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Abstract. This article is devoted to the long-term dynamics of a parabolic-hyperbolic
system arising in superconductivity. In the literature, the existence and uniqueness of the
solution have been investigated but, to our knowledge, no asymptotic result is available.
For the bidimensional model we prove that the system generates a dissipative semigroup
in a proper phase-space where it possesses a (regular) global attractor. Then, we show
the existence of an exponential attractor whose basin of attraction coincides with the
whole phase-space. Thus, in particular, this exponential attractor contains the global
attractor which, as a consequence, is of finite fractal dimension.

1. Introduction. This paper is concerned with the asymptotic behavior of a time-
dependent Ginzburg-Landau-Maxwell model of superconductivity. When the tempera-
ture of a superconducting material stays close to a critical temperature, the evolution
of the system can be described by the Ginzburg-Landau equations in the state variables
(¢, A, ®). Here 1) is the complex order parameter, whose squared modulus represents
the concentration of the superconducting electrons, while A and ® are the magnetic and
the electric potentials, respectively. The differential system, proposed by Gor’kov and
Eliashberg (cf. [7) and widely studied in literature (cf., e.g., [3, 10, 13]), consists of
two coupled parabolic equations for ¢ and A. These are proved to be gauge-invariant.
Hence, the choice of a particular gauge, which results in an additional equation, de-
termines univocally A, ®, and consequently 1, making the problem well-posed. The
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gauge-invariance of the model is examined in [I], where a physical interpretation of the
equations is achieved by formulating the problem in terms of observable variables. The
introduction of gauge-independent variables shows that the equation for A coincides with
one of the Maxwell equations, in the so-called quasi-steady approximation, namely when
the displacement current is negligible.

Here we remove this restriction and consider the general evolution model characterized
by a hyperbolic equation for A (the equation for ¢ is unchanged). For this problem with
the London gauge, the existence and uniqueness of the solution are established in [12].
However, no asymptotic result seems to have appeared in the literature, even if the long-
time behavior of the solutions is investigated for the quasi-steady model (cf. [9] [10]).
In both papers, the superconductor occupies a bounded domain 2 C R? and the phase-
space is L%(Q) x L?(). Although this choice makes some a priori estimates difficult
to obtain (cf. [I0]), it allows one to apply Hilbert space techniques. In particular, the
classical method developed by Constantin, Foias and Temam (see, e.g., [II]) was used
by Tang and Wang to prove the finite fractal dimension of the global attractor, while
Rodriguez-Bernal, Wang and Willie can show the existence of an exponential attractor
by means of the so-called squeezing property. Unfortunately, the Banach structure of
our phase-space prevents us from applying similar arguments.

The main steps of our analysis are the following: in the bidimensional case, we see
that the system generates a dissipative strongly continuous semigroup that admits a
global attractor A. Next, relying on the regularity of this set, we provide the existence of
an exponential attractor £ whose basin of attraction extends to the whole phase-space.
Here we apply a recent method, working in Banach spaces, due to [4] (see also [6]) as well
as the property known as transitivity of the exponential attraction devised in [5]. The
finite fractal dimension of A is a consequence of this last result, since the global attractor
is the minimal compact attracting set. Thus the dynamics on the global attractor are
described by a finite number of parameters.

2. The dynamical system. Let ) C R? be a bounded domain with smooth bound-
ary 0f), whose unit outward normal is denoted by n. As anticipated in the Introduction,
the state variables are the order parameter v : Q x RT™ — C, the magnetic potential
A Q xRt — R? and the electric potential ® : Q x RT — R. Following the literature,
we introduce the operator

Dxt = Vip —iAq,
then we denote A = A + Ay, where Ay is the (time independent) vector field whose
curl corresponds to the external magnetic field such that

divAe =0 in€Q and Aot -mon = 0.
We can now state our problem (cf. [12]):

Yy — 1%y — DA — N(1— |2 =0, (2.1)

e(A; — V®), + o(Ay — V) + curl®A + %(&D At —vDA0) =0, (2.2)
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where )\, e and o are positive constants representing the Ginzburg-Landau parameter,
the dielectric constant and the electric conductivity, respectively. The problem is sup-
plemented with the boundary conditions

anwbg =0, A- n‘ag =0, curlA x ’I’L|aQ =0, anq)bg =0 (2.3)
and with the initial conditions
$(0) =10, A(0)=Ag, Ay 0)=Ag, @0)=d, Q. (2.4)

It is apparent that the solution to this system is not unique (indeed there are two equa-
tions but three unknowns); moreover, the problem is gauge-invariant, so that choosing
the London gauge

divA =0 inQ and / d =0, (2.5)
Q

from the divergence of ([Z2)), keeping (2] into account, we obtain a third equation for
d:

—eA®; — G A® + (i — Uih) + [V® = 0, (2.6)

which makes the problem well-posed (cf. [12]). Besides, with this gauge A is a solenoidal
vector field, and hence

—D3 ¢ = —Avp + 2iA - Vi) + [APy.

Our first task is to make precise the phase-space, but since the model involves vector
fields as well as complex phase fields, some notations are in order.

2.1. Notations and function spaces. As usual, LP(2) and WHP(Q) stand for the
Lebesgue and the Sobolev spaces of real valued functions, with the convention that
H%(Q) = WF2(Q). We denote by bold letters the spaces of vector-valued functions,
whereas a subscript C characterizes those of complex-valued functions. Without further
specifications, ||-|| stands for the LZ(£2), L?(£2) or L?(£2)-norm, according to the context.
The brackets correspond to

(u,v)z/ﬁu(m)v(m)dw,

indifferently for complex and vector-valued functions. In particular, the inner product
in LZ(Q) is (u,v) = (u, ). We next consider the spaces

Xo={ucH(Q): divu=0 inQ, u-m|pgg=0, curluxn|sg =0}
Ho(div0,Q) = {fu e L*(Q): divu=0 inQ, wu-n|sq =0}
HE(Q) = {u € HY(Q): / u= o}

Q

H2 (Q) = {u € H*(Q):  Onulag =0, / U= 0},
Q

all endowed with their usual topologies.
With the notations defined above, the phase-space is

