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Abstract. The problem of scattering of elastic waves by a bounded obstacle in two-
dimensional linear elasticity is considered. The scattering problems are presented in a
dyadic form. An incident dyadic field generated by a point source is disturbed by a
rigid body, a cavity, or a penetrable obstacle. General scattering theorems are proved,
relating the far-field patterns due to scattering of waves from a point source set up in
either of two different locations. The most general reciprocity theorem is established,
and mixed scattering relations are also proved. Finally, a relation between the incident
and the scattered wave which refers to the mechanism of energy transfer of the scatterer,
the so-called optical theorem, is established.

1. Introduction. Scattering theory deals with the propagation of a known incident
wave field and with the disturbance that a given obstacle causes upon this propagation.
Many researchers have provided solutions, both analytical and numerical, for the scatter-
ing of incident plane-wave fields. The theory of scattering of point-generated waves is not
equally extended. In this area there are some general results that connect the solutions
of two related problems. The most familiar of these is reciprocity : the scattered field
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at A due to a source at B is simply related to the scattered field at B due to a source
at A. There are also internal relations within a single problem. A well-known example
is the optical theorem for scattering of plane waves: it relates the far-field pattern in the
forward direction to a certain integral of the far-field pattern over all directions.

In this paper, we derive some general relations for scattering of elastic waves emanating
from point sources in two dimensions. Thus, we relate one problem with a point source
at A to a similar problem with a point source at B, and we prove the general scattering
theorem. By setting A = B and then letting A recede to infinity, we recover the optical
theorem. If we keep A fixed and let B recede to infinity, we obtain so-called mixed
scattering theorems , relating plane-wave incidence to point-source incidence. An example
of these is the mixed reciprocity theorem, which has found much use recently in methods
for solving inverse scattering problems [25].

Clebsch considered the scattering of elastic waves from a point source by a rigid sphere
140 years ago, a decade before Lord Rayleigh published his solution for the scattering of
a plane sound wave by a sphere.

The revival of interest in problems related to point-generated wave fields happened
for several reasons. One is due to the variety of applications coming from the theory of
composite materials and of acoustic emission, from the theoretical analysis of biological
studies at the cell level, from nondestructive testing and evaluation, from geophysics, from
modelling in medicine and the health sciences, and from scattering problems connected
to environmental data analysis. Another reason is due to the fact that a point-source
field is more easily realizable in a laboratory.

For the case of acoustic scattering, there has been recent work on incident waves
generated by a point source in the vicinity of a scatterer; see, for example, [4], [5], and
the references therein (especially the work by Dassios and his co-workers).

For the case of electromagnetic scattering, similar problems regarding point-source
excitation have been studied in [5], [6], [7].

Regarding elasticity (versus electromagnetics), we note that while electromagnetic
waves propagate at the same speed, the elastic wave consists of two independent parts
(transverse and longitudinal) that are travelling with two different velocities. Our aim
in the present paper is to extend the ideas in [5] in the two-dimensional elastic case.

Scattering in 3D linear elasticity for an incident plane vector or a dyadic field has
been studied in [11, 12] and [15]–[17]. Different aspects of propagation and scattering
problems in 2D linear elasticity are considered in [1]–[3], [19], [21]–[24], and [26]–[28].
Scattering for point sources in 2D linear elasticity is considered in [21], [22], [31].

We organize our paper as follows. In Section 2 we formulate the dyadic scattering
problem for an incident elastic wave due to a source located at a point with position
vector a. The cases of a rigid body, a cavity and a penetrable obstacle are considered
and the dyadic forms of the longitudinal and transverse far-field patterns are given. In
Section 3 the general scattering theorem is proved for the three cases above. In Section
4 reciprocity relations are established, while in Section 5 mixed scattering relations are
proved, relating plane-wave incidence to point-source incidence. Finally, in Section 6,
the optical theorem, which is a relation between the scattering amplitude and the total
energy that the scatterer removes from the incident field, is established.
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2. Dyadic formulation of the problem. Let Bi denote an open, bounded and
simply connected subset of R

2 with boundary ∂Bi, which is assumed to be a bounded
Lyapunov surface. The set Bi will be referred to as the scatterer. Bi is filled with
a material specified by the Lamé constants λi, µi and mass density ρi. The exterior
domain Be = R

2 \ Bi, where Bi = Bi ∪ ∂Bi, is characterized by the Lamé constants
λe and µe and mass density ρe. The interior and exterior regions Bα, denoted α = i, e,
are occupied by homogeneous and isotropic elastic materials, with the Lamé constants
λα, µα, respectively, that are assumed to satisfy the strong ellipticity conditions µα >

0, λα + 2µα > 0, in order for the media to sustain longitudinal as well as transverse
waves.

