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Abstract. We study a reduced 1D Vlasov-Maxwell system which describes the laser-
plasma interaction. The unknowns of this system are the distribution function of charged
particles, satisfying a Vlasov equation, the electrostatic field, verifying a Poisson equation
and a vector potential term, solving a nonlinear wave equation. The nonlinearity in
the wave equation is due to the coupling with the Vlasov equation through the charge
density. We prove here the existence and uniqueness of the mild solution (i.e., solution
by characteristics) in the relativistic case by using the iteration method.

1. Introduction. We consider a population of relativistic electrons with mass m > 0

and charge —e < 0. We denote by v(p) = = (1 + mpTl;) v the velocity associated to a
given momentum p € R3, where c is the light speed. The electrons move under the action
of an electric field E and a magnetic field B. Their distribution function F = F(¢,z,p)
satisfies the Vlasov equation

O F +v(p)-VoF —e(E(t,z) +v(p) AB(t,2)) -V, F =0, (t,z,p) €]0,T[xR*xR3. (1.1)
The electro-magnetic field verifies the Maxwell equations

& E — eurl B = fj, 8,B + curlE = 0, divE = f(pm —p), divB=0, (L2
0 0

where gq is the dielectric permittivity of vacuum, p.,; is the density of a background
population of ions which are supposed at rest and the electron density p and current j
are given by
pta) = [ Fltop)dp, jta) = [ o@)F(t.a.p) dp, Vit.o) € 0.7] x B
R3 R3
The Cauchy problem of the Vlasov-Maxwell system ([Il), (L2)) was studied following
different methods by DiPerna and Lions [7], Glassey and Schaeffer [9], [I0], Glassey and
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Strauss [1I], [12], Klainerman and Staffilani [14], and Bouchut, Golse and Pallard [2].
Results for the boundary value problem were obtained by Poupaud [I5], and Guo [13].

Here we intend to analyze a reduced 1D Vlasov-Maxwell system introduced recently
in the physical literature for studying laser-plasma interactions. The assumptions of this
model are the following : all unknowns depend on only one space variable, for example
1, and the electrons are monokinetic in the directions transversal to 1. The distribution
function becomes

F(t,z,p) = f(t,21,p1)0(p2 — p2(t, x1))d(ps — p3(t, 21)).
We consider the initial condition
F(0,2,p) = Fo(w,p) = fo(z1,p1)8(p2 — p3 (21)) 8(ps — p3'(21)).
Let us also introduce the vector and scalar potentials A, ® such that
B=curlA, E=—-0;A—V,.
Under the hypotheses of our model 0;, = 05, = 0 and thus the previous equalities
become
B1 =0, By =—0,,A3, By =0,,A2,E1 =—0;A1 — 0,,®, E2=—0,As, E3=—0;As.

The distribution function f also satisfies a Vlasov equation in the phase space (x1,p1)-
This comes mainly from the invariance of the quantities P, — eAs, P3 — eAs along the
characteristics associated to (L)

D pe), U (e XD PO A B X)), (1)

X(s=t)=z, P(s=t)=p. (1.4)

Assuming that eAs(0,z1) = p3(z1), eA3(0,21) = p3(z1) and A; = 0 we deduce after
some computations (see [0]) that f satisfies the kinetic equation

Ouf + PR o, f — e(Bi(t, 1) + — Ao(t, )00, Ag + —— As(t,21)00, A3)9p, f = 0,
mry mey mry

with the initial condition f(0,21,p1) = fo(z1,p1), (21,p1) € R? and we have the equality
F(t,xz,p) = f(t,x1,p1)0(p2 — eAa(t, x1))0(ps — eAs(t, z1)). The function ~ is given by

1

|2 62 2

p
Y(t21,p1) = (1 + Jnécg + gz (At an) + lAs(t,x1)2>>

For the sake of simplicity we assume that A3 = 0. Under these circumstances, by adding
the first and second Maxwell equations one gets the system

Of + %axlf — (Bt 1) + W%Ag(t, 1), A2),, f = 0, (1.5)
2
02 Ay — P02, Ay = ———po (t,01) As(t, 11), (1.6)
meo
8tE1 = Ejl(t,a:l), (17)
€0

8901E1 = %(pewt(xl) - p(taxl))v (18)
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1
2 2 2\ 3
where {p, py, j1}(t, z1) fR{ o B } (t, @1, p1)dpy, and y= ( Gl L )
Observe also that the total energy at the moment ¢ is

2\ 3
/ / e pme (14 20 ap e 2 / (E(t, 2 + @|B(t,2)P} da
R3JR3 2 Jps
2 2A 2 %
//f(t,$1,p1)m62 (1+ |p1| +€ | 2(t,$1)| ) dp1d$1
RJR

m2c? m2c?
£
3 [AB )P + 102 + 1o, 40P} dan.
R

The above model describes the interaction of the electro-magnetic field created by a
laser wave (called pump wave) with a population of charged particles. It was studied
recently by Carrillo and Labrunie in [5]. The strong nonlinear coupling through the
Lorentz factor v makes this system difficult to study theoretically but also numerically.
Other reduced models have been considered by physicists.

1) The nonrelativistic model NR is obtained by setting v = 1 everywhere.

2) The quasi-relativistic model (also called semi-relativistic by some authors) denoted

1
o\ 1
QR consists in approximating v by (1 + lﬁ;&) * in the second term of ([CH) and in the

definition of j;, and setting v = 1 in the third term of (L)) and in the definition of p,
(which means p, = p).

3) The original model with v = (1 o GQ‘AM“)'Q)% ill be referred to as full
ginal model with ~y + peo oy + poe w1 e reterred to as fully
relativistic FR.

Notice that (F = f(t,x1,p1)0(p2 — eAs(t,21))d(ps3), E, B), where (f, F1, As) solves
the NR model (I3), [C6), (7)), (C), is a class of exact solutions for the nonrelativistic
Vlasov-Maxwell system, i.e., (LI)), (L2) with v(p) = £. Similarly, when (f, £y, A2)
solves the FR model, then (F = f(t,x1,p1)0(p2 — eAa(t,21))d(ps3), E, B) is a class of
exact solutions for the relativistic Vlasov-Maxwell system (L1I), (I2]). Nevertheless, the
QR model is only an approximation of the FR model.

Another way to retrieve the FR model is to consider particular solutions of the one
and one-half relativistic Vlasov-Maxwell system

HF + 811F (El + p—%B3> 0, F—e <E2 - p—{B3> 0y, F =0, (1.9)
my my
0:E1 = / OyEs + ¢ 335133 = 7/ 0y B3 + axlEg =0,
€o Jrz mYy €0 Jrz MY
(1.10)
where 7 = (1 + M . Let us introduce the vector potential component A, such

that Ey = —8tA2, 3 = Oz, As. By direct computation we find as before that the
solution of the one and one-half relativistic Vlasov-Maxwell system corresponding to the
initial particle distribution F(0, z1, p1,p2) = fo(x1,p1)d(pa —eAs(0,21)) is related to the
solution of the FR model by

F(t,xl,pl,pg) = f(t,]?l,pl)a(pg — €A2(t,$1)). (111)
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Let us mention that the existence of classical solutions for (I9)), (II0) was established in
[9]. The authors construct global C'* solutions for compactly supported, smooth initial
conditions. The aim of this paper is to provide existence and uniqueness results for the
FR model. Motivated by the delta function appearing in (IL.IT) it is natural to consider
weak solutions of the Vlasov equation. More precisely we are looking for solutions by
characteristics. We also remove the hypotheses on the compactness of the supports, which
do not correspond to the physical reality. It is worth pointing out that this hypothesis
together with the smoothness of the particle distribution were crucial for the arguments
in [9]. Although the FR model can be interpreted as a particular case of the one and
one-half relativistic Vlasov-Maxwell system, here we employ a different method than
thoses in [9]. Our proof makes no appeal to the decomposition of derivatives, which
is one of the main tools in [9]. At this stage let us mention the recent analysis of the
relativistic Vlasov-Maxwell equations in [§] where the authors study particle distributions
of bounded variation.

