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Abstract. The integrals arising from potentials for two-dimensional Stokes equations
are explored in the case when the potentials are defined on the smooth open arc of an
arbitrary shape, while the densities in the potentials belong to weighted Holder space and
may have power singularities. The properties of smoothness of these integrals and their
derivatives are studied. The singularities of the derivatives of the integrals at the ends of
the arcs are examined. The integrals studied in the paper being coupled with harmonic
logarithmic potential yield single layer potentials for velocities in Stokes equations. Single
layer potential for pressure in Stokes equations is investigated also.

1. Introduction. Potential theory for 2D Stokes equations has been constructed in
[2] in the case of smooth closed curves and continuous densities. This potential theory
has been applied in [2] to the analysis of solvability of boundary value problems for
Stokes equations in the interior and exterior of simply connected domains bounded by
a smooth closed curve. Results obtained in [2] have been extended in [3, 8, 9] to the
case of multiply connected domains bounded by smooth closed curves. Boundary value
problems in [3] [8, [9] are reduced to uniquely solvable integral equations. The present
paper is devoted to the analysis of some functions presented in the form of integrals
related to Stokes potentials specified on a nonclosed arc in the case when the densities
in the potentials are taken in weighted Holder space and may have power singularities.
Smoothness properties of these functions and the smoothness of their derivatives are
studied. Singularities of the derivatives of these functions at the ends of the arc are
investigated. It should be noted that the integral functions studied in the paper being
coupled with a logarithmic harmonic potential yield single layer potentials for Stokes
velocities. The basic difficulties in the analysis of these integral functions follow from the
fact that they are not harmonic unlike logarithmic potential. In the last section of the
paper the single layer Stokes potential for pressure is analyzed.
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2. Formulation of the problem. By an open arc we mean a simple smooth non-
closed arc of finite length without self-intersections [I]. In Cartesian coordinates z =
(x1,72) € R? in a plane we consider a simple smooth open arc I' parametrized by the
arc length s: T' = {z : = = z(s) = (x1(s),x2(s)), s € [a,b]}. Therefore points z € T
and values of the parameter s are in one-to-one correspondence. We denote the tangent
vector to I' at the point z(s) by 75 = (cosa(s), sina(s)), where cosa(s) = z}(s),
sina(s) = z4(s). Let ng = (sina(s), —cosa(s)) be a normal vector to I' at z(s). The
direction of ny is chosen such that it will coincide with the direction of 7, if n, is rotated
counterclockwise through an angle of 7/2. The segment [a, b] will be denoted by I' also.

Let the real-valued function f(s) of class C¢/[a, b], w € (0,1], ¢ € [0,1) be specified on
I. We say that u(s) € CZ[a,b] if po(s) € C*“[a,b], where uo(s) = p(s) s —al? |s — b,
and C%“[a, b] is a Holder class with the exponent w.

We consider I" as a cut in a plane. The side of the cut I' that is on the left when the
parameter s increases will be denoted by I'" and the opposite side we denote by I'". In
a similar manner, by the superscripts “+” and “—” we will denote the limit values of
functions on I't and I'~ respectively.

The aim of the present paper is to study properties of some integrals, which appear in
the analysis of the vector single layer potential for the Stokes equations [2] [3]. Consider
the integrals

Clrla) = 5= [ (o) cos(2us(z.y(0) do

Slul(w) = 5= | nto)sin(2i.y(e) do

where cos(2¢) = cos?(1) — sin?(), sin(24) = 2cos(s) sin(),
cos Y(z, 4(0)) = ’;_2’(23'.) sin (2, 4(0)) = T_’y’(ff))

y(0) = (1(0),92(0) €T, |z —y(o)| = V(21 = 41(0))? + (22 — 12(0))2.

Let z =z +ixy, t=1t(0)= (yi1(0) +iya(c)) €. Then dt =t (0o)do = e *?)do,
2z —tlo) = |z — y(o)|e?@¥e) 2 o) = |z — y(o)|e”¥@¥(@) Complex conjugate
values are denoted by the overline. We introduce the function

Elpl(z) = Clul(z) — i S[ul(x)

1 ) L / z=#o)
= — ylo d = — 7d
2 Jp ulo)e S r Ho) z—t(o 7
1 Cialoy 2 — t(0) 1 t—z
o7 F,u(a)e z —t(o) o7 F,u( )tfz ’

—ioz(o‘).

where [i(t) = pu(o)e
We say that the complex-valued function /i(t) belongs to the class C¢(I") with w €
(0,1], q €[0,1) if fip(t) € CO¥(T), where fig(t) = fi(t)|t — t(a)|?|t — t(b)|9, and CO~(T)
is a Holder class with the exponent w.
Now we study some properties of functions specified on a smooth open arc.
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LEMMA 1. Let T be a smooth open arc. Let g(o) € C%“[a,b], w € (0,1], and §(t) = g(o),
t =t(o) = (y1(0) +iy2(c)) € . Then §(t) € CO¥(T).

Proof. Let t1, to € T; tp =t(ok) = y1(ok) + iy2(ok), k=1,2. Then

19(t2) — g(t1)| = |g(02) — g(o1)| < cloz — o[,

02 — 01

2 — 1 ‘t(gz)t(gl)
on [a,b] in both variables oy and o9, and so, it is uniformly bounded, i.e.,

02 — 01

is continuous

It follows from Lemma 1 in [4] that the function

g2 7 %1 < const
to —t1
for any 01,09 € [a,b]. Therefore
09 — 01 “
19(t2) — g(t1)| < ¢ P [tz —t1]” < itz — 1],
2 — 11

where ¢; is a constant. Hence, §(¢) satisfies the Holder inequality on I' in the ¢ variable
with the exponent w. The proof is completed. O
Using Lemma 1 we can prove

LEMMA 2. Let I' be an open arc of class C*, X € (0,1], and
t=t(0) = (y1(0) +iy2(0)) €T

1) If f(o) € C%¥[a,b], w € (0,1] and if f(t) = f(o)e ™) then f(t) € COA(T),
B = min{w, A\}.

