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A CONSTRAINT VARIATIONAL PROBLEM
ARISING IN STELLAR DYNAMICS
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Abstract. We use the compactness result of A. Burchard and Y. Guo to analyze the
reduced ‘energy’ functional arising naturally in the stability analysis of steady states of
the Vlasov-Poisson system (cf. Sánchez and Soler, to appear, and Hadžić, 2005). We
consider the associated variational problem and present a new proof that puts it in the
general framework for tackling the variational problems of this type, given by Y. Guo
and G. Rein (cf. Rein, 2005 and Rein, 2002).

1. Introduction and statement of the result. Our starting point is the Vlasov-
Poisson system

∂tf + v · ∇xf −∇xU · ∇vf = 0, (1.1)

∆U = 4πρ, lim
|x|→∞

U(t, x) = 0, (1.2)

ρ(t, x) =
∫

f(t, x, v)dv, (1.3)

where the dynamic variable f = f(t, x, v) is the number density of a large ensemble of
particles which interact by the gravitational potential U = U(t, x). The variables x,
v ∈ R

3 denote position and velocity, t ∈ R is the time variable, and ρ = ρ(t, x) is the
spatial mass density induced by f . This system models a galaxy (stars take the role of
particles).

Questions of nonlinear stability of stationary solutions to the Vlasov-Poisson system
initiated many developments in recent years ( cf. [5] for a self-contained overview). The
core idea was to recognize that a whole class of polytropic steady states can be obtained as
minimizers of so-called energy-Casimir functionals. Once this connection is established,
one makes use of the minimization property of steady states to deduce their non-linear
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stability. We introduce the notation

Lp
+(Rn, M) :=

{
f ∈ Lp(Rn); f ≥ 0 a.e., ||f ||Lp(Rn) = M

}
,

and define kinetic and potential energy

Ekin(f) :=
1
2

∫ ∫
|v|2f(x, v) dvdx,

Epot(f) := − 1
8π

∫
|∇Uf (x)|2 dx = −1

2

∫ ∫
ρf (x)ρf (y)
|x − y| dxdy,

where ρf (x) =
∫

f(x, v)dv. It is well known that the total energy

E(f) := Ekin(f) + Epot(f)

is conserved along the solutions of the Vlasov-Poisson system (1.1)–(1.3). By abuse of
notation we shall also write

Epot(ρ) = −1
2

∫ ∫
ρ(x)ρ(y)
|x − y| dxdy.

The polytropic solutions are solutions of the form

fµ(x, v) := (E0 − |v|2/2 − U(|x|))µ
+,

where (f)+ denotes the positive part of the function f , E0 ∈ R is a constant and −1/2 <

µ < 7/2. For a certain range of µ the polytropes with prescribed mass M were shown to
be minimizers of the energy-Casimir functional

EC(f) = E(f) +
∫

Q(f(x, v)) dxdv

under the constraint f ∈ L1
+(R6, M). By formulating the problem in terms of spatial den-

sities ρ =
∫

f(., v)dv in [6], the author naturally reduced it to the problem of minimizing
a functional of the form

Er
C(ρ) =

∫
Φ(ρ(x)) dx + Epot(ρ) (1.4)

under the constraint ρ ∈ L1
+(R3, M). The notion of reduction and the exact relations

between Q and Φ are carefully analyzed in [6], where a concentration-compactness type
argument is used to deal with the variational problem. A. Burchard and Y. Guo showed
that it suffices to restrict the minimization procedure to the set of symmetrically decreas-
ing functions ρ (cf. [1, Thm. 1]). This makes the solution of the reduced variational prob-
lem simpler. In the review paper [5] this technique is put in a formal framework involving
several steps, indicating the possible genericity of this approach. In [7], Ó. Sánchez and
J. Soler approach the stability question by regarding the problem of minimizing the en-
ergy E(f) over the set of positive functions with prescribed L1 and L1+1/µ norms, with
µ ∈]0, 7/2[. More precisely, they minimize the functional E over the constraint set

Γµ
M,J := L1

+(R6, M) ∩ L
1+1/µ
+ (R6, J).

