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Abstract. The mixed Dirichlet-Neumann problem for the Laplace equation in an
unbounded plane domain with cuts (cracks) is studied. The Dirichlet condition is given
on closed curves making up the boundary of the domain, while the Neumann condition is
specified on the cuts. The existence of a classical solution is proved by potential theory
and a boundary integral equation method. The integral representation for a solution
is obtained in the form of potentials. The density of the potentials satisfies a uniquely
solvable Fredholm integral equation of the second kind and index zero. Singularities of
the gradient of the solution at the tips of the cuts are investigated.

1. Introduction. The boundary of a 2-D cracked domain consists of both closed
curves and open arcs (cuts). Open arcs model cracks in solids and screens or wings
in fluids. Different physical processes in cracked domains can be described by boundary
value problems for the Laplace equation, for example, distribution of stationary heat and
electric fields in cracked solids, electric flow in cracked semiconductors, flow of an ideal
fluid over several obstacles and wings, etc. Appropriate boundary conditions must be
specified on the total boundary, i.e., on both closed curves and open arcs (cracks). The
Neumann boundary condition reflects the nonflow (of fluid, electric current, etc.) through
the boundary. The Dirichlet boundary condition corresponds to the given temperature
in heat theory, fluid pressure in hydrodynamics, electric potential in electrostatics, etc.

Boundary value problems with mixed boundary conditions were not treated in cracked
domains by rigorous mathematical methods before. Even in the case of Laplace and
Helmholtz equations the problems in domains bounded by closed curves [2], [13]–[17]
and problems in the exterior of cuts (cracks) [14, 16], [18]–[20] were treated separately,
because different methods were used in their analysis. Previously the Neumann problem
in the exterior of a cut was reduced to a hypersingular integral equation [14, 16, 18, 19] or
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to an infinite algebraic system of equations [20], while the Dirichlet problem in domains
bounded by closed curves was reduced to the Fredholm equation of the second kind [13]–
[17]. The combination of these methods in the case of domains bounded by closed curves
and cuts leads to an integral equation, which is algebraic or hypersingular on cuts, while
it is an equation of the second kind with compact integral operators on the closed curves.
The integral equation on the whole boundary is rather complicated to be effectively
studied by standard methods. The approach suggested in the present paper enables us
to reduce the mixed Dirichlet–Neumann problem in a cracked domain to the Fredholm
integral equation of the second kind and index zero on the whole boundary with the help
of a nonclassical angular potential. It is shown that the Fredholm integral equation is
uniquely solvable; therefore the integral equation can be computed by a standard code
by discretization and inversion of the matrix. So our approach is constructive, because it
gives the way for finding the numerical solution for a mixed boundary value problem with
complicated boundary in an exterior domain. Our approach is based on [5]–[6], where the
problems in the exterior of cuts were reduced to the Fredholm integral equations using the
angular potential. At first these problems were reduced to the Cauchy singular integral
equation with additional conditions. Next, the singular integral equation was reduced
to the Fredholm integral equation of the 2nd kind and index zero by regularization.
In [7]–[10] our approach has been applied to the Dirichlet and Neumann problems for
the Laplace and Helmholtz equation in cracked domains. Some nonlinear problems of
fluid dynamics were studied in [4]. Using an integral representation for a solution of
our problem in the form of potentials, obtained in the present paper, we derive explicit
asymptotic formulas for singularities of the gradient of the solution at the tips of the cuts
(cracks).

2. Formulation of the problem. By a simple open curve we mean a nonclosed
smooth arc of finite length without self-intersections [16].

In the plane x = (x1, x2) ∈ R2 we consider the exterior multiply connected domain
bounded by simple open curves Γ1

1, ..., Γ
1
N1

∈ C2,λ and simple closed curves Γ2
1, ..., Γ

2
N2

∈
C1,λ, λ ∈ (0, 1], so that the curves have no points in common. We put

Γ1 =
N1⋃

n=1

Γ1
n, Γ2 =

N2⋃
n=1

Γ2
n, Γ = Γ1 ∪ Γ2.

The exterior connected domain bounded by Γ2 will be called D. We assume that each
curve Γk

n is parametrized by the arc length s :

Γk
n = {x : x = x(s) = (x1(s), x2(s)), s ∈ [ak

n, bk
n]}, n = 1, ..., Nk, k = 1, 2,

so that a1
1 < b1

1 < ... < a1
N1

< b1
N1

< a2
1 < b2

1 < ... < a2
N2

< b2
N2

and the domain D is on
the right when the parameter s increases on Γ2

n. Therefore points x ∈ Γ and values of
the parameter s are in one-to-one correspondence except a2

n, b2
n, which correspond to

the same point x for n = 1, ..., N2. The sets of intervals on the Os axis
N1⋃

n=1

[a1
n, b1

n],
N2⋃

n=1

[a2
n, b2

n],
2⋃

k=1

Nk⋃
n=1

[ak
n, bk

n]



HARMONIC FUNCTIONS IN A 2-D EXTERIOR CRACKED DOMAIN 27

will be denoted by the same symbols as the corresponding sets of curves, that is, by Γ1,
Γ2 and Γ respectively.

We put C0(Γ2
n) = {F(s) : F(s) ∈ C0[a2

n, b2
n], F(a2

n) = F(b2
n)}, and

C0(Γ2) =
N2⋂

n=1

C0(Γ2
n).

By Dn we denote the interior domain bounded by the curve Γ2
n for n = 1, ..., N2.

The tangent vector to Γ at the point x(s) we denote by τx = (cosα(s), sin α(s)),
where cos α(s) = x′

1(s), sin α(s) = x′
2(s). Let nx = (sin α(s), − cos α(s)) be the normal

vector to Γ at x(s). The direction of nx is chosen such that it will coincide with the
direction of τx if nx is rotated counterclockwise through an angle of π/2. Therefore nx

is the inward normal for D on Γ2.
We consider the curves Γ1 as a set of cuts. The side of Γ1 which is on the left, when the

parameter s increases, will be denoted by (Γ1)+, and the opposite side will be denoted
by (Γ1)−.