2) If p(o) € Cyla,b], w € (0,1, ¢ € [0,1), and if a(t) = p(o)e= @) then
fi(t) € CH(T), B =min{w, A}.

Proof. 1) Clearly, e=**(®) € C%*|[a, b]. According to the properties of Hélder functions
[, f(o)e ') € C%Fla,b]. Now the statement of point 1) in this lemma follows from
Lemma 1. Let us prove point 2). Set uo(o) = p(o)|o — a|?loc — b|? and ¢t = t(o). Then

fuo(t) = fu(t)[t — t(a)|*|t — £(b)|* (1)
. t(o) —t t(o) —t(b)]\*
_ H(O_)efza(a) | (0) (a’)| | (U) ( )| |0_ o a\q\a o b‘q
o —al o —b|
q q
— NO(U)e_m(U) t(U) — t(a) t(U) — t(b)
oc—a oc—b
t -1 t —t(b
It follows from [4, Lemma 1] that the functions Ho) =ta) and ‘(U)b() belong
oc—a o—
to C%*[a,b] in o and they are not equal to zero for any o € [a,b]. On the basis of the
t(o) —t(a)|*
properties of Holder functions presented in [I] we observe that the functions M
oc—a

q
belong to C%*[a,b] in o, since the function r? is of class C' on any

t(o) —t(b)
o—0>
segment that does not contain the point 7 = 0. Note that uo(c) € C%“a,b], since

and
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p(o) € C¢la,b]. Consequently, using the properties of Hélder functions [I], we obtain

t(o) — t(a)|?| (o) — (D)

o—a o—b

q q

€ C%F[a, b).

(o) = po(o)

Hence fig(t) = p1(o)e~**(?) from (1). Using point 1) of this lemma, where f(c) = p1(0)
and f(t) = fio(t), we obtain that fio(t) € CO#(T'). It follows from (1) that ji(t) belongs
to the class (Cqﬁ (T") according to the definition of this class. The proof is completed. [
We say that the function of several variables satisfies the Holder inequality if it satisfies
the Holder inequality in each variable uniformly with respect to the other variables [Il
sect. 3.2].
From Lemma 1 we obtain

LEMMA 3. Let ' be a smooth open arc. Let g(s, o) € C%¥([a,b] x [a,b]), w € (0,1] and
9(to,t) = g(s,0), to =to(s) = (x1(s) +iza(s)) € I, t =t(0) = (y1(0) +iya(0)) € T
Then §(to,t) € CO¥(T x T).

3. Properties of integrals. The aim of this section is to study properties of the
integrals C[u](z) and S[u|(x).

LEMMA 4. Let I' be an open arc of class C*, X € (0,1]. Then
1) the functions cos(2¢¥(z(s),y(0))), sin(2¢(xz(s),y(0))) belong to the class
C%*([a,b] x [a,b]) in s and o}

t—t
2) the function §(to,t) = " tO belongs to the class CONI' x I') in ¢, to.
0

Proof. Note that

cos(2¢(x(s), y(0))) = 1 = 2sin® ¥ (x(s), y(0)),
sin(2¢(x(s), y(0))) = 2cos P(x(s), y(0)) sin(z(s),y(0)).
Hence, to prove point 1) it is sufficient to prove that the functions sin® 1 (x(s), y(c)) and

[cos(z(s),y(o)) siny(z(s),y(o))] belong to the class C**([a,b] x [a,b]) in s,0. We can
prove this fact using the formulae

cos (a(s), y(o)) = 2L ~91(0)

= Tl =yl ) yl) =

where

y(0) = (y1(0),32(0)) €T, [z —y(0)] = V(21— 51(0))? + (22 — 12(0))?,

and using the technique developed in Lemma 1 in [4].
Point 2) of the lemma follows from point 1) and from Lemma 3 if we take into account
that

t—t ,
g(to,t) = ﬁ = 372“1’(93(3)%’(‘7))
— o

= cos(2¢(z(s), y(0))) — isin(2¢(x(s), y(0))) = g(s,0),
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where tg = to(s) = (z1(s) +ixa(s)) €T, t =t(o) = (y1(0) + iy2(0)) € T. Indeed, since
g(s, o) belongs to C%*([a, b] x [a, b]) according to point 1), it follows from Lemma 3 that
§(to,t) € COMT x T). O

LEMMA 5. Let I' be an open arc of class C*, X € (0,1]. Let u(s) € C¥[a,b], w € (0,1],
q € [0,1). Then the functions C[u](x(s)), S[u](x(s)) belong to the class C%*[a, b] in s.

The proof can be given by direct verification with using point 1) of Lemma 4.

LEMMA 6. Let I' be an open arc of class C1'*, X € (0, 1] and let an arc I be an arbitrary
part of T' such that the ends of I' are interior points of I'. Let ji(t) € C#(T), w € (0,1],
g € [0,1). Then the singular integral

. L[ At) t—to
Ii)(t) = — | 4 = O
[2](to) 27ri/pt—t0t—t0
belongs to the class C%# (T) in the ¢, variable for any 3y € (0, 3), where 8 = min{w, A}.

Proof. Let an open arc I'” be a part of " such that the endponts of I’ are interior
points of " and all points of I (including endpoints) are interior points of I'. Evidently,

t—t
a(t) € CO¥(I"). According to point 2) of Lemma 4, the function §(to,t) = ﬁ belongs
—to

to the class CON(I'xT') in ¢, to. Then the function fi(t)§(to,t) belongs to C%# (I xI'") in
to, t. Now the statement of the lemma follows from the properties of singular integrals,
the density of which depends on a parameter [T}, sect. 18.4]. O

THEOREM 1. If T is an open arc of class C*, X € (0,1], and p(o) € C¥[a,b], with
w € (0,1], g € [0,1), then C[u](z) € C°(R?) and S[u](z) € CO(R?).

