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Abstract. We prove the well-posedness, locally in time, of the motion of two fluids
flowing according to Darcy’s law, separated by a sharp interface in the absence of surface
tension. We first reformulate the problem using favorable variables and coordinates.
This results in a quasilinear parabolic system. Energy estimates are performed, and
these estimates imply that the motion is well-posed for a short time with data in a
Sobolev space, as long as a condition is satisfied. This condition essentially says that
the more viscous fluid must displace the less viscous fluid. It should be true that small
solutions exist for all time; however, this question is not addressed in the present work.

1. Introduction. Hele-Shaw flow is best known as a model for the motion of two
fluids trapped in a narrow gap between two parallel plates. As such, Hele-Shaw fluids are
considered to be two-dimensional. The fluids, rather than satisfying the Navier-Stokes
equations, flow according to Darcy’s Law, which says that the fluid velocity is propor-
tional to the pressure gradient. While the interpretation of the equations as representing
such a fluid flow is necessarily limited to the two-dimensional case, Darcy’s Law provides
a model for certain fluid flows in three dimensions; there are physical situations in which
such a model is relevant. For example, a Darcy flow could arise as a limit of a porous
media flow [8], or relating to tumor growth [7, 12], or through the Stefan problem [13].
For further examples, we refer the reader to the references of [9].

This paper proves the well-posedness, locally in time, of a two-phase Darcy flow in
three dimensions, without surface tension at the interface. The author has proved the
corresponding result for two-dimensional flow in [2]. There, the method used is the
same as in [1] to prove well-posedness of a vortex sheet with surface tension in two
dimensions. The method makes use of several ideas from the numerical work of Hou,
Lowengrub, and Shelley for vortex sheets and Hele-Shaw problems [14, 15]. In particular,
convenient variables and parameterizations are chosen, and the most important terms
are found from the singular integrals in the problem (Hou et al. call this finding a small-
scale decomposition). This allows the equations of motion to be written as a semilinear
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hyperbolic system in the case of the vortex sheet with surface tension, a semilinear
parabolic system in the case of Hele-Shaw flow with surface tension, or a quasilinear
parabolic system in the case of Hele-Shaw flow without surface tension.

Analytically, once the system has been rewritten in this way, energy estimates can be
performed, and the system can then be proved to be well-posed, locally in time, using
standard techniques. In two dimensions, the variables used to describe the free surface
(the interface between the two fluids), which is a one-dimensional curve, are the tangent
angle the curve forms with the horizontal and the arclength. Furthermore, an arclength
parameterization is chosen, so that arclength is essentially eliminated from the problem.

In three dimensions, there is no clear, direct analogue of arclength. In the two-
dimensional case, the tangential velocity of the interface was used to enforce the arclength
parameterization. In the three-dimensional case, there are two tangential velocities of
the interface, so we may use these to enforce two conditions on the parameterization.
This will be described in more detail below; we will say for now that we choose the
coordinates to be isothermal (see (2) below). These coordinates have been used in [3]
to prove well-posedness of a vortex sheet with surface tension in three dimensions. Such
coordinates were chosen for that problem at the suggestion of Jalal Shatah; the author
thanks him for several helpful conversations.

Other authors have addressed well-posedness of similar flows. Escher and Simonett
have proved existence and uniqueness of solutions for one-phase multi-dimensional Hele-
Shaw flow with surface tension in [9]. Chen and Friedman have proven well-posedness for
a model which couples a Darcy flow with reaction-diffusion equations, modeling tumor
growth, in [7]. Global existence for small data for such problems has been proved by
Escher and Simonett for the one-phase or two-phase problem with surface tension [10]
and by Friedman and Reitich [13] for the multidimensional Stefan problem with surface
tension. In [8], a porous media problem is treated in two and three space dimensions; in
this case, the two fluids are taken to have the same viscosity but different densities. In
two space dimensions, it has been proved that small solutions to the Hele-Shaw problem
without surface tension exist for all time [18].

The plan of the paper is as follows: in Section 2, we provide the formulation of
the problem. Since the flow is a potential flow (the velocity in the interior of either
fluid is a gradient and is divergence free), it is sufficient to analyze quantities only on
the free surface. We explain the variables used to describe the free surface and the
parameterization in Section 2. In subsection 2.2, we have a discussion of the Birkhoff-
Rott integral, and how we understand it in relation to Riesz transforms. We begin Section
3 with a few estimates of quantities such as the velocities in terms of the mean curvature
of the free surface. Then, we have an energy estimate for the mean curvature. We state
our conclusions in Section 4.