The equations ([3)), (TA), (), (L) can be simplified by introducing dimensionless
unknowns and variables. If we omit the subscripts of x1,p1, E1, As, j1 and keep the same
notations for the rescaled unknowns and variables we obtain (think that m = 1,¢ =
lLe=1¢g=1)

A(t, x)

of+2Lo.f- (E(t,x) + awA) Opf =0, (1.12)
! Y2

8t2A - 8%‘4 = TPy (tv x)A(tv 37), (113)

OE = j(t, ), (1.14)

81E = pewt(x) - ,O(t, I>7 (115)

where {p, p.,,j}(t, ) = [o{1, 5, Z}f(t,2,p) dp, m = 72 = 1 in the NR case, 11 =
(14 |p|>)'/2, 72 = 1 in the QR case and 71 = 72 = (1 + [p|® + |A(t, )|?)*/? in the FR

case. We supplement these equations with initial conditions
£(0,2,p) = fo(z,p), (x,p) €R?, (E,A,0;A)(0,z) = (Ep, Ag, A1)(z), z € R.  (1.16)

In [B] the authors investigated the existence of space periodic solutions and free-space
solutions of the system (LHl), (L6), (L), (L8). They proved the existence of weak and
characteristic solutions in the NR and QR cases. In this article we restrict our attention
to the FR case. Actually the same method applies to the QR case, and some arguments
can be used for analyzing the NR case. It is possible to construct global solutions by
characteristics in the QR and FR cases, while only local solutions by characteristics are
available in the NR case (see also [0]). The arguments rely on iterative procedure (cf.
[6]). The main idea consists in using the formulation by characteristics to obtain L*®
estimates for the electro-magnetic field and the spacial derivatives by duality computa-
tions involving L! test functions. This method has already been used in [I] to prove
the existence and uniqueness of the solution by characteristics for the 1D Vlasov-Poisson
initial-boundary value problem.

To our knowledge this is the first theoretical work on the FR reduced Vlasov-Maxwell
model ([[A), (C4), (C17), (CI). It has common features with the Nordstrom-Vlasov
system, studied recently by Calogero and Rein [3], [4].
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The paper is organized as follows. In Section 2] we recall the notion of weak and
mild solutions for the Vlasov problem and several properties of such solutions. We
establish the continuous dependence of the characteristics upon the electro-magnetic field
and the initial conditions. In Section [B] we define the fixed point application (E, A) —
F(E, A) for regular fields (E, A) and we construct a domain D which is left invariant
by this application. The main ingredient for using the iteration method is to estimate
F(E1, A1) — F(E2, Ag) in terms of (Eq, Ay) — (E2, Az) for pairs (E1, A1), (Eq, A2) € D.
In the next section we prove the existence of a unique fixed point for F which guarantees
the existence and uniqueness of a solution for the reduced Vlasov-Maxwell system. This
solution preserves the total energy.

2. The Vlasov problem. In this section we assume that the fields F, A are given and
we introduce the notions of weak solution and mild solution (or solution by characteris-
~E(t,z) - A2, 4) =

tics). We easily check that in all three cases we have div , ) (%,

0, and therefore the Vlasov equation (I.I2)) can also be written

Ouf + 0y (%f) ~9, ((E(t,x) + A(t’x)81A> f) =0, (tz,p) €0, T[xR2.  (2.1)

V2

Consider the initial condition

f(O,x,p) :f0($7p)5 (33717) GRZ' (22)

DEFINITION 2.1. Assume that E € L>(]0, T[xR), A € L>=(]0,T[; WH>(R)), fo €
(R?). We say that f € Ll _([0,T[xR?) is a weak solution for the Vlasov problem

loc

Ll

loc

&), @2) iff

— /T// ft,z,p) (atgo—i- 23130 — (E(t,x) + M@;A) 8,,@) dp dx dt
0 JRJR 4! V2
— [ [ faepot0.0.) dpd, (23
RJR

for all test functions ¢ € CL([0, T[xR?).
We consider some special solutions of (21, (2:2)) which are called mild solutions or
solutions by characteristics. These solutions require more regularity for £, A. Assume
that £ € L>®(]0, T[; WL>°(R)), A € L>=(]0, T[; W%>(R)) and let us introduce the system

of characteristics associated to (LI12)
dX P(s) dP A(s, X (s))

= —E(z,X(s)) —
= = B X () - S

with the initial conditions
X(s=t)=z, P(s=t)=p. (2.5)

Observe that under the above regularity hypotheses for E, A, for all (¢, z,p) € [0, T[xR?
there is a unique solution for (2.4), (28] denoted (X (s), P(s))=(X(s;t,x,p), P(s;t, z,p)).
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The definition of the solution by characteristics can be obtained by replacing the trans-
port term of equation (Z3]) by a test function 1):

Alt
Qo+ axgo (E(t,:w + —(7 “”@A) Bpp = —.
2

After integration along the characteristics and by imposing ¢(7, -, -) = 0 we find formally
that o(t,z,p) = ft (s, X(s;t,z,p), P(s;t,x,p)) ds.

DEFINITION 2.2. Assume that E € L>®(]0, T[; Wh°(R)), A € L]0, T[; W2>(R)),
fo € LL (R?). We say that f € LL _([0,7]xR?) is a mild solution for the Vlasov problem

&I), @2) iff

/OT/R/R]W dpd:rdt:/R/Rfo(x,p) /OTWS’X(S;O’x’p)’P(S;O’x’p)) ds dpdz, (2.6)

for all test functions ¢ € C2([0, 7] x R?).
It is well known that the mild solution is unique and is given by

f(t,z,p) = fo(X(0;t,2,p), P(0;t,2,p)), V (t,z,p) €[0,T] x R. (2.7)

It is easily seen that any mild solution is also a weak solution. By performing the change
of variables (z,p) — (X(t;0,z,p), P(t;0,2,p)) we verify that if fo € L*(R?), then the
mild solution belongs to L*°(]0, T[; L*(R?)) and

/R/th’x’p)'dpd$244|f0($,p)\dpdm, vt €0, T].

Obviously, if fy is nonnegative, f remains nonnegative. Note also that if fy belongs to
L'(R?), then the mild formulation holds true for any continuous bounded test function
€ CO([0,T] x R?) N L*(]0, T[xR?).

2.1. Continuous dependence of characteristics. Here we estimate the difference be-
tween two solutions of the characteristic system (24]), (Z3]). The proof is immediate and
is left to the reader.