Proof. If fi(t) = p(o)e="), then fi(t) € CJ(I) for B = min{w, A}, according to
point 2) of Lemma 2. It follows from the properties of integrals of Cauchy type [I] that
the function

£li(x) = = {/Fg(t)Ldt—z/Fg(t)t 1 dt}, 2 = o1 + iz,

:ﬁ t—z -z

is continuously extensible from R?\ T on I'* and on I'~ to the interior points of I'. The
limit values of a function £[u](z) on I't and on '~ in the point 2° € T are denoted
by £7[u](z°) and £~ [u](x°) respectively. According to [I, Section 15], we obtain that
EFu](2°) € COT\{z(a)Ux(b)}) and £~ [u](x°) € CO(T'\ {z(a) Uz (b)}). Now we use the
Plemelj formulae [I] and derive limiting values £ [u](2°) and £~ [u](2°) on Tt and '~

respectively in the point 2° = (29, 29), which is an interior point of I'. Then we obtain

EXp) (o) = i { [% /Fﬂ“%tir : [%/rﬂ(t)tir}

1 _ 1 tdt 1 _ to dt
=iqt=-f(to)t — f(t — |E=a(to)t — f(t
{egaton + o [ a0 - [egan+ 5% [ 02|}
1 t— 1
at)—2dt,  to = 2%+ iah.

o LMY T
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Consequently, EF[u](z%) = £ [u](z°) = &[u)(2°) in the interior points of ', where
E[u](x°) is the direct value of £[u](x) on I'. Therefore, &[u](x) € CO(R2\ {z(a) Uxz(b)}).
Using the Lebesgue theorem on passing to the limit under the Lebesgue integral [5, sect.
1.4], one can verify that E[u](z) is continuously extensible at the ends of I' if = tends to
the end of I' from R?\ . Tt follows from Lemmas 5 and 1 that the functions C[u](z) and
S[u](x) belong to C>*T) in 2. Therefore £[u](x) € C°(R?) and we obtain the statement
of the theorem. (]

4. Properties of the derivatives of the integrals. Let 2z = 2y +ixs, t =
t(o) = (y1(0) +iya(0)) € T. Then 2z —t(o) = |z — y(o)|e?@¥@) and z — (o)
|z — y(o)|e" @ ¥(@) Let n, and 7, be taken in the point 2°(s) € I. Then for y(o) €
and z # y, the following relationships hold:

=l

(ray U)o WEUo)  jomivty(o) SV (| (U? . a(s))
SmW(%y(J)) - OZ(S)) - _Im eio‘(s) B 1 za( ) e*za(s)
|$—y(0’)| =1 |:Z—t:| 2’L|: t Z—t:|’
(ny, Vy)e v = ie*iw(r’y(v))cos( (z, (02))—| a(s ))’
cos(Y(xz,y(0)) —als)) . i) 1 pia(s)  g—ials)

where a(s) is the inclination of the tangent 75 to the Oz-axis. To derive (75, V,E) and
(n,, V.&) we have to take into account the relationship

Ve 2@ u(0) = 9ot (@y(0))y o—it(z.y(o))
and have to use the formulae presented above.

Let p(o) be integrable on I'. If z ¢ T and 74 = (cos a(s), sin a(s)) is taken in the point
29(s) € T, then

58755 [u](z) = (75, VE) @)
_ L o)e—2(@y(e) (_ sin(y(z,y(0)) — a(s)) ;
[ ) (- Ty ot
_ i o z— E(O’) l eio‘(s) B e—ia(s) )
T p“( )Z_t(o') 24 L_t(g) Z—t_(o'):|d

1 1 , dt (s t—z dt
== e—za(s) / ﬂ(t)— _ eza(s) / /:L(t) z ’
T 21 r t—=z r t—2z t—=z

where 2z = (z1 +ixo) ¢ T, t =t(0) = (y1(0) +iya(0)) €T, dt = t'(0)do = (7 do,
and fi(t) = p(o)e @), In a similar manner, if z ¢ I and n, = (sin a(s), — cos a(s)) is
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taken in the point 2°(s) € T, then

3?135 [u](z) = (ny, VE) 3)
_ L o)e—2iv(@y(e) (_ cos(Y(x,y(0)) — als)) :
= FM( ) (—1) = — (o) d

| FoEo) [ 1\ [ ee)  eials)
_ 1 ) (_1 __|4
i FM(J)Z—Z‘:(U) ( 2) L’—t(o) +Z—t(a) ?
1 ; dt ; t—z dt
- = —ia(s) ~ ia(s) ~
278 {e /Fu()t—z_Fe /F'u(t)t—zt—z}

Hence, to study the behaviour of the derivatives of £[u](x) we have to study the behaviour
of the integral

M) =50 [MOT—= 752 2= (o +in) T,

Let T' be a smooth open arc. Let ji(t) € C%#(T'), 8 € (0,1]. Our goal is to study the
behaviour of the integral

e e

2w t—=z t—=z

~+

if z — tg, where tg is an arbitrary point of the arc I'. (The case when ¢y coincides with
an end of T' is not excluded.)

LEMMA 7. Assume that I' is a smooth open arc and ji(t) € C%4(T'), 8 € (0,1]. Let 6
be an arbitrary nonobtuse angle (i.e., 0 < 6y < 7/2), and let z approach ¢y so that the
nonobtuse angle between the intercept tgz and the tangent line to I' in the point #g is
more or less equal to fy. Then J[i](z) tends uniformly (with respect to the position of
to on I') to the limit

Aoy = L[ A0 = lte) £
Til) = 5 [ O L0y

(independently, whether z approaches tg from the left or from the right from the tangent
line).

REMARK. Since fi(t) is a Holder function on I'" and
t—to
t—to

= |exp(—2ip(z,y))| = 1,

the integral J[j](tp) exists as an improper integral for any point tg € T'; i.e., top may be
an interior point of I', or it may be an end of T".
Proof. By ¢, ¢, ¢ different constants will be denoted. Note that

cos 31) = 4 cos® 1 — 3 cos ), cos(z,y) = Tl 7y|1,
r—y

sin 31 = 3sinep — 4sin® ), siny(z,y) = T2 — y|2
r—y

Therefore, the function exp(—3iy(x,y)) is continuous and infinitely differentiable if x #
y, since it does not have singularities if @ # y. Obviously, |exp(—3iv(x,y))| = 1 for
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x # y. The function F(z,y) = —|z —y|?/* exp(—3itp(x, y)) is continuous for all z,y € R?
and F(z,z) = 0. Let D be a bounded open domain and I' C D. According to the Cantor
theorem, F(z,y) is uniformly continuous in (z,y) € D. It follows from the definition of
uniform continuity that

|F(2,y) — F(a",y)| < e(jz —2°]), (4)

where £(]z — 2°|) does not depend on y, and e(|z — 2°|) — 0 as z — 2° € T uniformly
with respect to 2%,y € T
If z =21 +ixo, t = y1 + iyo, then

~ t—z |t —z|

Inequality (4) can be written in the form

|F(z,t) = F(to, t)] < e(|= — tol),
where £(|z —tg|) does not depend on ¢, and e(|z —tg]) — 0 as z — tp € I' uniformly with
respect to tg,t € I'.

