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Abstract. In this paper a theoretical study is undertaken to investigate the structure
of the lower branch neutral stability modes of three-dimensional small disturbances im-
posed on the incompressible Von Karman’s boundary layer flow due to a rotating disk.
Particular attention is given to the short-wavelength non-linear non-stationary cross-
flow vortex modes at sufficiently high Reynolds numbers with reasonably small scaled
frequencies. Following closely the asymptotic frameworks introduced in [Proc. Roy. Soc.
London Ser. A 406 (1986), 93–106] and [Proc. Roy. Soc. London Ser. A 413 (1987),
497–513] for the stationary linear and non-linear modes, it is revealed here that the non-
stationary modes with sufficiently long time scale can also be described by an asymptotic
expansion procedure based on the triple-deck theory. Making use of this approach, which
takes into account the non-linear and non-parallel effects, the asymptotic structure of the
non-stationary modes is shown to be adjusted by a balance between viscous and Coriolis
forces, and resulted from the fact of vanishing shear stress at the disk surface. As a
consequence of the matching of the solutions in adjacent regions it is found that in the
linear case the wavenumber and the orientation of the lower branch modes are governed
by an eigenrelation, which is akin to the one obtained previously in [Proc. Roy. Soc.
London Ser. A 406 (1986), 93–106] for the stationary modes. The asymptotic theory
shows that the non-parallelism has a destabilizing effect. A Landau-type equation for the
modulated vortex amplitude with coefficients that are often difficult to get from finite
Reynolds number computations has also been obtained from a weakly non-linear analysis
in the limit of infinitely large Reynolds numbers. The non-linearity has also been found
to be destabilizing for both positive and negative frequency waves, though finite ampli-
tude growth of a disturbance having positive frequency close to the neutral location is
more effective.
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1. Introduction. The problem of understanding the phenomenon of transition from
laminar flow to turbulence in fluid flows of practical importance has been the focus of
past and recent studies in fluid dynamics, in particular with regard to the development
of controlled laminar flow airfoils. It is generally recognized that various two- and three-
dimensional instability mechanisms, such as Görtler vortices, Tollmien-Schlichting waves
and cross-flow vortices, render it difficult to maintain laminar flow on the surface of air-
crafts and aerospace vehicles. The cross-flow instability is the most dangerous for the
three-dimensional boundary layer flow on a swept wing or on the rotating disk, and thus,
it is largely responsible for the breakdown of the laminar flow and transition to turbu-
lence. The existence of such an instability is mainly owing to the inflectional character
of the steady mean flow profiles. The flow due to a rotating disk also exhibits cross-
flow instability, since inflection points are also present in its basic velocity profiles. For
this reason, in addition to the advantage of having an exact solution of the governing
Navier-Stokes equations for the basic laminar Karman flow, the stability investigations
of rotating-disk boundary layer flow have been the subject of many studies both experi-
mental and theoretical.

The ongoing research on the flow due to a rotating disk indicates that the underlying
cross-flow vortex instability may appear in two distinct forms, absolute and convective.
The presence of the former was identified first in [3], and later extensively investigated
in [4, 5] and [6, 7, 8, 9]. In addition to this, the work of [10] pointed out the secondary
absolute instability of the naturally selected primary non-linear cross-flow vortices. It
can be inferred from these studies that the radially growing absolutely unstable distur-
bances may constitute a route to transition in rotating-disk flow, even though the wall
compliance through surface coating may prevent the occurrence of absolute instability;
see for instance [11].

When investigating a linear or non-linear development of an instability mode, it would
be useful to distinguish between purely spatial analysis as implemented in this paper
from the temporal or mixed spatio-temporal considerations. Thus, we here deal with the
near-neutral stability of spatially developing disturbances in the limit of large Reynolds
numbers, which may manifest themselves in the form of an inviscid upper branch (as
first described by [12]) or of a viscous lower branch. The fundamental properties of these
modes were investigated both experimentally and theoretically by many researchers,
among them [6], [12], [13, 14, 15], [16, 17], [18], [19], [20]. As suggested by these inves-
tigations, inviscid instability is characterized by the form of a stationary pattern due to
the superposition of modes of zero-frequency spiral vortices, which align themselves at an
inclination angle of approximately 13◦ between the axis of vortices and the radius vector.
Calculations predict the critical Reynolds number of about 300 for the inviscid instability
mode. Moreover, theoretical works also indicate the existence of viscous instability which
occurs with a much lower critical transition Reynolds number, readily depending on the
frequency, than the inviscid stationary mode. This instability, which was also observed
experimentally by [19], manifests itself as a wave pattern of spiral vortices inclined at
a higher angle of about 20◦ to the radius vector with a lower wavenumber than that
corresponding to the inviscid instability of [12].
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All of the aforementioned theoretical works have comprehensively used parallel-flow
approximation methods, together with the replacement of the radius of the disk by the
Reynolds number at some stage during the linearization of the governing equations, in
order that the resulting system may be reduced to a more analyzable and compact form,
describing the evolution of the small perturbations. Although such an approximation can
give adequate results for sufficiently large Reynolds numbers, at finite Reynolds numbers
it cannot be justified. Bearing this in mind, a more rigorous approach is needed, which
not only accounts for the non-linearity and non-parallelism of the basic flow, but also
relies on a large Reynolds number assumption for the formal asymptotic solutions of
the full non-linear governing equations. Such a rational and self-consistent method is
the asymptotic triple-deck theory; see for the description and its applications [21, 22],
[23] and [24], which was first used within the context of predicting the stability features
of the Blasius boundary layer flow in [25], [26] and [27]. As these papers demonstrate,
this theory can allow for a more acceptable treatment of non-linearity, non-parallelism,
streamline curvature and Coriolis effects belonging to the flow structure, and it enables
the influence of the potential flow outside the boundary layer to be incorporated fully
inside it. This strategy was successfully adapted to the linear instability exploration
of rotating-disk flow in [1], in which both upper branch and lower branch stationary
neutral modes and their asymptotic structures were obtained within the framework of
asymptotic expansion at large Reynolds numbers.

Making use of the asymptotic triple-deck theory, the linear and non-linear evolution of
the upper branch modes of the rotating-disk boundary layer flow, as far as the orientation
of the non-stationary waves is concerned, were examined in [28] and [29]. These modes
are the ones naturally observed in the experiments of [12], [17] and [30, 31]. However, as
first detected in the experiment of [19], there exist lower branch modes corresponding to a
lower Reynolds number. In [2] an investigation was performed (making use of the theory
developed in [1]) of the non-linear stability properties on the lower branch instability
modes, and it was noticed that these modes can be observed in real flows provided that
the external perturbations are strong enough; otherwise, the inviscid modes of [12] would
be dominant. In addition to this, the recent experiment of [32] clearly pointed out that
under the natural transition process non-stationary disturbances are first amplified, even
though at later stages the transition is dominated by the stationary waves. If, on the
other hand, the system is forced with a roughness situated on the rotating disk, the
transition was observed in [33] to take place through the travelling perturbations. This
sets forth the significance of the non-stationary waves, and therefore our main aim here is
to extend the work of [2] to incorporate the effects of non-linearity on such disturbances
near the position of neutral stability, and as a result to determine whether the stationary
or non-stationary waves augment each other to cause the exponential amplification and
transition. Actually, a smaller finite amplitude disturbance with a positive frequency has
been found to be sufficient to give rise to an exponential growth of the solution.