PROPOSITION 2.3. Assume that E,E belong to L>(]0,T[;W*°(R)), A, A belong
to L>(]0, T[; W*>°(R)) and consider (t,z,p),(t,z,p) € [0,7] x R2. We denote by
(X, P)(s;t,x,p), resp. (X, P)(s;t, & p), the solution of @4), (ZH) corresponding to
(E,A), (E,A).

1) In the NR and QR cases we have for all s € [0, 7]

(1 () ~ @ +1P(s) - PR) < (2~ 3+ |p - 5i2)}

}

+

/:(II(E — E)(7)]loo + (A = D)0 A(T)|loo + [ A(0A — 05 A)(7) | 0)dT

< o )

/ts{l 1102 B(7)lloo + 102 A(T) I3 + |4 97A(T)lloo } dr
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2) In the FR case we have for all s € [0, T

(1X() ~ K +1P() ~ PR)* < (e~ 3+ fp - 517)}

+ C’/ts(l(E — E)(T) oo+ (1 + |02 All o) (A = A) (1) || oo + || (Ox A — 02 A)(7) |00 )dr |}

<o (| [ 14 1B+ 10,4 + 10240 ) ar

3. Existence tand uniqueness for the reduced model. We intend to prove the
existence and uniqueness of the mild solution for the system ([L12)), (L13)), (LI14), (TI9),
([LI6) in the FR case by using the iterated approximation method. We assume that
7=y =1+p>+ |A(t,x)|2)1/2 everywhere from now on if nothing else specified.
Nevertheless we prefer to distinguish the Lorentz factors 71,72 ; the reader can try to
adapt the proofs in order to treat the NR and QR cases. We consider the application
F defined for regular fields E € L>(]0,T[; W1>(R)) and A € L>(]0,T[; W*>(R)) by
(E,A) — fga — (E,A) = F(E,A). Here fg 4 is the mild solution of the Vlasov
problem (1), 22) associated with the fields E, A, and E, A are given by

E(t,z)p(z) de = | Eo(z)p(x) dr + fo(z,p X(tom(p)) du dp dx (3.1)
/ / [hwen |

for any function ¢ € L'(R), where (X, P) are the characteristics associated with (E, A),
respectively

A(t, ) (Ao(x+t)+Ao (x —1)) / Ay

z+(t—s)
— / / (py,A)(s,y) dy ds, (t,x) € [0,T] X R, (3.2)
z—(t—s)

where p.,(t,z) = IRW dp. Obviously the expression of A comes from the
Duhamel representation formula for the solution of the wave equation in one dimension
with the source term —p.,, A and the initial conditions Ay, A;. Note that if A; € L*(R),
fo € L' (R?), then p,, € L>=(]0,T[; L'(R)) which implies that p,,A € L>(]0,T[; L'(R))
and thus A is well defined. Let us now explain our choice for the definition of E. The
Maxwell equations involving the electrostatic field E are

8tE =JjEA= /%fE,A dp, 8IE = Pext — PE,A = Pext — /fE,A dp, (t,z) €]0, T[xR,
R R

with the initial condition E(0,z) = Ey(z), « € R. By using the continuity equation
OipE, A+ Orjr,a = 0 it is sufficient to impose Ej = pext — po where pg = fRfo dp and to
solve & F = jp_a, which gives E(t, ) = Ey(x —I—fo JE.A(s,x) ds. After multiplication by
a test function ¢ € L*(R) one gets by formal computations using the mild formulation
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[Etop@ s = [ B o [ t | [ #eatsan P ota) dpazas
/EO dx+//f0xp/d—cp )) ds dpdx
/EO dx+//f0 z,p) /X(tog;(f) du dp dz.

Note that if Ey € L®(R) and f, € L'(R?) the formula (1) defines a unique E €
Loo(]O,T[XR> and ||E(t)||Loo(]R) < HEOHL”(]R) + HfOHLl(RQ)a t G]O,T[. The idea is to
study the existence and uniqueness of a fixed point for F. We introduce some notations.

If u: R — [0,400[ is a bounded function nondecreasing on R~ and nonincreasing on
R* and R > 0, we denote by v : R — [0, +o0[ the function given by uf*(t) = u(0) if
lt| < R, uB(t) = u(t — R) if t > R and uf*(t) = u(t + R) if t < —R. If u € L*(R),
then uf* € L*(R) and ||uRHL1(R) = 2R||u|| o ) + ||u]l 1 (r). Following the ideas in [5] we
obtain L> bounds for E, A and their first derivatives.

3.1. Estimates for E. We assume that fy verifies the following hypotheses : there is
no : R — [0, +00[ nondecreasing on R~ and nonincreasing on R such that

(H) fo(z,p) <no(p), ¥ (z,p) € R?, (3.3)
R
(Hoo) Moo = ||Inol| o r) < +00. (3.5)

We can prove the following L> bounds for E, 8, F.

PROPOSITION 3.1. Assume that f; is nonnegative, belongs to L' (R?) and satisfies (H),
(Ho), (Hs). We also suppose that pe.¢ is a given nonnegative function in L(R)N L% (R)
and that Fy is a primitive of p.,+ — pg, where pg = fR fo dp. Then for all regular fields
E e L*(0,T[;WH=(R)), A € L=(]0,T[; W>*°(R)) we have E € L*(]0, T[; W1>=(R)),
and the following estimates hold for all ¢ € [0, T7:

Bl @) < | Eollzee ) + I follL1z2), (3.6)

t
102 Lo ®) < [|pext|lLoe @) + Mo + 2Moo/0 {IE) o) + [|A(5)0xA(S) || oo (m) } ds-
(3.7)

Proof. The estimate (3.8) follows immediately from our definition for E. We introduce
the charge density pp a4 = fRfEA dp. By using ([271) we can write

pe.Alt,z) = /Rfo(X(O;t,x,p),P(O;t,;mp)) dp < /RnO(P(O;t,x,p)) dp.

Now using the second equation in ([2.4]) yields

|P(0;t,2,p) — p| < /O {IE ()l ooy + | A(s) 02 A() | Lo (m) } ds =: R(2).
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Notice that if p > R(t), then P(0;¢t,z,p) > p — R(t) > 0 and thus no(P(0;t,z,p)) <
no(p — R(t)) = né%(t)(p). Similarly, if p < —R(t), then P(0;t,z,p) < p+ R(t) < 0 and

thus no(P(0;t,2,p)) < no(p + R(t)) = né%(t) (p). When |p| < R(t) we obviously have

no(P(0;t,z,p)) < np(0) = né%(t)( ). Therefore we obtain

ppalt,z) < /R B0 (p) dp = 2R(E)Mac + Mo, (t,2) € [0,T] xR, (3.8)

In order to estimate (%E' we prove that E satisfies 8IE = peat — PE,A- Indeed, take
¢ € CL(R) and let us calculate

[EtaEde = [ Eio@ dot [ [ plene0.mm) - o) dpds
S A<pezt<x>—pE,A<t,x>>w<x> dz. (3.9)

Therefore we have awE(t) = peat — pE,A(t), and (B1) follows by (B.8). a
3.2. Estimates for A. We now establish that L> bounds for fi, 9, A and 9, A
PROPOSITION 3.2. Assume that fp is nonnegative, belongs to L'(R?) and satisfies