Consider the difference

TAE) — TTil(t0) = 5= (T (zt0) + Ja(z, o)),

where

Beto) = [ Gi0) = i) (B (e.t) = Plto, ) oy

. . - 1 1
Jo(2,t0) = /F(‘u(t) — Q(to)) F'(2,1) <|t — z|1+g/4 o It — t01+5/4> dt.

Using Hoélder continuity of the function fi(t) and uniform continuity of the function

F(z,t), we obtain

Ccy - ‘t — t0|ﬁ

< _ - v
Az to)] < ez ~tol) | T

|dt|

38/4—1
|s — s0|*#/41ds < const e(|z — to|),

t—1t
sﬁdu—mu/ 0

ris$—=0

where (|z —tg|) — 0 as z — tp € I" uniformly with respect to ¢y € I'. When deriving the
t—to
S — 8o

latter inequality we used the estimate < Const, which follows from [4, Lemma 1],

because the arc T is of class C!.
Note that |F(z,t)| < |z — t|%/4. Since

|(t) — fulto) |/ < e[t —to] /%,
(t) — fulto)| = [fu(t) — alto) P - () — a(to)[V* < elfa(t) — alto)[P* - [t — to] P2,
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we obtain

1 1

t— z|1+8/4 t — to|1+B/4
0

aterto) < [ 1(0) = o)/t — o] e — 217/ at
r

((t) — fulto) |3/
—c |/1“( ) /14( 0)‘ |t—z|1+ﬁ/4 _ ‘t7t0|1+’8/4 ‘dt‘
v [t =zt =t

The function |t — z|'*#/% is continuously differentiable on D in z and in t. Using the
Lagrange formula, we deduce

‘|t— 2| A/ \t—t0|1+5/4‘ <collt —z| = |t —to|l| < colz —tol,

where ¢y = const. Therefore,

‘ i (t) i (t0)|3/4
Jo(z,t0)| < c-colz —t Y — MEo)T
‘ 2(Z 0)‘ =¢ CO|Z 0| /F |t ZHt 7fOl

|dt].

An analogous integral has been studied in [I}, sect. 15] and in [6, sect. 4.1]. This integral
can be represented as a sum of two integrals, one of which is integrated over a “standard
arc” [ sect. 2], while another one is integrated over the remaining part of the contour T'.
Repeating the arguments from [I} sect. 15] or [0, sect. 4.1], we may estimate each of the
integrals. Consequently, we obtain that if z — ¢g in such a way as described in the
formulation of the lemma, then |Ja(z,t9)] — 0 uniformly with respect to ¢g € I'. The
lemma is proved.

Let T be an arc of class C*, X € (0, 1]. Consider the integral

1 t—2z dt 1 _ 1
G = — = —— —
(2) 27m'/pt—zt—z 5t J A

1 i /dt
-~ 2mi b= 2]1—4(a) rt—=z

— x| X200, (1) - exp(-2ivapfa) ~ [ AN

r t—z

)

t = y1(0) + iy2(0). Using Lemma 2(1) and [II, sect. 15], we observe that the function
G(z) is continuously extensible to I" from the left and from the right in all points except
ends. If tg = x1(s) + iza(s) is an interior point of T' and z — ¢y € I'*, then, using the
Plemelj formulae [I], we derive the limit values of G(z) on I'* and T'":

GE(to) = j:% exp(—2ia(s)) + Glto), (5)

where

Glto) = -, [e=20(a(6). V) _ ~2i0(a(s).y(a) / W

is the direct value of G(tp) on I'. It follows from the properties of Cauchy integrals
that G(tg) is continuous on T' in interior points, since the density in G(to) is a Holder
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continuous in ¢ function according to Lemma 2(1). Integrating by parts and using the
definition of the singular integral, one can show that

Glto) = - / E—to_dt (6)

T omi Jot—tot—ty

This integral is defined if ¢y is an interior point of I' and is studied in Lemma 6. We
summarize the obtained results in the following lemma. O

LEMMA 8. Let I' be an open arc of class C*, X € (0,1]. Then: 1) the function G(z)
is continuously extensible to I' from the left and from the right in all points excluding
endpoints; 2) the limit values of G(2) on I't and on '~ are continuous in the interior
points of I'; 3) for limit values of G(z) on I't and I'~, the formulae (5) hold.

Using the integrals J[{i](z) and G(z), we represent the integral I[fi](z) in the form

i) = 5 | MO T2 0 i) + )G), =@ )

T oM t—zt—=z

Now we prove the theorem.

THEOREM 2. Let I' be an open arc of class C'*, X € (0,1], a(t) € CZ(I), ¢ € [0,1),
B € (0,1]. Then: 1) the function I[f](z) is continuously extensible to I" from the left
and from the right everywhere, except endpoints; 2) the limit values of I[](z) on T'F
and on I'” are continuous in the interior points of I'; 3) for the limit values of I[fi](z)
on I'" and on I'™ the following formulae hold:

I (to) = 3 exp(~2ia(s))ilto) + i o).

where z — tg € I'F, to = x1(s) + iz2(s), and

I[i](to) = iu(to)G(to) + J[0](to) = % /F %% ”

is the direct value of I[{](z) in the interior point of to of the arc I'.

