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Abstract. This paper is concerned with the initial-boundary value problem for the
Maxwell-Bloch system which describes the propagation of electromagnetic waves in a
polarized quantum-mechanical medium with two energy levels. The main goal is the
investigation of the large-time asymptotic behavior of the solutions if there are no relax-
ation terms in the equations governing the polarization field and the density.

1. Introduction. This paper is concerned with the initial-boundary value problem
for the Maxwell-Bloch system which describes the propagation of electromagnetic waves
in a polarized quantum-mechanical medium with two energy levels. The system under
consideration consists of a generally nonlinear second order system of differential equa-
tions for the dielectrical polarization and the density coupled with Maxwell’s equations
for the electromagnetic field:

ε∂tE = curl H− ∂tP̃− σE, µ∂tH = − curl E, (1.1)

on (0,∞) × Ω coupled with the equations

∂2
t P + αP = NE (1.2)

on (0,∞) × G and
∂tN = −γE∂tP (1.3)

on (0,∞) × G. The initial-boundary conditions

�n ∧ E = 0 on (0,∞) × Γ1, �n ∧ H = 0 on (0,∞) × Γ2, (1.4)

E(0, x) = E0(x),H(0, x) = H0(x), (1.5)

N(0, x) = N0(x), P(0, x) = P0(x), and ∂tP(0, x) = P1(x) on G (1.6)

are imposed. The electromagnetic field is governed by the classical Maxwell equations,
whereas the polarizable medium occupying the set G is modeled as a gas of quantum
mechanical systems with two energy levels as described in [2], [3] and [11]. Here Ω ⊂ R3
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is an arbitrary spatial domain, Γ1 ⊂ ∂Ω, Γ2
def= ∂Ω \ Γ1 and G ⊂ Ω is a nonempty

open subset. The whole-space case Ω = R3 without boundary condition (1.4) is also
considered.

The unknown functions are the electric and magnetic fields E,H, which depend on
the time t ≥ 0 and the space-variable x ∈ Ω, as well as the dielectric polarization P and
N , the difference of the densities of the electrons in the excited and in the ground state,
which are defined defined on (0,∞) × G. In (1.1) the function P̃ is the extension of P
on (0,∞) × Ω defined by zero on the set (0,∞) × (Ω \ G).

The coefficients α, γ take into account the possibly variable dipole moment and density
of the medium. In this paper there are no damping terms in the equations (1.2) and (1.3)
governing the polarization field and N . This model serves as an approximation of the
physically reasonable case of large relaxation time for the polarization and N . The
conductivity term σE in (1.1) describes losses of the medium causing an attenuation of
the electromagnetic wave as suggested in [11], ch.2.4.5. The system is closely related
to the anharmonic oscillator model from nonlinear optics, [7], [10], in which a generally
nonlinear restoring force for the dielectric polarization P occurs.

In [3] it is shown that (1.1)-(1.6) admit a unique strong solution if G = Ω = R3 and
the coefficients do not depend on the space variables. This result has been generalized
in [4] to the case where the medium has a finite, but arbitrary number of energy levels.
The main goal of [4] is to prove the existence of finite-energy solutions and to obtain the
uniqueness of the solution under additional smoothness assumptions on the initial data.
A theory for weak finite-energy solutions for arbitrary spatial domains with additional
boundary conditions is developed in [8].

The main topic of this paper is the investigation of the large-time asymptotic behavior
of the solutions to the system (1.1)-(1.6). To compare with earlier work, consider the
equations

∂2
t P + β∂tP + αP = NE, ∂tN = −ν(N − Ne) − γE∂tP (1.7)

instead of (1.2) and (1.3). Here Ne and β are some positive functions on G. In [8] the
decay of E,H and P has been shown if there is no conductivity, but β > 0 and ν > 0 in
(1.7). The presence of these damping terms is vital for the proof of that decay in [8]. In
[9], only the decay of polarization field P is shown if there is no conductivity, β > 0 and
ν = 0. There is no information about the asymptotic behavior of E and H in [9].

The main goal of this paper is to show that the conductivity alone causes enough
dissipation to identify the asymptotic behavior of E and H as well as that of P, although
there is no direct damping for P. In particular, it is shown that, if β = ν = 0, the electric
and magnetic fields E,H as well as the polarization field P decay with respect to the
weak topology in the case of vanishing space charges in the nonconducting region where
σ = 0. However, there is no information about the asymptotic behavior of N .