(H),(Hp), (Hs). We suppose also that Ag € W1 (R), A; € L>(R). Then for all regular

fields E € L>()0, T[; W-°(R)), A € L>®(]0, T[; W?>(R)) we have A € W1 (]0, T[xR)

and
5 I follLrme) [
| A oo r) < || AollLoer) + T || AL oo () + f/o | A(8)[| oo () ds, t € [0,T7,
(3.10)

max{||0z A(t) | Lo, 10: Al =} < [[Apllzoe + [|Ar]l L + /IIA )Izo (Mo + 2R(s)Mso) ds,
(3.11)

where R(t) = [J{IIE(s)]l o= (m) + [ A(5)0A(s) | o } ds, ¢ € [0,7].
Proof. From B2) we deduce easily that

IA)[| o

IN

1 t
[Aol[Loe + ¢ [|Ax][zo + —/ [A(s)|<llpe,a(s)lLr ds
|f0||L

IN

| Aol +1t | Ay oo + LUEIED / 1A() | m gy ds. (3.12)

We have the following representation formula for the space derivative of A:

DAt z) = %{Ag(:v +t)+ Ap(z —t)} + %{Al(l‘ +t)—A(z—t)}

1 t
- 5 [+ t=9) = (Ao~} s @13)

and therefore, by using ([3.8) we obtain the estimate

A

t
102 A#) Lo < N Apllzee + | Axllzee +/0 [A(s)pp.a(s)|L= ds

IN

t
[AGll o + [ A1l 2o +/0 [A()[| Lo {Mo + 2R(s) Moo } ds. (3.14)
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The time derivative of A is given by

O A(t,x) = %{Ag(x—l—t)—A6(x—t)}+%{Al(x—l-t)—l—Al(x—t)}

- %/0 {(pyA) (s, 3+t = 5) + (p, A) (s, 2 —t +5)} ds,  (3.15)

and we obtain the same estimate for 8; A as for 9, A. O
We now construct a domain Dy for the application F such that

I E|| Lo qorpw=®)) + [ Allwr.qorxr) < C, V(E,A) € Dr,

for some constant depending only on the initial conditions and 7.
PROPOSITION 3.3. Assume that the hypotheses of Propositions Bl hold. We
consider the set

Dr = {(B, A) € L=(0,T[ W (R)) x L=(J0, T W>*(R)) | | E|l= < e,
10 Bl < ex, 1A@)]L~ < a(t), 10:A®) 1 < ar(t), ¢ € [0,T]},
where e = |[Eoll= + [l follzr, a(®) = (ol + ¢ [ A]lz=) exp (“U3het), ay () =
{146z + [|A1llz= + Mo t a(t) + Moce t2a(t) }exp(2Mt?a(t)?), t € [0,T] and e; =

lpextllzee + Mo+ 2 Moo e T + 2 My fOT a(t)aq(t) dt. Then for all (E, A) € Dr and any
t € [0, T] we have the inequalities

1Bz~ <e, [0:EllL~ < e1,
IA®) |z < a(t), max{[|0: A(®)]l=, |0:A)]1~} < ar(t), t€[0,T].

Proof. From (B8) we have | E| 1~ < e. From (3I0) we obtain

t
S 1
<||Ao||Lm+t|A1||Lw>(1+@/ Xp(%) ds)
0
= af(t).
We introduce the notation c(t) = ||Af|l L= + ||A1|lL= + Mo ta(t) + My e t2a(t). The
formula (BIT)) yields

IA®)]|

IN

10 A(#)

IN

c(t) +2M, ta(t)2/0 102 A(T)|| L dT

IN

o(t) (1 +2M., ta(t)? /O ' exp(2M 72a(r)?) dT>

t
< cft) (1 +2My ta(t)z/ exp(2M 4 ta(t)?T) dT)
0
= a1 (t). (3.16)
Similarly we have ||0; A(t)|| =~ < a1(t), t € [0,T], and from (B.7) one also gets

T
102 E| oo, 7(xR) < ||Peat]lze + Mo +2Mo e T + 2Moo/ a(s)ay(s) ds = ey.
0
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For using iterative procedure it is convenient to restrict the domain Dr to the set (still
denoted Dr)

Dr = {(E, A)eL>(0, T[; W (R)XLF(J0, T W**(R)) « | Bl < e, [0a Bz~ < e1,
[A@® L < a(t), max{[|0 A()[[ =, [[0:A@) ||} < ar(t), t € [0,TT]}.

For further computations we also need to estimate the L°* norm of the second space
derivative 92 A. This type of estimate has been obtained in [5] locally in time for the NR
case and globally in time for the QR case. We will show that this is possible globally in
time in the FR case. We need the following easy lemmas.

LEMMA 3.4. Assume that fy is nonnegative satisfying

(1) [ [+ o) dpde < +oc.

Then there is a constant C such that for all regular fields (E, A) € Dy we have

// \p|k‘fE,A(t,x7p) dpdx < C’//(1+|p\k)f0(x,p) dpdx, t€0,T].
RJR RJR

Proof. For any t € [0,T] we can write

/R /R pl* ot 2, p) dpd — /R /R pl¥ fo(X (0: £, 2, p), P(0; , 2, p) dp e,

where (X, P) are the characteristics associated to (E, A). Taking into account that

IN

R(t) = / (EG) [ + 1A(S)0. A(5) | < } ds
T(e+a(Ta(T))=:R, te[0,T],

A

we deduce that [p|¥ < C (1 + |P(0;t,z,p)|¥) and the conclusion follows easily since

/R / D" fo(X(0), P(0)) dpdz < C / / (1+|P(0)[5) fo(X(0), P(0)) dp dx

C’/R/R(l + p[*) fo(z,p) dpdz, t € [0,T].

LEMMA 3.5. Assume that the hypotheses of Proposition B.Il hold and suppose that
(Hk) M, = /|p|kn0(p) dp < +00.
R
Then for any (E, A) € Dy we have

for a constant C' depending on 7" and the initial conditions.

/|p|kaA(7vp) dp SC(MO+Mk+Moo)a
R

L>(]0,T[xR)
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Proof. We have for (t,z) € [0,T] x R
/R|p|ka,A(t7$7p) dp = /R|p\kf0(X(0,t,x,p),P(O,t,:mp)) dp
< [ lo*no(P(Ost,z,p) dp
R

/ p|* i (p) dp,
R

IN

and the conclusion follows easily since R(t) < t( e+ a(t)ai(t) ),V t € [0,T]. O
PROPOSITION 3.6. Assume that the hypotheses of Proposition B.1] hold. Then for
any regular fields (E, A) € L]0, T[; W1>°(R)) x L>=(]0, T[; W?>°(R)) we have the esti-
mate |0, E(t)| L= < Mo+ 2Mq R(t) where R(t) = fg{HE(s)HLoc + || A(5)0,A(s)| Lo }ds,
t e 0,17
Proof. Observe that under the above hypotheses jg 4 = fR% fE,a dp is well defined.
We prove that §;E = jg 4. For this pick a function ¢ € C}(]0, T[xR) and calculate

/OT/RE(t,x)atgp dedt — /OT/R/RfO{%/jﬁ(ﬁizg)du—@t,X(t))f%} dp dz dt

_ . T 0.2 P(t;0,z,p) .
- /R /R fol,p) /0 (8. X (10,.9) e i dpd

T
_ / / oAt D)t ) do dt, (3.17)
0 R

which implies that 8tE = jg,a. Therefore we obtain
10:E() ]| < llpp.allne < Mo+ 2 My R(2).

