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Abstract. The purpose of this paper is to study certain features of the equations
governing the time-harmonic free vibrations of a polar body at elastic range. The gov-
erning equations of micropolar elasticity are expressed in differential form, and then, the
uniqueness of their solutions is investigated. The conditions sufficient for uniqueness are
enumerated using the logarithmic convexity argument without any positive-definiteness
assumptions of material elasticity. Applying a general principle of physics and modifying
it through an involutory transformation, a unified variational principle is obtained that
leads to all the governing equations of the free vibrations as its Euler-Lagrange equations.
The governing equations are alternatively expressed in terms of the operators related to
the kinetic and potential energies of the body. The basic properties of vibrations are
studied and a variational principle in Rayleigh’s quotient is given. As an application, the
high-frequency vibrations of an elastic plate are treated.

1. Introduction. Polar theories of continua are introduced to predict the physi-
cal response of a class of materials possessing granular and fibrous structures or large
molecules such as polymers. They constitute some extensions of the classical (or non-
polar) theory of elasticity that becomes inadequate in certain instances of polar materials
(e.g., high-frequency short wavelength vibrations and ultrasonic waves). In the classical
theory, the transmission of interaction between any two elements of material is assumed
to be through the action of a force vector only (i.e., Cauchy’s second law of motion).
The transmission of interaction is postulated to be through the action of a force vector
as well as a couple or moment vector, thus giving rise to the so-called polar (oriented
or couple stress) theory of continua. In a polar theory, a material element of continua
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that can support the couple stresses and the body couples has six degrees of freedom,
a displacement vector and an independent microrotation vector, whereas it has three
degrees of freedom in the nonpolar theory. A rational polar theory was first developed
by the Cosserat brothers [1], and much later, in the nineteen sixties, many polar theories
were proposed by some eminent scientists (e.g., [2] and the references therein). However,
only a few experimental studies of a corroborative nature were conducted so as to de-
termine the constitutive coefficients of polar materials (e.g., [3], [4]). This was largely
due to the difficulty of isolating the effects of the couple stress and the spin inertia. A
comprehensive review of polar theories was reported, including the historical background
and developments to date and some applications (e.g., [5]–[9]).

In this paper, the theory of micropolar continua is taken as a basis due to its deter-
ministic, experimentally corroborated and generally accepted nature among the polar
theories of continua at the elastic range [7]. Most recently, the micropolar theory of
elasticity was revisited, the physical significance of material elasticities was explained
and some applications of the theory to composites and porous media were reviewed
[10]. In the theory, any material element is assumed to be endowed with an internal mi-
crostructure, and hence, the usual displacement vector and also, the microrotation vector
characterizes the deformation of the material element. The microrotation vector, which
is kinematically independent from the displacement vector, is introduced to describe the
rotation of the microstructure within the material element. The governing equations of
micropolar elasticity were stated in differential form by the divergence equations (i.e.,
first and second laws of motion), the gradient equations, the constitutive relations and
the boundary and initial conditions. The internal consistency of the governing equa-
tions, that is, the existence and uniqueness of their solutions, was established for static
and dynamic micropolar elastic solids, respectively (e.g., [7], [11], [12] and the references
therein). Alternatively, the governing equations were expressed in variational form by
some variational principles with their well-known features (e.g., [6], [7] and [13]–[16]).
The governing equations were used in both differential and variational forms in treating
waves and vibrations in micropolar elements. An up-to-date critical account of micropo-
lar elasticity was reviewed, including some 1-D and 2-D equations, variational principles
and static and dynamic applications of elements [12], [17].

In view of the aforementioned reviews, this paper concerns the equations governing
the time-harmonic free vibrations of a micropolar elastic body, including the uniqueness
of solutions, some variational formulations and the fundamental properties of vibrations.
The paper is organized as follows. In the next section, the governing equations of mi-
cropolar elasticity are summarized in differential form. In Section 3, the uniqueness
is investigated in solutions of the governing equations, and the boundary and initial
conditions sufficient to the uniqueness are enumerated by the logarithmic convexity ar-
gument. In Section 4, the principle of virtual work is applied to the time-harmonic free
vibrations of a micropolar elastic body and a two-field variational principle is obtained.
Then, modifying this principle by an involutory (or Legendre’s) transformation, a unified
variational principle is derived that has all the governing equations of vibrations as its
Euler-Lagrange equations. In Section 5, an abstract formulation of the governing equa-
tions is presented by use of the operators related to the kinetic and potential energies
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of the body, and then, the basic properties of operators and vibrations are studied and
Rayleigh’s quotient is given. Section 6 is devoted to the high-frequency free vibrations
of a micropolar elastic plate. The last section is devoted to some concluding remarks.

Notation. In this paper, standard indicial notation is freely used in the Euclidean 3-D
space Ξ. Accordingly, Einstein’s summation convention is implied for all repeated Latin
indices (1,2,3) and Greek indices (1,2), unless they are enclosed within parentheses. A
superposed dot stands for time differentiation and a comma for partial differentiation
with respect to an indicated space coordinate xi. Subscripts (n) and (m) are used to
indicate a quantity belonging to the nonpolar field and the micropolar field, respectively.
Furthermore, Cαβ refers to a class of functions with derivatives of order up to and
including (α) and (β) with respect to xi and time t, respectively.

2. Governing equations of micropolar elasticity. In the Euclidean 3D-space Ξ,
let Ω + ∂Ω with its smooth boundary surface ∂Ω and closure Ω (= Ω ∪ ∂Ω) denote the
finite and bounded region of a micropolar elastic body. The regular region is referred to
a system of Cartesian rectangular coordinates xi of the space. The Cartesian product of
the region Ω(t) at time t and the time interval T = [t0, t1) is denoted by Ω̄ × T , which
represents the domain of definitions for the micropolar elastic fields of functions of (xi, t).
The equations governing the motion of an anisotropic micropolar but nonlocal as well as
nonrelativistic elastic body may be grouped as the divergence and gradient equations,
the constitutive relations, and the boundary and initial conditions to supplement them.
Now, the governing equations are given (e.g., [7]), for ease of reference, in differential
form by

Divergence equations. (Cauchy’s first and second laws of motion)

tij,i + ρ(fj − aj) = 0 in Ω × T, (2.1)

mij,i + εjkltkl + ρ(lj − bj) = 0 in Ω × T, (2.2)

where tij ∈ C10 is the asymmetric stress tensor, ρ ∈ C00 the mass density, fi ∈ C00

the body force vector, ai (= üi) ∈ C12 the acceleration vector, ui ∈ C12 the displacement
vector, mij ∈ C10 the couple stress tensor, li ∈ C00 the body couple vector, bi(= Jij φ̈j) ∈
C12 the microacceleration vector, Jij(= Jji) ∈ C00 the microinertia tensor, φi ∈ C12 the
microrotation vector, and εijk the alternating tensor.