For the system (1.1)-(1.6) the energy dissipation law

1
2

d

dt

[∫
Ω

(|ε1/2E|2 + |µ1/2H|2)dx +
∫

G

γ−1Ndx

]
= −

∫
Ω

σ|E|2dx ≤ 0 (1.8)

holds which includes a dissipative term arising from the electrical conductivity σ. This
dissipation law implies σ1/2E ∈ L2((0,∞), L2(Ω)) and shows that ‖(E(t),H(t))‖L2(Ω)
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and ‖∂tP(t)‖L2(G) remain bounded as t → ∞. However, this alone does not provide any
information about the asymptotic behavior of P, the magnetic field H, and the electric
field E on the set of vanishing electrical conductivity, since there is no direct damping
for these quantities.

This paper is organized as follows. In section 3 it is shown that the electromagnetic
field converges weakly as t → ∞ to an asymptotic state that is determined by the
prescribed initial data E0,H0,P0 (Theorem 3.1). Furthermore, it is shown that the
polarization field P decays weakly to zero provided that all of the set G, in which the
polarization is located, is conducting.

The strong Lq
loc- convergence of the electromagnetic field as t → ∞ is shown in section

4 for all q ∈ [1, 2) (Theorem 4.1). For this purpose it is shown that ‖ curl E(t)‖L2(R3) and
‖ curl H(t)‖L2(R3) remain bounded for t → ∞ if the initial data E0,H0 are sufficiently
regular (Lemma 2.3). Furthermore, the local strong convergence of the electromagnetic
field with respect to the energy norm as well as the strong convergence of the curl-free
part of the electric field in L2(Ω) in the exterior-domain case is proved (Theorem 4.2).

2. Definitions, notation and auxiliary results. All assumptions stated in this
section hold throughout this paper.

The dielectric and magnetic susceptibilities ε, µ ∈ L∞(R3, R3×3) are assumed to be
uniformly positive matrix-valued functions, which means that ε(x), µ(x) ∈ R3×3 are
symmetric and

y · ε(x)y, y · µ(x)y ≥ c1|y|2 for all x ∈ R3, y ∈ R3 with some c1 > 0. (2.1)

Next, let α ∈ L∞(G) and γ ∈ L∞(G) be functions on the open subset G which have
strictly positive lower bounds. Finally, σ ∈ L∞(Ω) is assumed to be nonnegative.

It is assumed that the conducting region

Gσ
def= {x ∈ Ω : σ(x) > 0} (2.2)

satisfies
G ⊂ Gσ (2.3)

which means that at least the set G, on which the polarization is located, is conducting.
Furthermore,

ε(x) = µ(x) = 1 on Ω \ G. (2.4)

The physical meaning of this condition is that the set Ω \G represents a vacuum region.
For an arbitrary open set K ⊂ R3 the space of all infinitely differentiable functions

with compact support contained in K is denoted by C∞
0 (K). Let Hcurl(K) be defined

as the space of all E ∈ L2(K, R3) with curl E ∈ L2(K) in the sense of distributions.
As in [5] and [7], let WE and WH be the spaces of all vector fields in Hcurl(K) that

satisfy the boundary conditions (1.4).
In what follows the first three and the last three components of a vector u ∈ C6 are

denoted by u1 ∈ C3 and u2 ∈ C3 respectively. Now, the following operators are defined.
Let D(B) def= WE × WH and

B(E,H) def= (ε−1 curl H,−µ−1 curl E) for (E,H) ∈ D(B).
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Then B is a densely defined skew-adjoint operator in the Hilbert-space X
def= L2(Ω, R6)

endowed with the weighted scalar-product

〈(E,H), (F,G)〉X
def=

∫
Ω

(
εE · F + µH · G

)
dx.

In what follows WE,0 and WH,0 denote the spaces of all f ∈ WE and g ∈ WH with
curl f = curlg = 0 respectively. Let W⊥

E,0 and W⊥
H,0, denote the orthogonal complements

of WE,0 and WH,0, respectively, with respect to the weighted scalar products

〈E,F〉ε
def=

∫
Ω

εE · Fdx and 〈G,H〉µ
def=

∫
Ω

µG · Hdx.

Let Q denote the orthogonal projector on (ker B)⊥ = ran B. In particular

Q(f ,g) = (QEf , QHg) for all (f ,g) ∈ X, (2.5)

where QE and QE are the orthogonal projectors on W⊥
E,0 and W⊥

H,0 with respect to 〈·, ·〉ε
and 〈·, ·〉µ respectively.