Xoo ={Y € HZ(Q): Ondlon =0, [Wlre@) <1} x [Xo NH*(Q)] x Xo x H§,, (),
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which is a closed subset of the Banach space
X0 ={y € HE(Q): Ont|oa =0} x [Xo NH*(Q)] x Xo x HZ,,(Q),

equipped with the standard norm || - ||o. As will be clear in a while, in order to find

0

o0, In some cases we first need to obtain a control in the weaker

proper estimates in X
norm || - || of the space

X' = HL(Q) x Xo x L3(Q) x H},,(2) D X%

In particular, since we are in dimension two, we have at our disposal the well-known
Ladyzhenskaya and Agmon inequalities (see, e.g., [11])

[ullZe < ecrllullllulla, — Yue HY(S), (2.7)
Jull7e < callulllullgz, — Yue H*(Q), (2.8)

as well as
|A[]? < k||curl A%, VA € Xy, (2.9)

and the Poincaré inequality
12]* < cp|[VEI?, Ve € H,, (9. (2.10)

The four positive constants cy,, ca, k and cp depend only on 2. We shall often use these
inequalities, along with the Young and the Holder inequalities, without mentioning it.

In the forthcoming estimates, we denote by ¢ any positive constant depending only on
the structural data of the problem. Further dependencies will be specified on occurrence,
and ¢ may vary even within the same formula.

Our first task is the generation of a dynamical system in XY . It is shown in [12]
Theorem 2] that problem (ZI)—(2.6) with initial data in XY, admits a unique solution
in this phase-space, provided that A € Ho(div0, Q) N WH6(Q). Moreover, taking
advantage of the subsequent Lemma [3.3] and Remark 3.4 we can obtain at any fixed
time the following continuous dependence on the initial data.

PROPOSITION 2.1. For any R > 0, there exists K = K(R) > 0 such that, for any two
initial data z1, 20 € X% with ||z;]lo < R, i = 1,2, there holds
t
150~ @218 + [ 100610) ~ s + I901(0) ~ V02|l
0
< K2e2K 2y — 2|2, t>0.
This result, along with [I2] Theorem 2], lead to

THEOREM 2.1. Problem (ZI))—(2Z0]) generates a strongly continuous semigroup {S(t)}+>o0
on the phase-space X?_.

Proof of Proposition 21l Here and in the sequel, we perform formal computations
that are justified within the same Galerkin scheme adopted in [12].
Let (¢i(t), Ai(t), 0:Aq(t), @i(t)) = S(t)z; and Ai(t) = Ai(t) — Aext, for any 2z; =

(Yoi, Aoi, Agi, @o;) € X%, with ||z;]lo < R, i = 1,2. For further convenience, notice that
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Lemma [3:3] yields
sup (IS®zillo + 0 (BI) < e, i=1,2,

where, throughout this proof, the constant ¢ is allowed to depend on R. It is straight-
forward to check that the difference (¢(t), A(¢t), A¢(t), @(t)) = S(t)z1 — S(t)za solves the
following system:

Yy — Atp — i®1y — iDyt) + 2A - Vihy + 2iAs - Vih + A - (A + Ay + |Ay?y (2.11)
= N+ N2 (|91 [* + [9a]?) + A%lwgu’) =0,

e(Ay — V®), + 0(Ay — VP) + curl®A + = [wlw Y1V + PViby — hVihe]  (2.12)
+ Al ? + Afzwll/_) + Ay = 0,

—eA®;, —0cAD + - (7/}1% Y1y + POphe — YO2) + 112 + (Y19 + Yiha) Py = 0,
(2.13)

supplemented with homogeneous boundary conditions and initial data z; — z3. Adding
together the product of ([ZI1)) by t; +1 and the conjugate of (ZI)) by 1;+1, integrating
the result in 2, we obtain

annm VIR + Il + N2 1 P+ fal?) + (Ao o) (2.14)

= (@, 000 — 10 — (A, GV — V) — i(Ag, GV — V)
LA (Rt Ba) a4 D) + R = (i, )+ (i)
ARt~ Br) + 5 (Do, — D) — A, TV — V)
— (o, GV — VD) = S(A - (As + Ao bt + i)

_ L 22 B B
— 51 Ral2, G+ ) + S 10,50 + ()]
2

A2 - A __ o
- 701/)1\2 + |1h2|?, Wby + i) — 7[<w1¢2,¢wt> + (Y112, Pify)).

Then, standard inequalities lead us to
. dtnqﬁnHl IR + I+ A2 (00 2 + a2 ) + (Aol )
< §H1/)t||2 +e(lllF, + leurlAl? + [ Ve[?).
The product of 2I2) with A; in L?(Q) yields
5 (e AR + | A1) + ol Adl? (215)
= (VY — iV, A — (Vs — 6T, A — ([, A - A
— (19 + oty Ay - Ay),
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which yields the inequality

| &

(lleurlA[* + e Ael®) < c(lloll7 + lleurlAf* + [[Ag]?).

| =
QU

t

Finally, we multiply (ZI3) by ®; in L?(2), getting

=

(@IVR?) + el V| (2.16)

N =
U

t
= *%W_let — b1y + POy — YOba, Br) — (|Ph1]?, BDB) — (19 + P, B ®y).

Notice that

d
7 (VL) +ellVa* < SV + cllvn® + el + IVOIP)-

N =
| ™

Adding (ZI4) and (ZI5) to (ZI6), multiplied by a suitably small constant n > 0, in light
of the above inequalities, leads to

d
7 (1015 + llewrl Al + e[| Ad1” + nol|VO[%) + [l ]]* + nel| V2, |
< e[l + leurlAl]? + e Adlf* + nol|Ve[?),

and thus we easily obtain

t
IS()z1 = S(t)z2?, +/O (eI + IV ()IP)dy < ce[lor — 222y, (2.17)

for some constant ¢ depending on R, but independent of time.
To obtain the corresponding inequality in XY, we differentiate (Z.I1I) with respect to
time:

Yoo — Dy A Ao Py + N2 ([1 P + 2P = (12 + A
+ [10:®s — 2A5 - B Ay — N2(0105001 + 101041b1 + P20bs 4 hadsiha) |1
— N2 (hodyth1 + 1041ba) 0 — 2i0; Ag - V) — 2iAy - Viby — N2ep1abotly
— [2iVh1 4 (9, A1 + 0t A2)h1 + (A1 + Ap)dih] - A
— [2iVe1 + (A + A1) - Ay + 00y @ + inhy By
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Adding together this equation multiplied by 1); and its conjugate multiplied by 1), inte-
grating the result in €2, we obtain

1d
2dt '
= N2 + 5 (01, by — )

el + I99el® + (Al [0l ®) + A ([ + (2], 19 ]?)