Gradient equations.

eij = (uj,i + εjikφk) = 0 in Ω × T, (2.3)

εij = φi,j = 0 in Ω × T, (2.4)

where eij ∈ C00 and εij ∈ C00 are the strain and microstrain tensors.
Constitutive relations.

tij =
∂u

∂eij
in Ω × T, (2.5)

mij =
∂u

∂εji
in Ω × T, (2.6)
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where u denotes the elastic energy density. Its quadratic form is expressed by

u =
1
2
(Aijkleijekl + Bijklεijεkl + 2 Cijkleijεkl) ≥ 0. (2.7)

This yields the linear constitutive relations of the form

tij = Aijklekl + Cijklεkl in Ω × T, (2.8)

mij = Ckljiekl + Bjiklεkl in Ω × T, (2.9)

where Aijkl = Aklij and Bijkl = Bklij refer to the isothermal elastic stiffnesses. If the
micropolar body is isotropic, the material coefficients are specialized to

Aijkl = λδijδkl + (µ + κ)δikδjl + µδilδjk,

Bijkl = αδijδkl + βδilδjk + γδikδjl, (2.10)

Cijkl = 0

in terms of Lamé’s elasticity constants, λ and µ, and α, β, γ and κ, which are the four
additional elastic moduli. Inserting (2.10) into (2.8) and (2.9), the linear constitutive
relations are expressed by

tij = λekkδij + (µ + κ) eij + µeji in Ω × T, (2.11)

mij = αεkkδij + βεij + γεji = 0 in Ω × T, (2.12)

and also, the microinertia tensor becomes Jij = Jδij . The material coefficients satisfy
the positive-semi-definite conditions of the form

3λ + 2µ + κ ≥ 0 , 2µ + κ ≥ 0 , κ ≥ 0 , 3α + β + γ ≥ 0 , γ + β ≥ 0 , γ − β ≥ 0 in Ω × T,

(2.13)

Aijklηijηkl ≥ 0 , Bijklηijηkl ≥ 0 (2.14)

for all nonzero tensors ηij , and also, the microinertia tensor is positive-definite and the
mass density is strictly positive, namely,

ρ > 0 , Jijηiηj ≥ 0 (2.15)

for all nonzero vectors ηj .
Boundary conditions.

t∗j = nitij on ∂Ωt × T, (2.16)

ui = u∗
i on ∂Ωu × T (2.17)

and

m∗
j = nimij and ∂Ωm × T, (2.18)

φi = φ∗
i on ∂Ωφ × T. (2.19)

Here, an asterisk is used to denote the prescribed quantities, tj = nitij and mj = nimij

are the stress and couple stress vectors, respectively, ni is the unit outward vector normal
to the boundary surface ∂Ω, and (∂Ωu, ∂Ωt) and (∂Ωφ, ∂Ωm) are its complementary
regular sub-surfaces (i.e., ∂Ωu ∪ ∂Ωt = ∂Ω and ∂Ωu ∩ ∂Ωt = ∅).
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Initial conditions.

ui(xj , t0) = v∗i (xj), w∗
i (xj) = u̇i(xj , t0) in Ω(t0), (2.20)

φi(xj , t0) = ϕ∗
i (xj), Φ∗

i (xj) = φ̇i(xj , t0) in Ω(t0). (2.21)

Governing equations. The foregoing 3-D equations completely describe the physical
response of an anisotropic micropolar elastic continuum where the relativistic and quan-
tum effects are excluded. The governing equations are deterministic, that is, there exist
42 equations for a state of solutions, ∧

{
tij ∈ C10, eij ∈ C00, ui ∈ C12; mij ∈ C10, εij ∈

C00, φi ∈ C12}, which contains 42 dependent variables of the functions of the space co-
ordinates xi and time t. The boundary and initial conditions (2.16)–(2.21) are shown to
be sufficient for a unique solution of the governing equations in the next section.

3. Uniqueness of solutions. The existence and uniqueness of solutions are of major
concern for the governing equations of a continuum from both the physical and compu-
tational points of view. The first results on the uniqueness of solutions were credited
to Kirchhoff and Neumannn in elastostatics and elastodynamics, respectively (e.g.,[18]).
Both the authors and many followers appealed to the energy argument in investigat-
ing the uniqueness in solutions of the governing equations of different materials under
the mechanical, electrical and similar effects [19]. Apart form the energy argument,
other methods with their own merits are available in establishing the conditions for the
uniqueness of solutions [20]. Of the methods, the logarithmic convexity argument was
recently used so as to determine the conditions of uniqueness in poroelasticity [21]. The
logarithmic convexity argument, contrary to the energy argument, does not impose any
definiteness assumptions on the material elasticity. Now, this method with a mathe-
matical basis is used in obtaining the conditions for a unique solution in micropolar
elasticity.

In establishing the conditions of uniqueness, one considers, as usual, two possible
states of solutions Λ(α) and the difference state Λ of solutions of the form

Λ = Λ(2)−Λ(1) = {ui (= u
(2)
i −u

(1)
i ), eij(= e

(2)
ij −e

(1)
ij ), ..., mij ( = m

(2)
ij −m

(1)
ij ) } (3.1)

for the 3-D governing equations of micropolar elastodynamics. The admissible states
of solutions together with derivatives are assumed to exist, be single-valued and be
continuously differentiable functions of the space coordinates xi and time t in Ω × T .
The difference state of solutions evidently satisfies the homogeneous governing equations
corresponding to zero body forces, body couples and prescribed surface tractions and
deformations, by virtue of their linearity. Thus, one obtains the divergence equations
(2.1) and (2.2) in the form

tij,i = ρaj in Ω̄ × T, (3.2)

mij,i + εjkltkl = ρbj in Ω̄ × T, (3.3)
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the gradient equations (2.3) and (2.4), the constitutive relations (2.8) and (2.9), the
boundary conditions (2.16)–(2.19) given by

nitij = 0 on ∂Ωt × T, ui = 0 on ∂Ωu × T, (3.4)

nimij = 0 on ∂Ωm × T, φi = 0 on ∂Ωφ × T, (3.5)

and the initial conditions given by

ui(xj , t0) = 0 , u̇i(xj , t0) = 0 on Ω(t0), (3.6)

φi(xj , t0) = 0, φ̇i(xj , t0) = 0 in Ω(t0). (3.7)

Furthermore, the kinetic and potential energies, K and U , for the micropolar region are
given by

K =
∫

Ω

kdV , U =
∫

Ω

udV , (3.8)

and in terms of the kinetic and potential energy densities, k and u, are given by

k =
1
2
ρ(u̇iu̇i + Jij φ̇i φ̇j) ≥ 0, u =

1
2
( tijeij + mijεij) ≥ 0. (3.9)

The total energy Σ of the region is given by

Σ =
∫

Ω

(k + u)dV = K + U (3.10)

in terms of the difference state of solutions. The time rates of the kinetic and potential
energies of the form

K̇ =
∫

Ω

ρ(aiu̇i + biφ̇i) dV, (3.11)

U̇ =
∫

Ω

(tij ėij + mij ε̇ji) dV (3.12)

are readily obtained from (2.7), (3.8) and (3.9).
Now, multiplying the divergence equations (3.2) and (3.3) by u̇i and φ̇i, respectively,

adding them and then integrating over the volume Ω of the micropolar region, one obtains∫
Ω

[
tij,iu̇j + (mij,i + εjkltkl) φ̇j

]
dV = K̇. (3.13)

This may be written in the form∫
Ω

(tij u̇j + mijφ̇j),idV = K̇ +
∫

Ω

(tiju̇j,i + mijφ̇j,i + εjlktklφ̇j) dV. (3.14)

Remembering the divergence equations (2.3) and (2.4) and applying the divergence the-
orem to the regular micropolar region, (3.14) is expressed by

B = K̇ + U̇ = Σ̇, (3.15)

where the boundary quantity of the form

B =
∫

Ω

ni(tij u̇j + mij φ̇j) dS (3.16)
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is defined. By virtue of the boundary and initial conditions (3.4)–(3.7), and also, the
specification of one member of each product, the integrand of the quantity and hence the
quantity itself becomes zero. Thus, after integration with respect to time, (3.16) yields

Σ(t1) − Σ(t0) = 0 in Ω̄ × T. (3.17)

Because of the conservation of energy and the initial conditions (2.20) and (2.21), the
integrand of (3.10) is nonnegative by definition and initially zero, provided that the
condition (2.15) is met. Thus, the total energy of the micropolar region vanishes for the
difference state of solutions for all time so that

Σ(t) = 0, U = −K in Ω × T (3.18)

is obtained.
The next step in the uniqueness of solutions requires the introduction of a logarithmic

function of the form

G(t) = log F (t); F (t) =
1
2

∫
Ω

ρ(ui ui + Jijφiφj) dV, t ∈ T (3.19)

in micropolar elasticity, as an extension of that in nonpolar elasticity [20]. The function
F (t) is evidently twice continuously differentiable in the time interval T , since the differ-
ence state of solutions satisfies the divergence equations (3.2) and (3.3). In addition, the
integrand of the function F (t), and hence the function itself, is nonnegative under the
condition (2.15). However, the function may be equal to zero if its integrand is identically
zero, that is, a zero deformation field (ui, φi) being initially zero for t ∈ T . Thus, the
uniqueness of solutions is readily implied by a trivial difference state of solutions Λ, that
is, the condition F (t) = 0 for all t ∈ T . Accordingly, without loss of generality, one may
choose the function F (t) as

F (t) = 0 in t0 ≤ t ≤ τ1 and τ2 ≤ t ≤ t1, F (t) > 0 in τ1 < t < τ2 in Ω̄ × T (3.20)

in the time interval T = [t0, t1). It is shown that the function G(t) is a convex function
in the interval τ1 < t < τ2 and the convexity is expressed by

G̈ = (Ḟ /F )̇ = (FF̈ − Ḟ 2)/F 2 ≥ 0 (3.21)

or, equivalently,
Γc = F 2G̈ = FF̈ − Ḟ 2 ≥ 0 in τ1 < t < τ2 (3.22)

since F (t) > 0.