We denote
Iµ
M,J := inf

{
E(f); f ∈ Γµ

M,J

}
. (1.5)
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The crucial difference to the method used by Y. Guo and G. Rein is that in this case we
have to deal with two simultaneous constraints. The crux of the method is to reduce the
energy functional to a functional defined only over spatial densities ρ and at the same
time to keep only one constraint in the minimization procedure. The new equivalent
problem, derived in [7], is to minimize

Eµ
J (ρ) :=

K1,1

J
2(µ+1)

3

( ∫
ρ

2µ+5
2µ+3 dx

) 2µ+3
3

+ Epot(ρ)

over the constraint set
Fµ

M := L1
+(R3, M) ∩ L

2µ+5
2µ+3 (R3).

K1,1 is just a constant arising from the reduction procedure, and its value does not play
a role for the rest of the paper. For details, see [7]. We denote

Rµ
M,J := inf

{
Eµ

J (ρ); ρ ∈ Fµ
M

}
, (1.6)

and

Ψ(ρ) =
∫

ρ
2µ+5
2µ+3 dx, K :=

K1,1

J
2(µ+1)

3

.

The above mentioned equivalence holds in the following sense:

Lemma 1.1 (Equivalence of the variational principles). The variational problems of min-
imizing E over the constraint set Γµ

M,J and Eµ
J over the constraint set Fµ

M , are equivalent
in the following sense:

(1) The infima Iµ
M,J and Rµ

M,J (cf. (1.5) and (1.6) respectively) coincide, i.e. Iµ
M,J =

Rµ
M,J .

(2) If (fn(·, ·)) ⊂ Γµ
M,J is a minimizing sequence of the functional E, then the se-

quence (ρn(·)) = (
∫

fn(·, v)dv) ⊂ Fµ
M is a minimizing sequence for the reduced

functional Eµ
J .

(3) The functional E has a minimum over Γµ
M,J if and only if the functional Eµ

J has a
minimum over the constraint set Eµ

M . In that case the corresponding minimizers
f(·, ·) and ρ(·) also verify ρ(·) =

∫
f(·, v)dv.

For a proof cf. [7]. The aim of this paper is to show how the analysis of the reduced
problem again fits into the general framework of the result of A. Burchard and Y. Guo.
Before stating the main theorem, we introduce the following definition:

Definition 1.2. Let n ∈ N. A mapping T is called a translation if there exists a shift
vector a ∈ R

n such that Tf(·) = f(· − a), for any function f : R
n → R.

We shall prove the following theorem:

Theorem 1.3. Let (ρn) ⊂ Fµ
M be a minimizing sequence of the functional Eµ

J and let
µ ∈]0, 7/2[. Then there exists a sequence of translations Tn, a subsequence of (ρn) (which
we denote again by (ρn)), and R > 0 such that∫

|x|≥R

Tnρn(x) dx → 0 as n → ∞,

Tnρn → ρ0 strongly in L
2µ+5
2µ+3 (R3),
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and ∫
BR

ρ0(x) dx = M and supp(ρ0) ⊂ BR.

In addition to this,

∇UTnρn
→ ∇Uρ0 strongly in L2(R3) as n → ∞,

and ρ0 is a minimizer of the functional Eµ
J over the set Fµ

M .

In [7] the authors used a concentration-compactness type argument in the spirit of [6],
but here we give a different proof.

2. Proof of the main result. The crucial part of the proof is to carefully exam-
ine the behavior of the spherically symmetric minimizing sequences and then apply [1,
Thm. 1]. In order to emphasize the general nature of this method we follow the setup
provided in [5], where the author analyzed the problem of minimizing (1.4):

Step1: Concentration implies compactness. The following lemma will be used to treat
the behavior of the potential energy along the spherically symmetric minimizing se-
quences.

Lemma 2.1. Fix any 0 < n < 5 and let (ρj) ⊂ L
1+1/n
+ (R3, M) be a sequence of functions

such that ρj ⇀ ρ0 weakly in L1+1/n(R3). Assume that

lim
j→∞

∫
|x|≥R

ρj = 0

for some R > 0, i.e., the mass remains asymptotically concentrated in the ball of radius
R. Then

Epot(ρj − ρ0) → 0, j → ∞.

Proof. Let us set σj := ρj − ρ0. For δ > 0 let us split the integral

Ij := Epot(σj) = −
∫

σj(x)σj(y)
|x − y| dxdy

into three parts,
Ij = Ij,1 + Ij,2 + Ij,3,

where

|x − y| < δ for Ij,1, |x − y| ≥ δ ∧ (|x| ≥ R ∨ |y| ≥ R) for Ij,2,

|x − y| ≥ δ ∧ |x| < R ∧ |y| < R for Ij,3.