Numerical calculations of [15] and asymptotic work of [1] have justified that the lower
branch short-wavelength stationary viscous mode corresponds to zero wall shear stress
of the effective cross-flow velocity profiles. In addition to this, parallel-flow approxima-
tion results of [6] and [20] clearly demonstrate that not only the zero-frequency waves
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but also the non-stationary waves with small frequencies approach the zero wall shear
stress at high Reynolds numbers. Motivated in particular by this observation, in the
current research another objective is to calculate the non-stationary lower branch neu-
tral modes having sufficiently long time scales and as a consequence determine how the
lower branch modes of [20] will be modified by the non-parallel effects. As shown in [1],
the lower branch modes are governed by a triple-deck structure, for which the upper and
main-deck flow description is essentially the same as that found in [26] for the Blasius
boundary layer flow. Basically the same expansions are also supposed to be valid for
the non-stationary neutral waves considered here. We found here that the lower-deck
expansions yield an eigenrelation involving parabolic cylinder functions, connecting the
flow parameters. Moreover, the non-parallelism accounted for in the present work is
found to be destabilizing, though the wavenumber and wave angle computed from this
asymptotic description compare fairly well with the numerical solution of full stabil-
ity equations based on the parallel-flow assumption. The final objective of the current
work is to identify the occurrence of the bifurcation at the lower branch of the stability
curve for a range of positive frequencies, first spotted in the numerical study [20]. Our
investigation is an attempt to study this behavior analytically within a self-consistent
non-parallel-flow approximation. Using the approach outlined here, further analysis can
also be implemented to investigate the growing waves having small frequencies.

The rest of the paper is organized in the following fashion. In §2 the non-linear partial
differential equations governing the stability of the incompressible boundary layer flow
over a rotating disk are given together with the basic Von Karman‘s steady flow. §3 is
concerned with the construction of a set of asymptotic expansions and the solutions of
the corresponding asymptotic equations of the flow behavior in each asymptotic region
within the concept of triple-deck theory. Both linear and non-linear approximations are
considered in §3. The linear results are first compared with the numerical ones of [6]
and [20] in §4.1, followed by the determination of an amplitude function from a weakly
non-linear analysis in §4.2. Finally our conclusions are drawn in §5.

2. Formulation of the problem. We are concerned with the motion of a three-
dimensional viscous incompressible flow occupying the z ≥ 0 region and adjacent to a
disk rotating with a constant angular velocity Ωa. The flow has kinematic viscosity ν,
and the cylindrical polar coordinates (r, θ, z) are introduced, in which the lengths r and
z have been made dimensionless with respect to a reference length scale l that can be
taken to be the local radius of the disk. The characterizing parameter, i.e. the Reynolds
number of the flow, is defined as R = Ωal2/ν. Since the reference frame attached to the
disk rotates with it, the basic flow is formulated by the Von Karman solution with the
velocity components (u, v, w) and pressure p given by

(u, v, w, p) = lΩa(rū(Y ), rv̄(Y ), R−1/2w̄(Y ), R−1p̄(Y )),

which satisfy the following differential equations:

ū2 − (v̄ + 1)2 + ū′w̄ − ū′′ = 0,

2ū(v̄ + 1) + v̄′w̄ − v̄′′ = 0,

2ū + w̄′ = 0,

(2.1)
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which should be solved subject to the boundary conditions

ū = 0, v̄ = 0, w̄ = 0, at Y = 0,

ū = 0, v̄ = −1, w̄ = wc, as Y → ∞,
(2.2)

where the prime denotes differentiation with respect to Y = R1/2z, and wc is a constant
to be found as a result of the solution of equations (2.1)–(2.2). Moreover, the steady
pressure component can also be obtained from the normal momentum equation, but it
is of no relevance to the subsequent analysis.

The dynamic flow field is next decomposed into a mean flow plus perturbations. Thus
the mean flow determined from (2.1) is perturbed with small, unsteady, three-dimensional
disturbances of the form

lΩa(Ũ(r, θ, z, t), Ṽ (r, θ, z, t), W̃ (r, θ, z, t), P̃ (r, θ, z, t)).

After substituting these into the Navier-Stokes equations we find that the evolution of
the perturbations is governed by the following non-linear equations:

{L1 + ū}Ũ − 2(v̄ + 1)Ṽ + r dū
dz W̃ − 1

r Ṽ 2 + L2Ũ

= −∂P̃
∂r + 1

R{∇Ũ − 2
r2

∂Ṽ
∂θ − Ũ

r2 },
{L1 + ū}Ṽ + 2(v̄ + 1)Ũ + r dv̄

dz W̃ + 1
r Ũ Ṽ + L2Ṽ

= −1
r

∂P̃
∂θ + 1

R{∇Ṽ + 2
r2

∂Ũ
∂θ − Ṽ

r2 },
{L1 + R−1/2 dw̄

dz }W̃ + L2W̃ = −∂P̃
∂z + 1

R{∇W̃},
∂Ũ
∂r + Ũ

r + 1
r

∂Ṽ
∂θ + ∂W̃

∂z = 0.

(2.3)

Here, the linear operators L1, ∇ and non-linear operator L2 are defined by L1 = ∂
∂t +

rū ∂
∂r + v̄ ∂

∂θ + R−1/2w̄ ∂
∂z , ∇ = ∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂θ2 + ∂2

∂z2 , and L2 = Ũ ∂
∂r + Ṽ

r
∂
∂θ + W̃ ∂

∂z ,
respectively. Equations (2.3) are subject to the condition of zero-slip on the wall, and
also the condition of attenuation of the perturbations far away from the wall above the
disk is enforced. The imposition of such a constraint is sufficient, though not necessary,
see [34], to keep in line with the results of much of the available works in the area so that
comparisons can be adequately implemented. [34], on the other hand, showed recently
the existence of disturbances which are physically conceivable as well as growing away
from the wall of the disk, which we shall not deal with here.

3. Asymptotic regions. Our aim in the current investigation is to determine as-
ymptotic solutions of the non-linear perturbation equations (2.3) in the limit of large
Reynolds number, in each of the asymptotic regimes as depicted in Figure 1. It is con-
venient here to define a small parameter ε by ε = R−1/16. This quantity arises from
the consideration of the concept of triple deck. The reason for this small parameter is
that in parallel-flow approximation (see [1]), the typical wavenumber of the neutrally
stable modes on the lower branch increases proportionally to R1/4 as R → ∞. For the
viscous lower branch modes then, the thickness of the viscous wall layer (region III) is
O(R−1/2ε) = O(ε9), and the thickness of the main layer (region II) is O(R−1/2) = O(ε8).
Moreover, because of the fact that the wavenumbers in the r and θ directions are of or-
der of magnitude R1/4, see for instance [1] and [12], the thickness of the upper deck
(region I) will be O(R−1/4) = O(ε4). Based on the above triple-deck scalings, the linear
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stationary problem was discussed in [1] and the non-linear stationary problem in [2]. The
asymptotic regions are shown in Figure 1.

O(  )

O(  )

O(  )

Region II

 Region I

Region III

ε4

ε8

ε9

O(  )ε4
Fig. 1. Asymptotic regions of the triple deck and thicknesses of each
layer are shown in terms of a small parameter ε = R−1/16; region I
corresponds to the upper deck, region II to the main deck and region
III to the lower deck.

It was shown in [12] that the effective velocity profile with wavenumbers α and β in
the r and θ directions, respectively, is given by αrū + βv̄. Lower branch disturbances
having the triple-deck structure are necessarily time-dependent if the effective wall shear
(αrū′+βv̄′)(0) does not vanish. However, as the work of [1] points out, the zero-frequency
lower branch neutral modes have vanishing shear. It was further shown theoretically in [6]
and [20] that the orientation of high-frequency lower branch neutral modes approaches
the direction of maximum mean wall shear, whereas the wavenumbers of the neutral
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modes with small frequency approach the neutral curve asymptotically for the zero-
frequency mode. Therefore, we are here concerned only with the non-stationary modes
having small frequencies, which enable us to follow the asymptotic expansion procedure
set up in [1], and hence we look for solutions proportional to

E = e
i

ε4 [
∫

r α(r)dr+βθ−ε2ωt], (3.1)

where the wavenumbers (α, β) and frequency ω expand for convenience in terms of the
small parameter ε as

α = α0 + ε2α1 + ε3α2 + · · · ,

β = β0 + ε2β1 + ε3β2 + · · · ,

ω = εω0 + ε2ω1 + ε3ω2 · · · .