In what follows we consider the scattering problems in a dyadic formulation. We
choose this alternative method to study the problems due to the dyadic nature of the
fundamental Green’s function. It is worth mentioning that, as Twersky [30] pointed out
for electromagnetic waves, the dyadic scattering problem – because of its higher symmetry
– is easier than the corresponding vector scattering problem. This is so, because in the
vector problem we need to specify both the polarization as well as the propagation vector,
while in the dyadic problem the propagation vector alone suffices to specify the incident
field. The dyadic formulation of elastic scattering problems in two dimensions can be
found in [26, 27].

Assuming time-spectral decomposition, U(r,t) = u(r) exp{−iωt}, the governing equa-
tion of linearized elasticity that the displacement field satisfies is the well-known spectral
Navier equation

c2
s ∆u(r) + (c2

p − c2
s)∇∇ · u(r) + ω2 u(r) = 0, (2.1)

where ω is the angular frequency (denotes the Fourier dual variable of t), and cp, cs are
the phase velocities of the longitudinal and the transverse wave, respectively, given by
cp =

√
(λ + 2µ)/ρ , cs =

√
µ/ρ. The phase velocities are connected with the angular

frequency ω, via the relations ω = kp cp = kscs, where kp = 2π/λp and ks = 2π/λs are
the wave numbers for the longitudinal and the transverse waves, respectively, and λp, λs

are the corresponding wavelengths.
Now adopting dyadic scattering, we generalize the above formulation into a dyadic

setting. In what follows, properties of dyadics will be used, and an excellent source for
dyadic formulas is the book by Tai [29]. So, let ũ(r) be a dyadic field (“∼” (the overtilde)
will denote dyadic fields in this paper) and c any constant vector. Then, if the vector field
u(r) = ũ(r) · c solves the spectral Navier Equation (2.1), then ũ(r) solves the following
dyadic version of (2.1):

c2
s ∆ũ(r) + (c2

p − c2
s)∇∇ · ũ(r) + ω2 ũ(r) = 0̃. (2.2)

For the displacement field ũ(r), we can apply the well-known Helmholtz decomposition
[20]: if ũp(r) is the longitudinal part (dyadic P-wave) and ũs(r) the transverse part
(dyadic S-wave), then the displacement field ũ is decomposed as ũ(r) = ũp(r) + ũs(r).

The differential equations that the displacement fields satisfy in the regions Bα, α =
e, i , can be written as (an alternative form of equation (2.1))

(∆∗
α + ραω2) ũα(r) = 0̃, r ∈ Bα, (2.3)
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where the fields ũα(r) represent the interior (α = i) and exterior (α = e) displacement
fields, respectively, and ∆∗

α = µα ∆ + (λα + µα)∇∇ · .

We also define the surface stress operator

T (r)
α = 2µα n̂r · ∇ + λα n̂r∇ · +µα n̂r ×∇×, (2.4)

where n̂r stands for the outward unit normal vector on ∂Bi at the point r, and the
superscript (which will be omitted from now on) denotes the action of the differential
operator on the indicated variable.

We irradiate our object by an incident elastic wave due to a source located at a point
with position vector a, i.e.,

ũinc
a (r) = − i

4ω2
∇r∇rH

(1)
0 (kp |r− a|)

+
i

4ω2
(∇r∇r + k2

s Ĩ) H
(1)
0 (ks |r − a|), r �= a,

(2.5)

where Ĩ is the identity dyadic, and H
(1)
0 (z) is the Hankel function of first kind and zero

order. This is actually similar to the fundamental solution with a singularity at the point
a, [19].