To verify the convexity condition (3.20), the first and second derivatives of the function
F (t) are given in the form

Ḟ (t) =
∫

Ω

ρ (u̇iui + Jij φ̇iφj) dV, (3.23)

F̈ (t) =
∫

Ω

[
ρ (aiui + biφi) + ρ(u̇iu̇i + Jij φ̇iφ̇j)

]
dV. (3.24)

Remembering the kinetic energy (3.8) and (3.9) and replacing the acceleration terms by
those in (3.2) and (3.3), the second derivative may be expressed by

F̈ (t) = 2K +
∫

Ω

[tij,iuj + (mij,i + εjkltkl) φj ] dV (3.25)
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and, equivalently, by

F̈ (t) = 2K +
∫

Ω

[(tijuj + mijφj),i − (tijuj,i + mijφj,i − εjkltklφj)] dV . (3.26)

By applying the divergence theorem and using the gradient equations (2.3) and (2.4),
(3.26) may also be expressed by

F̈ (t) = 2K −
∫

Ω

(tijeij + mijεji) dV +
∫

∂Ω

ni(tijuj + mijφj) dS. (3.27)

In the right-hand side of this equation, the second term represents the potential energy
given by (3.9) and (3.10), and the integrand of the last term vanishes under the boundary
conditions (3.4) and (3.5). Thus, considering (3.18), the second derivative (3.27) of the
form

F̈ (t) = 2K − 2U = 4K (3.28)

is finally written more concisely.
As a last step, substituting (3.19), (3.23) and (3.27) into the convexity condition in

(3.28), we obtain

Γc =
∫

Ω

AD dV

∫
Ω

ȦḊ dV − {
∫

Ω

{ȦD dV }2 (3.29)

in terms of the matrices by

A= [ρui ρJijφi ] , D =
[

ui

φi

]
(3.30a)

with the identity of the form

AḊ = ȦD. (3.30b)

By virtue of Schwartz’s inequality, the convexity function is written as

Γc =
d2G

dt2
≥ 0 in τ1 < t < τ2 (3.31)

and hence, the convexity condition (3.22) is established. By integrating twice, the func-
tion G(t) becomes

G(t) = log F (t) = C + C1t ≥ 0, (3.32)

where C and C1 are the integral constants. The constants are obtained from the conti-
nuity conditions (3.20) with the result

F (t) ≥ [F (τ2)] α(t) [F (τ1)] β(t), α(t) =
t − τ1

τ2 − τ1
, β(t) =

τ2 − t

τ2 − τ1
; τ1 ≤ t ≤ τ2.

(3.33)
Here, the condition F (τ1) = 0 yields F (t) = 0 for all t ∈ [τ1, τ2], contrary to the
hypothesis at the outset. Thus, F (t) = 0 in the time interval τ1 ≤ t ≤ τ2 and by conti-
nuity F (t) ≡ 0 in T = [t0, t1). Remembering the existence and continuity assumptions
of the micropolar field variables in Ω × T , the difference state of solutions Λ becomes
trivial; that is, the states of solutions Λ(1) and Λ(2) are identical, and hence, a theorem
of uniqueness is stated as follows.
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Theorem. In the Euclidean 3-D space Ξ, let Ω+∂Ω with its boundary surface ∂Ω and
closure Ω̄ be a regular, finite and bounded micropolar elastic region with no singularities
of any type. The region defines a motion that is maintained by the application of some
assigned surface tractions and couples and, also, the prescribed deformation field over
an appropriate portion of the piecewise smooth boundary surface ∂Ω. Let an admissible
state of solutions Λ(ui ∈ C12, eij ∈ C00, tij ∈ C10; φi ∈ C12, εij ∈ C00, mij ∈ C10) exist
and be continuously differentiable and single-valued functions of the space coordinates
and time. Also, let the mass density be strictly positive and the microinertia tensor be
positive-definite in Ω̄ × T . Then, the initial-mixed boundary value problem defined by
the divergence equations (2.1) and (2.2), the gradient equations (2.3) and (2.4) and the
linear constitutive relations (2.8) and (2.9) has at most one state of solutions Λ if and
only if this satisfies the boundary and initial conditions (2.16)–(2.21).

4. Variational principles for free vibrations. In Section 2, the governing equa-
tions of micropolar elasticity are expressed in differential form, and now, they are stated
alternatively in variational form by certain variational principles. The variational prin-
ciples with their well-known features are deduced from the principle of virtual work by
modifying it through an involutory (or Legendre’s) transformation. The principle of vir-
tual work is, by definition, a differential type of variational principle (i.e., without an
explicit functional) due to its postulated statements in terms of infinitesimals (i.e., vir-
tual work, virtual displacements and the like). The principle and similar principles (e.g.,
the principle of virtual power, the principle of virtual dissipation) were used as a basis
in deriving some unified variational principles of mechanics (e.g., [22]). An elaborate ac-
count of the principle of virtual work and related principles has been reported, including
historical developments [23]. The principle of virtual work is stated for the vibrations of
the micropolar elastic region as an assertion of the form

δL̃ = −δŨ − δK̃ + δ∗W̃ = 0 (4.1a)

with

δ(Ũ , K̃) = δ

∫
Ω

(ũ, k̃) dV, δ∗W̃ =
∫

∂Ω

(t̃∗i δũi + m̃∗
i δφ̃i) dS. (4.1b)

Here, L̃ is the Lagrangian function, δ∗W̃ is the virtual work done by the external forces
and it vanishes for the free vibrations, and an asterisk is placed upon δ∗ in order to
distinguish it from the variational operator δ. A tilde is used to denote a quantity
corresponding to the time-harmonic free vibrations with circular frequency ω, namely,

{ui (xj , t), eij(xk, t), ..., mij(xk, t), ...}

=
∞∑

n=1

exp iωnt
{

ũi(xj), ẽij(xk), ..., m̃ij(xk), ...}(n)
.

(4.2)

Henceforth, tildes are omitted for simplicity, the series expansion (4.2) is truncated at
N = 1 and only the first term with ω = ω1 is retained.

Inserting (3.9) into (4.1) and recalling the fact that the variation operation may be
commuted with the integration and differentiation operations in the region Ω + ∂Ω, and
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then executing the variations, using (2.5) and (2.6), and taking all the field quantities as
given in (4.2), one obtains

δLg = −
∫

Ω

(tijδeij + mijδεji) dV +
∫

Ω

ρλ(uiδui + Jijφiδφj) dV = 0, λ = ω2. (4.3)

In this equation, substituting the gradient equations (2.3) and (2.4), applying the diver-
gence theorem and combining the terms on the surface and volume integrals, a two-field
variational principle is obtained in the form

δLg{Λg = ui, φi} =
∫

Ω
(tij,i + ρλuj) δujdV +

∫
Ω

(mij,i + εjkltkl + ρλJijφi) δφjdV

−
∫

∂Ω
nj(tjiδui + mjiδφi) dS = 0.