(3.2)

Here we search for the local wavenumber and frequency components which contribute
to the neutrally stable flow initially at a radial location r, corrected later by a finite am-
plitude non-linear solution. Moreover, it should also be remembered here that unlike the
linearized equations, the expansions of the disturbances for the non-linear solutions will
involve harmonics generated by the convective and non-linear terms in the perturbation
equations (2.3). Furthermore, we should address here that the periodicity in the az-
imuthal direction is ensured by considering a single azimuthal harmonic of the form (3.1)
with the physical mode number ε−4β asymptotically large in the limit of large Reynolds
numbers. The fact that ε−4β is an integer implies a discretization either through ε or
βj , j = 0, 1, · · · as given in (3.2). However, because of the fact that we define an effective
wavenumber k (that depends on γ0 given later by equation (4.1) in §4.1) in place of α

and β, it will be unimportant to assume whether the values of β are discrete or not.
In addition to this, though the asymptotic expansion for ε−4β will terminate at a finite
place, it won’t influence our analysis below since only the consideration of lower-order
terms in β will suffice for our purposes (see the Landau-type equation (4.18) in §4.2).

Following closely the study of [2], next the wavenumbers and frequency as given in
(3.1) and the disturbances will be substituted in the perturbed Navier-Stokes equations
(2.3), and solutions to the expansions of the flow quantities will be sought separately in
each asymptotic region as shown in Figure 1.

3.1. Region I. We begin with the analysis of the external potential flow region, namely,
the upper deck, where the cylindrical polar coordinates r and θ are of the order of unity
in the limit of large Reynolds number, and the motion is inviscid and irrotational.

In the potential flow region the order one normal coordinate is introduced as

Z = ε−4z = O(1),

and the basic velocity components are simply

ū = 0, v̄ = −1, w̄ = wc.

Introducing further a small amplitude δ (which is later related to ε in §4.2), perturbations
proportional to powers of δ driven by the non-linear terms expand as

Ũ = ε3(Uu0 + εUu1 + · · · )δE + (Uu20 + εUu21 + · · · )δ2E2

+ε−3(Uu30 + εUu31 + · · · )δ3E3 + ε−3(Uu10 + εUu11

+ · · · )δ3E + O(δ4) + c.c.,

(3.3)
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together with a similar expansion for Ṽ , while W̃ expands as

W̃ = ε3(Wu0 + εWu1 + · · · )δE + δ2[(Wu20 + εWu21 + · · · )E2

+ε5(Wum0 + εWum1 + · · · )] + ε−3(Wu30 + εWu31 + · · · )δ3E3

+ε−3(Wu10 + εWu11 + · · · )δ3E + O(δ4) + c.c.,

(3.4)

and P̃ expands as

P̃ = ε3(Pu0 + εPu1 + · · · )δE + δ2[(Pu20 + εPu21 + · · · )E2

+ε6(Pum0 + εPum1 + · · · )] + ε−3(Pu30 + εPu31 + · · · )δ3E3

+ε−3(Pu10 + εPu11 + · · · )δ3E + O(δ4) + c.c.,

(3.5)

where c.c. denotes complex conjugate terms, E is defined by (3.1) together with α, β

and ω as given by (3.2), and Uu0, Vu0, Wu0, Pu0, etc. are functions of r and Z. Notice
also the main-flow correction terms Wum0 and Pum0, entering into the upper-deck flow
region. Substituting these asymptotic expansions into the governing non-linear disturbed
equations (2.3) and equating coefficients of like powers of ε from the terms proportional
to δE and solving the resulting equations, one can find that solutions to the leading-order
equations which decay to zero at the far field are given by

Pu0 = C1e
−γ0Z , Uu0 = α0

β0
C1e

−γ0Z ,

Vu0 = C1
r e−γ0Z , Wu0 = i γ0

β0
C1e

−γ0Z ,
(3.6)

in which the zero-order effective wavenumber γ0 having positive real part for the non-
neutral waves is defined as γ2

0 = α2
0 + β2

0
r2 and C1 is an unknown amplitude function of

r. Moreover, solutions to the next-order equations are the same as those given in (3.6)
except that C1 is substituted by D1, which is also a function of C1. Furthermore, the form
of the solutions of the disturbance equations resulting from the terms proportional to
δ2E2, δ3E3 and δ3E in equations (3.3)–(3.5) is similar to (3.6), apart from the integration
constants C1 and D1 being replaced in each case by Ci and Di, i = 2, 3, 4, which are
functions of C1(r), too. Finally, the leading-order mean flow correction terms, due to the
terms proportional to δ2 are found to be Wum0 = C2 and Pum0 = C2.

It should finally be remarked here that the solutions obtained up to this order are
the same as the solutions of the stationary problem explored in [2]. However, the non-
zero frequency feature will come in later within the higher-order terms in (3.3)–(3.5), in
particular through a term containing ω0.

3.2. Region II. In this region, occupying the bulk of the boundary layer, the asymp-
totic analysis of the Navier-Stokes equations is based on the limit process

Y = ε−8z = O(1), as Re → ∞.

Expanding the asymptotic solution (3.6) (and also the higher-order solutions) in the
upper deck in terms of the scaling Y of region II suggests that the asymptotic expansion
of Ũ in the main deck should be in the form

Ũ = ε−1(Um0 + εUm1 + · · · )δE + δ2[ε−4(Um20 + εUm21 + · · · )E2

+ε−3(um0 + εum1 + · · · )] + ε−7(Um30 + εUm31 + · · · )δ3E3

+ε−7(Um10 + εUm11 + · · · )δ3E + O(δ4) + c.c.,

(3.7)
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together with a similar expression for Ṽ , whereas W̃ expands as

W̃ = ε3(Wm0 + εWm1 + · · · )δE + δ2[(Wm20 + εWm21 + · · · )E2

+ε5(wm0 + εwm1 + · · · )] + ε−3(Wm30 + εWm31 + · · · )δ3E3

+ε−3(Wm10 + εWm11 + · · · )δ3E + O(δ4) + c.c.,

(3.8)

and P̃ expands as

P̃ = ε3(Pm0 + εPm1 + · · · )δE + δ2[(Pm20 + εPm21 + · · · )E2

+ε6(pm0 + εpm1 + · · · )] + ε−3(Pm30 + εPm31 + · · · )δ3E3

+ε−3(Pm10 + εPm11 + · · · )δ3E + O(δ4) + c.c.

(3.9)

The variables appearing in equations (3.7)–(3.9) are all functions of r and Y . Making
again the usual substitution into the non-linear perturbed Navier-Stokes equations (2.3)
and after matching with the upper-deck results of (3.3)–(3.6) will generate, for the quan-
tities proportional to the δE terms, the following solutions to the leading-order terms in
the asymptotic expansions (3.7)–(3.9):

Pm0 = C1, Um0 = r γ0
β2
0
C1ū

′,

Vm0 = r γ0
β2
0
C1v̄

′, Wm0 = −i γ0
β2
0
C1(α0rū + β0v̄).