REMARK. The singular integral

1 i(t) t— 1
- a(t) A
211 Ft—tot—to

is defined and is continuous in interior points of the arc I' by Lemma 6. The fact that this
integral is equal to [i(to)G(to) + J[f](to) can be verified directly, by taking into account
formula (6) for G(tp) and by using the definition of the singular integral.
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Proof. Let I be an arbitrary part of I' such that the ends of I are interior points of
T'. Obviously, it is sufficient to prove parts 1), 2) and 3) of the theorem for the arc T,
since for any fixed interior point ty € I' we always may choose I such that the small
vicinity of g on I' will consist of interior points of IV. Let the arc I be such a part of
I" that the ends of I'” are interior points of I' and the ends of I are interior points of
I, Clearly, ii(t) € C%3(I"). We divide the integral over T' in I[fi](z) into the sum of
two integrals: one of them is integrated over I' \ I/, while the other one is integrated
over I'”. The integral over I'\I'” is a continuous function of the variable z in the vicinity
of points of the arc I. To prove the theorem it is sufficient to consider the integral over
I in the formula (7) and to take into account properties of the functions J[ji](z) and
G(z), which are presented in Lemmas 7, 8. The proof of parts 1) and 2) is based on
Lemma 7 and is similar to the proof of the theorem from [I, sect. 15], which uses the
result from [I], sect. 9]. Part 3) of the theorem follows from Lemma 7 and from formulae
(5) for G*(to). O

THEOREM 3. Let T' be an open arc of class C1*, X € (0,1], u(s) € Cyla,b], we (0,1],

0
5 Elil(@) and -

I from the left and from the right in interior points and their limit values on I' and I'~
are given by the formulae

q € [0,1). Then the functions E[p](z) are continuously extensible to

0 £ [emiel) roa@)dt e o) -1t
<8785[“](x)> __Z[ 2 /Ft—to T Tomi /Ft—tot—todt}

_ & o 672iw(m(s)7y(0))Sin(w(x(s)7y(0)) —a(s)) ;
wﬂM) 2 — g

0 * Ciags) L €7 L a(dE e [ T
<8nsg[u](:€)> B [i“(s)e e+ 2mi /Ft—to T o /Ft—tot—tgdt}

— s e—Qia(s) i o e—in(z(s),y(d)) COS(¢($(S), y(O’)) — Oé(S)) o
()4 [ (o) 26—y

where to = x1(s) +iz2(s), t =y1(0) +iya(o), f(t) = p(o)e @),

Proof. According to part 2 of Lemma 2, the function fi(t) = u(o)exp (—ia(o)) be-
longs to (Cg(F) in the variable ¢, where § = min {\,w}. From [I Section 15] and from

Theorem 2 it follows that the functions 815 [¢](z) and 8%5 [#](z), defined by expres-
T s

sions (2), (3), are continuously extensible to I' from the left and from the right in interior
points. Setting x — x(s) € T (i.e. z — t° € T'*) in formulae (2), (3), and using both
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Theorem 2 and the Plemelj formulae [I], we deduce

(Zewme) =i [ehues0 + 7 [ 2

T

(5o~ ltlGlto)e™ ) - )Tt
+ efia(s) ~ ) )
(petti@) ==i "o [ A0~ alrlGita)e - = il

e / pltydt et / ) Tt
21 Ft—to 21 Ft—tot—to

_ {em(s) / plo)do em(s)/ (o) ezw(z,y(a))da]
r r

21 t—to 2mi t—to
_ L o e_QW(E(S)’y(U))Sin(w(x(5)7y(ff)) —a(s)) >
/Fu( ) 20 — 50| do,

™
9 - _ 1 —2ia(s) e_ia(S) ﬂ(t)dt
(geebil) = [eguteew + 25 [ A0

1 e ) P
i —2ia(s) / dt
pH(s)e RGP M —

) —ia(s) 0(t)dt ia(s) o(t) t—t
_ |::|:u(8)62wé(5) + € . / N( ) + € / N( ) 0dt:|
I r

211 t—to 271 t—tot—to

efia(s)

— p(s)e2els) _ / e—2itb(a()w(@) ) i(s)we) g,
r |z(s

) —y(o)|

_6”@ / o2l M) i) g,
21 Jp |$(5) - y(o—)‘

— dp(s)e B _ 1 / M(g)eﬁiw(m(s)w(@)COS(w(f(S),y(U)) - Q(S))d
T

iy

211

where to = x1(s) + iza(s), t = yi(o) +iyz(c) and fi(t) = p(o)e (). The theorem is

proved.

COROLLARY 1. If the conditions of Theorem 3 hold, then
VClu)(x), VS[ul(x) € CORZ\T \ Xr),

where Xt = {z(a) Uz(b)}.

REMARK. Each function of the class CO(R2\ T'\ Xr) is continuous in R? \ ' and is
continuously extensible to I' \ X1 from the left and right, but the limiting values of such
a function on I'\ Xt can be different from the left and right; i.e., the function may have

a jump on I' \ Xr.

5. Estimates of I[ji](z) at the ends of the arc I'. Now we will study the behaviour
of VE[p](x) in the neighbourhood of the ends of the integration line. For this purpose
we have to study the behaviour of the integral I[u](z) from (7) near the ends of the

arc I'.
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LeEMMA 9. Let T' be a smooth open arc ji(t) € C*?(T) and fi(t(a)) = 0 (or fu(t(b)) = 0).
Then the function I[j](z) is continuously extensible at the end t(a) (or (b)) of the
arc I'.

The proof will be given for t(a) (for ¢(b) it is analogous). We extend I' through the
end t(a) smoothly and set fi(t) = 0 on the added part. We denote the new extended arc
by I'V. Then fi(t) =0 on IV \ T and

1) = 5 [ o) 122 g,

21t Jppt— 2zt — 2z

In accordance with the properties of Holder functions [I], sect. 5.1], ju(t) € C%A(I”), and
the point ¢(a) is an interior point for the arc I'. Using Theorem 2 in the point t(a), we
deduce:

I [il(to(a)) = T[] (fo(a)) = — / i) t—iola) .

2mi Jp t —to(a) t — to(a)

The lemma is proved.