Furthermore, let N0 be the set of all a ∈ ker B = WE,0 × WH,0 with a1(x) = 0 for
all x ∈ Gσ, where Gσ is given in (2.2).

Let P be the orthogonal-projector on N0 in X. Note that P is of the form

P(f ,g) = (P1f , (1 − QH)g) for (f ,g) ∈ X, (2.6)

where P1 is the orthogonal projector on the space

Z1
def= {e ∈ WE,0 : e = 0 almost everywhere on Gσ}

with respect to the scalar-product 〈·, ·〉ε.
The assumptions on the initial data are

(E0,H0) ∈ X
def= L2(Ω, R6), P0,P1 ∈ L∞(G) ∩ L1(G) (2.7)

and N0 ∈ L∞(G) ∩ L1(G).

Let W k,p
loc ([0,∞), Y ) denote for a Banach-space Y the space of all functions defined on

[0,∞) with values in Y , whose derivatives up to order k belong to Lp((0, T ), Y ) for all
T > 0.

First it follows from the contraction mapping principle as in [8] that problem (1.1)–
(1.6) has a unique global weak solution on (0,∞).

Proposition 2.1. Problem (1.1)-(1.6) has a unique weak solution (E,H,P, N) with the
properties (E,H) ∈ C([0,∞), X) , P ∈ W 2,2

loc ([0,∞), L2(G, R3)) ∩ W 1,2
loc ([0,∞), L∞(G))

and N ∈ W 1,2
loc ([0,∞), L2(G)) ∩ L∞

loc([0,∞), L∞(G)) .

In particular (1.1) is satisfied in the sense that

(E(t),H(t)) (2.8)

= exp (tB)(E0,H0) −
∫ t

0

exp ((t − s)B)[R∂tP(s) + (ε−1σE(s), 0)]ds.

Here (exp (tB))t∈R is the unitary group generated by B, and R : L2(G) → X is defined
by

(Rp)(x) def= (ε(x)−1p(x), 0) if x ∈ G and (Rp)(x) def= 0 if x ∈ Ω \ G.
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First some a-priori bounds on the solution of the system (1.1) - (1.6) are given.

Lemma 2.2. The solution has the properties

γ(x)|∂tP(t, x)|2 + γ(x)α(x)|P(t, x)|2 + N(t, x)2 (2.9)

= γ(x)|P1(x)|2 + γ(x)α(x)|P0(x)|2 + N0(x)2

for all x ∈ G and t > 0,

P ∈ L∞([0,∞), L1(G)) ∩ L∞([0,∞), L∞(G)) ⊂ L∞([0,∞), L2(G)), (2.10)

∂tP ∈ L∞([0,∞), L1(G)) ∩ L∞([0,∞), L∞(G)) ⊂ L∞([0,∞), L2(G)), (2.11)

∂2
t P ∈ L∞([0,∞), L2(G)), (2.12)

and
N ∈ L∞([0,∞), L1(G)) ∩ L∞([0,∞), L∞(G)). (2.13)

Furthermore :
σ1/2E ∈ L2([0,∞), L2(G)) (2.14)

and
(E,H) ∈ L∞((0,∞), X). (2.15)

Proof. First
1
2
∂t

[
γ(x)|∂tP(t, x)|2 + γ(x)α(x)|P(t, x)|2 + N(t, x)2

]
= γ(x)∂tP(t, x)

[
∂2

t P(t, x) + α(x)P(t, x)
]
− N(t, x)γ(x)∂tP(t, x)E(t, x) = 0,

whence (2.9). From (2.7) and (2.9) one obtains immediately (2.10) - (2.13) by integration
of both sides of (2.9) over G. In view of (2.11) and (2.13) equation (1.2) gives

d

dt

∫
G

γ−1N(t)dx = −
∫

G

E∂tPdx, (2.16)

whereas the standard energy estimate for (2.8) yields
1
2

d

dt
‖(E(t),H(t))‖2

X (2.17)

= −〈R∂tP(t), (E(t),H(t))〉X − 〈(ε−1σE(t), 0), (E(t),H(t))〉X

= −
∫

G

E∂tPdx −
∫

G

σ|E|2dx.