We conclude the introduction with a couple of remarks. First, we will be proving an
energy estimate with κ, the mean curvature of the free surface, in the Sobolev space
Hs. We do not determine the minimum s for the argument to work. It is possible that
s ≥ 3 is sufficient; it certainly is the case that s ≥ 6 is sufficient. As a final introductory
remark, we note that the method of the present paper does work when surface tension
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is included. As problems with surface tension have been studied extensively by other
authors, we look only at the case without surface tension.

Remark. It is understood that when we say X ∈ Hk, this means that X(α, β) −
(α, β, 0) is actually in Hk, since the surface X is asymptotic to the plane at infinity. This
convention applies as appropriate.

2. The formulation of the problem. We consider a free surface between two
three-dimensional fluids; the surface is thus two-dimensional and parameterized by the
spatial variable �α = (α, β). We write the Cartesian coordinates of the surface as X(�α) =
(x(�α), y(�α), z(�α)). We denote the unit tangent and normal vectors by

t̂1 =
Xα

|Xα|
, t̂2 =

Xβ

|Xβ |
, n̂ = t̂1 × t̂2.

The velocity of the free surface can be characterized by its normal velocity and by two
tangential velocities; that is,

Xt = U n̂ + V1t̂1 + V2t̂2. (1)

The normal velocity must be chosen according to the fluid dynamics (U = W ·n̂; this will
be explained below), but the two tangential velocities can be chosen to enforce a choice
of parameterization of the surface. If we introduce the first fundamental coefficients of
the surface,

E = Xα · Xα, F = Xα · Xβ , G = Xβ · Xβ,

then we will use V1 and V2 to enforce the conditions

E = G, F = 0. (2)

This implies that V1 and V2 must satisfy(
V1√
E

)
α

−
(

V2√
E

)
β

=
U(L − N)

E
, (3)

(
V1√
E

)
β

+
(

V2√
E

)
β

=
2UM

E
. (4)

To be clear, we remark that we define V1 and V2 to be the unique solution of (3), (4)
that decays at infinity.

The choice of the isothermal coordinates above has a beneficial consequence: E is
more regular than one might guess at first. If X ∈ Hk, then it turns out that E ∈ Hk

also, even though E is defined in terms of first derivatives of X. This is the content of
Lemma 4 below.

The free surface can be completely described by its first and second fundamental forms.
The first fundamental form is given by E, F, and G above. The second fundamental form
is given by

L = −Xα · n̂α, M = −Xα · n̂β = −Xβ · n̂α, N = −Xβ · n̂β .

It is well known that given any six functions, they are not necessarily the first and second
fundamental form of any surface; rather, three compatibility conditions must be satisfied.
We are furthermore specifying that E = G and F = 0. Thus, to be able to reconstruct
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the surface, we will only need to know E and some portion of the second fundamental
form. In particular, we will evolve the mean curvature of the free surface, which in these
coordinates can be expressed as

κ =
L + N

2E
.

We are able to infer evolution equations for E and κ from (1). A convenient form of the
evolution equation for κ is

(
√

Eκ)t =
1

2
√

E
∆U +

V1√
E

(
√

Eκ)α +
V2√
E

(
√

Eκ)β

+
UM2

√
E

+
L

2
√

E

(
V1√
E

)
α

+
N

2
√

E

(
V2√
E

)
β

. (5)

2.1. The µ equation. In each phase, we have the velocity

vi = − b2

12νi
∇(pi + ρigz).

The potential in each phase is then

φi = − b2

12νi
(pi + ρigz).

Since the fluids are incompressible (div(vi) = 0), we see that ∆φi = 0. Thus, we can
write φi using a double-layer potential representation with source strength µ :

φi(x, y, z) = ± 1
2π

∫ ∫
µ(α, β)

(x, y, z) − (x(α, β), y(α, β), z(α, β))
|(x, y, z) − (x(α, β), y(α, β), z(α, β))|2 ·n̂(α, β) dαdβ. (6)

The difference between φ1 and φ2 at the free surface is µ :

µ =
b2

12

(
−p1

ν1
+

p2

ν2

)
− b2

12

(
ρ1gz

ν1
− ρ2gz

ν2

)
. (7)

We will also be interested in the sum of the two potentials at the free surface:

φ1 + φ2 =
b2

12

(
−p1

ν1
− p2

ν2

)
− b2

12

(
ρ1gz

ν1
+

ρ2gz

ν2

)
. (8)