Now let a = |a| → ∞. Then the incident point-source field given by (2.5) reduces
to a dyadic plane wave with direction of propagation −â. Indeed, using the asymptotic
behaviour of the Hankel function of the first kind and zero order, [20], we obtain

ũinc(r;−â) = Ap (â⊗ â) e−ikp r·â + As(Ĩ− â⊗ â) e−iks r·â, (2.6)

where “⊗” is the juxtaposition between two vectors (this gives a dyadic) and Ap, As are
constant amplitudes given by

Ap :=
1

λ + 2µ

(1 + i) eikp a

4
√

πkp a
and As :=

1
µ

(1 + i) eiks a

4
√

πks a
. (2.7)

Due to the point-source incident field at a, the corresponding component of the scat-
tered field is denoted by ũsct

a . Then the total field ũtot
a in the exterior Be of the scatterer

is given by
ũtot

a (r) = ũinc
a (r) + ũsct

a (r), (2.8)

where the incident, the scattered and the total field satisfy Eq. (2.2). We consider the
following boundary conditions: for a rigid scatterer,

ũtot
a (r) = 0̃, r ∈ ∂Bi; (2.9)

for a cavity, the action of the surface stress operator on the displacement field must be
zero, i.e.,

Teũtot
a (r) = 0̃, r ∈ ∂Bi; (2.10)

while for the penetrable case,

ũtot
a (r) = ũint

a (r), r ∈ ∂Bi,

Teũtot
a (r) = Tiũint

a (r), r ∈ ∂Bi,
(2.11)

where ũint
a is the interior elastic field in Bi.
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For the well-posedness of these problems, the well-known radiation conditions due to
Kupradze should also be satisfied by the scattered field in the following dyadic form:

lim
r→∞

ũsct, β
a = 0̃, lim

r→∞

√
r

(
∂ũsct, β

a

∂r
− ikβ ũsct, β

a

)
= 0̃, β = p, s. (2.12)

Using the dyadic formulation [26], exploiting Betti’s formulae, and through asymptotic
analysis, we obtain

ũsct
a (r) = g̃r

a(r̂)
eikpr

√
r

+ g̃t
a(r̂)

eiksr

√
r

+ O(r−3/2), r → ∞, (2.13)

uniformly with respect to r̂ = r
r ∈ Ω, where Ω is the unit circle in R

2. The coefficients

of the terms eikβr
√

r
are the corresponding dyadic far-field patterns (defined on Ω) and are

known as the longitudinal and the transverse far-field patterns, respectively. They are
given by

g̃r
a(r̂) = (r̂⊗ r̂) ·

[
1 + i

4 c2
p

√
π kp

L̃p(r̂) +
1 − i

4

√
kp

π
H̃p(r̂)

]
, (2.14)

g̃t
a(r̂) = (Ĩ− r̂⊗ r̂) ·

[
1 + i

4 c2
s

√
π ks

L̃s(r̂) +
1 − i

4

√
ks

π
H̃s(r̂)

]
, (2.15)

where

L̃p(r̂) = −
∫

∂Bi

T ũtot
a (r′) e−ikpr

′ ·̂r ds(r′), (2.16)

L̃s(r̂) = −
∫

∂Bi

T ũtot
a (r′) e−iksr

′ ·̂r ds(r′), (2.17)

H̃p(r̂) =
∫

∂Bi

(
n̂′ · λĨ + 2µ r̂ ⊗ r̂

λ + 2µ
⊗ r̂

)
· ũtot

a (r′) e−ikpr
′ ·̂r ds(r′), (2.18)

H̃s(r̂) =
∫

∂Bi

([
(n̂′ · r̂) r̂⊥ + (n̂′ · r̂⊥) r̂

]
⊗ r̂⊥

)
· ũtot

a (r′) e−iksr
′ ·̂rds(r′). (2.19)

The dyadics r̂ ⊗ r̂ and Ĩ − r̂ ⊗ r̂ represent the radial and tangential behaviour of the
longitudinal and transverse parts, respectively, of the scattered field far away from the
scatterer.

We recall again that the scatterer is irradiated by an incident point-source field of the
form (2.5). In that case, when r → ∞, the following form for (2.5) holds:

ũinc
a (r) = Bp (r̂⊗ r̂)

eikp r

√
r

e−ikp a·̂r

+ Bs (Ĩ− r̂⊗ r̂)
eiks r

√
r

e−iks a·̂r + O(r−3/2), r → ∞,

(2.20)

where Bp = Ap
√

a e−ikp a, Bs = As
√

a e−iks a and Ap, As are given by (2.7).
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3. The general scattering theorem. In this section scattering relations for 2D-
point-generated elastic waves are established, with a similar procedure of related 3D
results in acoustics and electromagnetics [4]–[7].