From (2.16) and (2.17) one obtains

d

dt

(
1
2
‖(E(t),H(t))‖2

X −
∫

G

γ−1N(t)dx

)
= −

∫
G

σ|E|2dx ≤ 0. (2.18)

(Here and in what follows the space variable x is often omitted in the notation for
brevity’s sake.) Finally, assertions (2.14) and (2.15) follow from (2.13) and (2.18). �

By a classical result from semigroup theory, [12], it follows from (2.12) that (E,H) ∈
C1([0,∞), X) and

(∂tE(t), ∂tH(t)) = exp (tB)[B(E0,H0) −RP1 − (ε−1σE0, 0)] (2.19)

−
∫ t

0

exp ((t − s)B)[R∂2
t P(s) + (ε−1σ∂tE(s), 0)]ds,
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provided that (E0,H0) ∈ D(B). Next, a global bound on the time derivatives of (E,H)
will be given.

Lemma 2.3. Suppose that

γ(x)|P1(x)|2 + γ(x)α(x)|P0(x)|2 + N0(x)2 ≤ C2σ(x)2 (2.20)

with some constant C independent of x ∈ G, and

(E0,H0) ∈ D(B). (2.21)

Then

(∂tE, ∂tH) ∈ L∞((0,∞), X), (2.22)

(E,H) ∈ L∞((0,∞), D(B)) (2.23)

and
σ1/2∂tE ∈ L2([0,∞), L2(Ω)). (2.24)

Remark 2.4. Assumption (2.20) is satisfied if one assumes that σ has a positive lower
bound on G.

Proof. The standard energy estimate for (2.19) yields

1
2

d

dt
‖(∂tE(t), ∂tH(t))‖2

X = −〈R∂2
t P(t), (∂tE(t), ∂tH(t))〉X (2.25)

−〈(ε−1σ∂tE(t), 0), (∂tE(t), ∂tH(t))〉X

= −
∫

G

∂tE · ∂2
t Pdx −

∫
Ω

σ|∂tE|2dx

= −
∫

G

∂tE · [NE − αP]dx −
∫

Ω

σ|∂tE|2dx

= −
∫

G

N∂tE · Edx +
d

dt

∫
G

αEPdx −
∫

G

αE∂tPdx −
∫

Ω

σ|∂tE|2dx

=
d

dt

∫
G

α[EP + γ−1N ]dx −
∫

G

N∂tE · Edx −
∫

Ω

σ|∂tE|2dx.

By (2.9) and (2.20) one has

|N(t, x)| ≤ Cσ(x) for all t ≥ 0, x ∈ Ω. (2.26)

Now, one obtains from (2.25) and (2.26)

d

dt

(
1
2
‖(∂tE(t), ∂tH(t))‖2

X −
∫

G

α[EP + γ−1N ]dx

)
(2.27)

≤ C2

∫
G

σ|E|2dx − 1/2
∫

G

σ|∂tE|2dx.

Lemma 2.2 yields

sup
t>0

∣∣∣∣
∫

Ω

α[EP + γ−1N ]dx

∣∣∣∣ < ∞. (2.28)

Finally, the assertion follows from (2.14), (2.27) and (2.28). �
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Lemma 2.5. There hold

(1 − Q) (E(t),H(t)) = (1 − Q)
(

(E0,H0) + RP0 −RP(t) −
∫ t

0

(ε−1σE(s), 0)ds

)
and

P(E(t),H(t)) = P(E0,H0).

Proof. For all a ∈ ker B one has by (2.8)

〈(E(t),H(t)), a〉X

=
〈

exp (tB)(E0,H0) −
∫ t

0

exp ((t − s)B)[R∂sP(s) + (ε−1σE(s), 0)]ds, a
〉

X

=
〈

(E0,H0) + RP0 −RP(t) −
∫ ∞

0

(ε−1σE(s), 0)ds), a
〉

X

,

which proves the first assertion.
Let a ∈ N0, that means a ∈ ker B and a1 = 0 on Gσ.
Then one has, by (2.3), 〈RP(t), a〉X = 〈(ε−1σE(s), 0), a〉X = 0 and, hence,

〈(E(t),H(t)), a〉X = 〈(E0,H0), a〉X ,

from which the second assertion follows. �

3. Weak convergence for t → ∞. This section is concerned with the system (1.1)-
(1.6) for arbitrary spatial domains Ω.

Theorem 3.1. Suppose that (2.1)-(2.4) and (2.7) are fulfilled. Then

(E(t),H(t)) t→∞−→ P(E0,H0) in X weakly,

P(t) t→∞−→ 0 and ∂tP(t) t→∞−→ 0 in L2(G) weakly.

Corollary 3.2. Under the assumptions of Theorem 3.1 it follows that

Q(E(t),H(t)) t→∞−→ 0 in X weakly.

Since ran P ⊂ ker B one has QP = 0. Hence, Corollary 3.2 follows immediately from
Theorem 3.1.