~ 2 — — — — — —
—(Ay- Ot As + %(wlaﬂﬁl + 1041 + Y20pth 4 V20402), Yihy + i)
2

- %K(%@ﬂh + P10:02) 1, ) + ((P20iihr + ¥10p02) 1, )]

— {04 A, ¥ VY — Py V) — i{Ag, Py VP — 10 V)
2 —_ —_ —_ —_ —_
— %[Wﬂbza V) + (P1aha, )] — i(1 V Oy — bV Oppy, A)

%<(3tA1 + 0 A2) - A, U1y + rty) — %((Al + Ay) - A, 91y + Oyhridy)
1
i(

— (A, Y Vih1 — Vb)) — §<(A1 + As) - Ay, 1ty + ridy)
+ %(‘I’, Op1ipe — Opth1¢ly) + %(‘I’tﬂ/)ﬂzt — 1efy).

In particular, by standard inequalities we have

1d -
5&“%”2 + IV + (|A2?, [9?) + N2 ([n |2+ [a?, 1))

1
< SIVEP + e(l9 7 + 1A + llonrlAf” + VO + [V, [|?)
+cl| VO | eurl Al + ¢(1 + [ VO @a|*) || *.
Now, thanks to ([2I7) and the forthcoming Remark B4] the Gronwall lemma yields

e ()% + /Ot IV (y)|IPdy < e[|z — 2[5, (2.18)
which, in view of the estimate
1AV < cllvell + ¥l + lleurlAll + [|V2])
and of (2.I7), gives as a consequence
IR (®)lIFz < cellzr — 223 (2.19)
Next, a differentiation of ([ZI2]) with respect to time leads to
e(Ag — V®); + 0(Agy — V) + curl® Ay + 1Ay
= (59002 — O Axts — Aoddn]p — [SV0 + 0 Azt + Asdith ]
+ {%V1Z2 - AQ@Q}% - [%V% + Aﬂ/’l}?/_ft - %&JnWJ + %.&ﬂl)lvd_)

- %(ilth — p1Vy) — (Y1001 + 1041 A



624 VALERIA BERTI ANp STEFANIA GATTI
Multiplying this equation by A in L2(Q2), we find

1d
EE(HCUYIAtHQ +ellAwl?) + ollAwl* = —([v1]*, Ar - Ag) (2.20)

+ <%V3t7/;2 — 0t Agthy — Agdiiho, hAL) — <%Vat¢2 + 0rAgthy + MOy, D AL)
+ (5Vi = Axtha, rAu) = (5V2 + Ay, BiAu) — 5 (O, VO - An)

i _ i _ L
+ 501, VY- Ag) = S (01Vie = 91V, Aw) — (10i1 + 10p1, A - Agy).
Taking advantage of the continuous embedding H?(Q) C L>(Q), we get
1d
5%(HCUY1A1§H2 + ]| Ag|1?)
< (14 VO |® + IV 0ol *) | Auel|* + clleurlAe|® + e(llv 172 + llvel7y + llcurlAfl?).
The product of I3) with —A® in L?(Q) furnishes

%%(EHA@”Z) +ol|A®|? + %(1/_)1% — 19 + YOips — YO, —AD) (2.21)
+ (|1 [*®, —A®) + (19 Py, —AD) + (P1)pa®s, —AD) = 0

which easily entails

%(EHA‘I’HZ) +ol|AR| < c([[pllF, + vl + [VOl?).
Adding together (Z20)) and 22I)), on account of ZI7), 2I8]), 2I9) and Remark [34]
the Gronwall Lemma gives

leurlAe[|* + | Agel|* + e[ AP* < ce||21 — 2oll5;

then, by the estimate

lewrPA1? < e(|| Al + Al + [leurlA|* + [ ]17, ),

which is easily derived from (2I2)), we accomplish our purpose. O

3. Dissipativity. This section is devoted to the proof of the following

PROPOSITION 3.1. There exists Ry > 0 such that the ball By of XY centered at zero of
radius Ry is absorbing for S(t) in X%.

As we shall see, in order to prove the dissipation of S(¢) in X%, we need to pass

through a weaker dissipativity result in this space endowed with the X~ !-norm.

LEMMA 3.1. There exist two positive constants C' and 9_; such that, given z € X?_,
there holds
[S(t)z]| -1 < Ce™P-1t||z||_, + C, vt > 0.

As a consequence, it is possible to find R_; > 0 such that, given R > 0,

sup  [|S(t)z]-1 < Ry,
2€X,, |zl -1<R

for any t > to where tg = to(R) > 0.
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Proof. We introduce the notation
2 2, N 22 2 2 2 ~1
207 = IDa% " + 51 = [DFI7 + llewrl A" + e A" + el VO7, 2 e X7
Although this is not a norm, nevertheless it satisfies
clz|Zy —e < Nlzl* < cllzll2y +e, V2 e X, (3.1)

thanks to the bound [|¢||?> < |Q]. Indeed, from the Young inequality and from (23, we
deduce