(3.10)

The next-order terms of δE in the asymptotic expansions (3.7)–(3.9) have similar solu-
tions to (3.10). Equations (3.10) also indicate that W̃ satisfies the no-slip condition on
the wall, even though Um0 and Vm0 do not. However, the lower branch neutral modes
that we consider here possess the feature of having zero shear stress on the wall at the
first order (as first shown in [1]). Thus, imposition of such a constraint on the modes
yields α0rū

′(0) + β0v̄
′(0) = 0, which in turn determines a relation for the leading-order

eigenvalues as α0r
β0

= 1.207. Moreover, as suggested by the numerical results of [6], the
above relation will hold true for small frequency waves as well; though there occurs a
shift in Wm3 across the boundary layer through the leading-order frequency term ω0, the
associated part is given by

Wm3 =
iω0C1

β2
0

ω0, (3.11)

which will be eventually taken care of through the lower-deck expansion below.
Additionally, solutions to the terms proportional to δ2E2, δ3E3 and δ3E in the ex-

pansions (3.7)–(3.9) have the same forms as (3.10) with α0, β0 and ω0, etc., replaced
by 2α0 etc. and 3α0 etc. respectively, with the amplitudes to match with the upper
deck solutions. Finally, the leading-order mean flow corrections coming from the terms
proportional to δ2 in (3.7)–(3.9) are

um0 =
rγ0C2

2β2
0

ū′, vm0 =
rγ0C2

2β2
0

v̄′, wm0 = −γ0C2

β2
0

ū. (3.12)
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3.3. Region III. This region, corresponding to the lower deck in Figure 1, allows us
to satisfy the no-slip condition on the disk surface. As mentioned earlier, in the limit of
large Reynolds number the thickness of this region is such that

ζ = ε−9z = O(1).

The expansion of the basic flow quantities in terms of the lower-deck scaling are

ū = εū0ζ + ε2ū1ζ
2 + · · · ,

v̄ = εv̄0ζ + ε2v̄1ζ
2 + · · · ,

w̄ = −ε2ū0ζ
2 − 2

3ε3ū1ζ
3 + · · · .

(3.13)

Substituting (3.10)–(3.13) into (3.7)–(3.9) and expressing the results in terms of ζ

suggests that in the lower-deck function, Ũ should be written as

Ũ = ε−1[rA1(ū0 + 2εū1ζ + · · · ) + (U−1 + εU0 + · · · )]δE
+δ2ε−4{[r A2

2 (ū0 + 2εū1ζ + · · · ) + (U20 + εU21 + · · · )]E2

+ε(Um0 + εUm1 + · · · )} + ε−7[r A3
3 (ū0 + 2εū1ζ + · · · )

+(U30 + εU31 + · · · )]δ3E3 + ε−7[rA4(ū0 + 2εū1ζ + · · · )
+(U10 + εU11 + · · · )]δ3E + O(δ4) + c.c.

(3.14)

Asymptotic expansion for Ṽ has the same form, while W̃ expands as

W̃ = ε5{−iA1[(rα0ū1 + β0v̄1)ζ2 + ε(rα0ū2 + β0v̄2)ζ3 + · · · ]
+(εW0 + · · · )}δE + δ2ε2{[−iA2[(rα0ū1 + β0v̄1)ζ2

+ε(rα0ū2 + β0v̄2)ζ3 + · · · ] + (εW20 + · · · )]E2

+ε4(Wm0 + εWm1 + · · · )} + {−iA3ε
−1[(rα0ū1 + β0v̄1)ζ2

+ε(rα0ū2 + β0v̄2)ζ3 + · · · ] + (W30 + · · · )}δ3E3

+{−iA4ε
−1[(rα0ū1 + β0v̄1)ζ2 + ε(rα0ū2 + β0v̄2)ζ3 + · · · ]

+(W10 + · · · )}δ3E + O(δ4) + c.c.,

(3.15)

and P̃ expands as

P̃ = ε3(P0 + εP1 + · · · )δE + δ2[(P20 + εP21 + · · · )E2

+ε10(Pm0 + εPm1 + · · · )] + ε−3(P30 + εP31 + · · · )δ3E3

+ε−3(P10 + εP11 + · · · )δ3E + O(δ4) + c.c.,

(3.16)

where Ai = γ0Ci

β2
0

, i = 1, 2, 3, 4. The coefficients in the expansions (3.14)–(3.16) are
functions of r and ζ.

After substituting (3.14)–(3.16) into the non-linear disturbance equations (2.3), and
also equating the same order-ε terms from the resulting equations, we obtain the following
successive equations from the continuity and radial momentum equations, respectively,
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for the terms proportional to δE:

i(rα0U−1 + β0V−1) = 0,

i(rα0U0 + β0V0) = 0,

i(rα0U1 + β0V1) + rW ′
0 = −irA1[rα1ū0 + β1v̄0]

−i(rα1U−1 + β1V−1),
i(rα0U2 + β0V2) + rW ′

1 = −2irA1[rα1ū1 + β1v̄1]ζ
−irA1(rα2ū0 + β2v̄0) − i(rα1U0 + β1V0) − i(rα2U−1 + β2V−1),

(3.17)

U ′′
−1 − i(rα0ū1 + β0v̄1)ζ2U−1 = 0,

U ′′
0 − i(rα0ū1 + β0v̄1)ζ2U0 = rū0W0

+i{(rα1ū0 + β1v̄0)ζ − ω0}{A1rū0 + U−1} + i(rα0ū2 + β0v̄2)ζ3U−1,

U ′′
1 − i(rα0ū1 + β0v̄1)ζ2U1 = 2rū1ζW0 + iα0P0 − 2V−1

+i(rα0ū2 + β0v̄2)ζ3U0 + i{(rα1ū0 + β1v̄0)ζ − ω0}{2A1rū1ζ + U0}
+i(rα1ū1 + β1v̄1)ζ2[A1rū0 + U−1] + i(rα0ū3 + β0v̄3)ζ4U−1

+i(rα2ū0 + β2v̄0)ζ[A1rū0 + U−1],
U ′′

2 − i(rα0ū1 + β0v̄1)ζ2U2 = 2rū1ζW1 + 3rū2ζ
2W0 + iα0P1

−2v̄0ζV−1 − 2V0 + i{(rα1ū0 + β1v̄0)ζ − ω0}{3A1rū2ζ
2 + U1}

+i(rα1ū1 + β1v̄1)ζ2[2A1rū1ζ + U0] + ū0ζU−1

+i(rα1ū2 + β1v̄2)ζ3[A1rū0 + U−1] + i(rα0ū2 + β0v̄2)ζ3U1

+i(rα0ū3 + β0v̄3)ζ4U0 + i(rα0ū4 + β0v̄4)ζ5U−1

+i(rα2ū0 + β2v̄0)ζ[2A1rū1ζ + U0]
+i(rα2ū1 + β2v̄1)ζ2[A1rū0 + U−1],

(3.18)

with similar equations for Ṽ from the azimuthal momentum equation, but for P̃ from
the normal momentum equation we get

P ′
0 = 0, P ′

1 = 0. (3.19)

It is worth noting here that the term −2V−1 appearing on the right-hand side of
the third equation in (3.18) (and also 2U−1 in the corresponding azimuthal momentum
equation) is due to the Coriolis effects, showing that the structure of the neutral modes
of small frequency waves depends upon both viscous and Coriolis effects. The above
system of equations is considered together with the following boundary conditions, some
of which stem directly from matching with the main-deck solutions in §3.2:

U−1(0) = −A1rū0, U−1(∞) = 0, V−1(0) = −A1rv̄0, V−1(∞) = 0,

U0(0) = 0, U0(∞) = B1rū0, V0(0) = 0, V0(∞) = B1rv̄0,

W0(0) = 0, W ′
0(0) = 0, W0(∞) = −iA1{(rα1ū0 + β1v̄0)ζ − ω0},

W1(0) = 0, W ′
1(0) = 0, W1(∞) = −iA1(α1rū1 + β1v̄1)ζ2,

(3.20)

where B1 is defined in the same way as A1 but C1 is replaced by D1. The wall derivative
conditions in (3.20) are obtained using the third and fourth equations in (3.17). In
addition to this, the matching of the pressure in regions II and III through equations
(3.10) and (3.19) produces P0 = C1 and P1 = D1.

So far we have obtained governing equations for the small linearized disturbances (δE
terms only) related to each corresponding region of the triple deck; see Figure 1. After a
little lengthy work, it is straightforward to show that terms proportional to δ2E2, δ3E3
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and δ3E produce equations similar to (3.17)–(3.20) with slight changes arising from the
non-linear and convective effects in equation (2.3). Now, using equations (3.17)–(3.20)
we shall deduce an eigenequation relating γ0 to the wavenumber β0 and frequency ω0.

