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Abstract. In the present paper, the dynamic behavior of functionally graded piezo-
electric materials is investigated when it is under anti-plane mechanical loading and
in-plane electrical loading. It is assumed that the shear modulus, the piezoelectric mod-
ulus, the dielectric modulus and mass density of FGPM vary continuously as functions of
X and Y . By using Fourier transforms the solution of equilibrium equations is obtained
in closed form. The expressions for displacement and electrical potential are obtained in
terms of one unknown function. Finally the results are applied to obtain a solution of the
moving contact problem on the surface of the functionally graded piezoelectric material
(FGPM).

1. Introduction. It is well known that piezoelectric materials produce an electric
field when deformed and undergo deformation when subjected to an electric field. Due
to this intrinsic coupling effect between the mechanical and electrical fields, piezoelec-
tric materials have been extensively used in electromechanical devices such as sensors,
filters, ultrasonic generators and actuators. The demand for piezoelectric materials with
high strength, high toughness, low thermal expansion coefficient and low dielectric con-
stant encourages the study of functionally graded piezoelectric materials [1, 2]. To meet
the demand of advanced piezoelectric materials and with the help of modern material
processing technology, the concept of functionally graded materials has recently been
extended in piezoelectric materials [3]-[10]. In recent years some studies of propagating
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crack problems in homogeneous piezoelectric materials have been conducted by various
authors [11]-[17].

There have been a number of studies devoted to the theoretical analysis and engineer-
ing applications of piezoelectric materials in references [18]-[20].

Most of the work has been done on crack problems, and it is worth mentioning that
some work on inclusion problems in piezoelectric medium may be found in references
[21]-[24]. In most of the above references, the authors considered the crack problems in
functionally graded materials in which non-homogeneity vary perpendicular to the crack
and that the non-homogeneity vary in only one direction.

The main object of this problem is to explore the FGPM, when the material properties
change in both X and Y directions. In this case the solution of equilibrium equations is
obtained analytically in closed form. As an application the closed form solution is used
to obtain a solution to the problem of a moving load on the surface of a piezoelectric
material.

2. Governing equations and solution of equilibrium equations. Let X, Y and
Z denote regular Cartesian coordinates, where the Z-axis orients in the poling direction of
a poled piezoelectric composite. In the case of the out-of-plane displacement component
and the in-plane-electric components, the governing equations simplify to:

uX = uY = 0, uZ = UZ(X, Y, t), (2.1)

EX = EX(X, Y, t), EY = EY (X, Y, t) EZ = 0, (2.2)

where the electric field intensities EX and EY are related to the electric potential Φ by
the following equations:

EX = − ∂Φ
∂X

, EY = − ∂Φ
∂Y

. (2.3)

Assuming that the shear modulus, the piezoelectric modulus and dielectric modulus are
functions of X and Y , the constitutive equations for FGPM are

σXZ(X, Y, t) = c44(X, Y )
∂uZ

∂X
+ e15(X, Y )

∂Φ
∂X

, (2.4)

σY Z(X, Y, t) = c44(X, Y )
∂uZ

∂Y
+ e15(X, Y )

∂Φ
∂Y

, (2.5)

DX = e15(X, Y )
∂uZ

∂X
− λ11(X, Y )

∂Φ
∂X

, (2.6)

DY = e15(X, Y )
∂uZ

∂Y
− λ11(X, Y )

∂Φ
∂Y

, (2.7)

where σXZ and σY Z are the shear stresses while DX and DY are electric displacements
and c44(X, Y ), e15(X, Y ) and λ11(X, Y ) are shear modulus, piezoelectric modulus and
dielectric modulus respectively. In the following we use the notation

c44 = c44(X, Y ), e15 = e15(X, Y ), λ11 = λ11(X, Y ). (2.8)

The equilibrium equations are:

∂

∂X
σXZ +

∂

∂Y
σY Z = ρ

∂2u

∂t2
,

∂

∂X
DX +

∂

∂Y
DY = 0. (2.9)
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Making use of equations (2.4)-(2.7) we can write equations (2.9) in the form:

c44∇2uZ +
∂c44

∂X

∂uZ

∂X
+

∂c44

∂Y

∂uZ

∂Y
+ e15∇2Φ +

∂Φ
∂Y

∂e15

∂Y
+

∂e15

∂X

∂Φ
∂X

= ρ
∂2u

∂t2
, (2.10)

e15∇2uZ +
∂e15

∂X

∂uZ

∂X
+

∂e15

∂Y

∂uZ

∂Y
− λ11∇2Φ − ∂λ11

∂X

∂Φ
∂X

− ∂λ11

∂Y

∂Φ
∂Y

= 0, (2.11)

where ρ denotes the density of the material.
We assume that the shear modulus, piezoelectric modulus and dielectric modulus are

in the following form:

(c44, e15, λ11, ρ) = (c0
44, e

0
15, λ

0
11, ρ0)p(X)q(Y ), (2.12)

where c0
44, e0

15, λ0
11 and ρ0 are material constants. Substituting from equations (2.12)

into equations (2.10) and (2.11) we find that[
∇2uZ +

1
p(X)

dp

dX

∂uZ

∂X
+

1
q

dq

dY

∂uZ

∂Y

]

+
(

e0
15

c0
44

) [
∇2Φ +

1
p(X)

dp

dX

∂Φ
∂X

+
1
q

dq

dY

∂Φ
∂X

]
=

(
ρ0

c0
44

)
∂2u

∂t2
, (2.13)[

∇2uZ +
1

p(X)
dp

dX

∂uZ

∂X
+

1
q

dq

dY

∂uZ

∂Y

]

−
(

λ0
11

e0
15

)
[∇2Φ +

1
p(X)

dp

dX

∂Φ
∂X

+
1
q

dq

dY

∂Φ
∂X

] = 0. (2.14)

Multiplying equation (2.13) by λ0
11

e0
15

and equation (2.14) by e0
15

c0
44

and adding both we
find that(

λ0
11

e0
15

+
e0
15

c0
44

) (
∇2uZ +

1
p(X)

dp

dX

∂uZ

∂X
+

1
q

dq

dY

∂uZ

∂Y

)
=

ρ0

e0
15

λ0
11

c0
44

∂2uZ

∂t2
. (2.15)

The above equation (2.15) can be written in the form

∇2uZ +
1

p(X)
dp

dX

∂uZ

∂X
+

1
q

dq

dY

∂uZ

∂Y
=

1
C2

∂2uZ

∂t2
, (2.16)

where

C =
√

µ

ρ0
, µ = c0

44 +
(e0

15)
2

λ0
11

. (2.17)

We now introduce a new function Ψ by the relation

Φ = Ψ +
e0
15

λ0
11

uZ (2.18)

and substitute for Φ into equation (2.14) to find that

∇2Ψ +
1

p(X)
dp

dX

∂Ψ
∂X

+
1
q

dq

dY

∂Ψ
∂Y

= 0. (2.19)
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For the problem of a moving surface with constant velocity V along the X direction, it
is convenient to introduce a Galilean transformation such as

x = X − V t, y = Y, z = Z, (2.20)

where (x, y, z) is the translating coordinate system attached to the moving surface.
In the transformed coordinate system, by making use of (2.20), the equations (2.16)

and (2.19) can be written in the form

∇2uz +
1

p(x)
dp

dx

∂uz

∂x
+

1
q(y)

dq

dy

∂uz

∂y
− V 2

C2

∂2uz

∂x2
= 0, (2.21)

∇2Ψ +
1

p(x)
dp

dx

∂Ψ
∂x

+
1

q(y)
dq

dy

∂Ψ
∂y

= 0, (2.22)

where we assume that
1

p(X)
dp

dX
=

1
p(x)

dp

dx
. (2.23)

Assuming

Ψ =
F (x, y)√
p(x)q(y)

, (2.24)

we find that equation (2.22) becomes

∇2F −
[(

1
2q

d2q

dy2
− 1

4

(
1
q

dq

dy

)2
)

+

(
1
2p

d2p

dx2
− 1

4

(
1
p

dp

dx

)2
)]