We say that the function u(x) belongs to the smoothness class K if
1) u ∈ C0(D\Γ1) ∩ C2(D\Γ1),
2) ∇u ∈ C0(D\Γ1\Γ2\X), where X is a point-set, consisting of the end-points of Γ1 :

X =
N1⋃

n=1

(
x(a1

n) ∪ x(b1
n)
)
,

3) in the neighbourhood of any point x(d) ∈ X for some constants C > 0, ε > −1 the
following inequality holds:

|∇u| ≤ C |x − x(d)|ε , (1)

where x → x(d) and d = a1
n or d = b1

n, n = 1, ..., N1.

Remark. In the definition of the class K we consider Γ1 as a set of cuts. In particular,
by C0(D\Γ1) we denote a class of functions, which are continuously extended on the cuts
Γ1 from the left and right and are continuous at the tips of the cuts Γ1. However, values
of these functions on Γ1 from the left and right can be different everywhere except at the
tips, so that the functions may have a jump on Γ1.

Let us formulate the mixed Dirichlet-Neumann problem for the Laplace equation in
the domain D\Γ1.

Problem U. Find a function u(x) of class K so that u(x) satisfies the Laplace equation

ux1x1(x) + ux2x2(x) = 0, x ∈ D\Γ1,

the boundary conditions

∂u(x)
∂nx

∣∣∣∣
x(s)∈(Γ1)+

= F+(s),
∂u(x)
∂nx

∣∣∣∣
x(s)∈(Γ1)−

= F−(s),

u(x(s))|Γ2 = F (s),
(2a)

and the following conditions as |x| =
√

x2
1 + x2

2 → ∞:

|u(x)| ≤ const, |∇u| = o(|x|−1). (2b)

All conditions of the problem U must be satisfied in the classical sense.
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The edge condition (1) ensures the absence of point sources at the ends of Γ1. It
is assumed that N2 ≥ 1. If N1 = 0 and the cuts Γ1 are absent, then the problem U
transforms to the classical Dirichlet problem in an exterior domain D without cuts.

Using the energy equalities we can prove the following assertion.

Theorem 1. The problem U has at most one solution.

By
∫
Γk ... dσ we mean

Nk∑
n=1

bk
n∫

ak
n

... dσ.

Proof. Consider the homogeneous problem U and assume that u0(x) is a solution
of the homogeneous problem (with F±(s) ≡ 0, F (s) ≡ 0). Our aim is to show that
u0(x) ≡ 0. Since Γ2 ∈ C1,λ and u0(x) ∈ K, from [3, Remark to Lemma 6.18] we have
u0(x) ∈ C1(D \ Γ1) (see also [16, Remark to Section 65.4]). Combining this result with
the smoothness ensured for u0(x) by the class K, we have ∇u0(x) ∈ C0(D \ Γ1 \ X),
and inequality (1) holds at the tips of Γ1. We envelop each cut Γ1

n (n = 1, ..., N1) by a
closed contour so that all contours lie in D\Γ1. Next we write the energy equalities for
a domain, bounded by our auxiliary contours, Γ2 and the circle of a large enough radius
r. We allow the auxiliary contours to shrink to Γ1 and let r tend to infinity. Using the
conditions at infinity (2b) and the smoothness of u0(x) established above, we obtain

‖∇u0‖2
L2(D\Γ1) =

∫
Γ1

[
u+

0

(
∂u0

∂nx

)+

− u−
0

(
∂u0

∂nx

)−
]

ds −
∫
Γ2

u0
∂u0

∂nx
ds.

Taking into account the homogeneous boundary conditions (2a), we have

‖∇u0‖2
L2(D\Γ1) = 0.

Hence u0(x) ≡ const and const = 0 due to the homogeneous Dirichlet boundary condition
on Γ2. Therefore u0(x) ≡ 0, and the theorem is proved thanks to the linearity of the
problem U. �

3. Integral equations at the boundary. Below we assume that

F+(s), F−(s) ∈ C0,λ(Γ1), F (s) ∈ C0(Γ2), λ ∈ (0, 1]. (3)

Note that the Hölder exponent λ in the description of smoothness of these functions and
in the description of smoothness of the boundary Γ is the same. If the exponents are
different in practice, then by λ we denote the least.

If B1(Γ1), B2(Γ2) are Banach spaces of functions given on Γ1 and Γ2, then for
functions given on Γ we introduce the Banach space B1(Γ1) ∩ B2(Γ2) with the norm
‖·‖B1(Γ1)∩B2(Γ2) = ‖·‖B1(Γ1) + ‖·‖B2(Γ2) . An example of such a Banach space is C0(Γ) =
C0(Γ1) ∩ C0(Γ2).

We shall construct the solution of the problem U from the smoothness class K with
the help of potential theory for harmonic functions.
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We consider an angular potential [1, 5], [12, Appendix] for the Laplace equation:

w1[µ](x) = − 1
2π

∫
Γ1

µ(σ)V (x, y(σ))dσ. (4)

The kernel V (x, y(σ)) is defined (up to indeterminacy 2πm, m = ±1, ±2, ...) by the
formulae

cos V (x, y(σ)) =
x1 − y1(σ)
|x − y(σ)| , sin V (x, y(σ)) =

x2 − y2(σ)
|x − y(σ)| ,

where

y = y(σ) = (y1(σ), y2(σ)) ∈ Γ1, |x − y(σ)| =
√

(x1 − y1(σ))2 + (x2 − y2(σ))2.

One can see that V (x, σ) is the angle between the vector
−−−→
y(σ)x and the direction of the

Ox1 axis. More precisely, V (x, y(σ)) is a many-valued harmonic function conjugate to
ln |x − y(σ)|.

Below by V (x, y(σ)) we denote an arbitrary fixed branch of this function, which varies
continuously with σ along each curve Γ1

n (n = 1, ..., N1) for given fixed x /∈ Γ1.
Under this definition of V (x, y(σ)), the potential w1[µ](x) is a many-valued function.