Lo _ - 1 -
1A, VY —pV)| < 2[[AD[|[|[ VY < mnwnz + (14 )| Ay

1 2 A2 2 2 2
mnwn + (A% [0) + 2n[| A" + 2n[| Aext |

1 -
< mnwn? + (|AP% [9?) + 2nkllcurl Al? + ¢,

for any 1 > 0. Thus, choosing n = f% + % 1+ %, we have

IDg% 12 + lleurlA|* = [Vo|* + (A, VY — V) + ((A]% [9]?) + [[curlA |

> 1 (19917 + JlewrlA ) —

For any a € (0, 1], we introduce the functional
E_1(2) = [I2lI” + 1] + 20(A¢, A) + ac||A]*

which, provided that « is small enough, on account of ([B.1), satisfies
1
cllzl2y +e>clz)l? + ¢ > Ba(z) 2 §|ch'||\2 >clz|2y —e,  VzeXL. (3.2)

Our next task is a differential inequality for E_1(t) = E_1(S(t)z), for any z € XY with
l|lzll-1 < R. Adding together (Z.I)) multiplied by t; + ¢ and the conjugate of (2.
multiplied by ¥; 4+ v, integrating the resulting equation in €, since A; = A;, we obtain

1d

2dt
. B N B . N B )\2

5 (@ — ) — (A A [0?) — S(AL OV — 0V = T|9)

Next, we multiply 22) by A; + oA in L%(Q2), getting

2 2 )‘2 2112 2 )‘2 2112 >‘2 4 2
(IDAwIZ + 1612 + ST = [WIIE) +IDAwIT+ 51 = IR + 5l + sl

1d

§E(||curlAH2 + | Ag]]? + 20e(As, A) + OéO'HAHZ) + allcurl A% + (o — ae)|| A4
- - ~ A S

+ 5 (OVY = BV, Ag) + (A~ Ay, [U) + Sa(YDRY — ¥ DAY, A) = 0.

As a third step, the product of (28] with ® in L?(f) yields

| =

(EIVI?) + olIVE|? + (@7, [6) + (i — i, @) = 0.

N =
S

t
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Adding these three equations, it is readily seen that F_;(t) satisfies

1dE_,
2 dt

)\2
+ (0 = )| Adl® + o VI + [lvel® + T [$l17s + (% [0])

)\2
+ IDAYI” + Sl = 17 + afleurl Al (3.3)

o - R - 22
= (P — vy, ®) - sa(@Dv — YDAV, A) + I,
In order to control the right-hand side, notice that

| = (0 — br, ®)] < 2@ ([l < [[e]” + (27, ).

Moreover,
i _ KR 2 (&% 2
~ Sa(éDaY — DA, A)| < a| DaYllIA] < THIDAYIR + 5 leurl A

Thus, possibly reducing «, we obtain

dE_4
C L allS I < X9,
which, on account of (3.2), gives
dE_4
20_1E_1 <
dt + 1 16

for some ¥_; > 0. Finally, the Gronwall Lemma yields
E_1(t) < E_1(z)e” V-1 4 ¢, vVt >0,

and [B3.2) allows us to complete the proof. O
REMARK 3.2. It is worth mentioning that

t+1
sup  sup / () |2y < C(R). (3.4)

ze€X9 . ||z -1 <R t>0

This can be easily seen integrating (B3] with o = 0, taking Lemma [B1] into account.
Proposition 3] is a straightforward consequence of

LEMMA 3.3. There exists 99 > 0 such that, given p_1,p9 > 0, it is possible to find
C_1=C_1(p-1) > 0 and Cy = Cy(pp) > 0 satisfying

1S®)zllo < Coe™ 0t +C_y, V>0,
for any 2 € XY, with |21 < p-y and |l2l|o < po.

Proof. In this proof ¢ stands for a positive constant possibly depending on p_;. Notice

that ([2) and (22)) yield
IAY]| < ([l + [|®]] + 2] A - Voo | + [[|A]]] + 27%, (3.5)
lcurl® Al < el Al + ol Agl| + V]| + [|A]l (3.6)

Besides, on account of Lemma [B.1] our goal is a dissipativity estimate for

1A (@)]? + [lewrl” A(#)]|* + [[eurl A (2)[|* + A2 ().
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Hence we shall accomplish this purpose controlling the first two terms by the corre-
sponding estimates for ||1;|| and ||Ay]|, while the other two contributions are directly
estimated. In particular, we shall obtain a differential inequality for the functional
Eo(t) = Eo(S(t)z), defined as

Eo = al[|® + [leurlAg||* + e Awel|* + 28e(As, Aw) + Bo|| Al + e[| AR + o VO,

where a > 1 and 8 € (0, 1] will be properly fixed later. This functional is related to the
norms we want to control by

1
5 (el + leurl Al + el| A + | AB|P + 0| VOJ?) < Bo,  (37)

3
Bo < 5 (allvnll? + lowrlAd® + e Aul* + [ 2|2 + o] Vel?), (3.8)

1
provided that § < min {1, —}
2¢ 4ok
Formally differentiating (Z1) and ([2.2) with respect to time, by definition of Dy, we

obtain

gy — iPY; — iPytp — APy + 2iA; - Vo + 2iA - Vipy + |A2h, + 2A - Ay (3.9)
— A2 (1 =209 )e + A2, = 0,

c(Ay — V) + (A — VO), + curl?A, + %(zzwt — PV, (3.10)
+ %(Qz)tvﬂ) — p V) + AWy + i) + Ay = 0.

The sum of (B3 multiplied by v; with the conjugate of (@) multiplied by v, by an
integration on €2, gives

| =

(lell®) + V0 1* = %(%Wh = Ptpe) — N1 =209 ), o)

N —
U

t
A2 . . - o

+ L% 07) + (0% 00)] + (AP [0n) — (A UV — V)

(A Ay e+ i) + (AL PV — 1 Vi) = 0.

The product of [BI0) by Ay + A, in L2(Q), for some 3 € (0,1] to be chosen later,
leads to

|

t(||CU1"1At||2 +el|Aul? + 20e(As, Au) + Bo||Ad]?) + Blcurl A, |?
+ (0 = Be)|[Awll® + Bl A, [4]?)

=~V — pVi,, Au) — (Ap - Ay, [9) — (A Agy, bt + iy
— BiYVipy — YV, Ay)
= BUAN V) = BIA - Agpipr + ).