In what follows, we introduce Twersky’s notation

[ũ(r), ṽ(r)]∂Bi
:=

∫
∂Bi

[
(T ṽ(r))� · ũ(r) − ṽ(r)� · T ũ(r)

]
ds(r), (3.1)

where “ ·” is the dot product between two dyadics (this gives a dyadic) and “
 ” denotes
transposition. The subscript “∂Bi” in the above notation will be omitted from now on,
so we use [ũ, ṽ] instead of [ũ, ṽ]∂Bi

.
Consider now two point sources a and b with corresponding scattered fields ũsct

a and
ũsct

b , respectively. In addition, let Ωa,ε = { r ∈ R
2 : ε = |r − a| } be a small circle

centered at a, and Ωr be a large circle of radius r surrounding Bi, the point source b
and Ωa,ε. In the sequel the overbar denotes complex conjugation. Then, we prove the
following:

Lemma 3.1. Let ũinc
a be an incident point-source field at a. For a given point source

at b, with corresponding scattered field ũsct
b and longitudinal and transverse far-field

patterns g̃r
b and g̃t

b, respectively, we have

lim
r→∞

[
ũinc

a , ũsct
b

]
Ωr

=
1 + i

2

√
kp

π

∫
Ω

(g̃r
b(r̂))

� · (r̂⊗ r̂) eikpa·r̂ ds(r̂)

+
1 + i

2

√
ks

π

∫
Ω

(
g̃t

b(r̂)
)� · (Ĩ− r̂⊗ r̂) eiksa·r̂ ds(r̂),

(3.2)

lim
ε→0

[
ũinc

a , ũsct
b

]
Ωa,ε

= (ũsct
b (a))� · (â⊗ â) +

λ + µ

µ
(ũsct

b (a))� · (Ĩ− â⊗ â). (3.3)

Proof. Using equations (2.13) and (2.20) we can calculate the dyadic fields T ũinc
a (r)

and T ũsct
b (r). After lengthy calculations, we arrive at

T ũinc
a (r) = −1 + i

4

√
kp

π

e−ikpr

√
r

(r̂⊗ r̂) eikpa·̂r

− 1 + i

4

√
ks

π

e−iksr

√
r

(Ĩ− r̂ ⊗ r̂) eiksa·̂r + O(r−3/2), r → ∞,

(3.4)

T ũsct
b (r) = ikp (λ + 2µ) g̃r

b(r̂)
eikpr

√
r

+ iks µ g̃t
b(r̂)

eiksr

√
r

+ O(r−3/2), r → ∞. (3.5)

Combining (3.4) and (3.5) we have the following relation:∫
Ωr

((
T ũsct

b (r)
)� · ũinc

a (r) −
(
ũsct

b (r)
)� · T ũinc

a (r)
)

ds(r)

=
1 + i

2

√
kp

π

∫
Ω

(g̃r
b(r̂))

� · (r̂⊗ r̂) eikpa·̂r ds(r̂) (3.6)

+
1 + i

2

√
ks

π

∫
Ω

(
g̃t

b(r̂)
)� · (Ĩ− r̂ ⊗ r̂) eiksa·̂r ds(r̂),

and hence, relation (3.2) is proved.
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For Eq. (3.3) we have to determine ũinc
a (r) and T ũinc

a (r) on the small circle Ωa,ε.
Taking into account the recurrence and differential relations for Zm(x), [8], where Zm can
be any of H

(1)
0 , H

(1)
1 or H

(1)
2 , and after some calculations, relation (2.5) can be written

as

ũinc
a (r) =

i

4 ω2

(
k2

p H
(1)
0 (kp ε) − k2

s H
(1)
0 (ks ε)

)
R̂ ⊗ R̂

− i

2ω2 ε

(
kp H

(1)
1 (kp ε) − ks H

(1)
1 (ks ε)

)
R̂ ⊗ R̂

+
i

4 ω2ε

(
kp H

(1)
1 (kp ε) − ks H

(1)
1 (ks ε)