Obviously,
∫

σj dx ≤ 2M for every j. Since 2n/(n + 1) + 2/(n + 1) = 2, we get by
Young’s inequality

|Ij,1| ≤ C||σj ||21+1/n||1Bδ
|.|−1||n+1/2 ≤ C

( ∫ δ

0

r
3−n

2 dr
)2/(n+1)

→ 0

if δ → 0, uniformly in j (note that 1A stands for the characteristic function of the set A

and Br refers to the ball of radius r, for r > 0). Furthermore,

|Ij,2| ≤
2M

δ

∫
|x|≥R

|σj(x)| dx → 0,
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as j → ∞, for any fixed δ. Finally by Hölder’s inequality

|Ij,3| =
∣∣∣
∫

σj(x)hj(x)
∣∣∣ ≤ ||σj ||L1+1/n(R3)||h||L1+n(R3),

where, in a pointwise sense

hj(x) := 1BR
(x)

∫
|x−y|≥δ

1BR
(y)

σj(y)
|x − y|dy → 0

which follows by the weak convergence of σj and the fact that we are integrating σj

against a test function in L1+n. But, since hj ≤ 2M
δ for every j, we conclude by

Lebesgue’s dominated convergence theorem that hj → 0 in L1+n and thus |Ij,3| → 0
as j → ∞. The lemma is proven. �

Step 2: Behavior under rescaling. In analogy to [5] (Section 5, Step 3) one needs to
examine the behavior of the involved functional under scaling. The statement and proof
can be found in [7]. For the sake of completeness we state the result.

Lemma 2.2. The infima Iµ
M,J and Rµ

M,J verify:

(1) Iµ
M,J = Rµ

M,J = M
7−2µ

3 J
2(µ+1)

3 Iµ
1,1,

(2) −∞ < Iµ
M,J = Rµ

M,J < 0.

Corollary 1. Any minimizing sequence of Eµ
J over Fµ

M is uniformly bounded in
L

2µ+5
2µ+3 (R3).

Proof. Let (ρn) be a minimizing sequence. From the proof of Lemma 2.2 (cf. [7]) it is
then easy to conclude that every minimizing sequence is uniformly bounded in L

6
5 (R3)

and that (Epot(ρn)) is also uniformly bounded. Finally, from the definition of Eµ
J we

deduce the claim. �
Step 3: Spherically symmetric minimizing sequences remain concentrated. Now we

state the crucial concentration argument for spherically symmetric minimizing sequences
of the reduced problem.

Lemma 2.3. Let us define

R0 :=
M2

−kRµ
J,M

where k := 7/3 − 2µ/3.

Let ρ ∈ Fµ
M be spherically symmetric, R′ > 0 and define

m :=
∫
|x|≥R′

ρ(x) dx.

Then the following inequality holds:

Eµ
J (ρ) ≥ Rµ

J,M + m(M − m)
[ 1
R0

− 1
R′

]
.

If R′ > R0, then for every spherically symmetric minimizing sequence (ρn) ⊂ Fµ
M of the

functional Eµ
J we have

lim
n→∞

∫
|x|≥R′

ρn(x) dx = 0.
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Proof. Although the statement of this lemma is completely analogous to Step 4, Sec-
tion 5 of [5], the proof is based on somewhat more complicated arguments, due to the
more complicated nature of the scaling relations in Lemma 2.2. We define ρ1 := 1BR′ ρ

and ρ2 := ρ − ρ1, and also

α1 :=
∫

ρ
2µ+5
2µ+3
1 dx∫

ρ
2µ+5
2µ+3 dx

and α2 :=
∫

ρ
2µ+5
2µ+3
2 dx∫

ρ
2µ+5
2µ+3 dx

.