Corollary 3.3. Suppose that, in addition to the assumptions of Theorem 3.1,∫
Ω

(εE0f + µH0g)dx = 0 for all (f ,g) ∈ N0. (3.1)

Then
(E(t),H(t)) t→∞−→ 0 in X weakly.

This follows directly from Theorem 3.1, since condition (3.1) is equivalent to

P(E0,H0) = 0.

Condition (3.1) includes

div (εE0) = 0 on Ω \ Gσ, div (µH0) = 0 on Ω
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for which the physical meaning is that the space charge ρ
def= div (εE) vanishes on the

nonconducting region Ω \ Gσ. This property is invariant under the nonlinear flow, i.e.
div(εE) = 0 on Ω \ Gσ is fulfilled for all times as soon as it is satisfied at t = 0.

Remark 3.4. If the medium is not conducting the electromagnetic field (E,H) does
not decay in general. Consider for example the case where σ = 0, P0 = 0, P1 = 0 and
N0 = 0. Then (E,H,P, N) solves (1.1)-(1.6) if and only if P(t) = 0, N(t) = 0 and
(E,H) solves the linear undamped Maxwell equations

ε∂tE = curl H, µ∂tH = − curl E.

In particular there is no decay of (E,H) in the bounded domain case.
As in [7] the weak ω-limit set of the solution of (1.1)–(1.6) is identified.

Proposition 3.5. Assume (2.1) and (2.4). Then every g ∈ X with (exp (tB)g)
1

=
0 on Gσ for all t ∈ R satisfies g ∈ ker B.

This result has been proved in [6] for arbitrary, not necessarily bounded, spatial do-
mains. In [13] this has been proved for the scalar wave equation and Maxwell’s equations
with constant coefficients.

Remark 3.6. If the whole domain is conducting, i.e. Gσ = Ω, Proposition 3.5 follows
immediately. To see this, assume that g ∈ X with f1 = 0 on R × Ω, where f(t) def=
exp (tB)g. Then

∂t(µf2) = − curl f1 = 0 on R × Ω

in the sense of distributions, which implies that f2 is independent of t. Hence, f(t) =
exp (tB)g is constant with respect to t on R×Ω, which is only possible if g ∈ker B, since
B is the generator of {exp (tB)}t∈R.

Proof of Theorem 3.1. By Lemma 2.5 it suffices to show that

(1 − P)(E(t),H(t)) t→∞−→ 0 in X weakly, (3.2)

P(t) t→∞−→ 0 and ∂tP(t) t→∞−→ 0 in L2(G) weakly.

Note that, by Lemma 2.2, ‖(E(t),H(t))‖X , ‖P(t))‖L2(G) and ‖∂tP(t))‖L2(G) remain
bounded as t → ∞. Suppose g ∈ X, Q1,Q2 ∈ L2(G) and tn

n→∞−→ ∞ with

(E(tn),H(tn)) n→∞−→ g in X weakly, (3.3)

P(tn) n→∞−→ Q1 and ∂tP(tn) n→∞−→ Q2 in L2(G) weakly. (3.4)

Let u(n)(t) def= (E(tn + t),H(tn + t)) for t ∈ (−tn,∞) and u(n)(t) def= 0 for t ≤ −tn. Next,
let p(n)(t) def= P(tn + t) for t ∈ (−tn,∞) and p(n)(t) def= P0 for t ≤ −tn. After passing to
a further subsequence one has by (2.10) - (2.12):

p(n) n→∞−→ p(∞) in W 1,∞(R, L2(G)) weak − ∗, (3.5)

i.e.

p(n) n→∞−→ p(∞), ∂tp(n) n→∞−→ ∂tp(∞) in L∞(R, L2(G)) weak − ∗.
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Let t ∈ R. By (2.8) one has

u(n)(t) = exp (tB)(E(tn),H(tn)) −
∫ t

0

exp ((t − s)B)[
R∂tp(n)(s) + (ε−1σE(s + tn), 0)

]
ds

for all n ∈ N with tn + t ≥ 0. It follows from (2.14), (3.3) and (3.5) that

u(n)(t) n→∞−→ u(∞)(t) (3.6)

def= exp (tB)g −
∫ t

0

exp ((t − s)B)R∂tp(∞)(s)ds in X weakly for all t ∈ R.

