1.2). Since the equation (1.2) contains the Laplace
operator ('9; + 02, our approach to (1.2) will involve harmonic analysis and sophisticated
integrations. For simplicity, we will solve the equation (1.1) in Section 2 although it can
be viewed as a special case of (1.2). Exact solutions of (1.2) will be found in Section 3.
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2. Two-dimensional case. In this section, we study solutions polynomial in = for
the Lin-Reissner-Tsien equation (1.1). By comparing the terms of highest degree in z,
we find that such a solution must be of the form

u= f(t,y) + g(t,y)x + h(t,y)z” + £(t,y)z°, (2.1)

where f(t,y), g(t,y), h(t,y) and £(¢,y) are suitable differentiable functions to be deter-
mined. Note that

uy = g+ 2he +362%, g, = 2h+ 6z, (2.2)
Uiz = gt + 2hpx + 3&a”, Uyy = Fyy + Guy@ + hyy®® + &yya®. (2.3)

Now (1.1) becomes
2(gs +2hex +3&22) + (g + 2ha + 3622 (2h + 6£x) — fuy — GyyT — hyya® —Eyyx® =0, (2.4)

which is equivalent to the following systems of partial differential equations:

&y = 1862, (2.5)
hyy = 6&; + 18€h, (2.6)
Gyy = 4hy + 4h* + 69, (2.7)
fyy = 2g¢ + 2gh. (2.8)
First we observe that )
WA )

is a solution of the equation (2.5) for any differentiable function /5 of t. Substituting (2.9)
into (2.6), we get
1205/ (¢ 18
—0) ~+ _h. (2.10)
(V3y+B(1)*  (V3y+5(1)

Denote by Z the ring of integers. Write

ht,y) =3 a:(t)(V3y + B(t))". (2.11)
€L
Then
hyy = 3730+ 2)(i + Daiy2(H)(V3y + B(0))'. (2.12)
i€EZ

Substituting (2.11) and (2.12) into (2.10), we have
1243'(t)

é 3[(i +2)(i 4 1) — 6]ai2(t)(V3y + B(1)) = et PO (2.13)
Equivalently,
—12a_,(t) = =128'(t),  3(i+4)(i — Dag2(t) =0,  i# —3. (2.14)
Thus
he—O B By s, (2.15)

(V3y+B(1)?  V3y+p(t)

where « and v are arbitrary differentiable functions of .
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Note that
hy = 20(t)B'(¢) n o/(t) g
(V3y+B(1)*  (V3y+p8(t)%  (V3y+ B(t))?
8" (t) / 2 3
+ 3y 160 +3y(1) 8 (1) (V3y + B(1)” + /(1) (V3y + (1))
and
PSR ) ) : O N 4

C (VBy+ B0 T (VBy+B@1)3 T (V3y+B(1)?

+2a(t)y(8)(V3y + B(1)) + 2v(1)8' (1) (V3By + B(¢))* + (1) (V3y + B(1))°.

Substituting the above two equations into (2.7), we have

B 6 _ 402 N 4/ 45"
I (g1 02 T (gt (Vi P2 By ip

+8ay(V3y + B) + 2073 (V3y + B)% + 49/ (V3y + B)° + 49 (V3y + B)°.

Write
Zb ) (V3y + B)".

i€EZL

Then

Gyy = 30 +2)(i + D)biya(t)(V3y + B)".

€L

Substituting (2.19) and (2.20) into (2.18), we get

3(Z+3)Zb7,+2 :Ov { 7é _4a_27_1a1527376a

a? 2a/ 25" 2ary
bog=) b= ——) by= o by=
2 37 0 3 ) 1 3 ) 3 3 )
I T N s
YT T3 T T 8T R
Therefore
a? o 200 20"
= - - - V3y + B) + p(V3y + B)?
AT MY R 5 (V3y+0) +p(V3y + 5)

/ ! 2

where o and p are arbitrary differentiable functions of ¢.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Observe that
2078 N (2a — 303") N o 2" 28"
" T3y 8P 3(y+B)?  Vay+s 3 3

+ 2007 Z50) (/3y 4 )+ (6 + 2048)(VBy + B)°

3
L 207+ 209 +8(8) 186"y + 283/
27

3
2/ /
(VBy+ 07+ By 07+ T By + ), (2.29)
al n 3ao + o2’ n 3'0 — 220’ 2(af"” +a'f)
3(V3y+p)*  3(V3y+pB)* 3(V3y+pB)2  3(V3y+p)