In order that the potential w1[µ](x) be single-valued, it is necessary to impose the fol-
lowing additional conditions:

b1n∫
a1

n

µ(σ) dσ = 0, n = 1, ..., N1. (5)

Below we suppose that the density µ(σ) belongs to the Banach space Cω
q (Γ1), ω ∈

(0, 1], q ∈ [0, 1) and satisfies conditions (5).
We say that µ(s) ∈ Cω

q (Γ1) if

µ(s)
N1∏

n=1

∣∣s − a1
n

∣∣q ∣∣s − b1
n

∣∣q ∈ C0,ω(Γ1),

where C0,ω(Γ1) is a Hölder space with exponent ω and

‖µ(s)‖Cω
q (Γ1) =

∥∥∥∥∥µ(s)
N1∏

n=1

∣∣s − a1
n

∣∣q ∣∣s − b1
n

∣∣q∥∥∥∥∥
C0,ω(Γ1)

.

As shown in [1], [5], [12, Appendix], for such µ(σ) the angular potential w1[µ](x)
belongs to the class K. In particular, the inequality (1) holds with ε = −q if q ∈ (0, 1).
Moreover, integrating w1[µ](x) by parts and using (5), we express the angular potential
in terms of a double layer potential

w1[µ](x) =
1
2π

∫
Γ1

ρ(σ)
∂

∂ny
ln |x − y(σ)| dσ,

with the density

ρ(σ) =

σ∫
a1

n

µ(ξ) dξ, σ ∈ [a1
n, b1

n], n = 1, ..., N1.
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Consequently, w1[µ](x) satisfies the Laplace equation outside Γ1 and the conditions at
infinity (2b).

Let us construct a solution of the problem U. We seek a solution of the problem in
the following form:

u[ν, µ](x) = v1[ν](x) + w[µ](x) + h[ν, µ](x), (6)

where
w[µ](x) = w1[µ](x) + w2[µ](x),

v1[ν](x) = − 1
2π

∫
Γ1

ν(σ) ln |x − y(σ)| dσ,

w2[µ](x) = − 1
2π

∫
Γ2

µ(σ)
∂

∂ny
ln |x − y(σ)| dσ,

(7a)

and w1[µ](x) is given by (4). By h[ν, µ](x) we denote the sum of point sources placed at
the fixed points Yk lying inside Γ2

k (k = 1, ..., N2) and a constant:

h[ν, µ](x) = − 1
2π

N2∑
k=2

∫
Γ2

k

µ(σ)dσ ln |x − Yk|

+
1
2π

⎡
⎢⎣∫
Γ2

µ(σ)dσ +
∫
Γ1

ν(σ)dσ −
∫
Γ2

1

µ(σ)dσ

⎤
⎥⎦ ln |x − Y1| +

∫
Γ2

µ(σ)dσ

=
1
2π

∫
Γ1

ν(σ)dσ ln |x − Y1| + h2[µ](x).

Here

h2[µ](x) = − 1
2π

N2∑
k=2

∫
Γ2

k

µ(σ)dσ ln |x − Yk|

+
1
2π

⎡
⎢⎣∫
Γ2

µ(σ)dσ −
∫
Γ2

1

µ(σ)dσ

⎤
⎥⎦ ln |x − Y1| +

∫
Γ2

µ(σ)dσ ; Yk ∈ Dk , k = 1, ..., N2 .

(7b)

Clearly, h[ν, µ](x) obeys the Laplace equation in R2\
N2⋃
k=1

Yk and belongs to

C∞

(
R2\

N2⋃
k=1

Yk

)
.

Furthermore, if x(s) ∈ Γ, then h[ν, µ](x(s)) ∈ C1,λ(Γ) in s. We need the function
h[ν, µ](x) to construct a uniquely solvable integral equation. Moreover, h[ν, µ](x) is
taken in such a way that u[ν, µ](x) in (6) satisfies conditions (2b) at infinity.

We will look for the density ν(σ) in the space C0,λ(Γ1).
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We will seek µ(s) in the Banach space Cω
q (Γ1) ∩ C0(Γ2), ω ∈ (0, 1], q ∈ [0, 1)

with the norm ‖·‖Cω
q (Γ1)∩C0(Γ2) = ‖·‖Cω

q (Γ1) + ‖·‖C0(Γ2) . Furthermore, µ(s) must satisfy
conditions (5).

It follows from [1, 5, 17], [12, Appendix] that for such µ(s), ν(s) the function (6)
belongs to the class K and satisfies all the conditions of the problem U except the
boundary conditions (2a).

To satisfy the boundary conditions, we insert (6) in (2a), use limit formulas for the
normal derivative of the angular potential [1, 5], [12, Appendix] and arrive at the system
of integral equations for the densities µ(s), ν(s):

± 1
2
ν(s) +

1
2π

∫
Γ1

ν(σ)
cosϕ0(x(s), y(σ))

|x(s) − y(σ)| dσ

− 1
2π

∫
Γ1

µ(σ)
sin ϕ0(x(s), y(σ))
|x(s) − y(σ)| dσ

− 1
2π

∫
Γ2

µ(σ)
∂

∂nx

∂

∂ny
ln |x(s) − y(σ)| dσ +

∂

∂nx
h[ν, µ](x(s)) = F±(s), s ∈ Γ1,

(8a)

− 1
2π

∫
Γ1

µ(σ)V (x(s), y(σ))dσ − 1
2π

∫
Γ1

ν(σ) ln |x(s) − y(σ)| dσ

+
1
2
µ(s) − 1

2π

∫
Γ2

µ(σ)
∂

∂ny
ln |x(s) − y(σ)| dσ + h[ν, µ](x(s)) = F (s), s ∈ Γ2.