In particular, one has u(∞) ∈ C(R, X) with u(∞)(0) = g and

∂t(εu(∞)
1) = curl u(∞)

2 − ∂tp̃(∞) and ∂t(µu(∞)
2) = − curl u(∞)

1 (3.7)

on R × Ω in the sense of distributions. For all a, b ∈ R with a < b it follows from (2.14)
that ∥∥∥∥∥

∫ b

a

σ1/2u(n)
1(t)dt

∥∥∥∥∥
L2(Ω)

≤ CK,1(b − a)1/2

(∫ b+tn

a+tn

‖σ1/2E(t)‖2
L2(Ω)dt

)1/2

n→∞−→ 0,

whence, by (3.6),
u(∞)

1(t) = 0 a.e. on Gσ for all t ∈ R. (3.8)

Furthermore, for all a < b, one obtains from (1.2), (2.13) and (2.14) that∫ b

a

‖σ1/2[∂2
t p

(n)(t) + αp(n)(t)]‖L2(G)dt

=
∫ b

a

‖σ1/2N(t + tn)E(t + tn)‖L2(G)dt ≤ C

∫ b

a

‖σ1/2E(t + tn)‖L2(G)dt
n→∞−→ 0,

which implies by (2.2), (2.3) and (3.5) that

∂2
t p

(∞) + αp(∞) = 0 on R × G. (3.9)

Next, it follows from (2.3), (3.7) and (3.8) that ∂t(µu(∞)
2) = 0 on R × G, which means

that u(∞)
2 is independent of t. Since u(∞)(0) = g, it follows that

u(∞)
2(t) = g

2
a.e. on G for all t ∈ R. (3.10)

Next, (3.7), (3.8) and (3.10) yield, by condition (2.3),

∂tp(∞) = curl u(∞)
2 − ∂t(εu(∞)

1) = curl g
2

on R × G in the sense of distributions, in particular ∂tp(∞) is constant on R × G with
respect to time. But, by (3.9), this is only possible if p(∞) = 0. Hence, by (3.4) and
(3.5),

Q1 = Q2 = 0. (3.11)
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Furthermore, one obtains from 3.6

u(∞)(t) = exp (tB)g for all t ∈ R. (3.12)

By Proposition 3.5, (3.8) and (3.12) one has g ∈ ker B and, hence, g ∈ N0, i.e.

(1 − P)g = 0, (3.13)

since P is the orthogonal-projector on N0 in X. Finally, by (3.11) and (3.13), zero is the
only possible accumulation point of (1−P)(E(t),H(t)), P(t) and ∂tP(t) for t → ∞ with
respect to the weak topology. This completes the proof of (3.2). �

4. Strong decay of the electromagnetic field.

Theorem 4.1. Assume (2.20), (2.21) and the assumptions of Theorem 3.1. Then

‖E(t) − P1E0‖L2(K)
t→∞−→ 0 for all compact K ⊂ Ω \ Gσ,

‖H(t) − (1 − PH)H0‖L2(K)
t→∞−→ 0 for all compact K ⊂ Ω.

and, if ∂Gσ is a set of measure zero,

‖(E(t),H(t)) − P(E0,H0)‖Lq(K)
t→∞−→ 0 for all q ∈ [1, 2) and all compact K ⊂ Ω.

Proof. Since ∇ϕ ∈ Z1 ⊂ WE,0 for all ϕ ∈ C∞
0 (Ω \Gσ) ⊂ C∞

0 (R3 \ Γ1), it follows that
(∇ϕ, 0) ∈ N0 ⊂ ker B and, hence, by Lemma 2.5:∫

Ω

εE(t) · ∇ϕdx = 〈(E(t),H(t)), (∇ϕ, 0)〉X = 〈P(E(t),H(t)), (∇ϕ, 0)〉X

= 〈P(E0,H0), (∇ϕ, 0)〉X =
∫

Ω\Gσ

ε(P1E0) · ∇ϕdx,

and, analogously,

∀ψ ∈ C∞
0 (Ω) :

∫
Ω

µH(t) · ∇ψdx =
∫

Ω

µ[(1 − QH)H0] · ∇ψdx.

Therefore, F(t) def= (E(t),H(t)) − P(E0,H0) satisfies

div (εF1(t)) = 0 on Ω \ Gσ and div (µF2(t)) = 0 on Ω. (4.1)

Furthermore, since P(E0,H0) ∈ ker B, F ∈ L∞((0,∞), D(B)) by Lemma 2.3 , in par-
ticular

F1 ∈ L∞((0,∞), Hcurl(Ω)) and F2 ∈ L∞((0,∞), Hcurl(Ω)). (4.2)

Let K ⊂ Ω and M ⊂ Ω \ Gσ be compact. From (4.1), (4.2) and the well-known com-
pactness result in [5] or [14] it follows that

{F1(t) : t ≥ 0} is precompact in L2(M)

and {F2(t) : t ≥ 0} is precompact in L2(K).

