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LARGE TIME DECAY OF SOLUTIONS
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Abstract. We study the large time behavior of solutions to isentropic gas dynamics.
For a constant v (1 < 7 < 3), we show the decay of the LY norm of density. To do this,
we estimate approximate solutions constructed by a difference scheme.

1. Introduction. We study isentropic gas dynamics:

pt +my =0,
m2
my + (7 -l-p(p)) =0,

where p, m and p are density, momentum and pressure of gas, respectively. For a non-
vacuum state p > 0, u = m/p is velocity. For polytropic gas, p(p) = p7/7, where v is a
constant satisfying 1 < v < 3.
Then we consider the Cauchy problem (L) with initial data:
(p;m)li=0 = (po(2), mo(x)). (1.2)
By using a vector v = *(p, m), (LI)—(L2) can be written as
{ v+ f(v)e =0,

Vlt=0 = vo(z),

(1.1)

(1.3)

where f(v) = *(m,m*/p+p(p)).
Now, to state the main theorem in this paper, let us define the Riemann invariants
w, z, mechanical energy n(v) and its flux g(v) as follows:
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Then our main theorem is as follows:

THEOREM 1.1. We assume that, for B > 0 and C' > 0, initial data (L2) satisfy

—B < z(vo(x)), w(ve(x)) < B, (1.4)
[ 22 po(x)dr < C, [ n(vp(x))dx < C. (1.5)

Then, for a.e. t > 1, a solution to (LI)—(L2) as the limit of the Lax-Friedrichs approxi-
mate solutions satisfies
o 79 oo 3— 7 0
/ {p(z, 1)} de < —— (/ 22 po(w)dr + —— n(vo(x))dx> : (1.6)
—o0 2] —o0 2 —o0
In [], this type of decay is discussed by using a kinetic formulation. On the other
hand, the global existence of a solution to (3] is proved by the Lax-Friedrichs scheme
and compensated compactness in [2]. In this paper, we show the decay of the solutions
obtained by the Lax-Friedrichs scheme. In Section 2, we state the Rankine-Hugoniot
condition, the entropy condition and the theory of invariant regions for the Riemann
problem. In Section 3, we construct approximate solutions by the Lax-Friedrichs scheme
and investigate their bounds, mass and energy. In Section 4, we derive decay estimates
of the approximate solutions to prove Theorem 1.1.

2. Preliminary. Discontinuous solutions arise for (ILI)). The jump discontinuity in
a weak solution to (L)) must satisfy the following Rankine-Hugoniot condition:

A(w —wo) = f(v) = f(vo), (2.1)
where A is the propagation speed of the discontinuity, and vy = (pg, mo) and v = (p,m)
are the corresponding left and right states respectively. Furthermore a jump discontinuity
is called a shock if it satisfies the entropy condition:

A(n(v) = n(vo)) — (a(v) = q(vo)) = 0. (2.2)
Next, let us recollect the Riemann problem for (1)) with initial data
v_, z < xg,
—0 = 2.
e B (2.3

where py > 0 and my are constants satisfying |my| < Cpy. The solution to (L))
with (23] consists of rarefaction waves and shocks. We call this solution the Riemann
solution. The Riemann solution has the following properties:

LEMMA 2.1. For By > B_, the region Y)(B,B_) = {(p,pu) € R* :w =u+p’/6, 2 =
u—p?/0, w < By, z>B_, w— 2z > 0} is invariant with respect to both of the Rie-
mann problem (L) with [23) and the average of the Riemann solutions in z. More
precisely, if the Riemann data lie in » (B4, B_), the corresponding Riemann solutions
(p(z,t), m(x,t)) = (p(z,t), p(z,t)u(z,t)) lie in > (By,B_), and their corresponding av-
erages in z also lie in Y (B, B_), namely

b b
<ﬁ/a p(x,t)dx,ﬁ/a m(x,t)dx) € > (By,B.).
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The proof of Lemma 2] can be found in [2], Lemma 3.3].

3. Lax-Friedrichs approximate solutions. In this section, we first introduce the
Lax-Friedrichs scheme and construct the Lax-Friedrichs approximate solutions. We next
investigate their bounds, mass and energy.