By keeping in mind that

K =
K1,1

J
2(µ+1)

3

,

we obtain

Eµ
J (ρ) = Eµ

α1

µ
µ+1 J

(ρ1) + Eµ

α2

µ
µ+1 J

(ρ2) −
∫∫

ρ1(x)ρ2(y)
|x − y| dxdy

≥ Rµ

m,α1

µ
µ+1 J

(ρ1) + Rµ

M−m,α2

µ
µ+1 J

(ρ2) −
m(M − m)

R′

= M
7−2µ

3 J
2(µ+1)

3 Rµ
1,1

(
α1

2µ
3

( m

M

) 7−2µ
3 + α2

2µ
3

(M − m

M

) 7−2µ
3

)

−m(M − m)
R′

= Rµ
M,J

(
((

m

M
)

7
3 )

7−2µ
7 (α1

7
3 )

2µ
7 +

(
(
M − m

M
)

7
3
) 7−2µ

7
(
α2

7
3
) 2µ

7
)

−m(M − m)
R′

≥ Rµ
M,J

[
α

7
3
1 + α

7
3
2

] 2µ
7

[
(
m

M
)

7
3 + (

M − m

M
)

7
3
] 7−2µ

7 − m(M − m)
R′

≥ Rµ
M,J

[
α1 + α2

] 2µ
7

[
(
m

M
)

7
3 + (

M − m

M
)

7
3
] 7−2µ

7 − m(M − m)
R′

= Rµ
M,J

[
(
m

M
)

7
3 + (

M − m

M
)

7
3
] 7−2µ

7 − m(M − m)
R′

≥ Rµ
M,J

[
1 − 7

3
M − m

M

m

M

] 7−2µ
7 − m(M − m)

R′

where we used the scaling relations from Lemma 2.2, the fact that Rµ
M,J is negative,

α1 +α2 = 1, Newton’s theorem for spherically symmetric potentials (cf. [4]), the discrete
Hölder’s inequality, and the fact that for x ∈ [0, 1] we have

x
7
3 + (1 − x)

7
3 ≤ 1 − 7

3
x(1 − x).

For any a, b > 0 and 0 < α < 1 the following inequality ([3, Thm. 41]) holds:

bα − aα ≥ αbα−1(b − a).
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By combining it with the previous estimates we obtain:

Eµ
J (ρ) − Rµ

M,J ≥ −Rµ
M,J

(
1 −

[
1 − 7

3
M − m

M

m

M

] 7−2µ
7

)
− m(M − m)

R′

≥ −7 − 2µ

3
M − m

M

m

M
Rµ

M,J − m(M − m)
R′

= m(M − m)
[ 1
R0

− 1
R′

]

which proves the first claim of the lemma. The concentration property is now a corollary
of the first claim, and it is proven by a contradiction argument, in exactly the same way
as it was done in Step 4, Section 5 of [5]. �

Step 4: Removing the symmetry assumption. Let (ρn) ⊂ Fµ
M be a minimizing sequence

of the functional Eµ
J . Then the the sequence of spherically symmetric rearrangements

(ρ∗n) is also a minimizing sequence. According to Corollary 1, we conclude that (ρ∗n) is
uniformly bounded in L

2µ+5
2µ+3 (R3) and by the theorem of Banach-Alaoglu, we conclude

that there exists a subsequence of (ρ∗n), still denoted by (ρ∗n), such that

ρ∗n ⇀ ρ′ weakly in L
2µ+5
2µ+3 (R3)

for some ρ′ ∈ L
2µ+5
2µ+3 (R3). Because of Lemma 2.3 we know that

lim
n→∞

∫
|x|≥R0

ρ∗n(x) dx = 0, n ∈ N, (2.1)

where we choose R0 like in Lemma 2.3. This fact combined with the weak convergence
of (ρ∗n) easily implies

supp(ρ′) ⊂ BR0 ,

∫
ρ′ dx = M.

Lemma 2.1 now implies
lim

n→∞
Epot(ρ∗n − ρ′) = 0.

By convexity of Ψ and by Mazur’s lemma it is easy to deduce that
( ∫

Ψ(ρ′) dx
) 2µ+3

3 ≤ lim sup
n→∞

( ∫
Ψ(ρ∗n) dx

) 2µ+3
3

(cf. [2] or [5]). This implies immediately that ρ′ is a minimizer and hence
( ∫

Ψ(ρ∗n) dx
) 2µ+3

3 →
( ∫

Ψ(ρ′) dx
) 2µ+3

3
.

Moreover,

Epot(ρn) = Eµ
J (ρn) −

( ∫
Ψ(ρn) dx

) 2µ+3
3

= Eµ
J (ρn) −

( ∫
Ψ(ρ∗n) dx

) 2µ+3
3

→ Eµ
J (ρ′)) −

( ∫
Ψ(ρ′) dx

) 2µ+3
3

= Epot(ρ′).