D 2+ BBy + 8) + 2N 5y 4 g2

18(8')%y — 16ay’ 208’y — 184"~
27 27

Vay+ 0+ 20 (a4 7+ 2 (Va4 ) (2.20

(V3y+B)* + (V3y +B)*

2

v
t o7

gh =

+ap —

(V3y+ 3) +
56372
81

+ (V3y + B)* +vp(V3y + B)°

+

56072
81

Substituting (2.25) and (2.26) into (2.8), we obtain

fo- 203 N 6ao — 20203 N 60" — 4(aB” +o'F)

B(VBy+ )t 3(VBy+ B)? 3(V3y + )

40" 898" | 6a*y +180'p — 48"

3 3 3
203 6 6p

o 20057y + 6y0 + 6p (V3y + 8)° +

3
54yp + 47"
3 N Euial L H
(V3y+8)" + ——

Vay+ 07 + 0 (Vg 07 + (Va4 )1 (227

(V3y + )

180(3")2y + 4ay' + 360’y
27

11202
(VBy +8)° + =

+ 2ap —

(V3y +B)*

+ 20 (VBy +5)°

165"~
o 1667
9

Thus

a? 3ac — o2f’

f= + Mgf
27(V3y+ 3)2  9(V3y +B)

3

302y +98'p — 28"
27

(V3y +3)°

+ 0 + 9y + apy® —

(V3y +B)?

+ 5 [60" — 4o +/B](VBy + ) In(Vy + ) ~ 1] +

1008’y + 3yo + 30’ 45(8")2y + ay' + 9o’y
54 405

26’ s 2Typ+ 2" . 2092 8
+ 81 (V3y + 1) +W(\/§y+ﬂ) +m(\/§y+ﬂ)

2'~? o, 4 w0, 13
513 (V3y+3)° + m(\@y*'ﬁ) +m(\/§y+ﬂ) ) (2.28)

where 6 and ¥ are arbitrary functions of ¢.

(V3y + B)* +

_|_
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THEOREM 2.1. We have the following solution of the equation (1.1) blowing up on the
surface /3y + B(t) = 0:
23 ox? B
5t 5t +v
(V3y+8)2  (V3y+p8)? V3y+p

2 o / 4
(ﬁz%ﬁﬁyw—%@fﬁ (V3y + B) + p(v3y + B)?

/ / 2
(Vay+ 0+ 22 (By + )" + 2L (Vo + 9)° + 2 (VA + )l
o? 3ac — a2f’ 9 20/ + 455" 9
0+ -
Tty B oy sy T 3 !

302y +98'p — 28"
27

(V3y + B)°

(V3y + B)*z?

+[3

2ay

3

(V3y + )

+ 5060 4(08" +'B))(VBy + B)lIn(vy + §) 1] +

45(8")%y 4+ ay’ + 9’y

n 1008’y + 3yo + 3p’
405

54
(V3y +B)° +

(V3y +B)* +

26"y 27yp + 27" 7 207
81 1701 (V3y+ 87+ 243

2672 o, 4 10 o 13
t 55 (V3y + ) +m(\/§y+ﬂ) +m(\/§y+ﬁ) ) (2.29)

where a, 3,7y, 0, p,0 and ¥ are arbitrary functions of t, whose derivatives which appeared
in the above exist in a certain open set of R.

+ (V3y + 0)®

When o = v =0 = p =60 =19 =0, the above solution becomes

45/5/’ ) 2/@///

$3 ﬂ’xz 25//
3 Y7 o7

(V3y + B)? +\/§y+ﬂ_ 3

Take the trivial solution £ = 0 of (2.5), which is the only solution polynomial in y.
Then (2.6) and (2.7) become

(V3y + Bz — (V3y + 8)%. (2.30)

hyy =0, gyy = 4hy +40°. (2.31)
Thus
h=at)+ B(t)y. (2.32)
Hence
Gyy = 40 + 4’ + 4(B' + 2a8)y + 45%y>. (2.33)
So
g=7+oy+2(®+a )y + %(6’ +2a0)y> + %62 4 (2.34)

where v and o are arbitrary functions of ¢. Now (2.8) yields

fay = 2(a7 + ') + 2(ao + By + o' )y + 2(Bo + 20° + 600’ + 22/ )y?