LEMMA 10. Let I' be a smooth open arc, a(t) € CJ(T'), B € (0,1], ¢ € [0,1), and
let v be an arbitrary number such that ¢ < v < 1. Then for points z, located in the
neighbourhood of the end ¢(d) of the arc T' (where d = a or d = b) the following estimate

holds:
const

< T Hap

[1[A] (=)

The proof of the lemma will be given for d = a, because for d = b the proof is similar.
Since fi(t) € CJ(T'), we observe that ji(t) can be expressed in the form

fio(t)

|t = t(a)le]t —t(b)]*”
where fig(t) € C%P(T). Let the arc I C T' be such that its ends are the point #(a) and
some interior point of T'. The integral I[u](z) can be represented in the form of a sum
of two integrals; one of them is over [, while the other one is over I'\ I. Obviously, the
integral over T\ [ is continuous and so is bounded if the point z is placed in the vicinity
of the point #(a). Hence, this integral satisfies the estimate required in the lemma.

Now we will prove the estimate for the integral over [:

1 pe(t) t—2z dt
2mi Jy [t —t(a)|4t — 2z t — 2’

) =

Io(2) =

where [, (t) = fio(t)|t — t(b)| 77 € C*A(1), because t(b) ¢ I. Consider

=t i) = o (BRI 222

[t —t(a)" 7 t—2z
. - [k (t) dt.
27m/ t—=z t—=z ()

Since the function |t — ¢(a)|"%/i.(t) is Holder continuous on ! and is equal to zero as
t = t(a), we observe that the second integral is bounded as z — t(a) by Lemma 9.
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The first integral in the right part we denote by I; and consider this integral. Since
[|z —t(a)|” — |t — t(a)|]"] < |z — |7 according to [Il sect. 5], we have

const 1 1
<% / —
™ Syt —tla)|? |t — 2t

z—t
where we took into account that |f.(t)] < const on ! and ‘Z—t’ = 1. In the same way
P
as in [Il sect. 23.1], we obtain that |I;| < const, since ¢ + 1 — v < 1. Therefore,
|2 — t(a)|"[Ho(2)| < const,

and so

const
I <
()] < -

(@)

From here we obtain the statement of the lemma.

6. Asymptotics of I[fi(t)](z) at the ends of the arc I'. Let us study the behaviour
of the integral

16) = o1 | ity =B - (5= D) S Ta(a), 0

1 t—D dt 1 1 dt
Ti(z) = — (z)=— | —————
1(2) zm-/r(t—p)q (t—2)2 2(2) = 55 /F (t—D)(t—z)
where D = ¢(d) and d = a or d = b. In other words, D = t(a) or D = t(b). It is shown
in [II, sect. 23.2] that if z is placed near D and z ¢ T', then

eiﬂ'qé(D) 1
2isin(nq) (z — D)

Ty(z) = 6(D) S+ 0P(2), (9)

where
1, if D=t(a), ie. d=a
D — 9 ? )
o(D) { -1, if D=1t(b), i.e d=b.
The function QP (z) is analytic in the neighbourhood of the point z = D. By (z — D)?
we mean the single-valued branch of this function in the neighbourhood of the point D,

cut along I'. It is assumed that the function (z — D)9 takes the value (¢t — D)? (see (8))
on the left side of I (i.e. on I'"). Differentiating (9), we obtain

_d emdD) 2D 1
—(z—-D)—1 =qd(D
(2 )dz 2(2) = a0 )Qi sin(mq) z — D (2 — D)1

(10)

—(z-D)07(»),  (11)

d
where QF () = —QP(2) is an analytic function in the neighbourhood of the point D.

Assuming that t = (o) = (y1(0) +iy2(0)) € I' and integrating Z; () by parts, we obtain

1 t—D 1 1 1 t—D
()= —— | — = g =~ g = Qb
1(2) 2m‘/r(th)thfz Qm'/thzd(th)qu 0(2)

1 [eplo) 1 b 1 /@p(t) 1 b
2m’/p t—z (t—D)qda“L 0 () =35 rt—2 (t—D)th+ 0 (2);
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where QF () is an analytic function in the neighbourhood of the point D; more precisely,
1 &) —t(a) 1

W =~ 5m ) ey 2 L2
1 #(a)—f0b) 1 o
W) = o e Sty i@ = T D =10)
Since - - ~ -
d _to)—D _ #(o)(t(c) — D) — q(t(c) — D)1~ (¢(o) — D)t'(0)
do (t(c) — D) (t(o) — D)2
and since t'(0) = ¢*(?) () = e~ *(?) we have
op(0) = (te) = D) ot = emie(®) — qr D=
_ emi0(0) _ ge2it((d)y(@)) giale)
¢n(t) = ¢p(t(0)) = ¢p(o)e .
Here
| w(a), if D=1t(a), ie. d=a,
z(d) = { z(b), if D =t(b), ie. d=b. (12)

If T is an open arc of class C'*, then, according to Theorem 4(1):
¢p(o) € COMa,b].
Hence, by Lemma 2(1), ¢p(t) € COMNT). Set e~i@(e) = gmialat0) = o=iald) — o=ia(b=0)
Obviously, if o € [a, b], then
(

lim e~ 2% (z(a),y(0)) — ,—2ia(a) lim e~ 2% (@(0).y(e)) _ ,—2ia(b).