(8b)

By ϕ0(x, y) we denote the angle between the vector −→xy and the direction of the normal
nx. The angle ϕ0(x, y) is taken to be positive if it is measured counterclockwise from nx

and negative if it is measured clockwise from nx. Also, ϕ0(x, y) is continuous in x, y ∈ Γ
if x �= y. Note that for x(s), y(σ) ∈ Γ and x �= y we have the relationships

∂

∂nx
ln |x(s) − y(σ)| =

∂

∂τx
V (x(s), y(σ)) =

∂

∂s
V (x(s), y(σ))

= −cos ϕ0 (x(s), y(σ))
|x(s) − y(σ)| = − sin (V (x(s), y(σ))− α(s))

|x(s) − y(σ)| ,

∂

∂nx
V (x(s), y(σ)) = − ∂

∂τx
ln |x(s) − y(σ)| = − ∂

∂s
ln |x(s) − y(σ)|

=
sin ϕ0 (x(s), y(σ))

|x(s) − y(σ)| = −cos (V (x(s), y(σ))− α(s))
|x(s) − y(σ)| ,

where α(s) is the inclination of the tangent τx to the Ox1 axis, and V (x, y(σ)) is the
kernel of the angular potential (4).

The second integral term in (8a) is a Cauchy singular integral. The kernel of the third
integral term in (8b) has a weak singularity as s = σ.

Equation (8a) is obtained as x → x(s) ∈ (Γ1)± and comprises two integral equations.
The upper sign denotes the integral equation on (Γ1)+, and the lower sign denotes the
integral equation on (Γ1)−.

In addition to the integral equations written above we have conditions (5).
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Subtracting the integral equations (8a), we find

ν(s) =
(
F+(s) − F−(s)

)
∈ C0,λ(Γ1). (9)

We note that ν(s) is found completely and satisfies all required conditions. Hence, the
potential v1[ν](x) is found completely as well. Additionally,

h[ν, µ](x) =
1
2π

∫
Γ1

(F+(σ) − F−(σ))dσ ln |x − Y1| + h2[µ](x),

where h2[µ](x) is given by (7b).
We introduce the function f(s) on Γ by the formulas

f(s) =
1
2
(
F+(s) + F−(s)

)
− 1

2π

∫
Γ1

(
F+(σ) − F−(σ)

) cos ϕ0 (x(s), y(σ))
|x(s) − y(σ)| dσ

− 1
2π

∫
Γ1

(F+(σ) − F−(σ))dσ
∂

∂nx
ln |x(s) − Y1|, s ∈ Γ1,

(10a)

and

f(s) = F (s) +
1
2π

∫
Γ1

(
F+(σ) − F−(σ)

)
ln |x(s) − y(σ)|dσ

− 1
2π

∫
Γ1

(F+(σ) − F−(σ))dσ ln |x(s) − Y1|, s ∈ Γ2,

(10b)

where F±(s) and F (s) are specified in (2a) and satisfy conditions (3). As is shown in
[6], if s ∈ Γ1, then f(s) ∈ C0,λ(Γ1). Consequently,

f(s) ∈ C0,λ(Γ1) ∩ C0(Γ2). (10c)

Adding the integral equations (8a) we obtain the integral equation for µ(s) on Γ1:

− 1
2π

∫
Γ1

µ(σ)
sin ϕ0(x(s), y(σ))
|x(s) − y(σ)| dσ (11a)

− 1
2π

∫
Γ2

µ(σ)
∂

∂nx

∂

∂ny
ln |x − y(σ)| dσ +

∂

∂nx
h2[µ](x(s)) = f(s), s ∈ Γ1,

where f(s) is given by (10a).
Equation (8b) on Γ2 takes the form

− 1
2π

∫
Γ1

µ(σ)V (x(s), y(σ))dσ (11b)

+
1
2
µ(s) − 1

2π

∫
Γ2

µ(σ)
∂

∂ny
ln |x(s) − y(σ)| dσ + h2[µ](x(s)) = f(s), s ∈ Γ2,

where f(s) is given in (10b).
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Thus, if µ(s) is a solution of equations (11), (5) from the space Cω
q (Γ1)∩C0(Γ2) with

ω ∈ (0, 1], q ∈ [0, 1), then the potential (6) with ν(s) from (9) satisfies all conditions of
the problem U and belongs to the class K.

The following theorem holds.

Theorem 2. Let Γ1 ∈ C2,λ, Γ2 ∈ C1,λ and conditions (3) hold. If equations (11), (5)
have a solution µ(s) from the Banach space Cω

q (Γ1) ∩ C0(Γ2) for some ω ∈ (0, 1] and
q ∈ [0, 1), then the solution of the problem U exists, belongs to the class K and is given
by (6), where ν(s) is defined in (9).

If s ∈ Γ2, then (11b) is an equation of the second kind with a weak singularity in the
kernel. If s ∈ Γ1, then (11a) is a Cauchy singular integral equation of the first kind [16].

Our further treatment will be aimed at the proof of the solvability of the system (11),
(5) in the Banach space Cω

q (Γ1)∩C0(Γ2). Moreover, we reduce the system (11), (5) to a
Fredholm equation of the second kind and index zero, which can be easily computed by
classical methods.

Equation (11b) on Γ2 can be rewritten in the form

µ(s) +
∫
Γ

µ(σ)A2(s, σ)dσ = 2f(s), s ∈ Γ2, (12)

where

A2(s, σ) =
{
− 1

π

(
1 − δ(Γ2, σ)

)
V (x(s), y(σ))

− 1
π

δ(Γ2, σ)
∂

∂ny
ln |x(s) − y(σ)| − 1

π

N2∑
k=2

δ(Γ2
k, σ) ln |x(s) − Yk|

+
1
π

(
δ(Γ2, σ) − δ(Γ2

1, σ)
)
ln |x(s) − Y1| + 2δ(Γ2, σ)

}
.

By δ(γ, σ) we denote the characteristic function of the set γ:

δ(γ, σ) =
{

0, if σ /∈ γ,

1, if σ ∈ γ.

The kernel A2(s, σ) has a weak singularity if s = σ ∈ Γ2, and A2(s, σ) is continuous if
s �= σ (s ∈ Γ2, σ ∈ Γ).