3.1. The Lazx-Friedrichs scheme. In this subsection, we construct approximate so-
lutions by the Lax-Friedrichs scheme. Let us denote the approximate solutions by
v2(z,t) = (p®(x,t),m>(z,t)). In addition, we choose the space mesh length Az and the
time mesh length At satisfying 0 < At < 1 and the following Courant-Friedrichs-Lewy
condition:

A
A=max | sup |N(02(z,0)]) < S5 < 24, (3.1)
i=1,2 \ 0<t,zeR At

where \; :=u — p?, Ay :=u+ p’.
Now we construct the approximate solution ’UA(.'L‘, t). Let

(jy,n) €Z X Zso, Jy={j€Z:n+j=even}.

First, we define

v® (2, ~0) = vo(2)x* (2),

where

[ 1, ze[-a(l/Az),a(l/Ax)],
X ) = { 0, otherwise;

a: Ry — Ry is a smooth function such that a(z) — oo as © — oo.
Second, we assume that v™(,t) is defined for t < nAt. Then we define v = (p,m})
as, for j € Jy,

1 (j+1)Az A
o= — At —0)d i — 1A <(j4+1)A
o 2A:E/(jw pA (2, nAt - 0)dz, (j—1)Az <z < (j+ 1Az,

L s Jdz, (1) G+1)
ml = —— m=(x,nAt — 0)dz, (j—1)Az<z<(j+1)Ax.
7208z JGyae
Finally, in the strip nAt < t < (n+1)At, v®(z,t) is defined as, for jAz < 2 < (j+2)Axz,
the solution of the Riemann problem at z = (j + 1)Auz:

v+ f(v)e =0, jAz<z<(j+2)Az,

ol _ v} < (i +1)Ax,
t=nAt vig, o> (j+1)Az.

This completes the definition of approximate solutions.

3.2. Bounds, mass and energy of Lax-Friedrichs approrimate solutions. In this sub-
section, we estimate the approximate solutions defined above. Our goal is to derive some
estimates, which shall be used in the next section. First we observe that the approximate
solutions satisfy the following:

(i) From (I4) and Lemma 2]
— B < z(v®(x,1), w@(x,t)) < B. (3.2)
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(i) For j € Jpi1,

Pipitoj . At n
P?H =2 D) — - 9L (mj+1 - mj—l)a (3.3)

miy +mi_y At (mﬂH)? (mf_,)?
mtt = 2 = _ ! er(p?H) - -

i 2 2Ax Pt Pi—_1

and

n(v;wrl) < U(UjJrl) ;r??(vjﬂ) . 2itx (Q(U;’Zrl) _ q(v?,l)). (3.5)

From (i)—(ii) and the assumption of initial data, we have the following lemma:

LEMMA 3.1. The Lax-Friedrichs approximate solutions defined above satisfy the follow-
ing:

(1) Bounds: From (32]), we have
{p®(x,1)}°/0 < B, —B<u®(x,t)<B, A<B. (3.6)
(2) Mass: From ([B.3)), we have
(j+1)Az (j+1)Az
> / prttde =) / phda. (3.7)
jE€Ini1 -1) Aw jedn (73— l)Aa;

Furthermore, there exists Mp c depending only on B and C' such that

(j+1)Az
/ p?dx < Mp,. (3.8)
jedn (1-1)Az
(74+1)Az 00
/ pr?dx < / 22 po(x)dx + O(Ax), (3.9)
jedo (j—-1)Az 0o

where O(Ax) depends only on B and C.
(3) Energy: From (B3], we have

G+nAa G+1A
3 / o) dz < Z/ (3.10)
JE€EInt1 JE€JIn
and (by using the Jensen inequality)
(74+1)Az 00
Z / n(v?)dx < / n(vo(x))dx < C. (3.11)
jedo (1—-1)Az —00

4. Decay estimates of the Lax-Friedrichs approximate solutions. In this sec-
tion, we derive decay estimates of the Lax-Friedrichs approximate solutions defined in
the previous section. Through this paper, by Landau’s symbols such as O(Az) and
O((Az)?), we denote quantities whose moduli satisfy uniform bounds depending only on
B and C.
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4.1. Estimates of vi. First we define

F(x,t,v) = 2°p — 2xtm + t*n(v),
G(z,t,v) = 2®m — 2xt(m® /p + p(p)) + t*q(v),
H(z,t,v) = 2t(1/0 — 1)p(p).