We see that the first of equations (3.18) together with the corresponding boundary
conditions may be solved for U−1; the solution has the form

U−1 = −Arū0
Uc(0,

√
2s1)

Uc(0, 0)
,

with s1 = ∆1/4ζ and ∆ = i(rα0ū1 + β0v̄1). Here Uc denotes the parabolic cylinder
function; see, for instance, [35]. A similar solution holds for V−1.

In order to obtain the solutions for U0 and V0 we multiply the third equation in (3.18)
and the equation for V0 by irα0 and iβ0 respectively. We then add them together and,
making use of (3.17), arrive at a conclusion that

W ′′′
0 − i(rα0ū1 + β0v̄1)ζ2W ′

0 + 2i(rα0ū1 + β0v̄1)ζW0

= γ2
0C1 − 2iβ0

r [1 + v̄2
0

ū2
0
]U−1 + A1ζ(rα0ū1 + β0v̄1){(rα1ū0 + β1v̄0)ζ − 2ω0}.

(3.21)

The solution of this equation satisfying the condition of matching with the solution in
region II may be written in the form

W0 = −iA1(rα1ū0 + β1v̄0)∆−1/4s1 + iA1ω0F1(s1)
+{γ2

0C1F2(s1) + 2iβ0A1[1 + v̄2
0

ū2
0
] ū0
Uc(0,0)F3(s1)}∆−3/4 + k1ζ

2,
(3.22)

where k1 is an arbitrary constant.
The functions F1, F2 and F3 used in (3.22) satisfy the following Weber-like differential

equation (see [35]):

F ′′′
1 − s2

1F
′
1 + 2s1F1 = 2s1, F1(0) = 0, F1(∞) = 1, F ′

1(∞) = 0,

F ′′′
2 − s2

1F
′
2 + 2s1F2 = 1, F2(0) = 0, F2(∞) = 0, F ′

2(∞) = 0,

F ′′′
3 − s2

1F
′
3 + 2s1F3 = Uc(0,

√
2s1),

F3(0) = 0, F3(∞) = 0, F ′
3(∞) = 0.

(3.23)

The boundary conditions for F1, F2 and F3 have been formulated using (3.20).
It can be shown through the direct numerical solution of (3.23) that (alternatively the

contour integration suggested in [1] may be used)

I1 = F ′
1(0) = 1.3520,

I2 = F ′
2(0) = 1

2Uc(0,0)

∫ ∞
0

θUc(0, θ)dθ = 0.5990,

I3 = 2 F ′
3(0)

Uc(0,0) = 1
U2

c (0,0)

∫ ∞
0

θU2
c (0, θ)dθ = 0.4570.

(3.24)

Finally, imposing the condition W ′
0(0) = 0 leads to the sought eigenrelation

iA1∆1/2(rα1ū0 + β1v̄0) = iA1ω0∆3/4I1 + γ2
0C1I2 + iβ0A1[1 +

v̄2
0

ū2
0

]ū0I3. (3.25)

It is easy to notice that this relation differs from the one obtained in [1] and [2]
through the presence of the frequency ω0. Denoting U0 = [1 + v̄2

0
ū2

0
]1/2, uv0 = |ū0v̄0|1/2



NON-LINEAR AND NON-STATIONARY LOWER BRANCH MODES 55

and Φ0 = [α1
β0

− β1α0
β2
0

], and separating the real and imaginary parts in (3.25), we find

r uv0
2 β

−1/2
0 Φ0 = γ0I2 + sin(3π/8)(2ū0)−3/4|v̄0|3/4I1β

−5/4
0 ω0,

r uv0
2 β

−1/2
0 Φ0 = U02

β0
ū0I3 + cos(3π/8)(2ū0)−3/4|v̄0|3/4I1β

−5/4
0 ω0.

(3.26)

Since the left-hand sides of these equations are equal, so should be the right-hand sides,
which gives rise to the following eigenrelation:

aΩ + bγ1/4 − γ9/4 = 0, (3.27)

describing the neutral stability of the flow at its current radial position, say, r = r̄. Here
a1 = sin( 3π

8 ) I1
I2

(−v̄0
2ū0

)3/4U05/4
, a2 = a1 cot( 3π

8 ), a = a2 − a1, b = ū0U
03

I3/I2, γ0 = r−1/2γ

and ω0 = r1/8Ω.
By equating coefficients of like powers of ε from the resulting disturbance equations

after substituting terms proportional to δ2E2 given in (3.14)–(3.16), and a likewise ma-
nipulation of the obtained equations as implemented for (3.17)–(3.21) yields the leading-
order normal velocity term

W20 = −iA2(rα1ū0 + β1v̄0)∆−1/4s2 + iA2ω0F1(s2)
+{4γ2

0C2F2(s2) + 2iβ0A2[1 + v̄2
0

ū2
0
] ū0
Uc(0,0)F3(s2)}(2∆)−3/4 + O(ζ2),

(3.28)

where s2 = (2∆)1/4ζ. From the continuity equation concerning δ2E2 terms we get
equations similar to (3.17) and, hence, the zero normal derivative on the wall produces
the relation

C2{4γ2
0I2 + i γ0

β0
U02

ū0I3 − i γ0
β2
0
(2∆)1/2(rα1ū0 + β1v̄0)

+i γ0
β2
0
ω0I1(2∆)3/4} = C2

1
γ2
0

β4
0
(2∆)3/2,

(3.29)

which associates the amplitude C2 of the first harmonic to C1.
A similar argument as above generates the amplitude C3 of the second harmonic,

which appears to be related to C1 through the relation

C3{9γ2
0I2 + i γ0

β0
U02

ū0I3 − 2i γ0
β2
0
(3∆)1/2(rα1ū0 + β1v̄0)

+3i
2

γ0
β2
0
ω0I1(3∆)3/4} = C2C

∗
1

γ2
0

β4
0
(3∆)3/2,

(3.30)

in which the term on the right-hand side is due to the non-linearity of the governing
equations and ∗ denotes complex conjugate.

Next we proceed to the terms proportional to δ3E, which give rise to equations such
as (3.17)–(3.20). As implemented above the relation linking the amplitude C4 of the
third harmonic to C1 is found to be

C4{−i γ0
β2
0
(rα1ū0 + β1v̄0) + ∆−1/2[γ2

0I2 + i γ0
β0

U02
ū0I3]

+i γ0
β2
0
ω0I1∆1/4} = C2C

∗
1

γ2
0

β4
0
∆.

(3.31)

Finally, together with the anticipation of zero-slip on the wall as well as the match
with the main deck, the leading-order mean-flow correction terms proportional to δ2 in
(3.14)–(3.16) are obtained as

Um0 = rA2ū1ζ, Vm0 = rA2v̄1ζ, Wm0 = −A2ū1ζ
2. (3.32)
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Fig. 2. The solution of eigenrelation (3.27) is presented as the
leading-order wavenumber versus the frequency by the dotted curve.

Also the asymptotes for large and small γ are shown by the black
curves.

4. Results and discussion.
4.1. Linear results (δE terms). The leading-order wavenumber is governed by rela-

tion (3.27), which is associated with the non-zero frequency neutral disturbances. It is
straightforward to check that the solution of (3.27) in the limit of the stationary neutral
mode of [1] results in γ = 1.22. Figure 2 demonstrates the calculated roots (and also the
asymptotes for large and small γ, which are indicated by the unbroken curves) that are
real and positive, and so connected to the physical problem as initially imposed. The
solution to equation (3.27) is in fact characterized by a parameter Ωc. Therefore, beyond
the value of Ωc (which can be calculated from (3.27) as Ωc = − 8

a ( b
9 )9/8) it is apparent

from Figure 2 that no non-stationary modes exist. Thus, Ωc constitutes a cut-off value
for the positive frequency waves. This should be no surprise since within the present
asymptotic theory sufficiently small frequencies with vanishing shear stress on the wall
are assumed.