O
PROPOSITION 3.7. Assume that the hypotheses of Propositions B.1] hold, Aqg €

W2e(R), A; € WH>(R). Moreover we suppose that My = [ |p| no(p) dp < +oo. Then
for any 7" > 0 there is a constant C depending on 7" and the initial conditions such that
max{[|02, Al o jo,rxR): [02A] Lo qo.71xR), 107 All L go.71xr) } < Cy ¥ (E, A) € Dr.

Proof. Recall that the first space derivative of A is given by

. 1 1
0 A(t,x) = DO(t, x)+ §D_(t,x) — §D+(t,x),

where DO(t, ) = ${Aj(z + t) + Af(z — t)} + 3{A1(z + t) — A1 (z — t)} and D*(t,z) =
t .

Jo (pys A)(s, @ £ (t — s)) ds. Obviously we have [|0;D°| Lo (jo,7(xr) < [|AG |2 + |47 ]| Lo,

and it remains to estimate the space derivatives of D*(t,-) for ¢ € [0,T]. Pick a test
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function ¢ € C}(R) and by using (Z6) one gets

[rread@a = [ t [ Ao (¢ = 92 do s
- t 22 A0 @ F (2= 5)) d s
/ t [ s ) - ) dpd s

//fo(@p)li(t,x,p) dp dzx, (3.18)
RJR

where I%(t,z,p) = Ot %W@’(X(s;o,x,p) F(t—s))ds, V (t,z,p) € [0,T] x R?,
Y2(s) = (14 |P(5;0,2,p)]? + |A(s, X (5;0,2,p))[?)1/2. We need to evaluate I*(t,x,p).
The crucial point here is that the velocities of any characteristic (24)) remain below the
characteristic’s speed of (LI3)

dX
%

‘P(S; 0,,p)

<1, Y (s,z,p) €[0,T] x R?,
| <t vesp e

where 7, (s) = (1+]|P(s;0,2,p)|> +]A(s, X (5;0,2,p))|?)'/2. This fact was also one of the
key points of the proofs in [B], [9], [I0]. Therefore the following computations are valid:

+ _ M AGXE) A _§)) ds
A(s, X (9))

= L) P F - )IS

td A(s, X (9))
- / ¢ {—w)( ol } (X (5) F (t — 5)) ds

L o(X() — I ol 1) — / I(s) 9(X(5) F (t — 5)) ds.

Note that we have

1 _ VI[P + A, X(s)]? F P(s)
[72(s)(X7(s) £ 1) 1+ [A(s, X(5))]?
o VI+[P(s)]? +[A(s, X (s))[?
- 1+ ]A(s, X(3))]?
< 21+ [P(s)]).

With the previous notations we obtain

[rtea@a = [ [ hennoXw)dd- [ [ fepheess dpd

- //fo(x,p)/ I5(s) (X (s) F (t — s)) ds dpdzx
RJR 0
Q1+ Q2+ Qs. (3.19)
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Estimate of

Q1]

IN

m
//mxp e e ()] dpd
//h Y1+ [P()]) (X ()] dpda

IN

B //f“ (8 X(¢ )1+ [P@)]) [p(X ()] dpda
= 2af(t // feA(t,z,p)(1+ |p|) le(x)| dpdz
RJR
o

[t ao -ﬂ/mammmw )ww
[,o© R Lo
< Cillellzs, (3.20)

IN

where C1 = 2a(T)(Mo +2M T (e +a(T)ar (T) ) + C (Mo + M1 + M) ). 0
Estimate of Q)2

@l < [ [ flen) i £olele ¥ 0l doda

mmmﬁ//n%puﬂmwuxm@m
RJR

oo (| [ an| | [commla] Yol
Cy [lellLs, (3.21)

N

IN

IN

IN

with Cy = QHAQ”Loo (M() + Ml).
Estimate of Q)3

We obtain
L(s)| = 4 A(s, X(s))
’ ds \ P(s) £ /11 [P(5) + [A(s, X ()
|4 A(s, X (s))
— |G R VT PO+ 4G XGIP = Pl ||
< C(1+|P(s)).

Therefore we have

|Qs|

IN

//ﬁ@m/cuﬂmeM@xwwmw@w
RJR 0

C/O/R/R fea(s,z,p)(1+|p|)le(x F (t—s))| dpdrds

qélwwxu—s I/ H >mdﬂ b

Cs [l (3.22)

IN

IN
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The equality [BI9) and the inequalities (B20), (BZ1)), (3:22)) imply

[ D*t)¢ (@) da| < (€14 ot € gl
R
and therefore 9,D* € L>(]0, T[xR), |0, DF||p~ < C1 + Cy + C3 =: Cy. We finally

obtain that [|02A]|pe < || 4] + [|A) ||z~ + C4 =: Cs, Y (E,A) € Dy. The second
derivative 0%, A satisfies the same estimate since we have

- 1 1 1 1
O A(t,x) = E{A{)(x+t) —Aj(x—t)}+ E{Al(aﬂ—t) +A(x—t)}— §D+(t, x)— §D7(t7 x),
and therefore

. 1 _
102 Al < AGIL + 141l + 5 (102D F [l + 8D <)

IN

[Ag Il + | ALz~ + C4
Cs.

By using the wave equation (LI3), we also obtain an estimate for 92 A:

167 At | < N1OZA)l|zow + [lpys (D) e [|A(E) ]2
< Cs+{My+2 My T (e+a(T) ar1(T))} a(T) =: Cs.

We restrict one more time the domain Dy to the set (still denoted Dr)

Dy = {(E,A) ¢ W0, T[xR) x W%>(]0,T[xR) | [|E||r=~ < e, |0:E||L~ < e1,
[0:E| L < €2, max{[|02A] L, |02,All L~} < Cs, |07 AllL~ < Ce,
[A®#) | < a(t), max{[|0-A(t)||L, |0:A(t)[|L} < ai(t), t € [0,TT},

where ea = My +2 Moo T ( e+ a(T) a1(T) ). Observe that this set is left invariant
by F.

3.3. Estimates for F(E1, A1) — F(F2,A2). Note that the domain D constructed
above is a closed bounded set of X7 = W1>°(]0, T[xR) x W2°(]0, T[xR). Our goal
now is to evaluate the difference F(E;, A1) — F(FE2, A3) in terms of (E; — Fa, A — As)
when (Ey, Ar)req1,2y belong to Dr. We suppose that fo is nonnegative, belongs to
L'(R?) and satisfies (H), (Ho), (H1), (Hso), pest is nonnegative, pe; € L'(R) N L®(R),
Ef = peat — [pfo(,p) dp, Ag € W2>®(R), and A; € W'>(R). We use the notation
(B, AN = 1Bl + |A®) |z~ + 10 A@) |1~ + [9A®) 1.