Remark. Evidently, f(a2
n) = f(b2

n) and A2(a2
n, σ) = A2(b2

n, σ) for σ ∈ Γ, σ �= a2
n, b2

n

(n = 1, ..., N2). Hence, if µ(s) is a solution of equation (12) from C0

(
N2⋃

n=1

[a2
n, b2

n]

)
,

then, according to the equality (12), µ(s) automatically satisfies the matching conditions
µ(a2

n) = µ(b2
n) for n = 1, ..., N2 and, therefore, belongs to C0(Γ2). This observation can

be helpful in finding numerical solutions, since we may discard the matching conditions
µ(a2

n) = µ(b2
n) (n = 1, ..., N2), which are automatically fulfilled.

It can be easily proved that

− ∂

∂s
ln

|x(s) − y(σ)|
|s − σ| =

sin ϕ0(x(s), y(σ))
|x(s) − y(σ)| − 1

σ − s
∈ C0,λ(Γ1 × Γ1)
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(see [5], [6] for details). Therefore we can rewrite (11a) in the form

1
π

∫
Γ1

µ(σ)
dσ

σ − s
+
∫
Γ

µ(σ)M(s, σ)dσ = −2f(s), s ∈ Γ1, (13)

where

M(s, σ) =
1
π

{(
1 − δ(Γ2, σ)

)( sin ϕ0(x(s), y(σ))
|x(s) − y(σ)| − 1

σ − s

)

+ δ(Γ2, σ)
∂

∂nx

[
∂

∂ny
ln |x(s) − y(σ)| +

N2∑
k=2

δ(Γ2
k, σ) ln |x(s) − Yk|

−(1 − δ(Γ2
1, σ)) ln |x(s) − Y1|

]}

and M(s, σ) ∈ C0,λ(Γ1 × Γ).

4. The Fredholm integral equation and the solution of the problem. Invert-
ing the singular integral operator in (13), we arrive at the following integral equation of
the second kind [5, 6]:

µ(s) +
1

Q1(s)

∫
Γ

µ(σ)A0(s, σ)dσ +
1

Q1(s)

N1−1∑
n=0

Gnsn =
1

Q1(s)
Φ0(s), s ∈ Γ1, (14)

where

A0(s, σ) = − 1
π

∫
Γ1

M(ξ, σ)
ξ − s

Q1(ξ)dξ,

Q1(s) =
N1∏

n=1

∣∣∣√s − a1
n

√
b1
n − s

∣∣∣ sign(s − a1
n) ,

Φ0(s) =
1
π

∫
Γ1

2Q1(σ)f(σ)
σ − s

dσ,

and G0, ..., GN1−1 are arbitrary constants.
To derive equations for G0, ..., GN1−1, we substitute µ(s) from (14) in the conditions

(5). Then we obtain

∫
Γ

µ(σ)ln(σ)dσ +
N1−1∑
m=0

BnmGm = Hn, n = 1, ..., N1 , (15)
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where

ln(σ) = −
∫
Γ1

n

Q−1
1 (s)A0(s, σ)ds,

Bnm = −
∫
Γ1

n

Q−1
1 (s)smds, (16)

Hn = −
∫
Γ1

n

Q−1
1 (s)Φ0(s)ds.

By B we denote the N1 × N1 matrix with the elements Bnm from (16). As shown in
[6, Lemma 7], [11] the matrix B is invertible. The elements of the inverse matrix will be
called (B−1)nm. Inverting the matrix B in (15), we express the constants G0, ..., GN1−1

in terms of µ(s) as

Gn =
N1∑

m=1

(B−1)nm

⎡
⎣Hm −

∫
Γ

µ(σ)lm(σ)dσ

⎤
⎦ .

We substitute Gn in (14) and obtain the following integral equation for µ(s) on Γ1:

µ(s) +
1

Q1(s)

∫
Γ

µ(σ)A1(s, σ)dσ =
1

Q1(s)
Φ1(s), s ∈ Γ1, (17)

where

A1(s, σ) = A0(s, σ) −
N1−1∑
n=0

sn
N1∑

m=1

(B−1)nmlm(σ),

Φ1(s) = Φ0(s) −
N1−1∑
n=0

sn
N1∑

m=1

(B−1)nmHm .

It can be verified directly that any solution of (17) in the required space satisfies con-
ditions (5) automatically. It can be shown using the properties of singular integrals [2],
[16] that Φ0(s), A0(s, σ) are Hölder continuous functions if s ∈ Γ1, σ ∈ Γ. Therefore,
Φ1(s), A1(s, σ) are also Hölder continuous functions if s ∈ Γ1, σ ∈ Γ. Consequently,
any solution of (17) belongs to Cω

1/2(Γ
1), and below we look for µ(s) on Γ1 in this space.

We put
Q(s) =

(
1 − δ(Γ2, s)

)
Q1(s) + δ(Γ2, s), s ∈ Γ.

Instead of µ(s) ∈ Cω
1/2(Γ

1) ∩C0(Γ2) we introduce the new unknown function µ∗(s) =
µ(s)Q(s) ∈ C0,ω(Γ1) ∩ C0(Γ2) and rewrite (12), (17) in the form of one equation:

µ∗(s) +
∫
Γ

µ∗(σ)Q−1(σ)A(s, σ)dσ = Φ(s), s ∈ Γ, (18)

where

A(s, σ) =
(
1 − δ(Γ2, s)

)
A1(s, σ) + δ(Γ2, s)A2(s, σ),

Φ(s) =
(
1 − δ(Γ2, s)

)
Φ1(s) + 2δ(Γ2, s)f(s).
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Thus, the system of equations (5), (11) for µ(s) has been reduced to the equation (18)
for the function µ∗(s). It is clear from our consideration that any solution of (18) gives
a solution of system (5), (11) and conversely.

As noted above, Φ1(s) and A1(s, σ) are Hölder continuous functions if s ∈ Γ1, σ ∈ Γ.