Solving (7) and (8) for p1 and p2 yields

p1 = −6ν1

b2
(µ + (φ1 + φ2)) − ρ1gz, (9)

p2 = −6ν2

b2
(−µ + (φ1 + φ2)) − ρ2gz. (10)

The boundary condition (in the absence of surface tension) is p1 = p2. Thus, solving (9)
and (10) for µ, we have

µ =
ν2 − ν1

ν1 + ν2
(φ1 + φ2) +

b2(ρ2 − ρ1)g
6(ν2 + ν1)

z. (11)

[Notice that (11) is an integral equation for µ, since we can write φ1+φ2 with the double-
layer potential representation (6) above. To write (11) explicitly as an integral equation,
we would just need to take the limit in (6) at the free surface. A version of the same
integral equation appears in many works in the area of free-surface flows, for example,
[19]. We briefly discuss the solvability of the integral equation in Lemma 6 below.]
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We use the names Aν = (ν1 − ν2)/(ν1 + ν2) and R = b2(ρ1−ρ2)g
6(ν1+ν2)

. Taking a derivative
of (11) with respect to α, we get

µα = −Aν(∇φ1 · Xα + ∇φ2 · Xα) − Rzα.

The limiting values of the velocities can be found with the Plemelj formulas; see [6] for
a discussion. These limiting values are

∇φi = W ± µα

2
√

E
t̂1 ± µβ

2
√

E
t̂2,

where the plus signs are taken for i = 1 and the minus signs are taken for i = 2. The
Birkhoff-Rott integral, W, will be defined and discussed in the next section. Thus, our
formula for ∇�αµ is

µα = −2Aν

√
EW · t̂1 − Rzα, (12)

µβ = −2Aν

√
EW · t̂2 − Rzβ . (13)

We will later obtain the quantities µαα and µββ , so we will need expressions for
derivatives of zα and zβ in terms of κ (or at least in terms of L, M, and N). We begin
with zα. Recall that t̂1 = 1√

E
(xα, yα, zα). So,

zαα =
(√

Et̂1 · (0, 0, 1)
)

α
.

Applying the derivative on the right-hand side, we have

zαα =
Eαzα

2E
+
√

E (̂t1
α · n̂)(n̂ · (0, 0, 1)) +

√
E(̂t1

α · t̂2)(̂t2 · (0, 0, 1)).

We use the name h = n̂ · (0, 0, 1) = 1
E (xαyβ − yαxβ). We now have

zαα =
Eαzα

2E
− Eβzβ

2E
+ Lh.

In the same fashion, we are able to find the following formula for zββ :

zββ =
Eβzβ

2E
− Eαzα

2E
+ Nh.

2.2. The Birkhoff-Rott integral. As usual, we can recover velocity from vorticity. The
fluids under consideration are irrotational in the interior of the fluid regions, but there
is a jump in velocity across the free surface. This implies that we have a measure-valued
vorticity, supported only on the free surface. Thus, we are led to a singular integral
(integrating over the free surface) for the velocity. It is the Birkhoff-Rott integral, which
in the case of three-dimensional fluids is

W(�α) = − 1
4π

PV
∫ ∫

(µ′
αX′

β − µ′
βX

′
α) × X − X′

|X − X′|3 d�α′,

where variables followed by a prime are evaluated at �α′ = (α′, β′) and variables not
followed by a prime are evaluated at �α = (α, β).

We approximate W in order to understand it better. In particular, we will understand
W as being a sum of some Riesz transforms plus some smooth terms. To this end, we
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now introduce the Riesz transforms. They are the operators H1 and H2, defined by

H1f(�α) =
1
2π

PV
∫ ∫

f(�α′)(α − α′)
|�α − �α′|3 d�α′,

H2f(�α) =
1
2π

PV
∫ ∫

f(�α′)(β − β′)
|�α − �α′|3 d�α′.

We will also need the operator Λ, defined as Λ = H1Dα + H2Dβ . If we take ξ = (ξ1, ξ2),
then the symbols of these operators are

Ĥ1(ξ) =
−iξ1

|ξ| , Ĥ2(ξ) =
−iξ2

|ξ| , Λ̂(ξ) = |ξ|.

A couple of important properties of the Riesz transforms are

(H2
1 + H2

2 )f = −f, H1Dβf = H2Dαf.

(The first identity above requires f̂(0) = 0.) Important properties of Λ include the fact
that Λ is selfadjoint and that (∫

f2 + fΛf

)1/2

is equivalent to ‖f‖1/2.