20028 + 1208 + 200/ B+ 46" , 10052 +868 , 2
| 20026+ a63+ ABHAF sy 0‘5; ﬂﬂy4+§ﬂ3y5~ (2.35)
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Therefore,
1
f=T+py+(ow+7’)y2+3(0<0+67+0)y + = (5U+20< +6aa’ + 20"y

9 , ’ 7" 2 /
L Ba’B+ 3a51; 5a/f+ 6" 5 5af 4;455 3 53 T (2.36)

THEOREM 2.2. The following is a solution of the equation (1.1):

u=(a+By)z? + |y +oy+ 2+ )y? + = (ﬁ +2a6)y® + 52 4

1
+T+py+(av+w’)y2+3(ao+ﬁw+o)y +s (50+20< +6aa’ + 22"y

2 ' / 4 2 +4pp
| ba 6+3a615+ 5o’ + 5" 5, 5o 4; o, 53 7 (2.37)

where «, B,7,0,p and T are arbitrary functions of t, whose demvatwes which appeared
in the above exist in a certain open set of R. Moreover, any solution polynomial in x
and y of (1.1) must be of the above form. The above solution is smooth (analytic) if all
a, B,7,0,p and T are smooth (analytic) functions of t.

REMARK 2.3. In addition to the nonzero solution (2.9) of the equation (2.5), the other
nonzero solutions are of the form

§= pt(\/gy + ﬁ(t))v (238)
where p, (w) is the Weierstrass elliptic function such that
o, (w)? = 4(p.(w)* =), (2.39)

and ¢ is a nonzero constant and [ is any function of £. When ( is not a constant, the
solutions of (2.6)—(2.8) are extremely complicated. If 5 is constant, we can take § = 0
by adjusting ¢. Any solution of (2.6)—(2.8) with h # 0 is also very complicated. Thus
the only simple solution of the equation (1.1) in this case is

u =, (V3y) 3. (2.40)

3. Three-dimensional case. By comparing the terms of highest degree, we find
that a solution polynomial in x of the equation (1.2) must be of the form

= f(t,y,2) + g(t,y, 2)x + h(t, y, 2)2* + £(t,y, 2)2°, (3.1)

where f(t,y,2), g(t,y,2), h(t,y,z) and £(t,y, z) are suitable differentiable functions to
be determined. Note that

Uy = g + 2hx + 3¢x2, Upe = 2h + 6z, (3.2)
Uty = gy + 2hyx + 3§27, Uyy = Fyy + Gyy + hyya® + Eya®,
Uzz = fzz + g2+ hzz-'I»'2 + fzzl‘g- (34)

Now (1.2) becomes
2(g; + 2hsx + 3&2?) + (g + 2hx + 362?)(2h + 6£x) — (fyy + f22)
= (gyy + gz2)T — (hyy + hzz)xz — (&yy + fzz)x?’ =0, (3.5)
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which is equivalent to the following systems of partial differential equations:

Eyy + &2 = 1887, (3.6)
hyy + hae = 66 + 18Eh, (3.7)
Gyy + 9=z = 4hy + 4h* + 6y, (3.8)
fyy + fz2 = 2hg + 2gh. (3.9)
First we observe that
£= ! (3.10)

(v3(ycosa(t) + zsina(t)) + B(t))2

is a solution of the equation (3.6), where o and (8 are suitable differentiable functions of
t. With the above &, (3.7) becomes

12(v/3a/(—ysina + zcosa) + 3') 18h
hyy +h., = — - - . (3.11)
(V3(ycosa + zsina) + §)3 (V3(ycosa + zsina) + ()2
In order to solve (3.11), we change variables:
¢=V3(cosay+sinaz)+ 6, n=V3(—sinay+cosaz). (3.12)
Then
9y = V3(cosa d; — sina d,), 9. = V3(sina d; + cosa d,). (3.13)
Thus
85 + 02 = 3(cosa J; — sina 9,)% + 3(sina J; + cosa 9,)? = 3(8? + 62) (3.14)
Note that
Q) =an+p,  9(n)=a(B-0). (3.15)
The equation (3.11) can be rewritten as
hee + hayy = —4(@’n + )3 + 6¢ 2. (3.16)
In order to solve the above equation, we assume
h=>ai(tn)". (3.17)
i€z