(4.4)
The variational principle (4.4) leads, as its Euler-Lagrange equations, to the divergence
equations of the form

tij,i + ρλuj = 0 in Ω̄, (4.5)

mij,i + εjkltkl + ρλJjiφi = 0 in Ω̄, (4.6)

and the associated natural boundary conditions (2.16) and (2.18) with t∗i and m∗
i being

zero for the free vibrations. The rest of the governing equations remain as the constraint
(or subsidiary) conditions of the two-field variational principle (4.4). The constraint
conditions prevent a free and simple choice of the coordinate (or trial, shape, approxi-
mating) functions and also, a simultaneous approximation upon all the field variables.
Accordingly, the constraint conditions are now relaxed by an involutory (or Legendre’s)
transformation that is applicable to both holonomic and nonholonomic conditions (e.g.,
[24]). Of the methods of relaxation (e.g., [25]), Legendre’s transformation is of wide use
in elasticity and electroelasticity due to its versatility and clarity in application, and it
is used herein as well.

To incorporate the remaining governing equations into the variational principle, the
dislocation potentials of the form

∆1
1 =

∫
Ω

λij [eij − (uj,i + εjikφk) ] dS +
∫

Ω

µij(εij − φi,j) dS, (4.7)

∆2
2 =

∫
∂Ωu

λiuidS+
∫

∂Ωφ

µiφi dS (4.8)

are introduced for the volume and surface constraint conditions, (2.3), (2.4), (2.17) and
(2.19), and they are added into (4.1), namely,

δLg = δL + δ∆α
α = 0. (4.9)

Here, λij , λi, µij and µi are the Lagrangian multipliers to be determined, and they are
regarded as independent variables. In a manner similar to that used in deriving the
variational principle (4.4), executing the indicated variations, applying the divergence
theorem to the regular region Ω+∂Ω and then combining the surface and volume terms,
one arrives at the variational equation as

δLg = δLn + δLp = 0 (4.10)
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with the denotations of the form

δLn =
∫

Ω
{ ( λij,i + ρλuj ) δuj+ [ eij − ( uj,i + εjklφk ) ] δλij+ ( λij −

∂u

∂eij
) δeij } dV

−
∫

∂Ωt
njλjiδuidS +

∫
∂Ωu

[ uiδλi+ ( λi − njλji ) δui ] dS

(4.11)
and

δLp =
∫

Ω
{(µij,i − λklεjkl + ρλJijφi)δφj+(εij − φi,j)δµij+(µij −

∂u

∂εij
)δεij}dV

−
∫

∂Ωm
njµjiδφidS +

∫
∂Ωφ

[ φiδµi+ ( µi − njµij ) δφ i] dS.

(4.12)
From (4.11) and (4.12), the Lagrangian multipliers are identified as

λij =
∂ u

∂eij
= tij , λi = njλji = nj tji ; µij =

∂ u

∂εij
= mij , µi = njµji = njmji

(4.13)
by use of the fundamental lemma of the calculus of variations. Substituting the La-
grangian multipliers (4.13) into (4.10) and using (2.8) and (2.9), a six-field variational
principle, namely,

δLd { Λd = Λn ∪ Λp } = δLn { Λn = ( ui, eij , tij ) } + δLp { Λp = ( φi, εij , mij ) } = 0
(4.14)

with
δLn{Λn} =

∫
Ω
{ (tij,i + ρλuj) δuj + [ eij − ( uj,i + εjikφk ) ] δtij

+ [ tij − (Aijklekl + Cijklεkl) ] δeij } −
∫

∂Ωu
uinjδtji dS +

∫
∂Ωt

njtjiδui dS
(4.15)

for the nonpolar part and

δLm{Λm} =
∫

Ω
{ (mij,i + εjkltkl + ρλJijφi) δφj + ( εij − φj,i ) δmij

+ [ mij − (Ckljiekl + Bjiklεkl) ] δεij } dV +
∫

∂Ωm
njmji δφidS −

∫
∂Ωφ

njφiδmji dS

(4.16)
for the micropolar part is obtained for the free vibrations of the elastic region Ω + ∂Ω.
From (4.14), the three-field variational principles of the form

δLn { Λn = ( ui, eij , tij ) } = 0, (4.17a)

δLm { Λm = ( φi, εij , mij ) } = 0 (4.17b)

are readily obtained for the nonpolar and micropolar parts, respectively. These varia-
tional principles are reciprocals of each other.

The six-field variational principle (4.14) yields as its Euler-Lagrange equations all the
equations governing the free vibrations of the micropolar elastic region. They are the
gradient equations (2.3) and (2.4), the linear constitutive relations (2.8) and (2.9), the
divergence equations (4.5) and (4.6), and the boundary conditions

ui = 0 on ∂Ωu, nitij= 0 on ∂Ωt; φi = 0 on ∂Ωφ, nimij = 0 on ∂Ωm. (4.18)

The variational principle may be expressed by an explicit functional of the form

Ld{ui, eij , tij ; φi, εij , mij}
=

∫
Ω
{−u − k + [ eij − (uj,i + εjikφk) ] tij+ ( εij − φi,j ) mij } dV

+
∫

∂Ωu
ui njtijdS +

∫
∂Ωφ

φi njmijdS.
(4.19)
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The validity of the variational principle (4.19) can be readily demonstrated; its Euler-
Lagrange equations coincide with the governing equations of vibrations. The variational
principle with its explicit functional represents an integral type of variational principles
with all the well-known features of variational principles. It operates on all the micropolar
field variables and yields, as special cases, the variational principles operating on some of
the field variables. The variational principle is the counterpart of the Hellinger-Reissner
variational principle in elasticity for the free vibrations in micropolar elasticity, and it is
stated as follows.

Unified variational principle. Let the functional Ld { Λd } in Eq. (4.19) be defined for
the regular, finite and bounded micropolar elastic region Ω+∂Ω with its piecewise smooth
boundary surface ∂Ω (= ∂Ωt ∪∂Ωu = ∂Ωm ∪∂Ωφ and ∂Ωt ∩∂Ωu = ∂Ωm ∪∂Ωφ = ∅) and
closure Ω̄ in the Euclidean 3-D space Ξ. Then, all the admissible states Λd that satisfy
the suitable existence, continuity and differentiability conditions of the micropolar field
variables are only those that admit δLd { Λd } = 0 if and only if they satisfy the diver-
gence equations (4.5) and (4.6), the gradient equations (2.3) and (2.4), the constitutive
relations (2.5) and (2.6), and the boundary conditions (4.18) as the appropriate Euler-
Lagrange equations. Conversely, if these governing equations of vibrations are identically
met, the six-field variational principle (4.19) is evidently satisfied.

5. Free vibrations of a micropolar elastic body. Certain variational principles
are derived for the time-harmonic free vibrations of the elastic micropolar region Ω+∂Ω
in the previous section, and the governing equations are expressed by (4.14) in variational
form, and also, by the divergence equations (4.4) and (4.5), the gradient equations (2.3)
and (2.4), the linear constitutive relations (2.8) and (2.9) and the boundary conditions
(4.18) in differential form. Now, inserting (2.3) and (2.4) into (2.8) and (2.9), and then,
into (4.5) and (4.6) and (4.18), one obtains the divergence equations as

−Aijkl(ul,ki + εlksφs,i)−Cijklφk,li = ρλuj in Ω̄, (5.1)

−Cklji(ul,ki + εlksφs,i) − Bjiklφk,li − εjkl [ Aklrs(us,r + εsriφi) + Cklrsφr,s ] (5.2)

= ρλJijφi in Ω̄,

and the boundary conditions as

ui = 0 on ∂Ωu, [ Aijkl(ul,k + εlksφs) + Cijklφk,l ]ni = 0 on ∂Ωt, (5.3)

φi = 0 on ∂Ωφ, [ Cklji(ul,k + εlksφs) + Bijklφk,l ] ni = 0 on ∂Ωm (5.4)

in terms of the deformation components ( ui, φi ). Equations (5.1) and (5.2) define an
eigenvalue problem so as to determine the values of the parameter for which a nontrivial
solution ui(xj) and φi(xj) exists for the region under the boundary conditions (5.3) and
(5.4).