Then, our goal in this subsection is to prove the following lemma:

LEMMA 4.1. We choose any integer N such that NAt¢ > 1. Furthermore, let Ny be the
smallest integer such that NyAt > 1. Then we have

(j+1) Az
> / {NAtY 3 F(x, NAt, v )da

jein (3—1)Az

< /_ 22 po(x)de + (3 — ’V)W(Atf /_00 n(vo(x))dz + NAtO(Aw).

Proof. Step 1. First we assume the following inequality holds:

(j+1)Az
/ F(z,(n+ 1)At, v;”rl)dx
(

e T (4.1)
(+1)Az (G+1)Az :
< / F(z,nAt,v})dz + Z / AtH(x,nAt,U;.L)dx—|—O((Ax)2).
jed, (73— Az jed, (73— Az
The proof of (1)) is given in the next step.
Then, from the inequality above and ([BI0), we deduce that
(+1)Az
/ F(x7N1At,U§V1)da:
JEIN, (j—1)Az
(j+1)Ax Ni—1 (+1D)Az
< / FxOv dx—i—z AtH (z,nAt, v} )dz
jedo Y (i—DAz 7m0 jer, G—DAx
(i+1)Ax Ni—1 (G+hHA
< Z/ F(x,0, v Ydz + (3 —7) Z / n(w,nAt, v} )dz
j€Jo (i-1)Az n=0 j&.J, (J
(j+1) Az N1 1
SZ/ (xOv)dx—l—(fS v) n(At)? Z/ a:Ov)dx
jel, T DAz n= 0 j€do
(J+1)Ax N{(Ny — 1 (j+1)Az
< / F(z,0,v; Ndx + (3 — W)M(Atfz:/ n(x,O,v?)dx
i, JG-nas 2 i Ji-nas
+ N1 AtO(Az).
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On the other hand, for an integer n such that nA¢ > 1, multiplying both sides of (£1)
by ((n+ 1)At)Y=3, we have

(74+1)Az
> ((n+ 1AL P F(x, (n + 1)At, o)) da

J€In+1 (G-DAz

(74+1)Az
< Z /( (n+1)At)3(z — nAtu}’)Zp;’dx

jedn ji—1)Az

(74+1)Az
+ Z / ((n+ 1)At)" 3 (nAt)*p(p}) /bdx
jedn (1—-1)Az

(7+1) Az
+ Z/ ((n + 1) At "> AtH (z,nAt, v} )dz + O((Ax)?)
jedn 1)Az

(7+1) Az
< Z / (nAt)"~ 3(sc—nAtu )2 pjdx
jedn (j—1)Az

(+D)Az
Py /( (nAAE) 3 (nAt)2p(pl) Bdz + O((Ax)?)

jeJ ji—1)Azx

(j+1)Az
_ Z/ (nAL) 3 F (2, nAL, v")dz + O((Ax)?).
jeJ (1—-1) Az

Here, for the second term on the right—hand side of the first inequality (resp. the first and

third terms on the right-hand side of the first inequality), we have used ((n+1)At)Y=3 =

(RAL)Y73 + (7 — 3)(nAt) 1At + (RA)T50((At)?) (resp. ((n+1)At)7=3 < (nAt)Y73).
From (2], we conclude that

(J+1)Az
/( (NAL) 3 F(z, NAt, v} )da

jein ji—1) Az

(J+1)Az
<> / (N1A) 3 F (2, N At v ) da + NAtO(Ax)
J€IN, l)Aw

(7+1) Az
<> / F(x, NiAt,oM)dz + NAtO(Ax)
(

jEIN, ji—1) Az
(J+1)Az N (N, — 1 (j+1)Az
< Z/ F(z,0,0))dz + (3 — )M(At)2 Z/ n(z,0,0))dx
jedo Y i—DAz 2 jede i—DAz
+ NAtO(Ax).

Therefore, from BII) and [B3]), we obtain Lemma A1
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Step 2. In this step, we derive (I). First we deduce from (B.3) the estimate of pj:

(j+1)Az
/ x2p?+1dx
JE€Tmi1 (71— Az
DAz + G+DAz Ay
_ / ol i, Z/ 22—t de
o, (j—l)Agc 2 i Ju-nas 2Ax

(1+3)Az (j+1)Az n
S [ )
j€dnp \U+D)A (j-1)Az 2
(G+3)Az (j+1)Az At
+ > {/ x2dxf/_ deaz} AT
j€dnp1 JUHDAZ (G-1)Az
(]+2)A3¢ AT
= Z / 22dx + / w2z b ol
(j—2)Az
(j+2)Az jAz At
+Z{/ xdm—/ xQdm}—m?
j€dn (j—2)Az 2Azx