Therefore, Theorem 3.1 yields

‖F1(t)‖L2(M) + ‖F2(t)‖L2(K)
t→∞−→ 0 (4.3)

whence the first two assertions.
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Next, it follows from (2.14) and (2.24) that

‖σ1/2E(t)‖L2(G) ≤ ‖σ1/2E(t)‖L2(Gσ)
t→∞−→ 0. (4.4)

Let K1
def= K ∩ Gσ and K2

def= K \ Gσ . Furthermore, let Ak
def= {x ∈ K1 : σ(x) > 1/k}.

From Hölder’s inequality and (4.4) one obtains∫
Ak

|E(t)|qdx ≤ |K|1−q/2

(∫
Ak

|E(t)|2dx

)q/2

(4.5)

≤ |K|1−q/2

(
k

∫
Ak

σ|E(t)|2dx

)q/2
t→∞−→ 0.

(Here |K| denotes the Lebesgue measure of K.) Furthermore,∫
K1\Ak

|E(t)|qdx ≤ |K1 \ Ak|1−q/2

(∫
K

|E(t)|2dx

)q/2

≤ |K1 \ Ak|1−q/2‖E‖q
L∞((0,∞),L2(Ω)).

Since K1 =
⋃∞

k=1 Ak this implies∫
K1\Ak

|E(t)|qdx
k→∞−→ 0 uniformly w.r.t. t > 0. (4.6)

Now, (4.5) and (4.6) yield
∫

K1
|E(t)|qdx

t→∞−→ 0 and, thus,∫
K1

|F1(t)|qdx
t→∞−→ 0. (4.7)

By (4.3) one has for every compact set L ⊂ Ω \ Gσ:

lim sup
t→∞

∫
K2

|F1(t)|qdx

≤ |K|1−q/2 lim sup
t→∞

‖F1(t)‖
q
L2(K2∩L) + |K2 \ L|1−q/2‖F1‖

q
L∞((0,∞),L2(Ω))

≤ |K2 \ L|1−q/2‖F1‖
q
L∞((0,∞),L2(Ω)).

Since K2 ⊂ K \Gσ∪∂Gσ and ∂Gσ is a set of measure zero, one finds to every given δ > 0
some compact set L ⊂ Ω \ Gσ with |K2 \ L| ≤ δ. Hence, it follows from the previous
estimate that ∫

K2

|F1(t)|qdx
t→∞−→ 0. (4.8)

Finally, (4.7) and (4.8) complete the proof. �
In what follows Ω is an exterior domain, i.e. an open set with bounded complement,

and Gσ is assumed to be bounded. Furthermore, only the boundary condition �n ∧ E =
0 on (0,∞) × ∂Ω is considered.

Theorem 4.2. Let Ω ⊂ R3 be an exterior domain such that R3\Ω is a bounded Lipschitz-
domain and Γ1 = ∂Ω. It is also assumed that C def= Gσ ∪ (R3 \ Ω) = C1 ∪ ... ∪ CN is a
bounded Lipschitz-domain, where Ck are the connected components of C. Furthermore,
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let σ have a positive lower bound on Gσ. Then one obtains under the assumptions of
Theorem 4.1

‖(1 − QE)E(t) − P1E0‖L2(Ω)
t→∞−→ 0

and ‖E(t) − P1E0‖L2(Ω∩BR(0))
t→∞−→ 0 for all R ∈ (0,∞).

Lemma 4.3. Under the assumptions of Theorem 4.2 there holds

‖QEE(t)‖L2(Ω∩BR(0))
t→∞−→ 0 for all R ∈ (0,∞).

Proof. Let R ∈ (0,∞) such that R3\Ω ⊂ BR(0). Since ∇ϕ ∈ WE,0 for all ϕ ∈ C∞
0 (Ω),

it follows that

div (εe) = 0 for all e ∈ W⊥
E,0 = ran QE . (4.9)

Since R3 \ Ω is assumed to be a Lipschitz-domain, by the compactness result in [14],

the space of all e ∈ WE ⊂
0

Hcurl (Ω) (i.e. e ∈ Hcurl(Ω) and �n ∧ e = 0 on ∂Ω) which
obey (4.9) is compactly embedded in L2(Ω ∩ BR(0)). That means that the embedding
WE ∩ W⊥

E,0 ↪→ L2(Ω ∩ BR(0)) is compact. Thus, it follows from Lemma 2.3 that

{QEE(t) : t ≥ 0} is precompact in L2(Ω ∩ BR(0)).