Now (3.16) becomes
Y tignC D i = 1ail T = —4an+ BN 46D a TP, (3.18)
i€z i€Z i€Z,
which is equivalent to
a_3py +2a_1 = —4(0/7] + 5/) +6a_1, Ay + (i42)(i 4+ 1)asrs = 6a;io (3.19)

for —3 # ¢ € Z. Hence
1
-1 = Za-gy + an+ 4, (i+4)(i—1aite = =iy for —3#£ie€Z. (3.20)

When i = —4 and i = 1, we get a_4y, = a1y, = 0. Moreover, a_s and a3 can be any
functions.
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Take

az =0, a_y=p, a_1 =ao'n+f, (3.21)
Q1 = G_1-92; =G_9_9; =0 for 0<i€Z (3.22)

in order to avoid an infinite number of negative powers of ¢ in (3.17), where o and p are
functions of t and 7 differentiable in a certain domain. By (3.20),

D) (1)M5A) -
43+2k = Hle(gi +5)(20) © (2k+5)(2k + 3)(2k + 1)V (3.23)

DR (C1R2k - 1)k - 3)02(0)
T i o5) 3(20)! S

Therefore,
2k 3
155‘n (o)¢
2k +5)(2k + 3)(2k + 1)!

h=(a'n+ )¢+ (=1
k=0 (

(2k —1)(2k — 3)97* (p)¢ 2

3(2k)! I (8:25)
is a solution of (3.16).
By (3.12) and (3.14), (3.8) is equivalent to
4 4 _
9cc + g = ghe + 3h* + 279, (3.26)

Note that

he=(an+ 8"+ (@')B)¢" = (&) = (a'n+ B)2¢2+ Y (—1)F¢*

k=0
15928 (0 + o/ (B — Q)oy)¢® (2k — 1)(2k — 3)92F (pe + o/ (B — () )¢ 2
(2k + 5)(2k + 3)(2k + 1)! 3(2k)!
1502k () ¢? (2k — 1)(2k — 2)(2k — 3)92*(p)¢ 3
/ / n n
. 2
e+ Ol gy o 3020)! ] (3:27)
For convenience of solving the equation (3.26), we denote
4 4., & :
—_ —_ = ,L 5 g .2
ghit3h i:z;lb(t )¢ (3.28)
by (3.25) and (3.27). In particular,
4
by = §p2, b_3 =0, (3.29)
4 . 4
bz = g(ﬂt +a'Bpy) + §Prmpa (3.30)
4 ! / ! 4
by =gla"n+ 8"+ ()8 a'pyl + (a0 + B)pan, (3:31)
4(a)? 2 1., 1,
bo = 3 + §(Ptnn + &' Bpynn) + §3n(ﬁ):0 + o7 P (3.32)
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Suppose that

9=t (3.33)
i€l
is a solution of (3.26). Then
D i = D)eiC ™ + cignCl = > beCm+ Y262, (3.34)
i€Z r=—4 iE€EZ
Equivalently,
(i +3)icipe =b; — Cig, (1 +3)rCri2 = —Cryy, 7 <4< (3.35)

By the second equation in (3.35), we take

cr =0 for r < —4 (3.36)

to avoid an infinite number of negative powers of ¢ in (3.33). Letting i = —3,0, we get
b_g = c_3y, bo = Conn- (3.37)
The first equation is naturally satisfied because c_3 = —c_5,,/10 = 0. Taking i =

—2,—4 and r = —6 in (3.35), we obtain

1 1 1
Co 50_2,7,7 §b_2, C_o = Zb_4. (338)
So
1 1
co = éé)f](b_4) — b2 (3.39)
Thus we get a constraint:
L4 Lo
by = 50 (b-a) = 505(b-2). (3.40)
Equivalently,
4(a”)? 2 1 1
— =3+ 5P + &' Bpan) + 595(0)p + 5=
1 2 2
= gaﬁ(PQ) - g(ptnn + & Bpyny) — 58127(1017np)~ (3.41)
Thus