N | =
QU
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It is left to consider (2.6)), which is multiplied by —A® + ®;, yielding

1d
S EIAD2 + 0| VOIP) + o AB|? + 2V,
i, - - i - _
= *§<W/}t — ipy, —AP) — <|1/)|2CI)7 —A®) — §<Wt — Py, Pp) — <W}‘2(I)a Dy).
The sum of the last three equations yields
1dE
57750 +allyllf + BlleurlA|® + (0 — Be)|Awl* + o[ A®|* + [ Ve, |®

+ ol AP [0el?) + BUAN, [v1?)

5
=Y L),

j=1

where, for the sake of simplicity, we have set
I = i%<‘pt,¢1/7t - l/_”/)t> - %<7/_”/)t - 7/}1/;t7(1)t> - <W}‘2(I)a D)
I = —i(YVihy — VP, Ap) — (A A, [07) — (A Agy, thyt) + idy)
Iy = = (v — U, —A®) — (|U*®, —A®)
Iy = il Ay, Vi) — Vo)) —iB(0V e — YV, Ar) — (A - Ay, 0y + i)
— B(A - Ay, Pty + )
Is = —ia(A, Vb — V) + aX*(1 — 2[9)2, 1 ]*)
- SR + (0%, 9] + gl
By standard inequalities and, in particular, by (27)—(2I0), we obtain
(L] < (a+ D[ @eflllvhe]] + [N De]| < %HV@%HQ +cllee]® + ¢
L] < [ Al IVl + 1Al + 2] Al el 1)
6
A+ (= + T ) el + cllwel? +c

g
1A@[I(lell + [1@]) < SIAR] + cllye® + ¢

A

IN

|3

IN

a+
D gl + e

~ (0%
15| < 20/l Allal| Ve lI[¥ella + 200 + Dallel® < leelf + elldell” + .

L4 < 2(a+ B)IAVYell +2(c+ )| Allal| Acllllvell <

Replacing these estimates in the differential equation, we end up with

1dE, a 6 9 9 o , O )
>t (5 —5 " ;)H'(/Jt”Hé + Blcurl Ay + (5 — ﬁa)HAttH +5lA2

£
+ S IVe* < e+ el

Thus, provided that « is large enough and possibly reducing 3, from (B.8) we have

dr o
— 20050 + S [Vl + el Ve < e+ cllas®,
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for some ¥y > 0 depending only on ¢ and ¢. The Gronwall lemma applies thanks to
B3), yielding
Eo(S(t)z) < Eo(z)e 2%t 4 c.

Since, on account of (2I) and ([22)), a further application of (B)-B8) gives
al[ (@) + lewrl Ay ()]* + e[| A (8)]* + | ARE)|* + o[ VR(H)|* < 367> C () + .

BR)-B6) lead to the claim. O
REMARK 3.4. Integrating the last differential inequality for Ej, it is apparent that,
for any R > 0, there exists a positive constant C'(R) such that

t+1
sup sup / (19 )|? + [V, (4)[?)dy < C(R).
zeXY,, |lzllo<R t>0 J¢

Besides,

t+1
sup sup / (IVAG@)I? + A, (y)[2)dy < C(R).

2€X9,, [zllo<R t>0
Indeed, taking the gradient of (Z1I), we easily obtain

IVAY ()] < C(R)(1+ [V ).

Moreover, multiplying (Z6) by —A®; in L?(Q2), we can see by standard computations
that

d
e|AD | + o[ A2|* < C(R).

We accomplish our purpose integrating in time these two inequalities.

4. The global attractor. This section is devoted to the proof of the existence of a
compact attracting set. For this purpose we introduce the space X compactly embedded
in X% . Namely, X! = X% NnX! where

X' = H(Q) x [Xo N H*(Q)] x [Xo N H*(Q)] x [H,,(2) N H* ()]
is equipped with the norm || - ||;.

THEOREM 4.1. The dynamical system (S(¢),X%) admits a connected global attractor
AcXL.

The claim follows from the existence of a bounded set B in X! which (exponen-
tially) attracts any bounded set in X% ; that is, denoting by dist the usual Hausdorff
semidistance,

Jim distyo (S(2)B, BY =0,

for any bounded B C XY . Since S(¢)B € X%, for any ¢ > 0 and any B, this implies
Jim distxo (S(t)B, B'nx%)=o0. (4.1)
In other words, there exists a bounded set B' = B' N X%, < X!, which (exponentially)

attracts any bounded set in X% . Since X!, € XY, this yields the existence of a compact
attracting set. The exponential attraction rate will be used in the next section. The
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proof of Theorem E] is divided into two lemmas. Given any bounded set B C X%, for
any z € B such that ||z]|op < R, we decompose S(t)z as
S(t)z = zq(t) + z(t),
where z4(t) = (¥(t), Ad(t), Ad(t), ®4(t)) solves
Ui = Apt 4+t =0,
e(AY — V), + o(AY — VO) 4 curl?A¢ = 0,
—eA®Y — g AP = 0,

(4.2)
divA? =0, [,®%=0,
3n1,/}d|ag = 07 Ad . 'I’L|aQ = 0, curlAd X n|59 = 0, 8n(1)d|ag = 07
v!(0) = o, AY0)=Ao, AJ(0) = Ay, 2(0) =Dy,
whereas z.(t) = (¢°(t), A°(t), AS(t), P¢(t)) is the solution to
¢§ - ch + ¢C = F(¢7A7¢)7
e(A§ — VI), + o(AS — VO°) 4 curl?A¢ = G(v, A),
—eA®Y — o AP = H(y, D),
; () s

divA© =0, [,®°=0,

OnClon =0, A°-nlpg =0, curlA®Xnlgg =0, 9,P%Nsq =0,
¥°(0) =0, A°0)=0, Af0)=0, ®°0)=0.

Here we have set

F(, A, ®) = i®yp — |A|*) — 2iA - Vo + N2(1 — )y + ¢,

G(v, &) = L(¥VF - §4) - AP,

H(p, ®) = L (o — vih) — [9I7®.

We shall see that the X%-norm of z4(t) exponentially decays to zero as t — oo, while
2.(t) is confined in a compact set of X", since it remains in a bounded set of X!. This
program is carried out in the next two lemmas.