We introduce three more operators, K[X], J [X], and J1[X]. They are

K[X]F(�α) =
1
4π

PV
∫ ∫

F(�α′) × K(�α, �α′) d�α′,

J [X]F(�α) =
1
4π

PV
∫ ∫

F(�α′) × J(�α, �α′) d�α′,

J1[X]F(�α) =
1
4π

PV
∫ ∫

F(�α′) × J1(�α, �α′) d�α′.

The kernels K, J, and J1 are given by

K(�α, �α′) =
X − X′

|X − X′|3 −
X′

α(α − α′) + X′
β(β − β′)

E′3/2|�α − �α′|3

−
1
2X

′
αα(α − α′)2 + 1

2X
′
ββ(β − β′)2 + Xαβ(α − α′)(β − β′)
E′3/2|�α − �α′|3

+
3
4

(
Eα′(α − α′) + E′

β(β − β′)
)(

X′
α(α − α′) + X′

β(β − β′)
)

E′5/2|�α − �α′|3 , (14)

J(�α, �α′) =
X − X′

|X − X′|3 −
X′

α(α − α′) + X′
β(β − β′)

E′3/2|�α − �α′|3 , (15)

J1(�α, �α′) = (Dα + Dα′)J. (16)

We can now use these operators to understand W better. We introduce the notation
g = µβXα − µαXβ . Simply by adding and subtracting, we can write W as

W = H1

(
g × Xα

2E3/2

)
+ H2

(
g × Xβ

2E3/2

)
+ J [X]g.
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Carrying out the cross product, this is the same as

W = H1

( µα

2E1/2
n̂
)

+ H2

( µβ

2E1/2
n̂
)

+ J [X]g.

We introduce the notation O(Hk); this will denote any function whose norm in Hk

can be bounded by ‖X‖s+2. In particular, we will prove in Section 3.1 that E and µ are
of the form O(Hs+2).

We take an α derivative of W, yielding

Wα = H1

( µαα

2E1/2
n̂
)

+ H2

( µαβ

2E1/2
n̂
)

+ H1

( µα

2E1/2
n̂α

)
+ H2

( µβ

2E1/2
n̂α

)
+ DαJ [X]g + O(Hs+1). (17)

The terms which we have included in the O(Hs+1) term above are those which have
derivatives on E. We use the geometric identity

n̂α = − L

E1/2
t̂1 − M

E1/2
t̂2.

We also pull the vectors outside of the Riesz transforms, incurring only a smooth com-
mutator. That the commutator is smoothing is the content of Lemma 3 (of Section 3.1)
below. We have

Wα = H1

( µαα

2E1/2

)
n̂ + H2

( µαβ

2E1/2

)
n̂ − H1

(
µαL

2E

)
t̂1

− H1

(
µαM

2E

)
t̂2 − H2

(
µβL

2E

)
t̂1 − H2

(
µβM

2E

)
t̂2 + DαJ [X]g + O(Hs+1). (18)

Furthermore, we can prove that DαJ [X]g is actually also of the form O(Hs+1). To begin,
we notice that (by integrating by parts), we can write

DαJ [X]g = J [X](Dαg) + J1[X](g),

where J1[X] is the integral operator defined above. Lemma 2 below implies that J1[X](g)
is in fact in Hs+1. We thus only need to show that J [X](Dαg) is also O(Hs+1). To this
end, we write

4πJ = 4πK +
1
2X

′
αα(α − α′)2 + 1

2X
′
ββ(β − β′)2 + X′

αβ(α − α′)(β − β′)

E′3/2|�α − �α′|3

− 3
4

(E′
α(α − α′) + E′

β(β − β′))(X′
α(α − α′) + X′

β(β − β′))

E′5/2|�α − �α′|3
. (19)

The terms with fractions on the right-hand side of (19) lead to terms in Hs+1, since
the associated integral operators are smoothing by one derivative. That K[X](Dαg) is in
Hs+1 is implied by Lemma 1 below. This proves that DαJ [X](g) is of the form O(Hs+1).

Lemma 1. If X ∈ Hs+2 and F ∈ Hs−1/2, then K[X]F is in Hs+1, with

‖K[X]F‖s+1 ≤ c(1 + ‖X‖s+2)2‖F‖s−1/2.

Lemma 2. If X ∈ Hs+2 and F ∈ Hs+1/2, then J1[X]F is in Hs+1, with the estimate

‖J1[X]F‖s+1 ≤ c(1 + ‖X‖s+2)2‖F‖s+1/2.



196 DAVID M. AMBROSE

We do not prove Lemma 1 or Lemma 2 here. Instead, we refer the reader to [3] for
details.