Estimate for E; — F
Consider a test function ¢ € L'(R). From the definitions of E, E; one gets

B 5 X1(t;0,2,p)
Q= | [(Eito) - Eata)otw) ds| < [ [ fuwn)| [ ()| du| dpdz
R RJR X2(t;0,,p)
< //fO(xvp)|90(u)|1{\u—X1(t)|§\X2(t)—X1(t)\} du dp dz, (3.23)
RJR
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where (X}, Py)req1,2} are the characteristics associated with the fields (Ey, Ag)re{1,2}-
By Proposition 23] we deduce that

|X1(t;07xap)7X2(t;0,1’7p)| + |P1(t;0,x,p)ng(t;O,x,p)\
t
< C/HWﬂf&wthXMH@:ﬁ@,
0

and therefore we can write

/|<P(U)|//fo($,p)1{|ufxl(t)|g[s(t)} dpdz du

R RJR

= [l [ [ fora bz lumsision dode du
R RJR

= /R|<P(U)|/RPEl,Al(f,$)1{|u7w\g5(t)} dx du
25(t) llpE,,a, (Bl llollLr, Ve L' (R). (3.24)

We deduce that for any 7" > 0 there is a constant depending on 7T and the initial
conditions such that for (Ey, Ax) € D,k € {1,2}, we have

Qa4

IN

IN

ME—Eﬂ@MwSCAIW&—E%A—Aﬂ@MM&VtEMH~ (3.25)

REMARK 3.8. We also retain the inequality

//hxp‘/&mm?)w

X2 (t;0,z,p)
for all t € [0, T].
Estimate for A; — A,
For any test function ¢ € L*(R) we have

@w<me/ME,&A1AMNWS

@5 =

/Mﬁ@ A(t,2))pl(x) di

1 z+(t—s)
T2 /// (P12 A1 = p2,7,A2) (8, y) dy ds p(x) dz
z—(t—s)

ert s
< %/// (P11 = A2} o) dy s (o)
ert s
v %/// {(Pro0s = P2ra) A2)}(5.9) dy ds o(a) da
= S0l +15). (3.26)

We easily check that

w</n& 2(8) | ey d [Lfoll o ey 9l ce- (3.27)
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For analyzing the term I, we introduce the notation ¢(t,s,y) = [ y+((tt sé)) o(z) de. We

have

|IQ| = / /{(plﬁz —P2,72)A2}(5ay)¢(t»5»y) dy ds
_ fE1 A] 5,Y, p) fEQ»AQ(S’y5p) A2 dp du ds
/// \/1+|p\2+|A1(5 DE I+ R+ [As(s, y)l? v dy

_ (2 z As(s, Xi(8)) Yt 8, Xi(s) o0

B //fo P /0 P \/1+|Pk s)|2 + |Ak(s, Xp(s))|? ds dpd

< /0 /}R/]R folx,p)|I5(s, z,p)| dpdzx ds, (3.28)

where
2
S x _ k A2 S Xk( )) ¢(t757Xk(s))
) Zl V14 [Pe()? + [Ax(s, X (s))]>
Observe that
(s, z,p)| < [Aa(s, Xa(s)) — Aa(s, X1(s))] [¥(t, 5, Xa(s))| (3.29)
+ | Aa(s, X1(5))] [9(t, s, Xa(s)) — ¥(t, 5, X1(s))|
L [l s Xo(s))[{1Pi(s) — Pols)] + [Aa (s, Xa(s)) — Aa(s, Xa(s))I}
VI+IPL(s)]? + [Ai(s, X1 (s))]?
< 2[As(s, Xo(s)) — Aa(s, Xa(s))] [¥(2, s, X2(s))]
+ [Aa(s, X1 ()] [(t, s, X2(s)) — ¥(t, s, X1(s))]
+ [[A1(s) = Az(s)[| L |t(t, 5, Xa(s))[ + [Pi(s) — Pa(s)] (¢, 5, Xa(s))|
< 2(|0,A2(8) || L [ X1 (s) — Xa(s)] lell 22
+  [Pi(s) = Pa(s)] Il + [[Ai(s) — Az(s) L=l 2
Al { /Xl(s>+(t—s) ) du| + /Xl(s)—(t—s> W d }

* H : b Xo(s)+(t—s) 4 Xo(s)—(t—s) 4 '

Combining (3:28), (329) and using Remark B8] yields
t
I2| < C/ I[(E1 — B2, A1 — As)(s)]]] ds [l (3.30)
0

Finally (320), 327) and (B30) imply that for all ¢ € [0,T], (E1, A1), (B2, A2) € D we
have

1(Ar = A2)(B)]| L gy < C/O [[(By — Ea, Ay — As)(s)]|| ds, (3.31)

for some constant depending on 71" and the initial conditions.
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Estimate for 9,4, — 9,4,
For any test function p € C%(R) we need to estimate

Qe = /R(ath — 8x1¢~12)(t,:c) o(z) dx

1 t
5 | 01y = o, A5, 0)p(o — t 45 do ds
0 JR

1 t
5 | [t = a0t + t - 5) do ds
0 JR
N
We have
2
Q5 = )h= 1/ // fE"Ak S TP) g (s 2)p(a T (t— o)) dpda ds (3.33)

1)k-1 Ag(s, Xr(s)) i Xi(s)F(t—s)
// / Pr(s) £ v1(Pr(s), Ax(s, Xr(s))) ds/o o(u) du ds dp dx

B g [XREF(E—s)
0 [ [ o) [ (650 Anto, o) & [l s dpa,

I
S Mw n

k=1

where G*(P, A) = ﬁ(ﬂ“)' Observe that the functions G* are well defined since
P+~ (P,A) >0and P —~,(P,A) <0, V(P,A) € R% In order to simplify our further
computations we introduce some notations. Consider G = G(P, A) a smooth function
(C?). For any pair of regular fields (E, A) € X1 we construct the derivative of G along
the characteristic curves corresponding to (E, A), i.e., for all (¢,z,p) € [0,T] x R? we

compute
lim G(P(S7 t, x7p)7 A(Sa X(S; t, x,p))) — G(p7 A(t7 .’E))

s—t S—t

A(t,x)@xA) ( p 9, A )
= —(Elt,s)+ ———F———— | 0pG+ | A+ ——F——— | 024G
(<) 2 A2 ) 2PC T\ Pt S Ay )

= H(p,A(t,x), 0,A(t, x), 0 A(t, x), E(t, ), (3.34)

with the notation

H(P,A,B,C,E) = —9pG(P, A) (E ) + 94G(P, A) (O + i) :

72(P, A) 71(P; A)

for all (P, A, B,C,E) € R5. For | € {1,2} we introduce the class C; of smooth functions
G € C? such that

max{|G|,|0pG|, [04G[}(P, A) < g(A)(1 + |P["), ¥ (P, A) € R?,
for some continuous function g and
max{|H|,|0pH|, |0AH|,|05H|,|0cH|,|0gH|}(P, A, B,C,E) < h(A, B,C,E)(1 + |P|"),

for all (P, A, B,C, E) € R% and some continuous function h.
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LEMMA 3.9. Assume that (Ey, Ax) € Dr,k € {1,2}, ¢ € C2(R) and G € C;. We denote
by (X, Pr)req1,2) the characteristics corresponding to (Ex, Ax)req1,2)- Then we have
the inequality

2

t X (s)F(t—s)
Z(—l)k/o G(Pk(s;O,x,p),Ak(s,Xk(s;O,x,p)))% </0 go(u)du) ds

k=1

< O+ [P+ B0 (1(Ar — A2)(0) oo + (X1 — X)) + (P — PO ]l
X1(t) t

/ (o) du| + / (CQ+|Pi(s)] + [Pa(s))

Xo(t) 0

X (I[(Ey = Bz, Ay — A2)(s)[|| + | X1 (s) = Xa(s)[ + [Pr(s) — Pa(s) el 1
X1 (5)F (t—s)
/ o(u) du

Xa(s)F (t—s)

+ CO+|R@O))

+ COA+|P(9)]) } ds, (3.35)

for some constant depending on 71" and the initial conditions.