LEMMA 4.2. There exist two positive constants v and v, both independent of R, such
that the solution z; of problem (£2]) satisfies

lza®)]I < e R?, t>0. (4.4)
Proof. Tt is immediate to check that the energy functional
B(za) = [ A¢¢)7 + 2 Vo | + [94)° + [lew®A¢|* + e[ curl A2
2
+ o(curlAY, curlA?) + ;—EchrlAdHZ + (| ADY)? + [|[VEY?)

satisfies
1 2 2
;I\Zdllo < E(za) < vll24ll6,
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for some v > 0 determined by €,0 and Q. Besides, F(z4(t)) satisfies the differential
inequality
1d )
Q%E(Zd) + allz4llg < 0.
Thus, exploiting the relation between E(zg) and ||z4]0, we get (@4) with v = /. O
LEMMA 4.3. There exists a set B! € X! such that
lim distxo (S(¢)B, B') = 0,
t—o0
for any bounded set B C X%_.

Proof. Allowing ¢ to depend on R, the claim amounts to finding a constant ¢ > 0 such
that the solution z. of system (3] satisfies the inequality

lzc(D]1 < ¢ t>0.
Since Lemmas B3] and ensure
[ze(t)lo <¢c,  Vt>0, (4.5)
we accomplish our purpose by proving
[VAY ()| + [Jcur® AC(#)|| + [lewrl® A{(B)]| + [ VAR ()| < e,  t>0.

The control on the first two norms is not obtained directly, but by considering the
corresponding time derivatives. Namely, exploiting

VAY® = Vi + Vi© — VF(1h, A, ®),
curl’A¢ = —ecurl A§, — ocurl AS + curlG(+, A),
we reach our goal by controlling ||Vi¢|| and ||curlAf,||. Indeed, take
Vi — AV +0f = 0 F (), A, @), (4.6)
supplemented with the initial condition
Vi (0) = F (o, Ao, ®o) € HE.
Multiplying (8) by —Av§ and summing the resulting equality to the product of the
conjugate of (Gl by —Awf, by an integration on €2, we obtain
S SIS + AR + V61 = 5 (0P (6, A, ), M%) + G F(0, A, ), 05))
< (10, A, B + A ).
On account of ([H), it is readily seen that
10:F (4 (1), A(), ®())[| < e(1 + Ve (0)]| + [IVL(0)]));
hence, thanks to Remark B.4] from the Gronwall lemma we deduce
VUi @)I? < IVYE(0)[Pe™ + e <. (4.7)
Next, the time derivative of the second equation in (£3) is

e(AS, — VIS), + o(AS, — V) + curl?A¢ = 9,G (v, A),
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so the product by curl’A¢, + Zcurl’A¢ in L?(Q) gives
1d
2dt
3 -
+ o lleur” A7 4+ = fleurl AL | = (.G (v, A), cwrlPAf, + L ewl*Af)

2
(Jlcurl?AZ||? + el|curl AS, |2 + %(curlAft, curlA¢) + Z—€||cur1A§||2)

g g - ~
< gllcurlefll2 + §||<9tG‘r(w7A)l\2 + [leurld, G (¢, A)|[[|curl Az ].

Here, for the sake of simplicity, we have multiplied cur12A§ by Z, but any positive
constant, provided that it is small enough, will do. In order to estimate the right-hand
side, notice that

KNG, A) = 3 (V0 — BV + YV — DV) — Adlul? — AU + i)
satisfies the estimate
10:G((8), A®)]] < (1 + V)],
Analogous computations, (28) and Remark [34] lead us to control
curld, G (1), A) =i(Vipy x Vb + Vb x Vb)) — (1peth + Yfy )eurl A — || curl A,
+ AL X (VY +UVY) + A X (VY + DV + BV + V)
as
leurld, G (v(1), A())I| < e(1+ Ve (D)]*?).

Replacing these estimates in the above differential inequality, by a generalized Gronwall
Lemma (see [8, Appendix]) together with Remark B4 we obtain

lewr® A§(6)][* + elcurl Ag, (1) |* < 2¢]|curlAf, (0) %~ %" + ¢,
where the initial datum
ecurlAg, (0) = curlG (2o, Ao) = iVpg X Vo — |¢o|2cur1A0 + Ag x (1Yo Vo + 1o Vho),
recovered from the second equation in [@.3]), satisfies ||curlAg, (0)|| < c. As a consequence,
|curl?A¢(2)]|? + e]|curl AL, (1)])? < e. (4.8)
Finally we multiply the third equation of [@3]) by A2®€ in L?(), getting
cd
2dt
As above, it is readily seen that
VH(, @) = —2 (60 + DV — V8 — 690 — (V4 + $V9)® — [°VP
is controlled by

IVADE|? + o[ VARC|? = —(VH (¢, ), VAR®) < |[VH (4, )| [|[VAD.

IVH (p(t), ()] < e(1 + [V (t)]]);

hence, a third application of the Gronwall inequality in view of Remark [3.4] gives
IVA®:(1))? < c. (4.9)
Collecting [@.7)—-E3), we get the desired conclusion. O
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5. Exponential attractors.

THEOREM 5.1. The semigroup S(t) possesses a regular exponential attractor, namely a
bounded set £ C XL,
for S(t) and satisfying the following exponential attraction property:

(EA) There exist w > 0 and a positive increasing function J such that, for every

bounded set B C X!, with R = sup,cz||2]/o, there holds

closed and of finite fractal dimension in XY_, positively invariant

distxo (S(t)B,&) < J(R)e “".

Since the global attractor is the minimal compact attracting set, we have A C £. Thus,
Theorem [B.1] gives as a byproduct the finite fractal dimension of the global attractor.

Our first task is to confine the dynamics to a regular but significant set, whose existence
is guaranteed by the next

PROPOSITION 5.1. There exists a closed ball B; C XL such that
(i) there is a positive increasing function M such that, for every bounded set B C XY_
with R = sup,cp ||2||o, there holds

distyo (S(t)B, By) < M(R)e ™",

with v > 0 as in Lemma .2}
(ii) there is a time ¢; > 0 such that

S(t)Bl C Bl, Vt > ty.