We are left with the following formulas for the tangential components of ∇W :

Wα · t̂1 = −H1

(
µαL

2E

)
− H2

(
µβL

2E

)
+ O(Hs+1), (20)

Wα · t̂2 = −H1

(
µαM

2E

)
− H2

(
µβM

2E

)
+ O(Hs+1), (21)

Wβ · t̂1 = −H1

(
µαM

2E

)
− H2

(
µβM

2E

)
+ O(Hs+1), (22)

Wβ · t̂2 = −H1

(
µαN

2E

)
− H2

(
µβN

2E

)
+ O(Hs+1). (23)

We also have the following formula involving the normal component of ∇W :

(Wα · n̂)α + (Wβ · n̂)β =
1
2
Λ

(
µαα + µββ√

E

)
+ O(Hs). (24)

To find the formula (24), it is necessary to use H1Dβ = H2Dα.

From the definition U = W · n̂, and using basic geometric identities, we can write

∆U = [(Wα · n̂)α + (Wβ · n̂)β] +
(

(W · t̂1)
(
− L√

E

)
+ (W · t̂2)

(
− M√

E

))
α

+
(

(W · t̂1)
(
− M√

E

)
+ (W · t̂2)

(
− N√

E

))
β

. (25)

We use the above formulas to rewrite this to get to the most important parts:

∆U =
1
2
Λ

(
µαα + µββ√

E

)
−(W · t̂1)

(
Lα + Mβ√

E

)
−(W · t̂2)

(
Mα + Nβ√

E

)
+O(Hs). (26)

We now get from (5)

κt =
1

4E
Λ

(
µαα + µββ√

E

)
− (W · t̂1)√

E

(
Lα + Mβ

2E

)
− (W · t̂2)√

E

(
Mα + Nβ

2E

)

+
V1√
E

κα +
V2√
E

κβ + O(Hs). (27)

This can be understood better using the following:

Mβ = −(Xβ · n̂α)β = −Xβ · n̂αβ + O(Hs) = −(Xβ · n̂β)α + O(Hs) = Nα + O(Hs),
(28)

Mα = −(Xα · n̂β)α = −Xα · n̂αβ + O(Hs) = −(Xα · n̂α)β + O(Hs) = Lβ + O(Hs).
(29)

The previous κt equation can then be written

κt =
1

4E
Λ

(
µαα + µββ√

E

)
+

V1 − W · t̂1

√
E

κα +
V2 − W · t̂2

√
E

κβ + O(Hs).
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Using (12), we see that an exact calculation of µαα is

µαα = −2Aν

√
EW · t̂1

α − Rzαα − Aν√
E

EαW · t̂1 − 2Aν

√
EWα · t̂1

= −2Aν(W · n̂)L − RLh − 2Aν

√
EWα · t̂1

+ 2Aν(W · t̂2)
Eβ

2
√

E
− Aν√

E
EαW · t̂1 − REαzα

2E
+

REβzβ

2E
. (30)

We can use the formulas for ∇W to rewrite this as

µαα = −2AνLU − RLh − Aν

√
E

(
−H1

(
µαL

E

)
− H2

(
µβL

E

))
+ O(Hs+1).

Similarly, we have for µββ the equation

µββ = −2AνNU − RNh − Aν

√
E

(
−H1

(
µαN

E

)
− H2

(
µβN

E

))
+ O(Hs+1).

Using this with the above, we get

κt = −Λ
(

1√
E

[
AνU +

Rh

2

]
κ

)
+

(
V1 − W · t̂1

√
E

− Aνµα

2E

)
κα

+
(

V2 − W · t̂2

√
E

− Aνµβ

2E

)
κβ + O(Hs). (31)

Here, we have made use of the formulas

ΛH1 = −Dα, ΛH2 = −Dβ ,

which can be seen simply from the symbols.
2.3. The initial value problem. We have only one step left in rewriting the equations.