)
Ĩ

+
i

4µ
H

(1)
0 (ks ε) Ĩ,

(3.7)

where R = r − a, ε = |r− a| and R̂ = r−a
|r−a| . The above formulation (3.7) is very

convenient in the analysis of the singular behaviour of ũinc
a as ε → 0. With the aid of

the mean value theorem and using the asymptotic behaviour of i
4H

(1)
0 (kβε) [10, p. 124],

and H
(1)
m (kβ ε), [8], near the origin, i.e.,

i

4
H

(1)
0 (kβε) =̃

1
2π

ln
1
ε

+
i

4
− 1

2π
ln

kβ

2
− C

2π
, ε → 0, (3.8)

H(1)
m (kβε) =̃

(kβε)m

2m m!
− i

2m (m − 1)!
π (kβε)m

, m = 1, 2, ε → 0, (3.9)

where C denotes Euler’s constant, we establish the assertion. �
For two point sources with position vectors a and b, we introduce the following dyadic

far-field pattern generators:

G̃r
b(a) =

(1 − i)
√

kp

4

∫
Ω

(g̃r
b(r̂))

� · (r̂ ⊗ r̂) eikpa·r̂ ds(r̂)
(3.10)

+
i
√

π

2
(
ũsct

b (a)
)� · (â ⊗ â),

G̃t
b(a) =

(1 − i)
√

ks

4

∫
Ω

(
g̃t

b(r̂)
)� · (Ĩ− r̂ ⊗ r̂) eiksa·r̂ ds(r̂)

(3.11)

+
i
√

π

2
λ + µ

µ

(
ũsct

b (a)
)� · (Ĩ− â⊗ â).

We now establish the general dyadic scattering theorem for point sources.

Theorem 3.2. Assume two point-source locations a and b in Be. Then the following
relation holds:

G̃r
b(a) +

(
G̃r

a(b)
)�

+ G̃t
b(a) +

(
G̃t

a(b)
)�

= −kp (λ + 2µ)
√

π

∫
Ω

(g̃r
b(r̂))

� · g̃r
a(r̂) ds(r̂) − ks µ

√
π

∫
Ω

(
g̃t

b(r̂)
)� · g̃t

a(r̂) ds(r̂).

(3.12)
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Proof. Since ũtot
γ = ũinc

γ + ũsct
γ , γ = a, b , the bilinearity of [·, ·] yields[

ũtot
a , ũtot

b

]
=

[
ũinc

a , ũinc
b

]
+

[
ũinc

a , ũsct
b

]
+

[
ũsct

a , ũinc
b

]
+

[
ũsct

a , ũsct
b

]
. (3.13)

For all three types of boundary conditions (rigid scatterer, cavity, penetrable obstacle),
we can easily get [

ũtot
a , ũtot

b

]
= 0̃. (3.14)

We now calculate each term of the right-hand side of (3.13). In particular, the first term
is vanishing since, by the third Betti’s formula and the fact that ũinc

a and ũinc
b are regular

solutions of the Navier equation (2.3) in Bi, we can obtain[
ũinc

a , ũinc
b

]
= 0̃. (3.15)

For the next two terms in (3.13), let us consider two small circles Ωa,ε1 and Ωb,ε2 centered
at a and b, respectively, such that Ωa,ε1 ∩ Ωb,ε2 = ∅. Then, if Ωr is a large circle centered
at the origin surrounding the scatterer and the two small circles, we can write[

ũinc
a , ũsct

b

]
=

[
ũinc

a , ũsct
b

]
=

[
ũinc

a , ũsct
b

]
Ωr

−
[
ũinc

a , ũsct
b

]
Ωa,ε1

−
[
ũinc

a , ũsct
b

]
Ωb,ε2

.

Since, ũinc
a , ũsct

b are regular solutions of the Navier equation (2.3) in the interior of Ωb,ε2 ,
the third integral in the right-hand side of the above relation vanishes. Now using Lemma
3.1 and letting R → ∞ and ε1 → 0, we arrive at[

ũinc
a , ũsct

b

]
=

1 + i

2

√
kp

π

∫
Ω

(g̃r
b(r̂))

� · (r̂⊗ r̂) eikpa·r̂ ds(r̂)

+
1 + i

2

√
ks

π

∫
Ω

(
g̃t

b(r̂)
)� · (Ĩ− r̂ ⊗ r̂) eiksa·r̂ ds(r̂) (3.16)

−
(
ũsct

b (a)
)� · (â ⊗ â) − λ + µ

µ

(
ũsct

b (a)
)� · (Ĩ− â⊗ â).