More precisely (see [6]), A1(s, σ) belongs to C0,p(Γ1) in s uniformly with respect to
σ ∈ Γ, where p = min{1/2, λ}. Furthermore, taking into account (10c) we have Φ1(s) ∈
C0,p(Γ1). Consequently, from equation (18) we can conclude the following assertion.

Lemma. Let Γ1 ∈ C2,λ, Γ2 ∈ C1,λ, λ ∈ (0, 1], and Φ(s) ∈ C0,p(Γ1) ∩ C0(Γ2), where
p = min{λ, 1/2}. If µ∗(s) from C0(Γ) satisfies equation (18), then µ∗(s) belongs to
C0,p(Γ1) ∩ C0(Γ2).

The condition Φ(s) ∈ C0,p(Γ1) ∩ C0(Γ2) holds if conditions (3) hold.
Hence below we will seek µ∗(s) from C0(Γ).
Consider equation (18). The integral operator

∫
Γ

µ∗(σ)Q−1(σ)A2(s, σ)dσ =
∫
Γ1

µ∗(σ)Q−1
1 (σ)A2(s, σ)dσ +

∫
Γ2

µ∗(σ)A2(s, σ)dσ

is compact from C0(Γ) into C0(Γ2). Indeed, using Arzela’s theorem one can verify
that the first term is a compact operator from C0(Γ1) into C0(Γ2), because A2(s, σ) ∈
C0(Γ2 × Γ1). The second term is a compact operator from C0(Γ2) into C0(Γ2), because
A2(s, σ) is a polar kernel [17]; i.e., it has a weak singularity as s = σ ∈ Γ2 and it is
continuous if s �= σ (s, σ ∈ Γ2). Furthermore, using Arzela’s theorem one can show

that the integral operator
∫

Γ

µ∗(σ)Q−1(σ)A1(s, σ)dσ is compact from C0(Γ) into C0(Γ1)

since A1(s, σ) ∈ C0(Γ1 × Γ). Therefore the integral operator from (18):

Aµ∗(s) =
∫
Γ

µ∗(σ)Q−1(σ)A(s, σ)dσ

is a compact operator mapping C0(Γ) into itself. Therefore, (18) is a Fredholm equation
of the second kind and index zero in the Banach space C0(Γ).

Let us show that if µ0
∗(s) is a solution of the homogeneous equation (18) from C0(Γ),

then it is the trivial solution, i.e., µ0
∗(s) ≡ 0. Let µ0

∗(s) ∈ C0(Γ) be a solution of the
homogeneous equation (18). According to the lemma, µ0

∗(s) ∈ C0,p(Γ1) ∩ C0(Γ2), p =
min{λ, 1/2}. Therefore the function µ0(s) = µ0

∗(s)Q
−1(s) ∈ Cp

1/2(Γ
1) ∩ C0(Γ2) converts

the homogeneous equations (12), (17) into identities. Using the homogeneous identity
(17), we check that µ0(s) satisfies conditions (5). Furthermore, acting on the homoge-
neous identity (17) with a singular operator with the kernel (s− t)−1, we find that µ0(s)
satisfies the homogeneous equation (13). Consequently, µ0(s) satisfies the homogeneous
equations (11). On the basis of Theorem 2, the function u[0, µ0](x) = w[µ0](x)+h2[µ0](x)
given by (6), (7) is a solution of the homogeneous problem U. According to Theorem 1,
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w[µ0](x) + h2[µ0](x)

)
≡ 0, x ∈ D\Γ1. Using the limit formulas for tangential deriva-

tives of an angular potential [1, 5], [12, Appendix], we obtain

lim
x→x(s)∈(Γ1)+

∂

∂τx

(
w[µ0](x) + h2[µ0](x)

)

− lim
x→x(s)∈(Γ1)−

∂

∂τx

(
w[µ0](x) + h2[µ0](x)

)
= µ0(s) ≡ 0, s ∈ Γ1.

Hence,
(

w[µ0](x) + h2[µ0](x)
)

=
(

w2[µ0](x) + h2[µ0](x)
)

≡ 0, x ∈ D, and µ0(s)

satisfies (11b), which takes the form

1
2
µ0(s) − 1

2π

∫
Γ2

µ0(σ)
∂

∂ny
ln |x(s) − y(σ)| dσ

+h2[µ0](x(s)) = 0, s ∈ Γ2,

(19)

where h2[µ](x) is specified in (7b). The Fredholm equation (19) arises when solving the
homogeneous Dirichlet problem for harmonic functions in the exterior domain D by the
double layer potential with the sum of point sources placed inside the curves Γ2

1, ..., Γ2
N2

.
The equation (19) has only the trivial solution µ0(s) ≡ 0 in C0(Γ2). This is shown in the
appendix.

Consequently, if s ∈ Γ, then µ0(s) ≡ 0, µ0
∗(s) = µ0(s)Q−1(s) ≡ 0. Thus, the homo-

geneous Fredholm equation (18) has only the trivial solution in C0(Γ).
We have proved the following assertion.

Theorem 3. If Γ1 ∈ C2,λ, Γ2 ∈ C1,λ, λ ∈ (0, 1], then (18) is a Fredholm equation of
the second kind and index zero in the space C0(Γ). Moreover, equation (18) has a unique
solution µ∗(s) ∈ C0(Γ) for any Φ(s) ∈ C0(Γ).

As a consequence of Theorem 3 and the lemma we obtain

Corollary. If Γ1 ∈ C2,λ, Γ2 ∈ C1,λ, λ ∈ (0, 1], then equation (18) has a unique solution
µ∗(s) ∈ C0,p(Γ1) ∩ C0(Γ2), for any Φ(s) ∈ C0,p(Γ1) ∩ C0(Γ2), where p = min{λ, 1/2}.

We recall that Φ(s) belongs to the class of smoothness required in the corollary if
f(s) ∈ C0,λ(Γ1)∩C0(Γ2). As mentioned above, if µ∗(s) ∈ C0,p(Γ1)∩C0(Γ2) is a solution
of (18), then µ(s) = µ∗(s)Q−1(s) ∈ Cp

1/2(Γ
1) ∩ C0(Γ2) is a solution of system (5), (11).