The eigenvalue problem, paralleling Yang and Batra [26] who examined the vibrations
of a piezoelectric body, may be alternatively expressed in an abstract formulation by

P {U} = λ K{U} in Ω. (5.5)
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That is, find λ for which there exists a nontrivial solution under the boundary conditions

ui = 0 on ∂Ωu, T {U}ni = 0 on ∂Ωt; φi = 0 on ∂Ωφ, M {U}ni = 0 on ∂Ωm.

(5.6)
Here, the operators P and K, related to the potential and kinetic energies of the region
by

P {U}= −{ Aijkl(ul,ki + εlksφs,i) + Cijklφk,li;

Cklji(ul,ki + εlksφs,i) + Bjiklφk,li + εjkl [ Aklrs(us,r + εsriφi) + Cklrsφr,s ] } ,
(5.7)

K {U}= { ρui , ρJijφj } (5.8)

and the operators by

T {U}=Aijkl(ul,k + εlksφs) + Cijklφk,l, (5.9)

M {U}=Cklji(ul,k + εlksφs) + Bijklφk,l, (5.10)

are defined. Also, the admissible function spaces that satisfy (5.1)–(5.4) as

U = { ui, φi } , Γ {U}= U ∪U (5.11)

are introduced. In this equation, an overbar is used to indicate the complex conjugate
of a quantity. The eigenvalue λ̄ corresponds to U. Accordingly, (5.5) of the form

P
{
U

}
= λK

{
U

}
in Ω (5.12)

is given.
Certain properties of the operators. Both the operators P{U} and K{U} are non-

negative and selfadjoint on the function space Γ{U}. To show these properties, the
kinetic and potential energies of the micropolar elastic region are computed from (2.7)
and (3.9) as

U =
1
2
κ2

∫
Ω

(Aijkleijekl + Bijklεijεkl + 2Cijkleijεkl)dV ≥ 0, (5.13)

K =
1
2
κ2

∫
Ω

ρ λ(uiui + Jijφiφj) dV ≥ 0 (5.14a)

and, also, the condition is stated as

K =
1
2

∫
Ω

ρ λ(uiūi + Jijφiφ̄j) dV ≥ 0, (5.14b)

where κ is used to indicate a cosine mode or a sine mode (i.e., κ = cos ωt or sinωt).
Now, one considers the inner product of the operator P{U} and the function space U,
namely,

〈P { U } : U〉 = −
∫
Ω
{ [ Aijkl(ul,ki + εlksφs,i) + Cijklφk,li ] uj+ [ Cijkl(ul,ki + εlksφs,i)

+Bijklφk,li ] φj + εjkl [ Aklrs(us,r + εsriφi) + Cklrsφr,s ] φj } dV,
(5.15)
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which is readily expressed by

〈P { U } : U〉 = −
∫
Ω
{ [ Aijkl(ul,k + εlksφs) + Cijklφk,l ] uj },i dV

+
∫
Ω

[ Aijkl(ul,k + εlksφs) + Cijklφk,l ] uj,idV

−
∫
Ω
{ [ Cijkl(ul,k + εlksφs) + Bijklφk,l ] φj },i dV

+
∫
Ω

[ Cijkl(ul,ki + εlksφs,i) + Bijklφk,li ] φj,idV

−
∫
Ω

εjkl [ Aklrs(us,r + εsriφi) + Cklrsφs,r ] φjdV.

(5.16)

Applying the divergence theorem to the regular region Ω + ∂Ω, (5.16) is written as

〈P {U} : U〉 = −
∫

∂Ω
T {U}niujdS −

∫
∂Ω

M {U}niφjdS

+
∫
Ω

( Aijklekl + Cijklεkl )uj,idV

+
∫
Ω

( Ckljielk + Bijklεkl ) φj,idV −
∫
Ω

εjkl ( Aklrsers + Cklrsεrs ) φjdV,

(5.17)

where the gradient equations (2.3) and (2.4) are used. In the right-hand side of (5.17),
the first two terms vanish due to (5.3), (5.4) and (5.6) and the last three terms are
combined as

〈P {U} : U〉 =
∫

Ω

(Aijkleijekl + Bijklεijεkl + 2Cijkleijεkl) dV. (5.18)

Likewise, the inner product of the operator K{U} and U is expressed by

〈K {U} : U〉 =
∫

Ω

ρ(uiui + Jijφiφj) dV. (5.19)

In view of (5.13) and (5.14), (5.18) and (5.19) are stated in the form

〈P {U} : U〉 ≥ 0, 〈K {U} : U〉 ≥ 0, (5.20)

which shows that the operators P{U} and K{U} are nonnegative on the function space
U { ui, φi }.

As before, the inner product of the operator P{U} and a function space V {vi, ϕi} ∈ Γ
is expressed by

〈P {U} : V〉 = −
∫
Ω
{ [ Aijkl(ul,ki + εlksφs,i) + Cijklφk,li ] vj

+ [ Cijkl(ul,ki + εlksφs,i) + Bijklφk,li ] ϕj

+εjkl [ Aklrs(us,r + εsriφi) + Cklrsφr,s ] ϕj },i dV,

(5.21)

which is readily written as

〈P {U} : V〉 = −
∫
Ω
{ [ Aijkl(ul,k + εlksφs) + Cijklφk,l ] vj},idV

+
∫
Ω

[ Aijkl(ul,k + εlksφs) + Cijklφk,l ] vj,idV

−
∫
Ω
{ [ Cijkl(ul,k + εlksφs) + Bijklφk,l ]ϕj },i dV

+
∫
Ω

[ Cijkl(ul,k + εlksφs,i) + Bijklφk,l ] ϕj,idV

−
∫
Ω

εjkl [ Aklrs(us,r + εsriφi) + Cklrsφs,r ] ϕjdV.

(5.22)

Applying the divergence theorem to the regular region and using (5.11) and (5.12), this
equation becomes

〈P {U} : V〉 = −
∫

∂Ω

T {U}nivjdS −
∫

∂Ω

M {U}niϕjdS + 〈P {V} : U〉. (5.23)

By virtue of the boundary conditions (5.3), (5.4) and (5.6), one finally obtains

〈P {U} : V〉 = 〈P {V} : U〉. (5.24)
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Similarly, the inner product of the operator K{U} and the function space V { vi, ϕi } ∈ Γ
reads

〈K {U} : V〉 =
∫

Ω

ρ(uivi + Jijφiϕj) dV, (5.25)

which is written as
〈K {U} : V〉 = 〈K {V} : U〉. (5.26)

Equations (5.24) and (5.26) indicate the selfadjointness of the operators P{U} and K{U}
on the function space Γ .

In the case of a frequency shift due to some small changes in the physical and geo-
metrical parameters, the eigenvalues and the eigenfunctions in (5.5) and the operators
P{U} and K{U} may be expressed by the perturbation expansions in terms of a small
parameter ε as

λ =
∞∑

n=0

εnλn, U =
∞∑

n=0

εnUn; P =
∞∑

n=0

εnPn, K =
∞∑

n=0

εnKn; ε << 1, (5.27)

where λn and Un are unknowns to be determined. Inserting the expansions (5.27) into
(5.5), one obtains

P0 {U0}=λ0K0 {U0} in Ω (5.28)

and
P0 {U1}+P0 {U0}=λ1K0 {U0}+λ0K1 {U0}+λ0K0 {U1} in Ω (5.29)

for the zeroth and first-order approximations, respectively. The inner products of (5.28)
and (5.29) with U0 are expressed by

〈P0 {U0} : U0〉 = 〈λ0K0 {U0} : U0〉 in Ω,

〈P0 {U1}+P1 {U0} : U0〉 = 〈λ1K0 {U0}+λ0K1 {U0}+λ0K0 {U1} : U0〉 in Ω.
(5.30)

Subtracting one from another and then solving for λ0 , one has

λ = λ0 + ελ1 (5.31)

with
λ1= 〈U0: P1 {U0}〉−λ0〈U0: K1 {U0} 〉/〈U0: K {U0} 〉. (5.32)

In this equation, the solution of the zeroth order is taken to be known and then the
frequency shift may be readily computed (cf. [26]–[28] for a piezoelectric body).