In a similar way and using the relation[
ũsct

a , ũinc
b

]
= −

[
ũinc

b , ũsct
a

]�
, (3.17)

we can find that[
ũsct

a , ũinc
b

]
= −1 − i

2

√
kp

π

( ∫
Ω

(
g̃r

a(r̂)
)�

· (r̂⊗ r̂) e−iksb·̂r ds(r̂)
)�

− 1 − i

2

√
ks

π

( ∫
Ω

(
g̃t

a(r̂)
)�

· (Ĩ− r̂⊗ r̂) e−iksb·̂r ds(r̂)
)�

(3.18)

+
((

ũsct
a (b)

)�
· (b̂⊗ b̂)

)�
+

λ + µ

µ

((
ũsct

a (b)
)�

· (Ĩ− b̂ ⊗ b̂)
)�

.

Up until now the first three integrals of (3.13) have been calculated; we have to deal
with the last one. In view of the regularity ũsct

a , ũsct
b in Be and with the aid of Betti’s
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integral theorem, the value of this integral is invariant when ∂Bi is replaced by a circle
of radius r centered at the origin, which contains Bi in its interior. Hence,[

ũsct
a , ũsct

b

]
=

[
ũsct

a , ũsct
b

]
Ωr

= 2 ikp(λ + 2µ)
∫

Ω

(g̃r
b(r̂))

� · g̃r
a(r̂) ds(r̂)

(3.19)

+ 2 iksµ

∫
Ω

(
g̃t

b(r̂)
)� · g̃t

a(r̂) ds(r̂).

By substitution of (3.14)–(3.19) in (3.13), the assertion now easily follows. �

4. Reciprocity relations. In this section the main reciprocity theorem is estab-
lished. As we observe, the proof of Theorem 3.2 uses the evaluation of

[
ũtot

a , ũtot
b

]
. If,

instead, we start from [ũtot
a , ũtot

b ], then we have the following reciprocity result.

Theorem 4.1. Consider two point-source locations a and b in the exterior Be of the
scatterer, with ũinc

γ , ũsct
γ , γ = a, b, the incident and scattered fields due to the source

points a and b, respectively. Then for any rigid body scatterer cavity or penetrable
obstacle, the following relation holds:(

ũsct
b (a)

)� · (â⊗ â) +
λ + µ

µ

(
ũsct

b (a)
)� · (Ĩ− â ⊗ â)

(4.1)

=
((

ũsct
a (b)

)� · (b̂ ⊗ b̂)
)�

+
λ + µ

µ

((
ũsct

a (b)
)� · (Ĩ− b̂ ⊗ b̂)

)�
.

Proof. Using as before the relations ũtot
γ = ũinc

γ + ũsct
γ , we easily obtain[

ũtot
a , ũtot

b

]
=

[
ũinc

a , ũinc
b

]
+

[
ũinc

a , ũsct
b

]
+

[
ũsct

a , ũinc
b

]
+

[
ũsct

a , ũsct
b

]
. (4.2)

Let us first evaluate [ũtot
a , ũtot

b ] directly. It is obvious that for the three types of boundary
conditions (see (2.9)–(2.11)), we arrive at[

ũtot
a , ũtot

b

]
= 0̃. (4.3)

Now following the same steps as in the proof of Theorem 3.2 we calculate each term of
the right-hand side of (4.2). In particular, the first term is vanishing again, since by the
third Betti’s formula and the fact that ũinc

a and ũinc
b are solutions of the Navier equation

(2.3) in Bi, we can obtain [
ũinc

a , ũinc
b

]
= 0̃. (4.4)

Now concerning the next two terms of (4.2), taking into account the relation
[
ũsct

a , ũinc
b

]
=

−
[
ũinc

b , ũsct
a

]�, and following the same procedure as in Theorem 3.2, we end up with the
relations[