Another intriguing feature visible from Figure 2 is that for 0 < Ω < Ωc, two real pos-
itive roots exist corresponding to two lower branch neutral modes of the non-stationary
waves for asymptotically large Reynolds numbers. The existence of such a double mode
was also observed in the numerical calculations of [20]. It was found in [20] (see Figure 7
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of [20]) that for some positive range of frequency, the relevant neutral curves approach
the neutral curve of zero-frequency, after having turned around as the Reynolds number
increases. The present theoretical work thus predicts such a behavior bringing with itself,
in addition, an imposition of a threshold value for the frequency.

The critical layer analysis of [28] for the evaluation of non-stationary modes seems
not capable of capturing the modes encountered here. This might be due to the reason
that the critical layer analysis does not yield negative frequencies and only points out
the stationary mode of [1]. However, within the current asymptotic approach, since
the shearing stress at the wall is presumed to diminish at the leading-order, the non-
stationary neutral waves behaving qualitatively in a manner similar to the stationary
one are well captured in the large Reynolds number limit. In addition to this, the wave
angle, that is, the angle that wave disturbances make with the radius of the disc lies
between 0◦ and 90◦, a much wider range than that found in [28].

It is also clear from Figure 2 that for Ω < 0 the mode matching to the stationary
mode of [1] has an effective wavenumber γ that increases monotonically as the frequency
decreases. This behavior is also consistent with the numerical solution, as presented
later, of the full linearized stability equations obtained by a parallel-flow assumption.

Having solved for the leading-order wavenumber expression, the correction term to
the inclination angle, Φ0, can be formulated by utilizing (3.26) as

Φ0 = (γ3/2 + a1γ
−3/4Ω)b1I2r

−5/4 = φr−5/4,

with b1 = 2|ū0v̄0U
0|−1/2. The scaled wave angle correction term φ versus the frequency

is shown in Figure 3, which is also consistent with the stationary mode of [1], leading to
a value of 2.3 for Ω = 0. It is seen that positive frequency waves make a smaller angle of
inclination with the radius vector than the negative frequency waves.

However, since we have not yet found α1 and β1 separately, the correction term to the
wavenumber cannot be determined without further continuing the next-order terms. In
this connection, using the findings so far, the total effective wavenumber can be expressed
by

k =
√

α2 + β2

r2 = γ0[1 + (α0α1 + β0β1
r2 )ε2/γ2

0 + · · · ]. (4.1)

In a similar fashion, the inclination angle between the radius and cross-flow vortices,
defined by Φ = arctan( β

αr ), satisfies

cotΦ = tan(π
2 − Φ) = α0r

β0
+ [α1

β0
− α0β1

β2
0

]rε2 + · · ·
= 1.207 + φr−1/4ε2 + · · · .

(4.2)

In order to be able to compare the present asymptotic results (4.1)–(4.2) with the
available numerical stability results, such as [6], the following adjustments need to be
done first. Noting that R∆, k∆ and ω∆ denote the Reynolds number, wavenumber
and frequency respectively, used in [6] and [15], and that R∆ = rR1/2 (here R∆ is the
Reynolds number based on the boundary layer thickness and the local azimuthal velocity
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Fig. 3. The solution of eigenrelation (3.27) is presented as the cor-
rection angle versus the frequency by the dotted curve. Also the
asymptotes for large and small γ are shown by the black curves.

on the disk), the following relations are present:

k∆ = ε4kr−1/2 ∼ γR
−1/2
∆ , (4.3)

cotΦ = tan(
π

2
− Φ) ∼ 1.207 + φR

−1/4
∆ , (4.4)

ω∆ ∼ ε−1 ω0

R
1/8
∆

= Ω. (4.5)

It is easy to ascertain from equations (4.3)–(4.5) that, by expressing the neutral values
found in this investigation in terms of R∆, the explicit dependence on the radial variable
has been removed. It should also be remarked here that simply assigning Ω to zero in
(4.5) will effectively produce the stationary modes, which were already treated in [1].
Another intriguing point which deserves attention is that, unlike the other boundary
layer flows such as the Blasius flow (see [26]), here the stability quantities and as a result
the structure of the lower branch modes arise from a balance between the viscous forces
and Coriolis effects. Unlike this again, the eigenrelation determining the upper branch
modes arises from a balance between various jumps across the critical layers and Stokes
layer shift; see for instance [29].
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Fig. 4. Illustration of the variation of effective wavenumber against
the Reynolds number for a variety of frequencies: (...) ω∆ = −2.5,
(—) ω∆ = 0.0, and (--) ω∆ = 0.7. The asymptotic structure of the
non-stationary lower branch modes is also shown by broken lines (--).

The second branch corresponding to ω∆ = 0.7 is also shown by the

arrow.

In Figures 4 and 5, a comparison has been made between the computed numerical
results of parallel-flow approximation (see [6]) and the asymptotic predictions as ob-
tained from equations (4.3)–(4.5). It is seen for the limiting case of zero-frequency that
the stationary viscous mode is perfectly recovered, showing the consistency of our as-
ymptotic extension of the disturbance structure as set up in [1] to non-stationary small
frequency modes. For small amplitude disturbances, the inviscid modes displayed as up-
per branch curves in Figure 4 are the dominant ones, whereas for larger amplitudes, the
non-stationary short-wavelength modes depicted as lower branch curves might be more
important, since then it might be possible that this class of modes may bifurcate sub-
critically as far as the non-linearity is concerned. The existence of such short-wavelength
lower branch modes demonstrated in Figures 4 and 5 was first observed experimentally
in [19], and recently in [32, 33]. The second branch (indicated by the bold arrow) is most
probably the one discovered in the experiment of [19].
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Fig. 5. Illustration of the variation of wave angle against the
Reynolds number for a variety of frequencies: (...) ω∆ = −2.5, (—)
ω∆ = 0.0 and (--) ω∆ = 0.7. The asymptotic structure of the non-
stationary lower branch modes is also shown as unbroken lines for
each ω∆ displayed. The second branch corresponding to ω∆ = 0.7
is also shown by the arrow.

To summarize this section, the contributions due to the boundary layer growth, that is
non-parallelism, seem to be effectively destabilizing for the rotating-disk boundary layer
flow taking into consideration the leading-order approximation. The dominant effect
of the non-parallelism on the stability properties is appreciably felt for finite Reynolds
numbers. For sufficiently large Reynolds numbers a fairly enhanced agreement occurs
between the asymptotic and numerical findings. It would be interesting to further work
out the contributions of non-parallelism which would arise from the consideration of
higher-order terms in equations (4.1)–(4.2), within the asymptotic expansion technique
pursued in this study.