F = 0. (2.25)

If we assume

F (x, y) = X(x)Y (y), (2.26)

1
2p

d2p

dx2
− 1

4

(
1
p

dp

dx

)2

= a0, (2.27)

1
2q

d2q

dy2
− 1

4

(
1
q

dq

dy

)2

= b0, (2.28)

where a0 and b0 are constants, we find from (2.25) that

d2X

dx2
+ [k2 − a0]X = 0, (2.29)

d2Y

dy2
− [k2 + b0]Y = 0, (2.30)

where −k2 is a separation constant. Making use of the solution to equations (2.29) and
(2.30) we find from equation (2.26) and (2.24) that the solution of equation (2.22) is
given by

Ψ =
1√

p(x)q(x)

∫ ∞

−∞
eiξxB(ξ)e−(ξ2+a0+b0)

1
2 ydξ, (2.31)

where B(ξ) is an unknown function. Assuming the solution of (2.21) in the form

uz(x, y, t) = X1(x)Y1(y), (2.32)
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we find that
d2X1

dx2
+

γ

p

dp

dx

dX1

dx
− γk2

1X1 = 0, (2.33)

d2Y1

dy2
+

1
q

dq

dy

dY1

dy
+ k2

1Y1 = 0, (2.34)

where
γ =

1(
1 − V 2

C2

) , (2.35)

and k2
1 is a separation constant. The solution of equation (2.33) can be written in the

form
X1 =

W

[p(x)]
γ
2
. (2.36)

Substituting equation (2.36) into equation (2.33) we find that

d2W

dx2
+ W

[(
γ

2
− γ2

4

) (
1
p

dp

dx

)2

− γ

2p

d2p

dx2
− k2

1γ

]
= 0. (2.37)

If we assume that (
γ

2
− γ2

4

) (
1
p

dp

dx

)2

− γ

2p

d2p

dx2
= c2, (2.38)

then equation (2.37) can be written in the form

d2W

dx2
+ [c2 − k2

1γ]W = 0. (2.39)

If we take
W = eixξ, (2.40)

then from equation (2.39) we find that

k2
1 =

(
c2 − ξ2

γ

)
. (2.41)

Now if we assume that the solution of the differential equation (2.34) can be written in
the form

Y1 =
W1√

q
, (2.42)

then we find that
d2W1

dy2
+ [k2

1 − b0]W1 = 0. (2.43)

From equations (2.41) and (2.43) we find that

d2W1

dy2
− d2

0W1 = 0, (2.44)

where

d2
0 = b0 +

(
ξ2 − c2

γ

)
. (2.45)

From equations (2.42) and (2.44) we obtain

Y1 =
A(ξ)e−d0y

√
q

, (2.46)
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and from equations (2.36) and (2.40) we find that

X1 =
eixξ

(p)γ/2
. (2.47)

Using equations (2.32), (2.46) and (2.47) we find that

uz(x, y, t) = X1Y1 =
1

pγ/2q1/2

∫ ∞

−∞
A(ξ)eixξ−d0ydξ. (2.48)

From equations (2.18), (2.31) and (2.48) we find the electric potential

Φ(x, y, t) =
1

√
pq

∫ ∞

−∞
B(ξ)eixξ−(ξ2+a0+b0)

1
2 ydξ

+
e0
15

λ0
11p

γ/2q1/2

∫ ∞

−∞
A(ξ)eixξ−d0ydξ. (2.49)

In particular if we assume

(c44, e15, λ11, ρ) = (c0
44, e

0
15, λ

0
11, ρ0)eαX+βY , (2.50)

then from equations (2.20), (2.23), (2.27), (2.28), (2.38), and (2.45) we find that

p(X) = eαX , p(x) = eαx+V αt, q(y) = eβy, (2.51)

a0 = α2

4 , b0 = β2

4 , c2 = −γ2α2

4 ,

k2
1 = − 1

γ

(
γ2α2

4 + ξ2
)

, d0 =
(

β2

4 + ξ2−c2

γ

) 1
2

⎫⎬
⎭ . (2.52)