4A8(puan + o' Bpyyn) + 68:;(0)/’ + 2972777 - 98:;(92) + 1285 (pmp) = 72(a’). (3.42)
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It can be proved by considering the terms of highest degree that any solution of (3.42)
polynomial in  must be of the form

p=0(t) + 7 ()0 +2(t)n”. (3.43)
Then (3.42) becomes
1274 — 2072 = 9(o/)?. (3.44)
So

2e 2e
= g\/?ryéffry%ﬁa: g/\/?ryéf&y%dt, (3.45)

where € = £1. Replacing 3 by —/ if necessary, we can take e = 1. Under the assumption
(3.43),

> 15028 () ¢32F
n
- 4
= pC 2+ (an + B¢ +kzzo (2k +5)(2k + 3)(2k + 1! (3.46)
and
4 , 8
b_o = g(pt +«a 5[)77) + §’720, (347)
4 8
by = g[a”n + 8"+ ()8 — o/ py] + 5 (@n+ 8, (3.48)
4(0/)2 4 7 4 2
bo = — 3 Tgrton (3.49)
by (3.30)—(3.32).
Denote
U500 (t,1,C Zb ¢ (3.50)

For any real function F(¢,n) analytic at n = 79, we define

F(t,mo + vV-1¢) = ia; k) (V=1¢)". (3.51)
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Note that
oo . 1562]{,‘( )CS+2k B an( ) 2%
,;(_1) (2k +5)(2k + 3)(2k + 1)! = 15¢ / B 2k+5)(2k+3)(2k)! dn

= 15/ Tg/ (i k 22:215 %) ) dry dro
=15¢~ / 7'3/ 7'2/ (i 6% )dﬁ dro drg

= 1—25C—2/0 7'3/0 T2/O [O'(t,T]‘f'\/—_1T1)—|-0'(t,’r]—\/—_17-1)]d7-1 dry drs, (3.52)

e o] 15872]k (O.)C3+2k
% lz(_l)k (2k + 5)(2k + 3)(2k + 1)!

:i ok 1592F (0 ) ¢31H2F = 1592k (g)¢3H2k
k=0

ohrnehr e P kzzo(_l)k (2% +5)(2k + 3)(2k + 1!

o i L B0 (o)
2 k1) 2k + 32k + 1) T

> 15025 () (2425
)k n
an+ ) kZ:O (2% +5)(2k + 1)!

¢ T3 T2
= 1—254“*2/0 7-3/0 7'2/0 [ot(t,n+ vV —171) + 0e(t,n — V—111)]dTy dTo d3
1 ¢ T2
15a (Cg ﬂ)\/j]_/ T2/ Tl[CT(t,nﬁ’\/lel)*CT(t,n*\/jl’l'l)]d’rl dTQ
2¢ 0 0
15 / N —3 < 3 7—2
+ —(a'n+6')¢ / 75 / [o(t,n+vV—1m)+o(t,n—vV—17m1)]dr dre. (3.53)
2 0 0

According to (3.28) and (3.50), we have
qj(ﬁ,p,a) (ta 1, C) =
¢ T3 T2 2
75¢ % (/ 7-3/ T / [o(t,n+vV—111)+o(t,n — v —171)]dr dre d7'3>
0 0 0
¢ T3 T2
+ 10(72/ 7'3/ Tg/ [o¢(t,n+ vV —111) + ou(t,n — vV —171)]dT1 dro dT3
0 0 0
100/ (¢ — N
+ 2as 7P (52 ﬁ)ﬁ/ 7'2/ T1[o(t,n + \/—_1'r1) —o(t,n— \/—_171)]d'rl dry
0 0
¢ T2
+10(a’n + 6’)(73/ 3 / [o(t,n+V—111) + o(t,n — V—171)]dr1 dT2
0 0
¢ T3 T2
+ 20 / 7'3/ Ty / [o(t,n+vV—1m)+o(t,n — vV —17m1)]dr dre drs

<2 (pC (@ + BT+ ). (3.54)
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Now
r
3

C_9 =

541

(3.55)

by (3.29) and (3.38). According to (3.35) with ¢ = —3,0, ¢_; and c¢s can be arbitrary.