4.2. Results of finite amplitude effects. From equation (3.31), which is satisfied at the
position of neutral stability, say r = r̄, we see that taking into account the relation
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(3.25), the left-hand side is zero when r = r̄. Therefore, in order to determine a finite
amplitude solution, we must move sufficiently away from the neutral radius to allow C1

to be non-zero. Taking this into consideration, as in [2] we perturb the solution from the
position of neutral stability by writing

r = r̄ + εr1. (4.6)

Within a similar inspection as implemented in [2], by choosing δ = ε7/2, a Landau-
Ginzburg type equation is then formed to search for the effects of finite amplitude C1;
see also [36] and [37]. To be concise, we pursue the argument given in [2] and omit the
details, except that α2 in (3.17)–(3.19) is effectively replaced by

α2 = −i
∂

∂r1
. (4.7)

Accounting for the above arguments, now, from (3.14) the lower-deck disturbance
velocity Ũ will expand as

Ũ = ε7/2{[ε−1r̄A1(ū0 + 2εū1ζ + · · · ) + ε−1(Ū−1 + εŪ0 + · · · )]E
+ε−1/2[r̄ A2

2 (ū0 + 2εū1ζ + · · · ) + (Ū20 + εŪ21 + · · · )]E2

+ε1/2(Ūm0 + εŪm1 + · · · ) + [r̄ A3
3 (ū0 + 2εū1ζ + · · · )

+(Ū30 + εŪ31 + · · · )]E3} + O(ε4) + c.c.,

(4.8)

together with a similar expression for Ṽ , while W̃ and P̃ expand as

W̃ = ε7/2{{−ε5iA1[(α0rū1 + β0v̄1)ζ2 + · · · ] + ε6(W̄0 + εW̄1 + · · · )}E
+ε1/2[−ε5iA2[(α0rū1 + β0v̄1)ζ2 + · · · ] + ε6(W̄20 + εW̄21 + · · · )]E2

+ε19/2(W̄m0 + εW̄m1 + · · · ) + {−ε6iA3[(α0rū1 + β0v̄1)ζ2 + · · · ]
+ε7(W̄30 + εW̄31 + · · · )}E3} + O(ε10) + c.c.,

(4.9)

P̃ = ε7/2{ε3(P̄0 + εP1 + · · · )E + ε5/2(P̄20 + εP̄21 + · · · )E2

+ε27/2(P̄m0 + εP̄m1 + · · · ) + ε4(P̄30 + εP̄31 + · · · )E3}
+O(ε8) + c.c.,

(4.10)

where, now, quantities depend upon r1 and ζ. The amplitude equation we are seeking is
obtained by substitution of (4.8)–(4.10) into the non-linear disturbance equations (2.3),
equating coefficients of like powers of ε from the resulting equations for the terms pro-
portional to E, and finally solving for W̄1. The contribution coming from the terms of
O(E2) and of O(E3) will be too small and thus neglected.

However, instead of substitution of (4.8)–(4.10), the W̄1 solution can also be deter-
mined in the following manner. The linear contribution to the W̄1 term will come in from
(U2, V2, W1, P1) from the fourth equations in (3.17)–(3.20) after replacing r by r̄, as well
as by expanding W0 in equation (3.22) using (4.6) and extracting out O(ε) terms. The
non-linear contribution will be simply as in W10 in equation (3.31), due to the argument
given in [2]. Therefore, multiplying the last equations in (3.18) (and a similar one for Ṽ )
by irα0 and iβ0, respectively, adding the results and making use of the fourth equation
in the continuity equation (3.17), we obtain the solution for W1 after matching with the
main deck as

W1 = γ2
0∆−3/4D1F1(s1) + ik1∆−5/4[rα1ū0 + β0v̄0]s1

−iA1∆−1/4[rα2ū0 + β2v̄0]s1 + A1F4(s1) + A1ω0F5(s1) + O(s2
1).

(4.11)
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F4(s1) and F5(s1) are obtained from equations of the form (3.23) with the right-hand
sides in (3.23) replaced by RHS1 and RHS2, respectively. RHS1 is in fact in the same
form as that given in [2] for the stationary waves, and RHS2 contains the contribution
due to the non-stationary perturbations and is given by

RHS2 = ∆−3/4{(rα1ū0 + β1v̄0)[F1(s1) − s1F
′
1(s1)]

−∆−1/2(rα0ū2 + β0v̄2)s2
1[s1F

′
1(s1) − 3F1(s1) + 3]

−i∆−1/2[γ0β
2
0F ′

2(s1) + 2iβ0U
02

ū0
F ′

3(s1)
Uc(0,0) ] − 2 ik1

A1
∆−1/4s1}

+∆−1/2ω0F
′
1(s1).

(4.12)

Next, expanding the W0 solution in (3.22) using (4.6), and taking into consideration
A1 = Ā1(1 − ε r1

r̄ ) with Ā1 obtained by replacing r by r1 in A1, and eventually together
with (4.7) adding the resulting O(ε) terms into (4.11), the quantity W̄1 appearing in
(4.9) is given by

W̄1 = i
r̄β1v̄0∆−1/4r1Ā1s1 + ik1∆−5/4[r̄α1ū0 + β0v̄0]s1

−iβ2v̄0∆−1/4Ā1s1 − r̄ū0∆−1/4s1
dĀ1
dr1

− ∆3/4Ā2Ā
∗
1s1

+∆−3/4γ̄2
0F2(s1)[D1 − 2

r̄ r1C1] − 2 i
r̄ β0U

02
ū0

F3(s1)
Uc(0,0)∆

−3/4r1Ā1

− i
r̄ ω0F1(s1)r1Ā1 + F4(s1)Ā1 + ω0F5(s1)Ā1 + O(s2

1).

(4.13)

Considering the last equation in the continuity equation (3.17), the zero-wall derivative
constraint also holds for W̄1 and hence the subsequent relation arises:

i
r̄β1v̄0∆−1/4r1C1 + ik1∆−5/4[r̄α1ū0 + β0v̄0]

β2
0

γ̄0
− iβ2v̄0∆−1/4C1

−r̄ū0∆−1/4 dC1
dr1

− ∆3/4C2C
∗
1

γ̄0
β2
0

+ ∆−3/4β2
0 γ̄0I2[D1 − 2

r̄ r1C1]

− i
r̄β0U

02
ū0I3∆−3/4r1C1 − i

r̄ω0I1r1C1 + {I4 + ω0I5}C1 = 0,

(4.14)

for which I4 and I5 are given by a complex contour integration as

I4 = F ′
4(0) = 1

2Uc(0,0)

∫ ∞
0

θUc(0, θ)RHS1(
√

2s1 = θ)dθ,

I5 = F ′
5(0) = 1

2Uc(0,0)

∫ ∞
0

θUc(0, θ)RHS2(
√

2s1 = θ)dθ.
(4.15)

It should be remarked here that, by a direct matching of the solution W0 in (3.22)
with that of the main-deck solution in (3.8), the constant k1 is found to be k1 =
−i[rα0ū1 + β0v̄1]B̄1, with B̄1 = γ̄0D1

β2
0

, and thus the k1 and D1 terms appearing in (4.14)
are taken care of together with the consideration of the eigenrelation (3.25).

We can now write (4.14) in the form
dC1
dr1

= (a + ib)r1C1 + (c + id)C1|C1|2 + (e + if)C1, (4.16)

where with the help of (3.25) the constants a, b, c, d, e and f in (4.16) are given by

a = − γ̄0β2
0I2√

2r̄2ū0∆
1/2
0

, b = β1v̄0
r̄2ū0

− a − β0Φ0
r̄ ,

c = 2 γ̄2
0∆

5/2
0

r̄ū0β4
0

(κ1−κ2)
(κ2

1+κ2
2)

, d = −2 γ̄2
0∆

5/2
0

r̄ū0β4
0

(κ1+κ2)
(κ2

1+κ2
2)

,

e + if = 1
r̄ū0∆−1/4 (−iβ2v̄0∆−1/4 + I4 + ω0I5),

(4.17)

and ∆0 = i∆, κ1 = (4 −
√

2)γ̄0β
2
0I2 + (23/4 −

√
2) cos(π/8)ω0I1∆

3/4
0 and κ2 =

(1 −
√

2)β0ū0U
02

I3 + (23/4 −
√

2) sin(π/8)ω0I1∆
3/4
0 . The variation of parameter c in

equation (4.17) is demonstrated graphically versus the scaled parameter γ in Figure 6.
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Fig. 6. The variation of parameter c in equation (4.17) is demon-
strated versus the scaled parameter γ.