Finally, the assertion follows from Corollary 3.2. �
Note that, under the assumptions of Theorem 4.2, Z1 is the space of all f ∈ Hcurl(Ω)

with curl f = 0 on Ω , �n ∧ f = 0 on ∂Ω and f = 0 on Gσ. Next, let

Y def= WE,0 ∩ Z⊥
1

with respect to the scalar-product 〈·, ·〉ε, i.e. Y is defined as the space of all e ∈ Hcurl(Ω)
with curl e = 0 on Ω , �n ∧ e = 0 on ∂Ω and

∀f ∈ Z1 :
∫

Ω

εefdx = 0.

Lemma 4.4. Under the assumptions of Theorem 4.2 there exists a constant K1 such that

∀e ∈ Y : ‖e‖L2(Ω) ≤ K1‖e‖L2(Gσ).

Proof. Let e ∈ Y . Since curl e = 0 on Ω and �n ∧ e = 0 on ∂Ω, one has curl ẽ = 0
on R3 in the sense of distributions where ẽ ∈ L2(R3) denotes the extension by zero on
R3 \ Ω of e. By a classical result there exists a ϕ ∈ L6(R3) ∩ H1

loc(R
3) with

ẽ = ∇ϕ. (4.10)

Now, let ψ ∈ H1(C) be defined as

ψ(x) def= ϕ(x) − βk if x ∈ Ck.

Here

βk
def= |Ck|−1

∫
Ck

ϕdx
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where |Ck| denotes the Lebesgue measure of Ck. Recall that Ck are the connected compo-
nents of C = Gσ ∪ (R3 \Ω). Since the average of ψ taken over each Ck is zero, Poincare’s
inequality yields

‖ψ‖H1(C) ≤ C1‖∇ψ‖L2(C) = C1‖∇ϕ‖L2(C) = C1‖ẽ‖L2(C) = C1‖e‖L2(Gσ) (4.11)

with some constant C1 independent of e. Let T : H1(C) → H1(R3) be an H1-extension
operator, see [1], and let ϕ1

def= T (ψ) ∈ H1(R3). By the definition of ψ the function ψ−ϕ

and, hence, ϕ1−ϕ are constant on each Ck, whence ∇ϕ1−∇ϕ = 0 on C = Gσ ∪ (R3 \Ω).
Therefore,

∇ϕ1 −∇ϕ ∈ Z1. (4.12)

(To be precise, the restriction of ∇ϕ1 − ∇ϕ to Ω belongs to Z1.) Furthermore, (4.11)
yields

‖∇ϕ1‖L2(Ω) ≤ ‖T (ψ)‖H1(Ω) ≤ C2‖ψ‖H1(C) ≤ C3‖e‖L2(Gσ). (4.13)

Now, (4.12) and (4.13) yield

‖ε1/2e‖2
L2(Ω) ≤

∫
Ω

εe · [∇ϕ1 −∇ϕ]dx + ‖ε1/2e‖L2(Ω)‖ε1/2∇ϕ1‖L2(Ω)

= ‖ε1/2e‖L2(Ω)‖ε1/2∇ϕ1‖L2(Ω) ≤ C4‖ε1/2e‖L2(Ω)‖e‖L2(Gσ),

which completes the proof. �
Proof of Theorem 4.2. Let u(t) def= (1 − QE)E(t) − P1E0. By Lemma 2.5 one has for

all f ∈ Z1:
〈(1 − QE)E(t), f〉ε = 〈P1E(t), f〉ε = 〈P1E0, f〉ε

and, thus, u(t) ∈ WE,0 ∩ Z⊥
1 = Y . Hence, Lemma 4.4 yields

‖(1 − QE)E(t) − P1E0‖L2(Ω) = ‖u(t)‖L2(Ω) ≤ K1‖u(t)‖L2(Gσ) (4.14)

≤ K1(‖E(t)‖L2(Gσ) + ‖QEE(t)‖L2(Gσ)).

Since σ has a positive lower bound on Gσ, one obtains from (4.4) that

‖E(t)‖L2(Gσ)
t→∞−→ 0. (4.15)

Furthermore, since Gσ is bounded, Lemma 4.3 yields

‖QEE(t)‖L2(Gσ)
t→∞−→ 0. (4.16)

Finally, the assertion follows from (4.14)-(4.16) and Lemma 4.3 again. �
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