In view of ([@I), this result holds true once we prove the dissipativity of the dynamical
system restricted to X1 . Indeed the existence of a bounded exponentially attracting set
K c XL is given by Lemmas and 3 Next, possibly enlarging K, we obtain B;
satisfying Proposition 5.1}

PROPOSITION 5.2. There exists Ry > 0 such that the ball of XL of radius R; is an
absorbing set for S(t) in XL,.

Proof. Let B be a bounded set in X._: in particular, there exist pg and p; such that
sup||zo < po  and  sup|z|li < p1.
zeB 2€B

As in Lemma B3] we shall prove the existence of 97 > 0 and of two positive constants
Ao(po) and A;(p1) such that

sup ||S(t)z]|1 < Are” "t + A.
z€B

Throughout this proof, the constant c is supposed to depend also on pg. Notice that, by
Lemma [B:3] we learn

supsup |S(£)z o < c.
t>0 zeB

so we are left to control (VAw(t), curl® A(t), curl® Ay (t), VA®(t)). As in the previous

sections, the desired dissipativity estimates for the first two norms are not directly ob-

tained, but are recovered from the controls on ||Vi;|| and ||curl A||. For this purpose,
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we consider the equations obtained, formally differentiating with respect to time (21I)
and ([22)), that is,

Yo — 1Byt — By — Ahy + 2iAy - Vb + 2iA - Vi, +2A - Ayt + |A Py (5.1)
= N (1 = 2[) e + APy = 0,
i _ _ _
e(Ay — VD) +0(Ay — V) + curl> A, + E(wtw — VY + pVihy — YV),) (5.2)
+ AU + AWy + i) = 0,
supplemented with the initial conditions
¥e(0) = i®otho + Athy — 2iAg - Vabg — [Ag[*hg + A2(1 — [ho|*) o,
ecurl A4(0) = —ocurl Ay — curl® Ay — iVh x Vo — (voVtho + 1o Vahg) x A,
— |abo|*curl Ag.

Adding together the product of (5.I) by —A; and the conjugate of (5.1) by —Av;, by
an integration on €2, we obtain

1d
S LI 4 [l + A (5.3
= —%@’t, VAP, — PAY,) — %<VCI)7 ViV — P Vi) — i(Ay, VIO AY, — VY Ay)
- Z<A7 Vb Apy — Vp Athy) + <A CA YA+ P DAYy + %<|A‘27 Ve APy + P Ary)
)\2

- 22 o B
- 7<1 — 2091%, b Aty + Y A¢y) + 7(<¢27th1/)t> + (0, P Ay)) + [V

Notice that we have also added to both sides ||[V1/;||? and that the right-hand side can
be estimated by

1
(1 +[IVehe || + IV P ]|*) + §||A¢t||2-
Next, in view of
curl(y; V) — VY + pVipy — pVe,) = 2(Vihy x Vip — Vb x V),
the product of (52) by curl® Ay + Zcurl® A, in L2(Q) leads us to

| =

2
(lcurl® Ag||? + eljcurl Ag|| + %(curlAtt, curl Ag) + Z—€||cur1At||2) (5.4)

N =
QU

t
g 2 2, 30 2 2

+ EHCUTI Ayl —|—I\|curlAtt|| = —(|¢|°curl Ay, curl Ayy)

— (VY + V) x Ay, curl Age) — (g + iy )curl A, curl Ayy)

— (VP + YV + 1V + 5, V) x A, curl Ayy) [Y[* Ay, curl® Ay)

a

o
_ 47E<
((Paby + ) A, curl® Ay) — i(Vapy x Vb — Vb x Vb, curl Ayy)

4e
10
8¢

(Ve V) — P Vip + PV, — YV, curl® Ay).
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By standard inequalities, the right-hand side is controlled by
o o
1+ [IVull?) + el A * + S lleurl Age* + g\lcur12 A

Finally, the product of (28] by A2® in L?(Q) gives
Ld

2 dt
i - _ -
= §<¢V¢t — PV + 0 VY — 9 V), VAD) + ([¢*VP, VAD)

+ (VY + V)@, VAD).
The Young inequality yields

Ld

2dt
Let us introduce the functional

e[|[VAQ|?) + o||[VAD|?

SIVAD|2) + ol VAR < o1 + Vi) + 5 [VAD|™. (5.5)

Ei(t) = [[Vl* + nllcurl® Ag|* + nellcurl Ay||* + | VAR + %chﬂAtll2
+ %(curl Ay, curl Ay),
where 1 € (0,1) will be suitably chosen later. F; is readily seen to satisfy
%(HV%H2 +nfleurl Ag|? + nefleurl Ay |* + || VAR|?) < By, (5.6)
Ey < g(nthH? + nllcurl® Ay|* + neljcurl Ay |2 + €[ VA®|?) + c. (5.7)

Besides, adding together (B.4) multiplied by n to (B3) and (B3H), on account of the
previous estimates, it is apparent that

1dE o o o 1
5o IVl + L fleurl® Agf? + T flowrl A2 + 7 [ VAP + 2| Au|

< el Ael|* + c(1+ [V + [ VD).

Hence, provided that 7 is small enough (notice that 7 depends on pg), thanks to (B.1),

we obtain

dE
o P2 < (L4 [V + (Ve P),

for some positive 91, which, by the Gronwall lemma, yields
Ei(t) < E1(0)e 21t .

Finally, by (&.6)—(E1), we accomplish our purpose. O
REMARK 5.2. As a byproduct, this lemma gives the following integral estimate

t+1
sup SUP/ (e ()72 + lewrl® Ay (y)]1* + [lewrl Are(y) ) dy < C(R).
=l <R 20 Jt

We now come to the proof of Theorem [5.I] which leans on the next abstract result
from [4] [6], adapted to the present case. We use the notation of Proposition b1l

LEMMA 5.3. Let there exist t* > ¢; such that the following conditions hold.
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(C1) The map
(t,z) — S(t)z: [t*,2t7] x By — By
is %—Hélder continuous in time and Lipschitz continuous in the initial data, when

B, is endowed with the X°-topology.
(C2) Setting S = S(t*), there are A € (0, 1) and A > 0 such that, for every z1, 2o € By,

Sz — Szg = D(z1,22) + K(21, 22),
where
[D(21,22)[l0 < Allz1 — z2llo
and
1K (21, 22)[[1 < Allz1 — 22]lo.