Afterwards, multiplying (4.16) through by C∗
1 and adding the complex conjugate to-

gether with the substitution r2 = r1 + e
a gives

d|C1|2
dr2

= 2ar2|C1|2 + 2c|C1|4. (4.18)

Since equation (4.18) is of Bernoulli type, the form of the solution depends on the
signs of a and c, which are in turn related to γ̄0 and ω0. However, equation (4.17) shows
that regardless of the sign of the frequency term, a is always negative and hence the
amplitude of the solution, |C1|, increases or decreases (see (4.18)) depending on whether
r is less than or greater than the neutral value, which will also involve the sign of e. With
the change of variables |C1|2 =

√
−a
2c y and r2 = x√

−a
, (4.18) reduces to

dy
dx = −2xy + y2, (4.19)

whose solution can be formulated as

y(x) = 2y0e−x2

2−y0
√

π erf x
, (4.20)
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where y0 = y(0), x = 0 corresponds to the neutral position and erf x = 2√
π

∫ x

0
e−t2dt. As

a result, the amplitude function is given by

|C1| =
√

y0
√
−a

c
e−x2/2

(2−y0
√

π erf x)1/2 , (4.21)

where x =
√
−ar2 and y0 = 2c√

−a
|C1|2|x=0.

Equation (4.19) together with (4.21) reveals that the amplification or decay of the
amplitude takes place around a critical point xd, where xd is given by

y0
e−x2

d

2 − y0
√

π erf xd
= xd.

It is also seen from equation (4.17) and Figure 6 that c is always positive for all the
frequencies, and thus regarding also equation (4.18), it is clear that the non-linearity
has a destabilizing impact for both positive and negative frequency waves, while more
destabilizing for positive frequencies.

With a similar argument as in [2], the amplitude function (4.21) becomes finite for all
x as long as y0 < 2/

√
π. On the other hand, |C1| will be unbounded for y0 ≥ 2/

√
π, and

there happens to be a cut-off at the value of xe, where xe is given by

y0 = 2/(
√

π erf xe).

Therefore, y0 = 2/
√

π represents a threshold between the solutions always growing and
those decaying to zero. In terms of the amplitude function (4.21), this threshold depends
upon the frequency and is given by

|C1||x=0 = (
−a

πc2
)1/4.

From this finding, and also making use of (4.17), for positive frequencies with the scaled
wavenumber γ small (Ω ∼ γ1/4 from equation (3.27), see also Figure 2), the initial ampli-
tude |C1||x=0 will be order of magnitude of γ7/8, whereas for negative frequencies with γ

large (Ω ∼ −γ9/4 from equation (3.27), see also Figure 2), it will be order of magnitude
of γ15/8. This order of magnitude analysis implies that for the total amplification of the
perturbations received into the three-dimensional rotating-disk boundary layer a smaller
amplitude will be sufficient for the positive frequency waves but not for the negative
ones. Thus, the destabilizing influences of non-linearity are greater for a positive fre-
quency disturbance than for a negative one, resulting in the fact that for the negative
frequencies close to the neutral location the non-linear effects are less important. This
may also explain why the travelling modes dominated in the early stages of instability in
the experiment of [32] for the natural transition process over a smooth rotating disk. If
the transition is forced with a roughness element on the disk, then the non-stationary dis-
turbances having finite amplitude were found to cause the transition in [33]. The above
outcome thus enables us to conclude that turbulence will first take place through the
positive frequency waves, if of course the lower branch modes calculated here dominate
over the inviscid upper branch modes of [12]. If this is the case, then the non-stationary
short-wavelength unstable modes described in this paper could be observed experimen-
tally as in [19] and [32, 33]. However, it is an inevitable fact that at sufficiently large
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Reynolds numbers there will always be a broad spectrum of unstable inviscid modes with
order-one growth rates which dominate over the transition process completely.

5. Conclusions. In the present study a rational asymptotic expansion procedure
which, as opposed to the conventional parallel-flow approximation, rigorously takes care
of the non-linearity, non-parallelism and influences of viscous and Coriolis forces, has been
pursued successfully to investigate the behavior of the non-stationary short-wavelength
small frequency lower branch modes of the disturbances imposed on the incompressible
three-dimensional boundary layer flow due to a rotating disk. First of all, the effects
of non-parallelism have been determined on the evolution of linear lower branch modes.
Secondly, the influences of the non-linearity have been searched on the time-dependent
solutions, but quite close to the stationary neutral waves having vanishingly small shear
stress on the wall. On this level, moving from the neutral location, the amplitude function
of a growing or decaying perturbation has been determined as a function of the distance
from the position of neutral stability. The most important conclusion from the present
study is that, regardless of the positive or negative frequency waves, the non-linearity
acts in favor of destabilization of the three-dimensional rotating-disk boundary layer flow.
The destabilizing influence of the non-linearity is particularly pronounced for the positive
short-wavelength frequency waves.

Comparisons show that, although the parallel-flow approximation to the full linearized
equations is only valid for Re → ∞, nevertheless, to the order calculated the numerical
and asymptotic results are graphically consistent. This consistency strongly suggests
that the structure of the expansions for different quantities in each asymptotic regime
of the triple deck is also appropriate to more general three-dimensional boundary layers
(such as the Ekman and Bödewat layers), requiring only minor modifications in the flows
of practical interest. However, it should be stressed here that the structure of the lower
branch modes described here is formed both with the fact of having a vanishing shear at
the wall in the effective mean cross-flow profile, and by a balance between the viscous and
Coriolis forces. Therefore, unlike the upper branch modes, lower branch modes of the
kind found here may not even exist in other three-dimensional boundary layers possessing
no Coriolis term. This is as a result of the fact that the lower branch modes are governed
by a relation determined from parabolic cylinder functions, rather than Airy functions or
some other functions involved in eigenrelations in three-dimensional classical boundary
layers; see for instance [38].

The solution of the eigenrelation governing the effective wavenumber and frequency
has not only demonstrated clearly the appearance of a double mode for some certain
positive frequency waves, but also proved the existence of a critical frequency above which
no neutral modes can occur. Non-parallel effects are overall found to be destabilizing.
Moreover, in rotating-disk flow, the non-linear influences are more important for the lower
branch modes close to the neutral locations than for the inviscid upper branch modes
(though the critical layers in the upper branch might yield a significant non-linearity at
low amplitudes).

In line with the stationary mode of [2], a threshold amplitude of the disturbances has
been found to exist at the position of neutral stability of the lower branch modes. If
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at the position of neutral stability, the amplitude of any disturbance is larger than this
specific value, the solutions are most likely to grow in size driving the flow into turbulence,
as the distance from the neutral stability location is increased. Equation (4.21) proves
that the initial amplitude of the modes leading to an infinite growth is much smaller
for the positive frequency waves as compared to the negative ones. Thus, in compliance
with the experiments of [32, 33], non-stationary waves having positive frequencies with
sufficiently small amplitude near the neutral location are of significance in applications.
These unstable modes are most probably the ones observed also in the experiment of
[19]. If, however, the amplitude of a disturbance is smaller than the threshold amplitude,
it decays eventually to zero after an initial growth as the distance from the position of
neutral stability is increased, leaving the flow stable. In this case, of course the unstable
inviscid mode observed to be dominant in the experiment of [12] will definitely be in
play.

Another point which deserves mentioning is that as the difference in behavior between
positive and negative frequencies is discovered here, some differences can be expected
between waves which rotate faster or slower than the disk, an issue that requires further
work.

It might also be interesting to explore whether the lower branch modes calculated
analytically here can give rise to absolute growth of the disturbances, as in the works of
[9, 39]. This certainly requires the multiple layer analysis of [9] and [40] (see also [41]),
which seems most appropriate for the neutral waves found in this work. Finally, it was
shown in [42] that the non-linearity is also destabilizing in the compressible rotating-disk
boundary layer flow as far as the stationary modes are concerned. The effects of wall
insulation and isothermal wall were also found to be destabilizing, indicating the greatest
likelihood of instability through highly cooled walls. How the compressibility will alter
the character of the time-dependent modes accounted for in this study warrants further
work and is currently being investigated.
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