In the first term on the right-hand side of (31), we pull all but κ in front of the operator
Λ. As Λ is a first-order derivative operator, this will incur a remainder of the form O(Hs)
since U and h are of the form O(Hs+1). That U = O(Hs+1) is proved in Lemma 8 below.
So, we make the definitions

k(�α, t) =
AνU + Rh

2√
E

, (32)

(T1, T2) =
(

V1 − W · t̂1

√
E

− Aνµα

2E
,
V2 − W · t̂2

√
E

− Aνµβ

2E

)
. (33)

We finally have our preferred form of the evolution equation for κ,

κt = −kΛ (κ) + T1κα + T2κβ + O(Hs). (34)

We insist upon a condition on the initial data. The above equation makes clear that the
evolution equation for κ is parabolic. Thus, if k < 0, it is an ill-posed parabolic equation,
and if k > 0, it is a well-posed parabolic equation. (The case k > 0 is sometimes called
the “stable case”.) We make the following assumption on the initial data, so that we are
considering the stable case: we assume there exists a positive constant k̄ such that for
all �α,

k(�α, 0) > k̄ > 0. (35)
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Furthermore, we also need to assume that the initial surface is non-self-intersecting. To
that end, we assume there exists a positive constant c̄ such that for all unequal �α and �α′,

|X(�α, 0) − X(�α′, 0)|
|�α − �α′| > c̄ > 0. (36)

Since we are looking for smooth solutions, the fact that (35) and (36) are satisfied will
ensure that at later times, at least for a positive amount of time, we will have

k(�α, t) > k̄ > 0,
|X(�α, t) − X(�α′, t)|

|�α − �α′| > c̄ > 0. (37)

3. Estimates. We will perform estimates for κ ∈ Hs; thus, we will have X and E in
Hs+2, and Λ(µ) ∈ Hs+1. We begin with estimates of the quantities related to κ, such as
µ and the velocities, before proceeding to an energy estimate. We remind the reader of
our remark in the introduction: we do not count the minimal s. In all of the following
estimates (and in any estimates occurring earlier in this paper), it is assumed that s is
“large enough”.

3.1. Auxiliary estimates. We begin with a lemma about commutators, and then we
give lemmas about the regularity of E and X.

Lemma 3. If f ∈ Hs+1 and g ∈ Hk, then [Hi, f ]g ∈ Hmin{k,s}+1.

Proof. If k ≥ s, then this is proved in [3]. In the other case, k < s, the argument of
the same theorem in [3] applies. This proves the lemma. �

Lemma 4. If X ∈ H�, then E ∈ H�.

Proof. We calculate ∆E :

∆E = (Xβ · Xβ)αα + (Xα · Xα)ββ.

A simple calculation shows that this is the same as

∆E = (Xα · Xβ)αβ + O(H�−2).

Since the isothermal parameterization requires Xα · Xβ = 0, the result follows. �

Lemma 5. If κ ∈ Hs and X ∈ Hs+1, and X is parameterized according to (2), then
X ∈ Hs+2.

Proof. To start, since we have X ∈ Hs+1, we have E ∈ Hs+1. Next, we have the
following calculation of derivatives of the normal vector:

∆n̂ · t̂1 = n̂αα · t̂1 + n̂ββ · t̂1

= (n̂α · t̂1)α + (n̂β · t̂2)α −
(
(n̂α · t̂2)β − (n̂β · t̂1)β

)
+ O(Hs−1)

= −
(

L√
E

)
α

−
(

N√
E

)
α

+

((
M√
E

)
β

−
(

M√
E

)
β

)
+ O(Hs−1)

= −(2
√

Eκ)α + O(Hs−1). (38)

Similar calculations for the other components of ∆n̂ indicate that ∆n̂ is in Hs−1. Thus,
n̂ ∈ Hs+1. This is a gain of one derivative. This in turn implies a gain of one derivative
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in each of L, M, and N (so that they are in Hs). Taking derivatives of t̂1 and t̂2, in view
of equations such as

t̂1
α =

L√
E

n̂ − Eβ

2E
t̂2,

and using Xα =
√

Et̂1 and Xβ =
√

Et̂2, we also see a gain of one derivative for Xα and
Xβ . Integrating, we find that X is in Hs+2. �

Lemma 6. If X ∈ Hs+2, then µ is well-defined and µ ∈ H0.

Remark. We do not prove this lemma here. This lemma says that (11), which can be
viewed as an integral equation for µ, is solvable, with the solution in L2. This is discussed
in [19] and [4]. The next lemma tells us about the higher regularity of µ.

Lemma 7. If X ∈ Hs+2, then µ ∈ Hs+2.

Proof. Letting g = µαXβ − µβXα, and letting a prime after a variable indicate that
it is evaluated at �α′ (and thus unprimed variables are evaluated at �α), we write

W(�α) = − 1
4π

∫ ∫
g′ × X − X′

|X − X′|3 d�α′.