For convenience, we redenote

C-1= ’%(ta n)a C2 = w(t777)

Moreover, (3.29), (3.39) and (3.47) imply
2
Co — pn

2 2
- g(ﬂt + o' Bpy) + 5’)’2P-

3
Furthermore, by (3.31) and (3.35),

K 2 4
==t =2+ 8"+ ()8 — o'py] = S (/0 + )7
In addition, (3.35) and (3.56) yield

( )k+182k+4

k k z
1)(2
+§ Z+ )( Z) a?(k z)(b 1)’
=0

RS T 9k + 2)(2k + 2)! k+2 )(2k +2)1 "
) :( 1)F+H1392+2 (o +zk:( 1)k=4(2i + 3)(2i + 1)! 20 ()
FET k) 2k +3) = (2k+5)(2k+3) " 2t
for 0 <k € Z.
Set

1 EgnC =
D5 p.amw)(t:1,¢) = k(T + % +w®+ ) el

St O SRR
=0 L;O(_l) 2k 1 CZ 2k + 3)(2k + 1)

2 o (= 1)R (A 1)(26)! g
+ZZ((k)+ 2)((241;3(2)) O )

k=0 i=0

ok o

' ;) ; - 1<)2k +(2;>?2:Z:)<+2 §)+ D8 200 ()24,
Note that
@Sy B
k=0 (2k + 3)(2k + 1)!
:gﬁ_l /04 " /: w(t,n +v/—1r) + w(t,n — vV/—1r)]dr dr.

Moreover,

8& (\Ij(ﬁ,p,a) ) (ta 7, O)

\Ij<ﬁ,l7,0> (tanvo) = 07 bz = il for 0<i€eZ.

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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Thus

3 ¢ T2
®<57P70,H,W> (tvna C) = 5( 1/0 7—2/0 [W(t777 + v _17—1) + w(ta n—v _17—1)]d7—1 dTQ

— 5O sl -+ V=Tn) + (e n = VTm)]

i i k 7’(2 + 1)82(k 2)621+1 (q}(ﬁ,p,a))(ta n, 0) ohis

T2 @i+ Ukt 2)(2k T o) ¢

. iZ )omi(2i + 3)0, TV OFTR (W 5,5,00) (£,1,0) (ohea
gt (2i + 2)(2k + 5)(2k + 3)! ’

in which the summations are finite if o(¢,n) is polynomial in 7. Now

J2

h=pC2 4 (an+ 3¢+ + %_2

¢ T3 T2
></ 7'3/ 72/ [o(t,n+vV—1711) 4+ o(t,n — vV—1m)]dm drs dT3,
0 0 0
2 2
p° P 2 2
9=L,p0mw(t10C) + 3( 2+ gn - g(Pt + ' Bpy) + 912

g[a//n+ﬁ//+ (0/)2ﬁ_0/p77}c_

4
5(0/77 + 8" )72C.

Denote
2
A(,@,p,o’,n,w) (ta m, C) = g(gh + at (g))

Then the equation (3.9) becomes

f1717 + fCC = A(B,p,o’,n,w) (t7 m, C)

Set
_ntvole o n=v=lIe
2 ’ 2 '
Then
v—1
an:—(aw"‘am), 8(—7(811,—8@)
Hence

2 2 _
02 + 0% = 0,05
A complex function

G(u) is called bar-homomorphic if G(u) = G(i).

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

For instance, trigonometric functions, polynomials with real coefficients and elliptic func-
tions with bar-invariant periods are bar-homomorphic functions. The extended function
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F(t,p) in (3.51) is bar-homomorphic in p. Now we have

f:/ /_A<ﬁ’P,U,R,W>(t7/J'+ﬁ7 \/Tl(ﬁ_u))dﬁdu—"x(t,’r]—i—\/—_lg)

wo Y Wo

+ x(t,n = V=1¢) + V=1l (t,n + V=1¢) — v(t,n — V-1¢)], (3.73)

where wy is a fixed complex number and x(t, ), v(t, ) are complex functions in real
variable ¢ and bar-homomorphic in complex variable p.

THEOREM 3.1. In terms of the notions in (3.12), the function u = (223 +ha®+gx+ f is
a solution of the equation (1.2) blowing up on the hypersurface v/3(cos ay+sin az)+5 = 0,
with h given in (3.65), g given in (3.66) via (3.54) and (3.64), and f given in (3.73) via
(3.67). The involved parametric function p is given in (3.43), « is given in (3.45), and
o, K, w are real functions in real variable t and n.