We now apply ([1, Thm. 1]) to conclude that there exists a sequence of translations T ′
n

such that
lim

n→∞
||∇UT ′

nρn
−∇Uρ′ ||2 = 0.
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We easily see that limn→∞ Epot(ρ∗n) = limn→∞ Epot(T ′
nρn) = Epot(ρ′). Let us now set

R := 3R0. Due to Riesz’s rearrangement inequality, following the splitting idea from
Lemma 3.1 in [1] (Confinement to a ball), we obtain:

2Epot(ρ∗n) − 2Epot(ρn) ≥
∫ ∫

ρ∗n(x)ρ∗n(y) min
[ 1
|x − y| ,

1
2R0

]
dxdy

−
∫ ∫

ρn(x)ρn(y) min
[ 1
|x − y| ,

1
2R0

]
dxdy ≥ 0.

By adding and subtracting the quantity
∫ ∫

ρ∗n(x)ρ∗n(y)
1

2R0
dxdy

we get the following:

2Epot(ρ∗n) − 2Epot(ρn) ≥
∫ ∫

ρ∗n(x)ρ∗n(y)
1

2R0
dxdy

−
∫ ∫

ρn(x)ρn(y) min
[ 1
|x − y| ,

1
2R0

]
dxdy

+
∫ ∫

ρ∗n(x)ρ∗n(y) min
[ 1
|x − y| ,

1
2R0

]
dxdy −

∫ ∫
ρ∗n(x)ρ∗n(y)

1
2R0

dxdy

=
∫ ∫

ρn(x)ρn(y)
[ 1
2R0

− min
[ 1
|x − y| ,

1
2R0

]]
dxdy

+
∫ ∫

ρ∗n(x)ρ∗n(y)
[
min

[ 1
|x − y| ,

1
2R0

]
− 1

2R0

]
dxdy

=
∫ ∫

ρn(x)ρn(y)
[ 1
2R0

− min
[ 1
|x − y| ,

1
2R0

]]
dxdy

+
∫ ∫

|x|≥R0∨|y|≥R0

ρ∗n(x)ρ∗n(y)
[
min

[ 1
|x − y| ,

1
2R0

]
− 1

2R0

]
dxdy

≥
[ 1
2R0

− 1
R

] ∫ ∫
|x−y|≥R

ρn(x)ρn(y) dxdy

+
∫ ∫

(|x|≥R0∨|y|≥R0)∧(|x−y|≥2R0)

ρ∗n(x)ρ∗n(y)
|x − y| dxdy

− 1
2R0

∫ ∫
(|x|≥R0∨|y|≥R0)∧(|x−y|≥2R0)

ρ∗n(x)ρ∗n(y) dxdy

=: An + Bn − Cn.

Here we used the equimeasurability of the rearrangements. According to the proof
of Lemma 3.1 in [1] we conclude that there exists a translation Tn such that An ≥[

1
2R0

− 1
R

]( ∫
|x|≥R

Tnρn(x) dx
)2

. By letting n → ∞ it is a direct consequence of (2.1)
that both Bn and Cn tend to 0 as n → ∞. So we get

∫
|x|≥R

Tnρn(x) dx → 0 as n → ∞. (2.2)
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Since Tnρn is a minimizing sequence, it is uniformly bounded in L
2µ+5
2µ+3 (R3) which implies

that there exists some ρ0 such that Tnρn ⇀ ρ0 weakly in L
2µ+5
2µ+3 (R3), and (2.2) implies∫

BR

ρ0 dx = M and supp(ρ0) ⊂ BR.

Now by Lemma 2.1 we conclude

∇UTnρn
→ ∇Uρ0 strongly in L2(R3), n → ∞, (2.3)

which, again combined with the convexity of the functional Ψ(ρ), allows for the conclusion
that ρ0 is a minimizer of our variational problem. Eqn. (2.3) also implies

lim
n→∞

∫
(Tnρn)

2µ+5
2µ+3 dx =

∫
ρ

2µ+5
2µ+3
0 dx,

which means that ||Tnρn||
L

2µ+5
2µ+3 (R3)

converges to ||ρ0||
L

2µ+5
2µ+3 (R3)

, and this fact, combined

with the weak convergence, implies the strong convergence in the space L
2µ+5
2µ+3 (R3). This

completes the proof of Theorem 1.3.
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