) )
o—a o—b

consequently, if t € ', then

e~2iela)(1 —q), if D=t(a), ie. d=a,

D = 1i D = . 1
#p(D) = Jim & (?) { e=200) (1 —q), if D =t(b), ie. d=b. (13)

We write Z;(z) in the form
¢p(D) / 1 dt + 1 [ ¢p(t)—¢p(D) dt
2ri  Jp (t—=D)1t—z  2mi Jp (t—D)1 t—=z
The second integral is an analytic function in the z variable in the neighbourhood of the
point D, cut along I'. If A > ¢, then the second integral is bounded (and continuous)
when z — D in accordance with [T} sect. 18.1]. If 0 < A < ¢ < 1, then for any gy € (0, \):
¢p(t) — ¢p(D) 0,A—
CH A (T
(t— D)1 < (T)
(see [T, sect. 18.3]). Therefore, it follows from [Il sect. 22.2] that if z is placed near D
and z ¢ T, then, for the second integral in (14), the following estimate holds:
/ ¢p(t) —¢p(D) dt | _ / ¢p(t) — ép(D) 1 dt
T (t—D)1 t—=z r ({t—D)o (t—D)I®t—z
const
~ |z —=DJ|i% ’

Ii(z) = + 08 (2). (14)
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If z is placed near D and z ¢ T, then applying the formula (9) to the first integral in the
right-hand side of (14), we obtain
D) e.i7r.q5(D) 1
2isin(mq) (z — D)2
The designation ¢p (D) is defined in (13). By Q2 (z) we denote the sum of three functions,
namely, the second term in (14), the function QF(z) from (14) and the function QP (z)
from (9). Recall that QP (z) and QF(z) are analytic functions in the neighbourhood of
the point D. Thus, the function Q& () is analytic in the neighbourhood of the point D,
cut along I'. Tt follows from the expression for QP (z) that QF(z) is continuous when
z—=Dif1>X>¢g>0. If 0 < X <gq <1, then the estimate

+ 0P (2). (15)

const

’QQ |* |z — D|a—

holds for any ¢qp € (0, ) and for any z, placed outside I" near D. From relationships (8),
(11), (15), we obtain that, for z lying near D outside I, the following formula holds:
7 D ei7'rq§(D) 1
I(z) = | vp(D
(2) (('OD( )+ 7 D) 2isin(nq) (z — D)4
The constants ¢p(D) and 6(D) have been introduced in (10) and in (13). The properties
z e~ 2itb(@.a(d)).

+Q7(2) = (- D)7 (2).  (16)

of the functions QP (2) and QP (z) are described above. Note that z —

where the constant z(d) is given by the formula (12). Let i(t) = —+—, »(t) €

CY%A(T), B € (0,1]. Then
1p)(z) =
where I[fi](z), Z(z) are defined in (7), (8

o) L/Fﬁ(t)—u(D)t—z dt

( ()+9() (17)

" omi
If 8 > q, then according to [1I, sect. 6.3],
o(t) — v(D)
(t— D)
and by Lemma 9 the function ©(z) is continuous when z — D. If 0 < 8 < ¢ < 1, then
for any q1 € (¢ — 3,q) we choose gy € (¢ — q1, ) and rewrite ©(z) in the form

@(z):i/rﬁ(t)_ﬁw) 1 t—z dt

€ COP~T)

2mi (t—D)wo (t—D)1—0t—z2t—2z
Clearly,
o(t) = o(D) _ ~0.6-a0
, r
(t _ D)qo e C ( )?

and ¢ — qo < q1 < q. Therefore, if 0 < § < g < 1, then from Lemma 10 it follows that
for z lying near D outside I the estimate
const

© ()|Sm

holds for any ¢; € (¢— 3, q). Let us formulate the obtained result in the form of a lemma.
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o(t)
(t —D)a
q € (0,1), »(t) € COP(T), B € (0,1] and D = t(a) or D = t(b). If z lies in the
neighbourhood of the point D and z ¢ T, then the integral I[u](z) can be represented in
the form (17), where Z(z) is given by formula (16).

LEMMA 11. Let ' be an open arc of class C*, X € (0,1]. Let fi(t) = , where

COROLLARY 2. Let the conditions of Lemma 11 hold. If z lies near D and z ¢ T, then

the following estimate holds:

const
N < —
A <

7. Singularities of derivatives of £[u|(z) at the ends of the arc T'. Let z =
(z1,22) €T, y(o) = (y1(0),y2(0)) €T Since

Ve @u(@) — (ieiw(ww—)) siny(2,9(0)) . —ip(auie) 5P, y(J))>

[z —y(o)| |z —y(o)|
we have
i _ _i —2i(z,y(0)) sin¢(x,y(a))
8.731 g[u](x) - i T u(o)e Y |ZIJ _ y(O’)| do (18)
1 . 1 t—z 1
T Tor Fu(t) [tz a tztz} at,
i _ i —2i(z,y(0)) COS¢($7 y(O’))

1 1 t—z 1
=—— [ a dt
2mi FM(){tz—i—tztz} ’

where t = (y1(0) +iyz(0)) €T, 2z = (z1 +izs) ¢ T, and fu(t) = p(o)e "),
Let T' be an open arc of class C**, X € (0,1]. Let u(o) = |M1(Ud)|q’
o —
d="b, q€(0,1) and p;(c) € C**a,b], w € (0,1].
From the results of Lemma 1 in [4], it follows that

t(o) — t(d)
o —d|

where d = a or

€ C%a, b].

The function €9 on the complex plane of the variable ¢ belongs to the class C! in any
simply connected bounded domain, not containing the point £ = 0 (by £? we mean

M # 0 for each
o —d|

the fixed branch, which is continuous in this domain). Since

o € [a,b], we have

t—D

v(o) = (M> u(o) € (CO’B[a, b], 8 = min{w, \}.
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Set #(t) = v(t(0)) = v(o)e "), Then by Lemma 2(1), #(t) € C*#(T'). Since fji(t) =
f(t(0)) = u(o)e @) we obtain

lt) = pl(o)eio) = %

Substitute f(t) into (18), (19). From the results of [I} sect. 22] and from Lemma 11, we
obtain

(20)

THEOREM 4. Let I' be an open arc of class C*, X € (0, 1];

o) = 1T g e julo) € V], w e (0.1)

d=aord=>0. Let

o10) = o(t(0)) = (TG0 ) m(opee (21)

Then #(t) € C%?(T), where 3 = min{w,\} and for points z = z; + izg, lying near
D = t(d) outside I, the following asymptotic formula holds:

9 o, PN p(D)
@EM(@ = —0D)* 5 sin(rq) (2 — D)d
X {1 +(=1) <¢D(D) + qj_ﬁ)] +00(2), =12

Here ©¢(z) is continuous when z — D if 3 > ¢. If 0 < 8 < ¢ < 1, then for z, lying near
D = t(d) outside T, the following estimate holds:

const

© < —

| O(z)‘ = ‘Z—D|q1’
where ¢; is an arbitrary number, such that ¢; € (¢ — §,¢). The parameters §(D) and
@p(D) are defined in (10), (13). By (¢ — D)7 we denote the branch that is analytic in
the neighbourhood of D cut along I" and that takes the value (¢ — D)7 on I't (see (20),
(21)). In addition,

(D) = lirrb v(t(o)), where o € (a,b).