Next we want to find a more explicit formula when ¢ = Kk = w = x = v = 0. In this

case,
h=pC+ (ol + )¢+ 2 (3.74)
and
2 2
2., Py 2 2
g :§C 2+ gn - g(ﬂt +a'Bpy) + 92P
2 4
=gl n+ B+ (@B =o' pylC = Glan+ Bl (3.75)

Moreover, (3.15) and (3.43) yield

3 B o'n+ 3 2
gt hg= L1 @+ 80

3 3

— 60— 60"y — 2120) — splan + 3"+ (@A) +

5y2p® +6ppt _,  an+ B,
R i e —1TTF (3

B e L

2000ty | 275P
3 9

2 130/ SR
_ _(ptt+2alﬂptn+ (0/,6)//)7,4—2(0/,6)2’72) + V2Pt + 572p77 + ’Y2p7] + P)/QP
3 9 9 18 27

4 8 20/
— L@+ )@+ B+ ()8 = 'py) = sra(an+ B+ [T
13a’y2py

V2 2 2 ’
+ E(19(0/)2ﬁ _ 50//,'7 _ Sﬁ//) _ T _ 2_773(0/77 + ﬁ,) _ g(a// n + ﬁ

P

"

4 o 4 Vi /! 2a/ ! 8 ')?
()28~ ooy + 30'a’B) — 2(aln + ARG+ P - SO e (3 7)

By (3.67) and (3.68), we can find f.
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COROLLARY 3.2. In terms of the notions in (3.12), we have the following solution of the
equation (1.2) which blows up on the hypersurface \/g(cosa y+sinaz)+ =0

2 2
u=C%$+pfﬂ+m%+ﬂk*+1ﬂxﬁﬂﬂ<”+fﬂ—3m+a%w>

6 3 3 3
2 2 /7 /1 N2 / 4 ’ !
+§’Y2f0—§[04 n+p +(04)ﬁ—a,0n]C—§(0é77+5)’72C]9€
3 / N\ 2 2 2 2
P’ oo (@n+pB)p 1 yep Yepy, + 293P
B2 In¢ — 2P T ZRP 201 ¢ 3
+ 27C 9 ¢+ o7 ng 5 ¢*(2In¢ - 3)
3 / /
V2 4 4 2(a'n+ ') . o
+ @C (12In¢ —25) + [galppn + T(%n — 6p; — 60/ Bpy + 4y2p)
4 2
- §P(O/I77 +8"+ (@)?B)]¢(n¢ — 1) — %[290/’72917 + ('n+ 3')(2073 — 373)

2pnPen 273p

= 9(a")* 2 = (0 pm +72(0"n + 5") + o py )] (61 ¢ = 11) + [F + =2

2 vape | 130/ Byapy | V205
= glow + 20/ Bpen + (/' B) py + 2(a’ B)*72) + > o Ul - 4’7
2 4 8
+2F = Gl B @+ 8+ ()8~ opy) — (e’ + B
Q(Jélptn Y2 N2 /" 11 130/’}/2;),7 2 2, ,
29 —5an — 58"y = 2402l 2
(=57 + gr(19()°f — b’ — 557) — —3 51372 (@ +08)
2 ’ ’ 4
- ﬁ(a" n+ 8" + ()8 — o p, +3d'a’"B) — (@ + 892))¢°
Vv, Ty o 4(a) e,y
_ _ 2 M )2 3.77
e "2t e o T (3.77)

where p is a third-order differentiable function as in (3.43), « is given in (3.45) and (3 is
any third-order differentiable function of t.

Finally, £ = 0 is the only solution of the equation (3.6) polynomial in y and z. Under
this assumption, the equations (3.7) and (3.8) become

hyy +hae =0, Gyy + gon = 4hy + 4h°. (3.78)

The first equation is a Laplace equation whose solutions are called harmonic functions.
It can be proved as (3.25) by power series that the general solution of the first equation
is

h=(oc+V—=1p)(t,y+V—=12) + (0 —V/—1p)(t,y — V—12), (3.79)

where o(t, 1) and p(t, u) are complex functions in real variable ¢ and bar-homomorphic
in complex variable p (cf. (3.72)). Set

w=y+vV-1z, w=y—Vv-—lz. (3.80)

Then the Laplace operator
2 2 _
0y + 0, = 40y, 0. (3.81)
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The second equation in (3.78) is equivalent to