Proof. After integration by parts we have for k € {1,2}

' e A
/0 CPi(s), Ar(s, Xi(9)) </O (1) du> ds = It — I? —/0 Ie(s) ds,  (3.36)

Xk (t)

where I}, = G(Py(t), Ak(t, Xx(t))) 0

o(u) du, I} = G(p, Ar(0,)) [ i o(u) du and

Ik.(S) = H(Pk(s), Ak(S, Xk(s)), &KAk(S, Xk(s)), 3tAk(8, Xk(s)), Ek(s, Xk(s)))
XM@¢@Z?
X /0 o(u) du.

Estimate of I —

2 X1(t)
|Ii — I3 < Z(_l)kG(Pk(t)aAk(tan(t)))| /@(U)du
k=1 0
Xa(t)
b IG(P(), As(t, Xa(1)))] / () dul. (3.37)
Xi(t)

Since (Ey, Ax) € Dr we have ||Ag(t)||~ < a(T),k € {1,2},t € [0,T], and by using the
fact that G € C; we have

Z(— ) G(Py(t), Ar(t, Xx ()| = /0%G((P2,A2)+T(P1—P2,A1—A2)) dr

2 ‘

g(TA1+ (1 —1)A) (1 + [P + (1 — 1) P| )dT

Py(t) = Po(t)] + A (2, X1(2) — Az (t, X2(1))] ) (3.38)

2 )

IA
A\ ||

}: 1)*Ar(t, X (1))

< sup g(A4) (1+|P1(t)|+|Pz(t)|)<|P1
|AI<a(T)
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Since |0, Ag|lLe < a1(T), k € {1,2}, we have
2
Z(—l)kAk(t, Xi(t)] < JAL(t, X1(t) — As(t, Xa(t))] + |Ar(t, Xa(t)) — Aa(t, Xa(2))]
k=1
< ay(T)[ X1 (1) = Xa(8)] + [| A1 () — A2(t)]| o~ (3.39)
By collecting the inequalities (3.31), (B:38)), (339) we obtain

11— L] < COA+[PUt)]+[P(t)] )(|1X1(t) — Xa(t)| + | Pr(t) — Pa(t)]

X1(t)
+ [[A(t) = Ao (@)ool + C(A+ [Pa(t)] ) /X ( )@(U) du] . (3.40)
o(t
Estimate of I — I9
The term I — I9 vanishes since A;(0,z) = A2(0,2) = Ag(x), z € R,
n—19=o. (3.41)

Estimate of I (s) — Ia(s)
We use the notation

Zk(s) = (Pk(s)a Ak(sv Xk(s))a azAk(s’ Xk(s))a atAk(Sa Xk(s))a Ek(sa Xk(s))) € Rsv
for k € {1,2} and s € [0,T]. As before we can write

X1(s)F(t—s)

(H(Z1(5)) — H(Zs(s))) / () du

0

X1(s)F(t—s)
/ o(u) dul .
Xa(s)F(t—s)

[I1(s) = Ia(s)] <

+ [H(Z2(s))l (3.42)

Using the hypothesis G € C; yields

[H(Z1(s)) = H(Za(s))|

IN

| 1216 + (=25 7 121(5) - Za(s)
C(L+[Pi(s)| + [P2(s)] )| Z1(s) — Za(s)]. (3.43)
It remains to estimate the difference |Z;(s) — Za(s)|. We have
1Z1(s) = Za(s)| < |Pi(s) = Pa(s)| + 102 A1 () lloo| X1 () = X2(s) + [[(A1 — A2) ()]l
+ [10741(5) | oo X (5) = Xa(s)] + [102(A1 — As)(5) £
102 A1(5) ]| o= | X1(5) — Xa(s)] + [10:(A1 — A2)(s)l| L=
+  N0xEr(s)llL=|X1(s) — Xa(s)| + [[(E1 — E2)(s)|| L= (3.44)
< C([[I(By = Eg, Ay = Ag) (s)|[] + [(X1 — Xo)(s)[ + [(PL = P2)(s)]).
Finally one gets from (342), (3.43), (3:44)
[Ii(s) = Ia(s)| < C(1+[Pu(s)| + [Pa(s)] )([[(Er — B2, Ax — A)(s)]]|
+ [ Xa(s) = Xa(s)[ + [Pr(s) — Pa(s) Dl el 21
X1(s)F(t—s)
/ o(u) dul .

Xa(s)F (t—s)

IN

+

+ C(+[P(s)) (3.45)
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Our conclusion follows from B36]), (3-40), (41)), B-45). O

LEMMA 3.10. Assume that the hypotheses of Lemma 3.9 hold and [ [, |p|fo dpdx <
+00. Then there is a constant C' depending on 7" and the initial conditions such that for
any function ¢ € CO(R) and (Ey, Ay) € Dr, k € {1,2}, we have

2 t Xio(8)F (t—s)
Z(—l)k /R/Rfo(x,p)/o G(Pk(s),Ak(s,Xk(s)))% (/0 Tp(u) du) ds dp dx
k=1

< C (”(Al — Az) ()| Lo~ +/O [(Er — E2, Ay — A2)(s)]]] dS) el (3.46)

Proof. By Lemma [34] we deduce that

2
/R / Bl + RO+ POD e = ol o+ / / feas (t2,p) o] dp da

CAAGHM%WM@M- (3.47)

Performing similar computations as before (see also Remark [3.8) we obtain the estimate

IN

X1(t) t
[ [ sasip@D| [ o dul dpds < € [ fIE - Eo i - A2)(s)]] ds
rRJR Xa(t) 0
< lellzr, (3.48)
and also
X1(s)F(t—s) s
[ fteipas) | [ elu) dul dpdz <€ [111(E - Eai v = A2) 0l drol
RJR Xo(s)F(t—s) 0
t
< C/ I(Er = Bz, Ay = Ao)(7)|[ d7 [|@l[Lr, V s € [0, 2], (3.49)
0
The conclusion follows by combining (333), (341), B4]), (349) and using Proposi-
tion 23 O

We intend to apply Lemma [B.I0] for estimating Qg = fR((’?wfh — 893/12)4,0(@ dr =
—3(Q¢ — Qg) (see 332)). All we need to do is to check that the functions G* belong
to the class C;. We have

A
P+ /T+[PP+]AR 1+]AP
and we check easily that

max{|G™|, |0pG*, [04G*[}(P, A) < g(A)(L +|P|), ¥ (P, A) € R,

GE(P,A) = 1+ [PP+[AP—P

for some continuous function g. We have
PB AB
94G* — |E+ opG™,
V14 I[P+ AP V1+[PP?+ AP
and we check by direct computation that

max{|Hi\, ‘aPHi‘7 ‘aAHiL |8BH:|:|’ |8CH:‘:‘7 ‘aEH:H} < h(A7B7C7E)(1 + |P| )7

H*(P,A,B,C,E)=|C +
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for some continuous function h. Therefore Lemma BI0 applies, and by combining (3.32),
(B333) one gets for any function ¢ € C(R)