COROLLARY 3. Let T' be an open arc of class C'*, X € (0,1] and pu(s) € C¥[a, ],
w € (0,1], ¢ € (0,1). Then for points z, lying near z(d) outside I' (d = a or d = b) the
following estimate holds:

0 const
— < T - .
|8$JE[M](:E)‘7 |1‘—$(d)|q7 J 1,2

Let T’ be an open arc of class C1'*, \ € (0,1]. If u(o) € C**[a,b], w; € (0,1], then
the function p(o) can be represented in the form

_ (o)
/J‘( )_ ‘O’—d‘q7

for any ¢ € (0, 1), where
(o) = plo)lo — dl € ¥l ], w = minfg,w1},
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d=a or d ="0. It follows from Theorem 4 that in this case,

%swu)

const

< ma Ji=12, (22)

for any g € (0,1) and for all x lying near z(d) outside I". Hence, the following statement
holds.

COROLLARY 4. Let I' be an open arc of class C'*, X € (0,1] and u(o) € C%1[a,b],
w1 € (0,1]. Then estimate (22) holds for any ¢ € (0,1) and for all points x lying near the
point z(d) outside I' (d =a or d = D).

8. Pressure potential for Stokes equations. The goal of this section is to study
properties of a pressure potential for the Stokes equations [2]:

Plua, pol(z) = Pepa](x) + Ps[pa](z),

where

o |z — y(o)
cos (z, y(0)) = m, siny(x,y(0)) = T; : zig)7

y(0) = (y1(0),92(0) €T, |z —y(o)| = V(21 — y1(0))? + (22 — 12(0))2.

Densities 11(s), ua(s) are assumed to be integrable and real-valued. Let z = x1 + ixa,
t = t(o) = (y1(0) +iyz(0)) € T. Then dt = t'(0)do = €*“do and z — t(o) =
|z — y(o)|e@¥(@), Assuming that u(s) is a real integrable density, we consider the
complex potential

Pplu)(x) = Pelul(x) — i Ps[pl(z)

1 e~ (z,y(o)) J 1 1 4
= 5 O e = 5 MO e

1 Ciagey ] 1 / o1
_ o dt = —— t)——dt
o7 F,u(a)e z —t(o) 2 FM( )tfz ’

where i(t) = p(o)e™* ). In Pg[u](z) we may take either i = puy or pr = po. Therefore,
to study functions P.[u1](z), Ps[pe](z), it is sufficient to study a function Pg[u](z) and
to take its real or imaginary part.

THEOREM 5. Let I' be an open arc of class C*, X € (0,1], ¢t = t(0) = (y1(0) + iy2(0)) €
I'. Let u(o) € C¢a,b], we (0,1], g€ [0,1). Then

1) the function Pg[u](z) belongs to C°(R2 \ I'\ X1)NC?(R?\T'), where Xt = z(a)Uz(b)
is a set of endpoints of T';
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2) the limiting values of the function Pg[u](z) on T in the interior points are given
by the formula

PE[N](x)‘m(s)eFi = —1 (i%e_io‘(s)u(g) + i /F Lt)dt)

211 t— to
1 . 1 —ip(x(s),y(o))
— —Z (:l:—e_za(S),LL(S) _ _/ /"L(S)e do_) ,
5 3t Je T~ 9(o)]

where tg = to(s) = (x1(s) + iza(s)) € I' and the integral is understood in the sense of a
principal value;

3) for any point « ¢ I" placed in a small neighbourhood of the endpoint z(d) (d = a
or d = b), the following estimate holds:

where § = ¢ if ¢ € (0,1) and 0 is an arbitrary number from the interval (0, 1) if ¢ = 0.

REMARK. The definition of the functional class CO(R2 \ T'\ Xr) is given in the remark
to Corollary 1.

Proof of the theorem. According to Lemma 2(2), if u(o) € C¢[a,b], w € (0,1], ¢q €
[0,1), and if fu(t) = pu(o)e (). Then fj(t) € CH(I'), 8 = min{w, A}. Using properties of
Cauchy-type integrals from [I], sections 15, 16, 22], we observe that points 1)—3) of the
theorem hold for the Cauchy-type integral Pg[u](z) with the density fi(t). O

THEOREM 6. Let T' be an open arc of class C1*, X\ € (0,1];

__nlo)
IU‘(J) - |O’—d|q,

d=aord=>b. Let

g€ (0,1); n(o) € C®%a,b], we(0,1];

o(0) = o(tt0)) = (UZ=HDY oy,

Then 2(t) € C%(T'), where B = min{w,\} and for points z = 1 + izy, lying near
D = t(d) outside T, the following asymptotic formula holds:
eiqm‘ ﬁ(D)
P = (C]
olil(@) = Fg s p + Oole)

the upper sign is taken if d = a, while the lower sign if d = b. The function O(z) is
continuous as z — D if 8> ¢. If 0 < 8 < g < 1, then for z, lying near D = ¢(d) outside
T", the following estimate holds:

const
© < —
| O(z)‘ = ‘Z—D|q1’
where ¢; is an arbitrary number such that ¢; € (¢ — 3, q). Moreover, ©¢(z) is analytic in
the neighbourhood of D cut along T'. By (2 — D)? we denote the branch that is analytic
in the neighbourhood of D cut along I" and that takes the value (¢ — D)? on I'". In
addition,

(D) = lim 2(t(o)), where o € (a,b).



SOME INTEGRALS RELATED TO POTENTIALS FOR STOKES EQUATIONS 569

The proof of the theorem follows from the properties of Cauchy-type integrals pre-

sented in [I] sections 22, 6.3, 15.2].

(1]
(2]

(3]
(4]
(5]
[6]

[7]
(8]

(9]
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