Then there exists a set £ C By, closed and of finite fractal dimension in X%, positively
invariant for S(¢), such that

distxo (S(t)B1, &) < Joe @0t
for some wg > 0 and Jy > 0.

Proof of Theorem Bl Our first task is to verify that the assumptions of Lemma 5.3l
hold true. Condition (C1) is satisfied by virtue of Proposition 2] and of the integral
estimate

t
swp [ 0is)alidy <€),
2€B1 J0

which easily follows from Remarks 4] and Here and throughout this proof, C(t)
stands for a positive constant depending increasingly on ¢. Indeed, for any 2t* >t > 7 >
t*, given z1, 22 € By, we have

[S(t)z1 — S(T)zallo < [|S(t)21 — S(t)zallo + [|S(t)z2 — S(7)22llo
t
< K a1~z + [ 0S(0)zallody

< Ct)[lz1 — #2llo + VE—T].

Concerning (C2), fix a pair of initial data z;, 2o € By and set z = 2, — 2o = (19, Ao, Ag, Po).
The difference of the solutions S(t)z; = (¥;(t), Ai(t), 0 A;(t), ;(t)) can be decomposed
as

S(t)z1 — S(t)ze = Z4(t) + 2.(2),
where Z4(t) = ((t), Ad(t), Ad(t), ®4(t)) solves
7/121 *A¢d+¢d = Oa
e(AY — V), + o(AY — VO) 4 curl®?Ad = 0,
—eA®¢ — g AP =,
divA?=0, [,®%=0,
Onth¥oa =0, A% nlogg =0, cuwrlA?xnlsg =0, P s =0,

P40) = v, A%0)=Ay, AY0)=A, d0) =,
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while Z.(t) = (¥°(t), A°(t), Ag(t), ®°(t)) is the solution to
P — AYE + ¢ = F(P1, Ay, @) — F(2, As, @2),
e(A§ — VO), 4 0(AS — VO°) + curl?A¢ = G (Y1, A1) — G(tp2, As),
—eADS — g ADC = H (1)1, 1) — H(1)o, D),

divA® =0, [,®°=0, (5:9)
On¥loa =0, A°-nlpn =0, curlA®xnlsg =0, 0,P%sn =0,
¥°(0) =0, A°0)=0, Af0)=0, @°0)=0.
Here F, G, H are as in Lemma [£3] Since the exponential decay
1Za()lIf < v*e™>" 21 — 2213 (5.10)

follows easily from Lemma [£2] we focus on system (5.9). First we observe that Propo-

sition 2] and (BI0) ensure
sup [|Ze ()5 < C(®)]lz1 — 2ll5.

ZeBl

In order to complete the estimate of the X! norm, we consider the formal time derivative
of the first two equations of (59), that is,

b, — AUF + U = O F (1, Ay, ®1) — O, F (1h2, A, ©3), (5.11)

e(A§, — VEE), + o (A, — VOE) + curl®Af = 9,G (11, Ay) — 9,G (2, As).  (5.12)
Arguing as in Lemma [£3] we find

1d

2dt

Some long but easy computations lead us to

10.F (11(t), A1 (t), @1(t)) — O F (va(t), Aa(t), D2(t))|?
<c([IS(t)z1 = S(t) 2§ + VA1 () — Va2 ()| + |V @1(t) — VO B2 ()]?).

1 ~ ~
IVOEN + IV9FI* < S10:F (1, A, @1) = D F (162, Ag, @)

Hence, integrating the above differential inequality, by virtue of Proposition 21l we end
up with

IVeE@I° < C)llz1 — 2|3
Next we consider (5.12), which we multiply in L2(Q) by curl® Ay, getting
1d
2dt
Since

;G (Y1, A1) — ;G (b, As)
= %WtV‘Z)l + 0ho Vb — Py V1 — 0oV + YN Ohy + Yo Vihy — YV Opthy — 1ha V]

— Ayt |2 — B A (ihy + hoth) — A(v10hy + 110
— A [0y + Vothy + VO + Doty

(|[curl® A§||2+¢||curl AS,[|?) +olcurl AL |1 = (8;G (¥1, A1) —8; G (g, Ap), curl® AS,).
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it is straightforward to obtain
10:G(1.(1), Av (1) =0 G (w2(t), Aa (1) < (IS (8) 21— S () 225+ |t (£) — Beoa (1) 17, ) -
Thus, by the Young inequality,
lewrl® A7 (1) + efleurl A, (1)]|* < C(t) |21 — 223

Finally, arguing as in Lemma [£3] the product in L?() of the third equation of (5.9) by
AZOC gives

d 1
S IVARE(? < = VH (11, 1) = VH (th2, ®)]*

N ™

Again
IVH (41(2), @1(8) = VH (¢2(t), ®2(6))[|* < c(|IS ()21 — S (t)22llg +[10:01 (1) — Db () 172);
thus, integrating the above differential inequality we have
IVASC(t)]* < C(t)lz1 — 2l.

By (BI0), we choose t* > t; large enough such that

d d d d A2

1(7(7), A%(@E), AF(E"), @5(")llo < - ll21 — z2]lo,

for a fixed A < % Then, taking

D(21,22) = ((t), AY(t"), A(£"), 24("))
and

K(z1,22) = (¥°(t7), A°(t"), AL(t"), °(t7)),

condition (C2) is satisfied.

In conclusion, we have the claim of Theorem 5.1l except that the basin of exponential
attraction is By, and not the whole space XY_, as required. To fill this gap, we shall exploit
the transitivity of the exponential attraction, devised in [5 Theorem 5.1]. Namely, if
Proposition [2.1] holds, and

distyxo (S(t)B,B1) < M(R)e ™"  and distxo (S(t)B1, &) < Joe 0!,

then the desired property (EA) follows. |
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