We obtain the following statement.

Theorem 4. If Γ1 ∈ C2,λ, Γ2 ∈ C1,λ, λ ∈ (0, 1], then the system of equations (5),
(11) has a solution µ(s) ∈ Cp

1/2(Γ
1) ∩ C0(Γ2), p = min{1/2, λ}, for any f(s) ∈ C0,λ(Γ1)∩

C0(Γ2). Moreover, this solution is expressed by the formula µ(s) = µ∗(s)Q−1(s), where
µ∗(s) ∈ C0,p(Γ1) ∩ C0(Γ2) is the unique solution of the Fredholm equation (18) in C0(Γ).

Remark. The solution of the system (5), (11) ensured by Theorem 4 is unique in the
space Cpo

1/2(Γ
1) ∩ C0(Γ2) for any po ∈ (0, p]. More precisely, the system (5), (11) has at

most one solution in the space Cω
q (Γ1) ∩ C0(Γ2) for any ω ∈ (0, 1] and q ∈ [0, 1). The

proof of this fact almost coincides with the proof of Theorem 3.
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According to (10), f(s) belongs to C0,λ(Γ1) ∩ C0(Γ2) if (3) holds. Therefore, the
condition f(s) ∈ C0,λ(Γ1) ∩C0(Γ2) in Theorem 4 can be replaced by the condition that
(3) holds. On the basis of Theorem 2 and Theorem 4 we arrive at the final result.

Theorem 5. If Γ1 ∈ C2,λ, Γ2 ∈ C1,λ and condition (3) holds, then the solution of the
problem U exists, belongs to the class K and is given by (6), where ν(s) is defined in
(9) and µ(s) is a solution of system (5), (11) from Cp

1/2(Γ
1) ∩ C0(Γ2), p = min{1/2, λ},

ensured by Theorem 4.

It can be checked directly that the solution of the problem U constructed in
Theorem 5 satisfies condition (1) with ε = −1/2. Explicit expressions for the singu-
larities of the solution gradient at the endpoints of the open curves will be presented in
the next section.

Theorem 5 ensures the existence of a classical solution of the problem U when Γ1 ∈
C2,λ, Γ2 ∈ C1,λ, and condition (3) holds. The uniqueness of the classical solution
follows from Theorem 1. On the basis of our consideration we suggest the following
scheme for solving the problem U. At first, we find the unique solution µ∗(s) of the
Fredholm equation (18) from C0(Γ). This solution automatically belongs to C0,p(Γ1) ∩
C0(Γ2), p = min{λ, 1/2}. Secondly, we construct the solution of equations (5), (11) from
Cp

1/2(Γ
1) ∩ C0(Γ2) by the formula µ(s) = µ∗(s)Q−1(s). Finally, substituting ν(s) from

(9) and µ(s) in (6), we obtain the solution of the problem U.

5. The behaviour of the gradient of the solution at the tips of the cuts Γ1. In
the present section by u(x) = u[ν, µ](x) we denote the solution of problem U constructed
in the previous section. The integral representation for u(x) obtained in Theorem 5
enables us to derive explicit formulas for the singularities of ∇u at the tips of the cuts
Γ1. It follows from the definition of the class K that the gradient of the solution of the
problem U might be unbounded at the endpoints of Γ1, where the estimate (1) holds
with ε = −1/2. Our aim now is to investigate in detail the behaviour of ∇u(x) at the
endpoints of Γ1. Let x(d) be one of these points (d = a1

n or d = b1
n, where n = 1, ..., N1).

In the neighbourhoods of x(d) we introduce the polar system of coordinates

x1 = x1(d) + |x − x(d)| cos ϕ, x2 = x2(d) + |x − x(d)| sin ϕ.

We will assume that ϕ ∈ (α(d), α(d) + 2π) if d = a1
n, and ϕ ∈ (α(d) − π, α(d) + π) if

d = b1
n. Recall that α(s) is the angle between the Ox1 axis and the tangent vector τx

drawn at the point x(s) ∈ Γ. Hence, α(d) = α(a1
n + 0) if d = a1

n, and α(d) = α(b1
n − 0) if

d = b1
n. Thus, the angle ϕ varies continuously in a neighbourhood of x(d) cut along the

contour Γ1.
Let µ1(s)=µ(s)|s−d|1/2 =Q−1(s)µ∗(s)|s−d|1/2 and put µ1(d)=µ1(a1

n)=µ1(a1
n + 0)

if d = a1
n, µ1(d) = µ1(b1

n) = µ1(b1
n − 0) if d = b1

n.
Recall that X is the set of endpoints of Γ1. The following theorem is easily proved

using the results obtained in [5] and using the properties of Cauchy type integrals near
the endpoints of the integration line given in [16, section 22], [2, section 8].
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Theorem 6. Let x → x(d) ∈ X. Then in the neighbourhood of the point x(d), the
derivatives of the solution of the problem U satisfy the relations

∂

∂x1
u(x) = −(−1)m µ1(d)

2|x − x(d)|1/2
sin γ

−(−1)m ν(d)
2π

[ln |x − x(d)| cosα(d) + ϕ sin α(d)] + O(1),

∂

∂x2
u(x) = (−1)m µ1(d)

2|x − x(d)|1/2
cos γ

+(−1)m ν(d)
2π

[− ln |x − x(d)| sinα(d) + ϕ cosα(d)] + O(1),

where m = 0, γ = [ϕ+ α(d)− π]/2 if d = a1
n, and m = 1, γ = [ϕ + α(d)]/2 if d = b1

n, and
where O(1) denotes functions which are continuous at the point x(d). Furthermore, the
functions denoted by O(1) are continuous in the neighbourhood of the point x(d), cut
along the contour Γ1.