Recalling the definition of the kernel K, and denoting the integral operator with kernel
K as K[X], we write

W(�α) = K[X](g) + H1

(
g × Xα

2E3/2

)
+ H2

(
g × Xβ

2E3/2

)

+ G11

(
g × Xαα

2E3/2
− 3g × EαXα

4E5/2

)
+ G12

(
g × Xαβ

E3/2
− g × (EαXβ + EβXα)

E5/2

)

+ G22

(
g × Xββ

2E3/2
− 3g × EβXβ

4E5/2

)
. (39)

Above, we have used the operators Gij . For example, G11 is defined as the operator with
kernel (α−α′)2

|�α−�α′|3 , and the others are similar. These are operators which are smoothing by
one derivative, since the kernel can absorb one derivative. These operators are discussed
further in [3].

We will let G denote the sum of the Gij terms, so that

W = K[X](g) + H1

(
g × Xα

2E3/2

)
+ H2

(
g × Xβ

2E3/2

)
+ G.

Since Xα × Xβ = En̂, we can rewrite this as

W = K[X](g) + H1

( µα

2E1/2
n̂
)

+ H2

( µβ

2E1/2
n̂
)

+ G.

We pull the normal vector outside of the Riesz transforms, incurring a commutator.
Thus, we have

W = K[X](g) + H1

( µα

2E1/2

)
n̂ + H2

( µβ

2E1/2

)
n̂ + G, (40)
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where G is the sum of G and the commutators:

G = G + [H1, n̂]
( µα

2E1/2

)
+ [H2, n̂]

( µβ

2E1/2

)
= G11

(
g × Xαα

2E3/2
− 3g × EαXα

4E5/2

)
+ G12

(
g × Xαβ

E3/2
− g × (EαXβ + EβXα)

E5/2

)

+ G22

(
g × Xββ

2E3/2
− 3g × EβXβ

4E5/2

)
+ [H1, n̂]

( µα

2E1/2

)
+ [H2, n̂]

( µβ

2E1/2

)
. (41)

For X ∈ Hs+2 and ∇�αµ ∈ Hk, we have that E ∈ Hs+2 and g ∈ Hmin{k,s+1}.

Since the operators Gij gain one derivative over the function being acted on, and that
function is in Hmin{k,s}, we see that G ∈ Hmin{k,s}+1. For the commutators, we use
Lemma 3 with f = n̂ ∈ Hs+1. We conclude that the commutators are in Hσ with
σ = min{min{k, s + 2}, s} + 1. This clearly is the same as saying the commutators are
in Hmin{k,s}+1. Finally, this implies that G ∈ Hmin{k,s}+1.

We now turn to the question of which space K[X](g) is in when X ∈ Hs+2 and
∇�αµ ∈ Hk. As in the proof of Lemma 3, we rely on theorems proved in [3]. In particular,
for k ≥ s−1/2, a result of [3] implies that K[X](g) ∈ Hs+1. For k < s−1/2, the argument
in the proof of the same theorem implies that K[X](g) ∈ Hk+1. (The argument would
actually provide higher regularity than this, but this is sufficient for the present purposes.)
Thus, no matter which case we are in, we have K[X](g) ∈ Hmin{k,s}+1.

Now, for the regularity of µ, we use (40) together with Lemma 6 and (12), (13).
Lemma 6 tells us that µ ∈ H0, and thus ∇�αµ ∈ H−1. The above calculations imply that
W · t̂i is then in H0. The formulas (12) and (13) in turn tell us that µα and µβ are in H0.

This argument can be repeated; the highest regularity is determined by the regularity of
X. In particular, the above calculations will apply until k = s. We are able to perform
this argument for the final time when ∇�αµ ∈ Hs. We find that W · t̂i is in Hs+1. Finally,
we conclude that ∇�αµ ∈ Hs+1. �

Lemma 8. We have the following estimates for the velocities:

‖W‖s+1 ≤ C(1 + ‖κ‖s)p,

‖Vi‖s+1 ≤ C(1 + ‖κ‖s)p.

The estimate on W follows immediately from formulas (20)–(24) and from Lemma 6.
For the Vi, we rewrite the equations (3), (4) as(

V1√
E

)
α

−
(

V2√
E

)
β

=
U(L − N)

E
, (42)

(
V1√
E

)
β

+
(

V2√
E

)
α

=
2UM

E
. (43)

Taking an α-derivative of (42) and adding a β-derivative of (43), we get

V1 =
√

E∆−1

((
U(L − N)

E

)
α

+
(

2UM

E

)
β

)
.



WELL-POSEDNESS OF TWO-PHASE DARCY FLOW IN 3D 201

We have a similar expression for V2 :

V2 =
√

E∆−1

((
2UM

E

)
α

−
(

U(L − N)
E

)
β

)
.