652 + 8 .
=y 5 (D)) + > 4j(Ax)2Atm?
JjEIn JjE€In

(j+1)Az (3+1)Az

(j+1)Az
= Z / Ing‘dx—i— Z / 2eAt midr + Z /( Ax 2p”dyc

jed, Y U-1Az JETn -DAz JETn
Similarly we deduce from (B.4) the estimate of mj:

(7+1) Az
/ 2z(n + 1)Atm"+1dx
(

JE€Jnt1 ji—1) Az

(j+1)Az (G+1) Aa: (m7)?
— Z/ 2x(n—|—1)At m?dx + Z/ n+1 )(At)? p]n +p(py) ¢ dz.
( G j

jed, T a—DA jedn

Combining the two equations above and (BI0]), we have

(74+1)Az
/ F(z,(n+ 1)At, U;LH)dx
(

jE€dni1 ji—1)Az

(J+1)Az G+1)Ax
< Z / F(x,nAt, v} )dz + Z / At H(x,nAt, v} )dx
j€Tn (J-1DAz jedn (j—-1)Az

(74+1)Az ) (7+1) Aw mn)Q
+Z/ Am p"dfo/ pil +p(p}) ¢ dx
J

J€JIn JjE€In

+ Z/ 2(1/6 — 1)p(p")de.
Therefore, from B8], BI0) and GII), we conclude (@I). O
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4.2. Estimates of v™(x,t) in NAt <t < (N + 1)At. In this subsection, we prove the
following lemma:

LEMMA 4.2. For T with NA < T < (N + 1)At, we have

(3+1)Az
/ TV 3F (2, T,v™(z,T))dx < Z/ (NA) 3 F(x NAt,vév)dx.
_ jedn 1Aa¢

This lemma follows from the following lemma;:

LeEmMA 4.3. For j € Jy41, we have

(7+1)Az
/ TV 3F(z, T,v™(z,T))dz
(1-1)Az

(J+1)Az jAx
/ (NAL)T 3 F(x, NAt, v )do + / (NAL) 3 F(z, NAL, v} )da
(

< iz i—DAz (4.3)
= 2
T T
— (/ 3G ((5 + 1)Ax,t,v§\;1)dt—/ 3G — 1) Az, t, ) 1)dt> :
NAt NAt

Proof. We consider the region where (j — 1)Az <z < (j + 1)Az and NAt <t < T.
Recall that v2(z,t) is a Riemann solution in this region. For simplicity, we consider the
case where one shock arises. Let the propagation speed of the shock be A. Then the ray
x — jAxz = A(t — NAt) divides the region into two parts. On the other hand, if v®(x,t)
is a smooth solution to (1)), we have

{tryisF(x, t, 'UA (xa t))}t + {tvigG(xa tv UA (ZL’, t))}m = 7(3 - 7)t774(x B tu)Zp

<0 (4.4)

because n(v2); + q(v®), = 0. Since v (,t) is continuous and piecewise smooth in each
of the divided parts, by applying the divergence theorem to (£4l), we have
the left—hand side of (Z3)
< the right-hand side of (£3)
T
[P0 (w(t) 4 0.6) - Gla(t). v a(0) ~ 0,1)

NAt
MY (2(t), t, 0" (2(t) +0,1)) — F(2(t), t, 0% (x(t) — 0,1))}] dt,
where z(t) := jAz + A(t — NA?).
On the other hand, from (1)) and Z2), it follows that v>(,t) satisfies the following:
FB(@(t) +0,1)) = f®(@(t) = 0,1)) = Mo (2(t) +0,8) — v (2(t) — 0,0)},
q(v™ (2(t) +0,4)) — q(v™ (2(t) = 0,4)) < Mn(v™ (2(t) +0,)) = n(v>(2(t) — 0,1))}.
Therefore we can prove the lemma. O

By virtue of the compactness framework results of the approximate solutions (see [2,
Section 4]), there exists a subsequence v®* such that (Az), — 0 and v®* tends to a
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weak solution to ([3]) almost everywhere as k — co. On the other hand, we observe
F(a,t,0) = (x —tu)’p + 1297/ (v0) > 297/ (78).

Then, applying Lemmas [£.]] and to the subsequence above, we conclude Theorem
Il
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