Properties of eigenvalues and eigenfunctions. With the resulting selfadjointness of the
operators P{U} and K{U}, the eigenvalues λ are shown to be real and positive and the
orthogonality condition of the eigenvectors is obtained. First of all, one writes the inner
products of (5.5) and (5.12) by U and U, respectively, as

〈P {U} :U〉 =λ〈K {U} :U〉,
〈P

{
U

}
: U〉 =λ〈K

{
U

}
: U〉. (5.33)

By subtracting one from another and remembering the properties (5.24) and (5.26), one
has

( λ − λ ) 〈K {U} :U〉 = 0. (5.34)
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By virtue of (5.14) this equation yields λ = λ, that is, the eigenvalue λ is real. Moreover,
the inner product of (5.5) with U is expressed by

〈P {U} : U〉 =λ〈K {U} : U〉, (5.35)

which results in
λ = (〈P {U} : U〉/〈K {U} : U〉)> 0. (5.36)

In this equation, the numerator and denominator are nonnegative for the eigenfunction
U as shown in (5.20). Thus, all the eigenvalues λ of (5.5) are positive.

To obtain the orthogonality condition, one considers two distinct pairs ( λm,Um ) and
( λn,Un ) for the solutions of (5.5), namely,

P {Um}=λmK {Um} , P {Un}=λnK {Un} . (5.37)

The inner products of (5.37) respectively with Un and Um yield

〈P {Um} : Un〉 =λm〈K {Um} : Un〉, 〈P {Un} : Um〉 =λn〈K {Un} : Um〉. (5.38)

Here, by subtracting one from another, one obtains

〈P {Um} : Un〉 − 〈P {Un}Um〉 =λm〈K {Um} : Un〉−λn〈K {Un}Um〉. (5.39)

By virtue of the selfadjointness properties (5.24) and (5.26), this equation is reduced to

(λm − λn)〈K {Um} : Un〉 = 0 (5.40)

and then, to
〈K {Um} : Un〉 = 0 (5.41)

since λm �= λn. Equation (5.41) is the orthogonality condition for the eigenvectors
associated with distinct eigenvalues. The orthogonality condition is readily expressed by

〈K {Um} : Un〉 =
∫

Ω

ρ(u(m)
i u

(n)
i + Jijφ

(m)
i φ

(n)
j ) dV = 0 (5.42a)

or, equivalently,

〈P {Um} : Un〉 =
∫
Ω
{[ Aijkl(ul,ki + εlksφs,i) + Cijklφj,li ](m) u

(n)
j

+ [ Cijkl(ul,ki + εlksφs,i) + Bijklφk,li ](m) φ
(n)
j

+εjkl [ Aklrs(us,r + εsriφi) + Cklrsφr,s ](m) φ
(n)
j } dV = 0

(5.42b)

in view of (5.7), (5.9) and (5.39). Similar results were presented for the free vibrations
of a piezoelectromagnetic body [29].

Rayleigh’s micropolar quotient. As an extension of the nonpolar case, a functional
R{U} is defined in the form

R {U} = N {U} /D {U} (5.43)

in terms of N{U} and D{U} related to the potential and kinetic energies of the micro-
polar elastic region Ω + ∂Ω, namely,

N {U}= 〈P {U} : U〉, D {U}= 〈K {U} : U〉. (5.44)

The stationary condition of the functional is expressed by

δR {U}= [ D {U} δN {U} − N {U} δD {U} ] /D2 {U}= 0, (5.45)
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which is reduced to

χ = δN {U} − R {U} δD {U}= 0. (5.46)

This is explicitly written as

χ = 〈P {U} :δU〉 + 〈δP {U} : U〉 − R {U} [ 〈K {U} :δU〉 + 〈δK {U} : U〉 ] (5.47)

and then expressed by

χ = 2〈[ P {U} − R {U}K {U} ] :δU〉 = 0, (5.48)

because of the equality of the form

〈δP {U} : U〉 = 〈P {δU} : U〉 = 〈P {U} δU : U〉 = 〈P {U} :δU〉 (5.49)

for the operator P{U} or K{U} and the selfadjointness conditions (5.24) and (5.26).
From the stationary condition (5.43), it follows that

P {U} − R {U}K {U}= 0 (5.50)

by use of the fundamental lemma of the calculus of variations. In view of (5.50) and (5.5),
one concludes that the stationary value of the functional R{U} gives the eigenvalue λ

provided that the divergence equations (5.1) and (5.2) are satisfied for the eigenfunctions
U subjected to the boundary conditions (5.3) and (5.4) as the constraint conditions.
Rayleigh’s micropolar quotient is given by (5.43) together with (5.3), (5.4), (5.16) and
(5.19) by

N {U}=
∫
Ω

{ [ Aijkl(ul,k + εlksφs) ] uj,i+ [ Cijkl(uk,l + εklsφk,l) + Bijklφk,l ] φj,i

−εjkl [ Aklrs(us,r + εsriφi) + Cklrsφs,r ]φj } dV
(5.51)

and

D {U}=
∫

Ω

ρ(uiui + Jijφiφj) dV (5.52)

in terms of the deformation components and the material elasticities. The constraint
conditions are undesirable as already pointed out in the previous section, and they can
be removed by introducing Ng and Dg of the form

Ng { ui, eij , tij ; φi, εij , mij }

=
∫

Ω

{− [ eij − (uj,i + εjklφk) ] tij − (εij − φi,j )mij + u(eij , εij) } dV

−
∫

∂Ωu

ui njtijdS −
∫

∂Ωφ

φi njmijdS, (5.53)

Dg { ui, φi } =
1
2

∫
Ω

ρ(uiui + Jijφiφj) dV (5.54)

in lieu of N and D in Rayleigh’s quotient in (5.43). Taking the variations, integrating by
parts and applying the divergence theorem to the regular region Ω + ∂Ω, one obtains

δDg =
∫

Ω

ρ(uiδui + Jijφiφj) dV (5.55a)
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and

δNg =
∫

Ω
{ − tij,i δuj − (mij,i + εjkltkl) δφj − [ eij − (uj,i + εjklφk) ] δtij

−(εij − φi,j ) δmij−(tij − ∂ u
∂eij

) δeij − (mij − ∂ u
∂εij

) δεij } dV

−
∫

∂Ωu
niujδtijdS +

∫
∂Ωt

nitijδujdS −
∫

∂Ωφ
niφjδmijdS +

∫
∂Ωm

nimijδφjdS.

(5.55b)
Inserting these equations into (5.46), one has the gradient equations (2.3) and (2.4), the
constitutive relations (2.5) and (2.6), the boundary conditions (5.6) and the divergence
equations of the form

tij ,i + ρ
Ng

Dg
uj = 0, mij ,i + εjkltkl + ρJij

Ng

Dg
φi = 0. (5.56)

In view of these equations together with (4.5) and (4.6), one concludes that the stationary
value of Rg gives the eigenvalue λ. The functional Rg has no constraint conditions, and
thus, all the field variables can be treated as independent variables.

In the case of a frequency shift, inserting the expansions (5.27) into the functional
(5.43), one writes Rayleigh’s quotient of the form

R {U}= [ 〈 ( P0 {U}+εP1 {U}+...) : U〉 ] / [ 〈K0 {U}+εK1 {U}+... ) : U〉 ] . (5.57)

By use of the unperturbed mode U0 as an approximating function in this equation, one
reads

λ ≈ [ 〈( P0 {U0}+εP1 {U0} ) : U0〉 ] / [ 〈 ( K0 {U0}+εK1 {U0} ) : U0〉 ] , (5.58)

which is expressed by

λ ≈ [ 〈P0 {U0} : U0〉+ε〈P1 {U0} : U0〉 ] / [ 〈 ( K0 {U0}+εK1 {U0} ) : U0〉 ] . (5.59)

This equation is approximated by

λ ≈ λ0 [ 1+εP1 {U0} /P0 {U0} ] [ 1−εK1 {U0} /K0 {U0} ] ; λ0= P0 {U0} /K0 {U0} .