In this case from equations (2.48) and (2.49) we find that

uz(x, y, t) =
1√

eαxγ+V tγα+βy

∫ ∞

−∞
A(ξ)eixξ−d0ydξ, (2.53)

Φ(x, y, t) =
1√

eαx+αV t+βy

∫ ∞

−∞
B(ξ)eixξ−(ξ2+ α2+β2

4 )
1
2 ydξ

+
e0
15

λ0
11

√
eαxγ+αγV t+βy

∫ ∞

−∞
A(ξ)eixξ−d0ydξ, (2.54)

where d0 is given by equation (2.52).

3. Application. We apply the above solution to the following moving contact prob-
lem.

We assume that a line load moves with a constant velocity V over a piezoelectric
half-space for an infinitely long time. The boundary conditions for the moving contact
problem in moving coordinates are

uz(x, 0, t) = f(x, t), Φ(x, 0, t) = g(x, t), −∞ < x < ∞, 0 ≤ t, (3.1)

where f(x, t) and g(x, t) are prescribed functions satisfying f(x, t) �= 0 and g(x, t) �= 0.
In the literature on piezoelectric materials the boundary conditions (3.1) are well

known for the contact problem. When we compare the boundary conditions (3.1) for
moving contact with moving crack, then it can resemble neither that of a permeable nor
an impermeable condition of crack surfaces. Crack contains two surfaces of piezoelectric
material in which a permeable or an impermeable condition exists, while the geometry of
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contact is different than that of the crack case. In the contact problem there is no piezo-
electric material above the contact region, while in the crack problem the piezoelectric
material exists above as well as below the crack surface. In a moving contact problem
the permeable conditions at y = 0 and y = +0 can exist.

Making use of equations (2.53), (2.54) and (3.1) and the Fourier transforms we find
that

A(ξ) =
(

1
2π

) ∫ ∞

−∞
f(x, t)e−ixξ+ αγ

2 (x+V t)dx, (3.2)

B(ξ) =
(

1
2π

) ∫ ∞

−∞

[
g(x, t) − e0

15

λ0
11

f(x, t)
]

e−ixξ+ α
2 (x+V t)dx. (3.3)

From equations (2.53), (2.54), (3.2) and (3.3) we can write

uz(x, y, t) =
1

2π
√

eαγx+βy

∫ ∞

−∞
eixξ−d0ydξ

∫ ∞

−∞
f(u, t)e(−iξ+ αγ

2 )udu, (3.4)

Φ(x, y, t) =
e0
15

2πλ0
11

1√
eαγx+βy

∫ ∞

−∞
eixξ−d0ydξ

∫ ∞

−∞
f(u, t)e(−iξ+ αγ

2 )udu

+
1
2π

1√
eαx+βy

∫ ∞

−∞
eixξ−(ξ2+ α2+β2

4 )
1
2 ydξ

×
∫ ∞

−∞

[
g(u, t) − e0

15

λ0
11

f(u, t)
]

e(−iξ+ α
2 )udu. (3.5)

With the help of equations (3.4) and (3.5) we find that

σyz(x, y, t) = − 1
2π

(
c0
44 +

(e0
15)

2

λ0
11

)
eαx(1− γ

2 )+ β
2 y+V αt

×
∫ ∞

−∞

(
d0 +

β

2

)
eixξ−d0ydξ

∫ ∞

−∞
f(u, t)e(−iξ+ αγ

2 )udu

−e0
15

4π
[β + (4ξ2 + α2 + β2)

1
2 ]e

1
2 (αx+βy)+αV t

×
∫ ∞

−∞
eixξ−(ξ2+ α2+β2

4 )
1
2 ydξ

∫ ∞

−∞

[
g(u, t) − e0

15

λ0
11

f(u, t)
]

e(−iξ+ α
2 )udu. (3.6)

For particular values of f(x, t) and g(x, t), the integrals in equations (3.4), (3.5) and
(3.6) can be evaluated to obtain closed form expressions for uz(x, y, t), Φ(x, y, t) and
σyz(x, y, t).
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