This theorem establishes the following curious fact. In the general case, the derivatives
of the solution of the problem U near the endpoint x(d) of the contour Γ1 behave as
O(|x − x(d)|−1/2)+O(ln |x − x(d)|−1). However, if µ1(d) = ν(d) = 0, then ∇u(x) will be
bounded and even continuous at the endpoint x(d) of Γ1. This effect of disappearence of
singularities happens for certain functions F±(s), F (s) given in the boundary condition
(2a), since the condition µ1(d) = ν(d) = 0 specifies restrictions on these functions.

Appendix. Here we prove the following assertion.

Proposition A. If Γ2 ∈ C1,λ, λ ∈ (0, 1], then there exists only the trivial solution of
the homogeneous Fredholm equation (19) in C0(Γ2).

Proof. Let µ0(s) ∈ C0(Γ2) be a nontrivial solution of the homogeneous equation (19).
The kernel of the integral term in (19) has a weak singularity. It can be shown with the
help of [16, Sec. 51] that the integral term in (19) belongs to C0,λ/4(Γ2) in s; therefore
µ0(s) ∈ C0,λ/4(Γ2). Now we consider the function

g[µ0](x) = w2[µ0](x) + h2[µ0](x), (A1)

where w2[µ0](x) and h2[µ0](x) were introduced in (7a), (7b). The function g[µ0](x)
belongs to C0(D)∩C2(D) and satisfies the following homogeneous Dirichlet problem for
the Laplace equation:

∆g = 0 in D, g|Γ2 = 0, |g| ≤ const in D.

Indeed, substituting g[µ0](x) in the boundary condition, we get the identity (19). Ac-
cording to the uniqueness theorem for the Dirichlet problem, we have

g[µ0](x) ≡ 0, x ∈ D. (A2)

Therefore, letting |x| → ∞ in the expression for g[µ0](x), we obtain∫
Γ2

µ0(σ)dσ = 0. (A3)
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We consider the function

g∗[µ0](x) = − 1
2π

⎡
⎢⎣−

∫
Γ2

µ0(σ)
∂

∂σ
ln |x − y(σ)|dσ

+
N2∑
k=2

∫
Γ2

k

µ0(σ)dσ V (x, Yk) −

⎛
⎜⎝∫

Γ2

µ0(σ)dσ −
∫
Γ2

1

µ0(σ)dσ

⎞
⎟⎠V (x, Y1)

⎤
⎥⎦ ,

(A4)

where V (x, y) is the kernel of the angular potential from (4). The function g∗[µ0](x) is the
harmonic conjugate to g[µ0](x), i.e., the Cauchy-Riemann relations ∂x1g = ∂x2g

∗, ∂x2g =
−∂x1g

∗ hold. Consequently, g∗[µ0](x) ≡ Const in D. It is clear from (A4), that g∗[µ0](x)
is a many-valued function, because V (x, Yk) are many-valued functions (k = 1, ..., N2).
Indeed, when passing around the point Yk the value of the function V (x, Yk) changes for
2π. Evidently, g∗[µ0](x) can be constant in D only if g∗[µ0](x) is single-valued. In order
for g∗[µ0](x) to be single-valued, the following N2 conditions must hold:∫

Γ2
k

µ0(σ)dσ = 0, k = 2, ..., N2 ,

∫
Γ2

µ0(σ)dσ −
∫
Γ2

1

µ0(σ)dσ = 0.

Along with (A3) we obtain ∫
Γ2

k

µ0(σ)dσ = 0, k = 1, ..., N2. (A5)

Under these conditions, g∗[µ0](x) takes the form of the modified single-layer potential
[16]

g∗[µ0](x) ≡ w∗
2 [µ

0](x) =
1
2π

∫
Γ2

µ0(σ)
∂

∂σ
ln |x − y(σ)|dσ, (A6)

and g[µ0](x) transforms to the ordinary double-layer potential

g[µ0](x) ≡ w2[µ0](x) = − 1
2π

∫
Γ2

µ0(σ)
∂

∂ny
ln |x − y(σ)|dσ

∈ C0(R2\Γ2) ∩ C2(R2\Γ2).

(A7)

The potentials (A6) and (A7) are connected by the Cauchy-Riemann relations in R2\Γ2.
Because of µ0(s) ∈ C0,λ/4(Γ2), the potential (A6) is a harmonic function, which belongs
to C0(R2)∩C2(R2\Γ2) (see [16] for details). Note that (A6) is continuous when passing
through Γ2 and is represented on Γ2 by a singular integral (for this we have stressed that
µ0(s) is a Hölder continuous function).

As stated above, w∗
2 [µ0](x) in D is equal to a constant, which is equal to zero due to

the behaviour of this potential at infinity, so that w∗
2 [µ0](x) ≡ 0 in D.
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We consider the internal domain Dk bounded by Γ2
k (k = 1, ..., N2). In this domain

the potential (A6) satisfies the Dirichlet problem

∆w∗
2 = 0 in Dk, w∗

2 |Γ2
k

= 0,

which has the unique solution

w∗
2 [µ0](x) ≡ 0, x ∈ Dk (k = 1, ..., N2).

It follows from the Cauchy-Riemann relations and the smoothness of the double-layer
potential that

w2[µ0](x) ≡ ck, x ∈ Dk, k = 1, ..., N2,

where c1, ..., cN2 are constants. Using (A2) and the jump relation for the double-layer
potential w2[µ0](x) on Γ2, we get

µ0(s)|Γ2
k
≡ −ck, k = 1, ..., N2.

According to (A5), ck = 0, k = 1, ..., N2, and therefore

µ0(s)|Γ2
k
≡ 0, k = 1, ..., N2.

Consequently,
µ0(s) ≡ 0 on Γ2.

Hence, the homogeneous equation (19) has only the trivial solution. The proof is com-
pleted. �

Because (19) is a Fredholm equation of the second kind and index zero, the following
corollary holds.

Corollary A. If Γ2 ∈ C1,λ, λ ∈ (0, 1], then the inhomogeneous Fredholm equation
(19) is uniquely solvable in C0(Γ2) for any right-hand side from C0(Γ2).

The inhomogeneous equation (19) is a particular case of (11b) if the exterior domain
D does not contain cuts.
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