(5.60)
From this equation, the eigenvalue λ may be expressed by

λ ≈ λ0 + ε [ 〈P1 {U0} : U0 〉]−λ0〈K1 {U0} : U0〉 ] /〈K0 {U0} : U0〉, (5.61)

where (5.24) and (5.26) are used. This eigenvalue is equal to that in (5.31) for the
first-order approximation.

6. Free vibrations of a micropolar elastic plate. In the Euclidean space Ξ,
consider a micropolar thin elastic plate of uniform thickness 2h. The plate is referred to
the Cartesian rectangular coordinates xi with the faces of area A, at x3 = ±h and with
xα the coordinates on the middle plane ( x3 = 0 ) which intersects the right cylindrical or
primary boundary surface of the plate in a Jordan curve C. The Jordan curve consists
of the complementary curves Cu, Ct, Cφ and Cm ( i.e., C = Cu ∪ Ct = Cφ ∪ Cm and
Cu ∩ Ct = Cφ ∩ Cm = φ ) and the unit outward vector normal to C is denoted by να.
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The equations governing the free high-frequency vibrations of the plate are derived in
differential form on the basis of the power series expansions by

{ ui(xj), φi(xj) } =
N=∞∑
n=0

{u
(n)
i (xα), φi(xα) }zn , z ≡ x3 (6.1)

for the deformation components and following Mindlin’s method of reduction in plates
[30]. Accordingly, inserting the expansions (6.1) into the variational principle (4.14), and
then performing the integrations across the thickness interval Z = [−h, h], one obtains
the 2-D governing equations of the micropolar plates, as the Euler-Lagrange equations,
by

Field equations.

−T
(n)
αj,α + nT

(n−1)
3j − T

(n)
j = ρλp

N∑
m=0

Imnu
(m)
j on A, (6.2)

−M
(n)
αj,α + nM

(n−1)
3j − M

(n)
j − εjklT

(n)
kl = ρλpJij

N∑
m=0

Imnφ
(m)
i on A, (6.3)

where
(T (n)

ij , M
(n)
ij ) =

∫
Z
(tij , mij) zndz, Z = [−h, h] ,

(T (n)
i , M

(n)
i ) = [(t3i, m3i) zn]h

−h = 0,

Imn =
2h(m+n+1)

m + n + 1
, m + n = 2p (even).

(6.4)

Gradient equations.

−e
(n)
ij + u

(n)
j,i + (n + 1)u(n+1)

j δ3i + εjikφk = 0 on A,

−ε
(n)
ij + φ

(n)
i,j + (n + 1)φ(n+1)

j δ3i = 0 on A.
(6.5)

Constitutive relations.

−T
(n)
ij +

∂H

∂e
(n)
ij

= 0, −M
(n)
ij +

∂H

∂ε
(n)
ij

= 0. (6.6)

Here, all the quantities are functions of the aerial coordinates xα of the plate, and the
elastic energy H per unit area of the middle plane A is given by

H =
∫

Z

u dz. (6.7)

A quadratic form of H is recorded as

H =
1
2

N∑
m=0

N∑
n=0

Imn(Aijkle
(m)
ij e

(n)
kl + Bijklε

(m)
ij ε

(n)
kl + 2Cijkle

(m)
ij ε

(n)
kl ). (6.8)

This leads to the linear constitutive relations of the form

T
(n)
ij =

N∑
m=0

(Aijkle
(m)
kl + Cijklε

(m)
kl )Imn on A,

M
(n)
ij =

N∑
m=0

(Cijkle
(m)
kl + Bijklε

(m)
kl )Imn on A.

(6.9)
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Boundary conditions.

u
(n)
i = 0 on Cu , ναT

(n)
αj = 0 on Ct,

φ
(n)
i = 0 on Cφ, ναM

(n)
αj = 0 on Cm.

(6.10)

In the foregoing equations, the superscript (n) is used to indicate the nth-order compo-
nents of a quantity of the functions xα.

The 2-D equations (6.2)-(6.10) govern all the types of high frequency vibrations of the
micropolar plate. They form a deterministic system of 42N equations with 42N depen-
dent variables ( u

(n)
i , e

(n)
ij , T

(n)
ij ,φ

(n)
i , ε

(n)
ij , M

(n)
ij ) of functions of the aerial coordinates xα.

The boundary conditions (6.10) were shown to be sufficient for a unique solution in [31],
where the vibration of a micropolar shell is treated.

The governing equations define an eigenvalue problem for the values λp = ω2
p, which

correspond to a nontrivial solution of the nth-order dependent variables. Alternatively,
the eigenvalue problem may be defined in an abstract form by

Pp {Up}=λpKp {Up} . (6.11)

Here, the field vector given by

Up= { u
(n)
i , e

(n)
ij , T

(n)
ij , φ

(n)
i , ε

(n)
ij , M

(n)
ij } , (6.12)

the operators given by

Pp {Up} = { − T
(n)
αj,α + nT

(n−1)
3j ,−e

(n)
ij + u

(n)
j,i + (n + 1)u(n+1)

j δ3i + εjikφ
(n)
k ,−T

(n)
ij

+
∂H

∂e
(n)
ij

;

− M
(n)
αj,α + nM

(n−1)
3j − εjklT

(n)
kl , −ε

(n)
ij + φ

(n)
i,j + (n + 1)φ(n+1)

j δ3i, −M
(n)
ij +

∂H

∂ε
(n)
ij

} ,

(6.13)

Kp {Up} = { ρ
N∑

m=0

Imnu
(m)
j , 0 , 0 ; ρJij

N∑
m=0

Imnφ
(m)
i , 0, 0 } (6.14)

and the function space given by

Γp = Up ∪Up (6.15)

are introduced for the micropolar plate. Also, a function space Vp ∈ Γ given by

Vp= { v
(n)
i , E

(n)
ij , σ

(n)
ij ; ϕ

(n)
i , S

(n)
ij , N

(n)
ij } . (6.16)

A quantity similar to that in (6.8) given by

I =
1
2

N∑
m=0

N∑
n=0

Imn(AijklE
(m)
ij E

(n)
ij + BijklS

(m)
ij S

(n)
kl + 2CijklE

(m)
ij S

(n)
kl ), (6.17)

which are functions of the aerial coordinates xα, are defined.
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The inner product of the operator Pp{Up} and the function space Vp is given by

〈Pp {Up} : Vp〉 =
N∑

n=0

∫
A

{ ( − T
(n)
αj,α + nT

(n−1)
3j )v(n)

j

+ [ − e
(n)
ij + u

(n)
j,i + (n + 1)u(n+1)

j δ3i + εjikφ
(n)
k ] σ(n)

ij

+ ( − T
(n)
ij + ∂H

∂e
(n)
ij

)E(n)
ij + ( − M

(n)
αj,α + nM

(n−1)
3j − εjklφ

(n)
k )ϕ(n)

j

+ [ − ε
(n)
ij + φ

(n)
i,j + (n + 1)φ(n+1)

j ] N (n)
ij +( − M

(n)
ij + ∂H

∂ε
(n)
ij

)S(n)
ij } dA.