For the quantities on the right-hand side, U = W · n̂ is in Hs+1, and L, M, and N are
in Hs. Furthermore, E is in Hs+2. Therefore, we see that each of the Vi can be bounded
in Hs+1. �

3.2. The energy estimate. We now define an energy functional; it is in fact just the
square of the Hs norm of κ, plus the square of a norm of X (below the highest regularity)
included for technical reasons. We have

Es(t) =
1
2
‖κ‖2

s +
1
2
‖X‖2

s+1. (44)

Lemma 9. The energy Es satisfies the following differential inequality:

dEs

dt
≤ O(H0).

We take the time derivative of the energy. The time derivative of X is O(Hs+1); this
is proved in Lemma 8 above. Furthermore, letting σ be a multi-index of order s − 1 or
less, we have that Dσκt is at least O(H0). This implies that

dEs

dt
=

∑
|σ|=s

∫
(Dσκ)(Dσκt) d�α + O(H0).

Using (34), and keeping in mind Lemma 8, we see that we can write Dσκt as

Dσκt = −kΛ(Dσκ) + T1D
σκα + T2D

σκβ + O(H0).

Plugging this in, we have

dEs

dt
= −

∑
|σ|=s

∫
(Dσκ)(kΛ(Dσκ)) + T1(Dσκ)(Dσκ)α + T2(Dσκ)(Dσκ)β d�α + O(H0).

(45)
The transport terms are handled by the usual integration by parts. We can then rewrite
this as

dEs

dt
= −

∑
|σ|=s

∫
(
√

kDσκ)(
√

kΛ(Dσκ)) d�α + O(H0)

= −
∑
|σ|=s

∫
(
√

kDσκ)(Λ(
√

kDσκ)) d�α + O(H0)

= −
∑
|σ|=s

∫ (
Λ1/2(

√
kDσκ)

)2

d�α + O(H0). (46)

We have used (35) in order to take the square root of k. In moving
√

k inside Λ (and thus
inside the Riesz transforms), we have used Lemma 3. Since the terms being summed
over on the right-hand side of the last equation of (46) are nonpositive, this proves the
theorem. �
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4. Conclusion. The existence of solutions (in the stable case) now follows from stan-
dard arguments. In particular, the method used in [1] to prove well-posedness of the
vortex sheet with surface tension or in [16] to prove well-posedness of the Navier-Stokes
equations would now apply.

The method is to first introduce mollifiers to the right-hand side of the evolution
equation. Then, Picard’s theorem for ODEs on a Banach space implies the existence
of solutions to the mollified equation for a (very) short interval of time. The mollifiers
can be introduced in such a way that the energy estimate holds for the mollified system,
uniformly in the mollification parameter, so that the mollified solutions are uniformly
bounded on a common time interval (this makes use of a continuation theorem for au-
tonomous ODEs on a Banach space). We are also able to show, by an estimate similar to
the energy estimate, that the mollified solutions form a Cauchy sequence in a low norm.
Together with the uniform bound in the high norm, this allows us to pass to the limit
as the mollification parameter tends to zero, proving the existence of solutions to the
nonmollified problem. Similar estimates then allow us to prove uniqueness, continuous
dependence, and regularity.

We expect, since it has been proved for a number of other Darcy flows, including the
two-phase problem in the absence of surface tension [18], that it should be possible to
prove the existence for all time of small solutions. This question will be taken up in a
future work, rather than addressing it here.

Since the solution is smooth, and (35) holds initially, it will continue to hold for at least
a positive amount of time. This amount of time would depend on the initial conditions.

The energy estimates of the previous section could also be carried out in the case in
which surface tension is present. Then, going from the energy estimates to the existence
proof is a bit more delicate, but is still possible. For details of such an existence argument,
the reader should consult [3].

We conclude the paper by stating the theorem we have proved:

Theorem 10. Let s be a positive integer, large enough. Let initial data κ0 ∈ Hs be
given such that the associated surface X is parameterized by (2) and satisfies (36) and
the associated quantity k satisfies (35). There exists a unique solution of the initial value
problem given by (34) such that κ(�α, 0) = κ0(�α). There is a time T > 0 such that this
solution is in C([0, T ]; Hs), and until time T, the conditions (37) are satisfied. T depends
on k̄, c̄, s, and κ0.

We remark that we can also prove a continous dependence theorem. Furthermore, we
remark that if the initial surface does not admit a global isothermal parameterization,
a modification of the argument above in which we use a finite number of overlapping
coordinate patches could be used.
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