Owlm(g) = hy + B* = (o0 + V=1ps) (t,w) + (01 — V=1p;) (¢, W)
+ [(0 + V=1p)(t,w) + (6 — V=1p)(t, w)]*. (3.82)

Hence the general solution of the second equation in (3.78) is

o= [ [ Aot VTt m) + o~ VTa e )

+[(0 +V=1p)(t, 1) + (0 — V=1p) (t, D)"Yy dpx
+ (k + V—1w)(t,w) + (k — V—1w)(t, @),

)
w

(3.83)

where k(t, u) and w(t, u) are complex functions in real variable ¢ and bar-homomorphic
in complex variable p (cf. (3.72)) and w; is a complex constant. Furthermore, (3.9)
becomes

0uls(f) = 3 (o1 + gh). (3.54)

Observe that

so= [ [ B+ VIR @) + 0~ VIR (o + VT 1)

+ (o0 = V=1po)(t, 1)) + (000 + V—=1pu) (t, 1) + (000 — V—1put) (t, 7)) dpa dfix
+ (ke + V1w (t,w) + (ke — V—1w;)(t, ). (3.85)

Thus the general solution of the equation (3.9) is

f= % /u: /w:u{ :2 /u:z [2((o +V=1p)(t, 1) + (0 — V=1p)(t, 7))

X (¢ + V=1pe) (t, 1) + (00 — V=1pe)(t, 111)) + (04t + V—=1pu) (£, p11)
+ (o0 — V=1pu) (t, )| dpr diix + (ke + V—=1we) (t, p2) + (1 — V—Tlw) (t, i)
+ (0 +V=1p)(t, p2) + (0 = V=1p)(t, m)][(k + V=1w)(t, p12)

2 2

+ (5 — V=Iw) (i) + / {(oe +V=1pe)(t, ) + (00 — V=1pe)(t, 1i1)

w1 w1

+ [0+ V=Ip)(t 1) + (0 — V=Ip) (6 TT)) Ydp dpir)ydpsz iy
t? b)

+ (x + V-1 (t,w) + (x — V—1v)(t, @) (3.86)
where x(t, u) and v(t, 1) are complex functions in real variable ¢ and bar-homomorphic
in complex variable p and ws is a complex constant.
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THEOREM 3.3. In terms of the notions in (3.79), the following is a solution polynomial
in x of the equation (1.2):

u=llo+ VTR + (0 = VI + { [ [ o+ VTt m)
+ (o0 = VTIp) ) + (0 + V) (1) + (o — V) (6 7o) Yl diiy
(n+\/_w)(tw) (/if\/_w)(tw}:ch / / { /

2((0 + V=1p)(t, 1) + (o = V=1p)(t, 1)) (00 + V~=1pe) (t, 1)

(01 = V=1p) (t,111)) + (o4 + V=1p1e) (t, 1) + (041 — V= Lpss) (¢, 1) dpr dpix
(Kt +V=1wg)(t, p2) + (ke — V=1we)(t, 12) + [(0 + Vv =1p) (¢, o)

(0 = V=1p)(t,m)][(x + V=1w)(t, p2) + (K — V—1w)(t,2)

/w1 / {(or + V=1pe)(t, 1) + (o0 — V=1ps)(t, 117

+ (0 + V=1p)(t, 1) + (0 — V—=1p)(t,0)]* }dpy dpix]}dpo diy
+ (X + V=)t w) + (x — V=1v)(t, W), (3.87)

where o(t, 1), p(t, ), w(t,u), w(t,w), x(t,u) and v(t,pu) are complex functions in real
variable t and bar-homomorphic in complex variable pv (cf. (3.72)). Moreover, the above
solution is smooth (analytic) if all o, p, Kk, w, x and v are smooth (analytic) functions.
In particular, any solution of the equation (1.2) polynomial in x,y, z must be of the form
(3.87) in which o, p, kK, w, X and v are polynomial in L.

+
+
+

REMARK 3.4. In addition to the solutions in Theorems 3.1 and 3.2, the equation (1.2)
has the following simple solution:

u = p,(V3(ay + b2)) 2, (3.88)

where p,(w) is the Weierstrass’s elliptic function satisfying (2.39) and a, b are real con-
stants such that a® + b = 1.
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