(6.18)

This equation is evaluated through integration by parts and then applying the divergence
theorem to the plate region in a similar manner to (5.21) with the result

〈Pp {Up} : Vp〉 =
N∑

n=0

∫
A

{ ( − σ
(n)
αj,α + nσ

(n−1)
3j )u(n)

j

+ [ − E
(n)
ij + v

(n)
j,i + (n + 1)v(n+1)

j δ3i + εjikϕ
(n)
k ] T (n)

ij

+ ( − σ
(n)
ij + ∂ I

∂E
(n)
ij

)e(n)
ij + ( − N

(n)
αj,α + nN

(n−1)
3j − εjklϕ

(n)
k )φ(n)

j

+ [ − S
(n)
ij + ϕ

(n)
i,j + (n + 1)ϕ(n+1)

j ] M (n)
ij + ( − N

(n)
ij + ∂ I

∂S
(n)
ij

)ε(n)
ij } dA

= 〈Pp {Vp} : Up〉

(6.19)

and the boundary conditions (6.10) are considered. Likewise, the inner product of the
operator Kp{Up} and the function space Vp is given by

〈K {Up} : Vp〉 =ρ

N∑
m=0

N∑
n=0

∫
A

Imn( u
(m)
i v

(n)
i +Jijφ

(m)
i ϕ

(n)
j ) dA= 〈K {Vp} : Up〉. (6.20)

The conditions (6.19) and (6.20) show the selfadjointness of the operators Pp{Up} and
Kp{Up}. With the selfadjointness properties of the operators, the reality and positivity
of the plate eigenvalues can be proved as in the 3-D case in (5.34) and (5.36).

The governing equations (6.11) are expressed by

Pp

{
U(r)

p

}
=λ(r)

p Kp

{
U(r)

p

}
,Pp

{
U(s)

p

}
=λ(s)

p Kp

{
U(s)

p

}
(6.21)

at two distinct eigenvalues λ
(r)
p and λ

(s)
p , which respectively correspond to eigenfunctions

U(r)
p and U(s)

p . Taking the inner products of these equations by U(s)
p and U(r)

p and
then subtracting one from another as in (5.40) for the 3-D case and considering the
selfadjointness property of the operators, one writes

(λ(s)
p − λ(r)

p )〈Kp

{
U(r)

p

}
: U(s)

p 〉 = 0. (6.22)

It follows from this equation that

〈Kp {U (r)
p } : U (s)

p 〉 = 0 (6.23)

since λ
(r)
p �= λ

(s)
p . This equation is the orthogonality condition for the eigenvectors of the

micropolar plate. The condition is explicitly given by

〈Kp

{
U(r)

p

}
: U(s)

p 〉 =ρ
N∑

n=0

N∑
m=0

∫
A

Imn(u(m)r
i u

(n)s
i +Jijφ

(m)r
i φ

(n)s
j ) dA = 0 (6.24)
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and also, by

〈Pp

{
U(r)

p

}
: U(s)

p 〉

=
N∑

n=0

N∑
m=0

∫
A

{( − T
(n)
αj,α + nT

(n−1)
3j )ru

(m)s
j +( − T

(n)
ij +

∂H

∂e
(n)
ij

)re
(m)s
ij

+ [ − e
(n)
ij + u

(n)
j,i + (n + 1)u(n+1)

j δ3 i + εjikφ
(n)
k ]r T

(m)s
ij + ( − M

(n)
ij +

∂H

∂ε
(n)
ij

)rε
(m)s
ij

+ ( − M
(n)
αj,α + nM

(n−1)
3j − εjklφ

(n)
k )rφ

(m)s
j

+ [ − ε
(n)
ij + φ

(n)
i,j + (n + 1)φ(n+1)

j ]r M
(m)s
ij } dA.

(6.25)
Here, H is obtained by substituting (6.5) into (6.7) with (2.7) and then integrating across
the plate as

H =
1
2

N∑
m=0

N∑
n=0

Imn(Aijkle
(m)
ij e

(n)
kl + Bijklε

(m)
ij ∈(n)

kl +2Cijkle
(m)
ij ε

(n)
kl ). (6.26)

Furthermore, the condition (6.24) can be expressed by
N∑

n=0

N∑
m=0

∫
A

[ (−T
(n)
αj,α+nT

(n−1)
3j )ru

(m)s
j +(−M

(n)
αj,α+nM

(n−1)
3j −εjklT

(n)
kl )rφ

(m)s
j ] dA = 0,

(6.27)
where (6.2) and (6.3) are considered.

Rayleigh’s quotient for the micropolar plate. With the help of (6.1), Rayleigh’s quo-
tient is readily stated by

R {Up}= 〈Pp {Up} : Up〉/〈Kp {Up} : Up〉, (6.28)

which is given explicitly by

R {Up} =
N∑

n=0

N∑
m=0

∫
A
{ ( T

(n)
αj u

(n)
j,α + nT

(n−1)
3j )u(m)

j

+M
(n)
αj φ

(m)
j,α + (nM

(n−1)
3j − εjklT

(n)
kl )φ(m)

j

+ [ − e
(n)
ij + u

(n)
j,i + (n + 1)u(n+1)

j δ3 i + εjikφ
(n)
k ] T (m)

ij

+ [ − ε
(n)
ij + φ

(n)
i,j + (n + 1)φ(n+1)

j δ3i ] M (m)
ij

+ ( − T
(n)
ij + ∂H

∂e
(n)
ij

)e(m)
ij + (−M

(n)
ij + ∂H

∂ε
(n)
ij

)ε(m)
ij } dA

/ 1
2ρ

N∑
n=0

N∑
m=0

Imn

∫
A
(u(n)

i u
(m)
j + Jijφ

(n)
i φ

(m)
j ) dA,

(6.29)
where pertinent integration by parts is made, and the deformation boundary conditions
are considered.

7. Conclusions. This paper is addressed to the 3-D equations governing the time-
harmonic free vibrations of a polar elastic body, including the uniqueness of solutions, the
variational formulations and the example of a micropolar plate. The boundary conditions
sufficient to the uniqueness are enumerated by appealing to the logarithmic convexity
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argument instead of the classical energy argument that imposes the positive-definiteness
assumption of material elasticities. The variational principles of the vibrations are de-
duced from the principle of virtual work by modifying it through an involutory trans-
formation. A unified variational principle operating on all the field variables is shown
to generate, as its Euler-Lagrange equations, all the governing equations, unlike the
Hellinger-Reissner-Washizu variational principle in elasticity where the symmetry of the
stress tensor always remains as a constraint condition. The vibration of a micropolar
elastic body is treated, and its eigenvalue problem is defined by an abstract formulation
based on the two operators related to the kinetic and potential energies of the body.
The selfadjointness and nonnegativeness of the operators and the reality and positivity
of eigenvalues are shown, and the orthogonality condition of eigenvectors is found. Also,
Rayleigh’s quotient with its well-known features is obtained for the micropolar elastic
body and the frequency shift is studied by a perturbation method.

As an example, the equations governing the high-frequency vibrations of a micropolar
thin elastic plate are presented. The eigenvalue problem is stated for the vibrations
by an abstract formulation with the help of the 2-D operators. Certain fundamental
properties of the operators and eigenvalues are examined, the orthogonality condition of
eigenvectors is obtained, and Rayleigh’s quotient is given for the plate.

In closing, omitting the terms involving the micropolar field, the results are readily
reducible to those established in 1-D/2-D nonpolar (classical) elasticity, and, in the light
of the present treatment, the free vibrations of time- and/or temperature-dependent
materials subjected to the mechanical, electrical and magnetic effects can be similarly
investigated, including random vibrations; some of them with numerical examples will
be reported in the forthcoming works.
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[19] Altay, G.; Dökmeci, M.C., Fundamental equations of certain electromagnetic-acoustic discontinuous
fields in variational form, Continuum Mech. Thermodyn.16 (2004) 53-71. MR2035527 (2004j:74042)

[20] Knops, R.J.; Payne, L.E., Uniqueness Theorems in Linear Elasticity, Springer-Verlag, New York,
1971. MR0421244 (54:9249)

[21] Altay, G.; Dökmeci, M.C., A uniqueness theorem in Biot’s poroelasticity theory, Z. Angew. Math.
Phys. (ZAMP) 49 (1998) 838-846. MR1652204 (99h:73018)
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