/R@w(fll — Ay)p(x) dx

< CllAs(t) = Ao (@)l ~llel 2t

t
0 [ U oy = A6 ds lpler. (3:50)
0

Since we already know that awfh, 9, Ay € L™ (R) we deduce by density that the previous
inequality holds true for any function ¢ € L!(R) and therefore we obtain

102 A (t) — 9y Aa ()| L
< C||AL(t) — Ag(t) =

+C/O (s — Ea, Ay — As)(s)||| ds, ¢ € [0, T]. (3.51)

Estimate for 9,4, — 9, A,
With the notations introduced in ([3:32)) we have for any function ¢ € L'(R)

/R (0,4~ D Ao)p(a) do = — Q5 — Q5 (3.52)

and therefore we obtain exactly as before that
10:A1 () = B Ao (t)lze < C[|As(t) — Aa(t) | (3.53)
t
+ C/ |||(E1 — EQ,Al — Ag)(s)m ds, Vte [O,T]
0

Now collecting all the partial estimates of (320, B31), B5I), B53) we deduce that
there is a constant C' depending on 7T and the initial conditions such that for any

(B, Ar) € Dr,k € {1,2},t € [0,T), we have
[[[F(EL, Au)(t) = F(E2, A) (@[] < C [[Aw(t) — Az(t)[[ L= (3.54)

t
4 c/ (s — Ea Ay — A)(s)]] ds.
0

REMARK 3.11. A similar inequality holds in the QR case. We need to assume that
M = [o|plPno(p) dp < +o0, [ [ [P[*fo dpda < +00 and to work with the class Cs.

4. Existence and uniqueness of a fixed point for 7. We start with a very easy
lemma.

LEMMA 4.1. Assume that o, 8 are nonnegative real numbers and (z,), C L*(]0,T]) is
a sequence of nonnegative functions satisfying

¢ ¢
Zn+2(t) < a/ Zn(S) ds + 6/ Zn+1(5) dS, te [O,TL n = 0. (41)
0 0
Then >~ 2x(t) converges uniformly on [0, 7] and we have

D za(t) < (20l + 21llzee) @D E, € [0, T). (4.2)
n>0
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Proof. Denote S,,(t) = Y., 2,(t). By adding the inequalities (£I]) written for
n € {0,1,2,...,m} we obtain

Smsalt) = 20(t) — 21 () < /s ds+ﬁ/ S (s) — z0(s)) ds

< (a+8) / Smy1(s) ds, (4.3)

and therefore Sy,11(t) < |20/ Lo + |21 ]| L +(a+8) [y Smi1(s) ds, t € [0,T], m > 0. By
Gronwall’s lemma we deduce that S,, 1 1(¢) < (||z0]|z +|z1 L) et ¢ €[0,T], m >
0, and ([£2) follows by letting m — +o00. Combining ([@2]) and the Lebesgue dominated
convergence theorem yields lim, .1 fOT zn(8) ds = 0 and therefore, by the inequality
(1) one gets the uniform convergence of (z,), towards 0. As before, by adding the
inequalities (1)) written for n,n + 1, ... we obtain

sz(t)ézn(t)Jran + (a4 ) /O sz

k>n k>n

By Gronwall’s lemma we have 3", <. 2 (t) < (|[2nlln= + [|zn41]l=) el@FD t ¢ € [0,T],
n > 0, saying that ) ., 2, converges uniformly on [0, 7. O
By using successive approximations we prove the existence of a fixed point for F and

we obtain the existence of solution for the system (LI2), (LI3), (CL14), (LI3), (LIG).

THEOREM 4.2. Assume that fy in nonnegative, (1+|p|) fo belongs to L!(R?) and satisfies
(H), (Ho), (H1), (Hso), pest is nonnegative, belongs to L'(R) N L>®(R), Ej = pest —
Jofo dp, Ag € W**°(R), and A; € WH*°(R). Then for any T > 0 there is at least
one solution (f, F, A) for the system ([L12)), (LI3), (m) (CI3), (CI6) in the FR case,
verifying f >0, (1 + |p|)f € L>(10, T[; L'(R?)), [pf(,p)(1+ |p|) dp € L>(J0, T[xR),
and (E, A) € Dr.

Proof. We consider (Ey, Ag) = (0,0) € Dr and define (E,, A,) = F(En—1, Ap_1), for
any n > 1 and z,(t) = |||(Ent1 — Eny Ant1 — An) (@], £ € [0,T], n > 0. Observe that
all functions z, are bounded on [0, 7] since ||zp|r <2 (e +a(T) +2 a1 (T)), ¥Yn > 0.
The inequality ([3.54) implies

Znya(t) < C{IlAmz(t) — Anpr ()= +/0 1(Ent2; Ant2)(s) = (Entr, Anga) ()] dS]

= C <||An+2(t) — App ()| e +/ Znt1(5) ds) )
0
But (331 yields
"

[Ant2(t) = Angr(t) L~ < C/O (Ent1s Anga)(s) = (En, An) ()|l ds = C Ozn(S) ds.

Finally one getb that there is a constant C' depending on 7' and the initial conditions
such that z,,2(t) < C’fo 2n(8) + znt1(8)) ds, YVt €1[0,T], n > 0. Lemma E1] implies
that (E,, A,), is a Cauchy sequence in Y7 = L*(]0,T[xR) x W*°(]0,T[xR) and
therefore converges to some fields (E, A) in Yr. Actually since (E,, An)n C Dr we
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obtain immediately that (E, A) € Dr. We check easily that (F, A) is a fixed point of F.
We take f = fg 4 and thus (f, E, A) solve (IL12), (.I3). As in the proofs of Propositions
B1 we check that (LI5), (LI4) hold. The estimates for ||(1 + |p[)f| Lo qo, 721 (R2))
and || [of(-, -, p)(1 + |pl) dpl| Lo, r[xr) follow from Lemmas B.4] O

THEOREM 4.3. Assume that the hypotheses of Theorem L2 are satisfied. Then there is at
most one mild solution (f, E, A) (i.e., (E, A)€ L>°(]0, T[; W1>°(R))x L>*(]0, T'[; W?>°(R))
and f the solution by characteristics) for the system ([LI12), (LI13), (LI14), (TI5), (TI6)

in the FR case.

Proof. Suppose that (fx, By, Ax)re{1,2} are two mild solutions. By computations sim-
ilar to those in the proofs of Propositions[3.1], (see also Propositions B0l B.7)) we show
that (Ey, Ax) € Dr, k € {1,2}. Using (3.54) and B31) yields

I1(Er, A1) () — (B2, A2) (B[] < C/O I[(Ex, A1) (s) = (B2, A2)(s)]]| ds.

The conclusion follows immediately by Gronwall’s lemma. O
Finally observe that the solution constructed above preserves the total energy. The
proof is standard and is left to the reader.
PROPOSITION 4.4. Assume that the hypotheses of Theorem are satisfied and de-

note by (f, E, A) the unique solution of the system ([12), (LI3), (T14), (CI5), (CI6).

If the initial energy is finite i.e.,

Woi [ [1/TF P+ Aa@Pdpde + 5 [{(1Eo(e)? + |40(@) + 141 (@)} de < +oc,

then we have W (t) = Wy for any ¢ € [0,T] where

1
W(o)= [ [ IV BET AT dpds+ 5 [{1BE0F +[0,AP + 10:AP) da,
RJR R
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