ũinc
a , ũsct

b

]
= −

(
ũsct

b (a)
)� · (â⊗ â) − λ + µ

µ

(
ũsct

b (a)
)� · (Ĩ− â ⊗ â), (4.5)

[
ũsct

a , ũinc
b

]
=

((
ũsct

a (b)
)� · (b̂⊗ b̂)

)�
+

λ + µ

µ

((
ũsct

a (b)
)� · (Ĩ− b̂ ⊗ b̂)

)�
. (4.6)
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For the last integral of (4.2), using the fact that ũsct
a , ũsct

b are regular solutions of the
Navier equation in Be, and with the aid of Betti’s integral theorem, we arrive at[

ũsct
a , ũsct

b

]
=

[
ũsct

a , ũsct
b

]
Ωr

=
∫

Ωr

((
T ũsct

b (r)
)� · ũsct

a (r) −
(
ũsct

b (r)
)� · T ũsct

a (r)
)

ds(r) = 0̃.
(4.7)

By substitution of (4.3)–(4.7) in (4.2) we obtain (4.1). �
Furthermore, we note that, in view of (2.5), (2.8), the same reciprocity relation holds

for the incident point-source field, as well as for the total exterior one.

5. Mixed scattering relations. In this section mixed scattering relations are es-
tablished, relating plane-wave incidence to point-source incidence. In particular, having
two point sources, we consider one of them to recede to infinity, so that we have one
incident point-source field and one incident plane wave. At the end of this section, we let
both point sources recede to infinity recovering known results for plane-wave incidence.

We assume an incident plane dyadic field propagating in the direction d̂, i.e.,

ũinc(r; d̂) = (d̂ ⊗ d̂) eikp r·d̂ + (Ĩ− d̂ ⊗ d̂) eiks r·d̂, (5.1)

and recall that we have proved in Section 2 that lima→∞ ũinc
a (r) = ũinc(r; −â).

For an incident plane wave of the form (5.1), we denote the corresponding total field
in Be by ũtot(r; d̂), the scattered field by ũsct(r; d̂) and the radial and angular far-field
patterns by g̃r(r̂; d̂) and g̃t(r̂; d̂), respectively. Using the relations

lim
a→∞

ũsct
a (r) = ũsct(r; −â), (5.2)

lim
a→∞

g̃r
a(r) = g̃r(r̂; −â), lim

a→∞
g̃t

a(r) = g̃t(r̂; −â), (5.3)

we now can establish the following.

Lemma 5.1. Let ũinc
a be a point source at a. If ũinc(r;−b̂) is an incident plane wave,

then

lim
r→∞

[
ũinc

a , ũsct(·,−b̂)
]
Ωr

=
1 + i

2

√
kp

π

∫
Ω

(
g̃r(r̂;−b̂)

)�
· (r̂ ⊗ r̂) eikpa·̂r ds(r̂)

(5.4)
+

1 + i

2

√
ks

π

∫
Ω

(
g̃t(r̂;−b̂)

)�
· (Ĩ− r̂ ⊗ r̂) eiksa·̂r ds(r̂),

lim
ε→0

[
ũinc

a , ũsct(·,−b̂)
]
Ωa,ε

=
(
ũsct(a;−b̂)

)�
· (â ⊗ â)

(5.5)
+

λ + µ

µ

(
ũsct(a;−b̂)

)�
· (Ĩ− â ⊗ â).

Proof. The proof is exactly analogous as in Lemma 3.1, and so we omit it for the sake
of brevity. �
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We now define the dyadic plane longitudinal and transverse far-field pattern generators
as follows:

G̃r(a; −b̂) = lim
b→∞

G̃r
b(a)

=
(1 − i)

√
kp

4

∫
Ω

(
g̃r(r̂; −b̂)

)�
· (r̂⊗ r̂) eikpa·̂r ds(r̂) (5.6)

+
i
√

π

2

(
ũsct(a; −b̂)

)�
· (â⊗ â),

G̃t(a; −b̂) = lim
b→∞

G̃t
b(a)

=
(1 − i)

√
ks

4

∫
Ω

(
g̃t(r̂; −r̂)

)� · (Ĩ− r̂⊗ r̂) eiksa·̂r ds(r̂) (5.7)

+
i
√

π

2
λ + µ

µ

(
ũsct(a; −b̂)

)�
· (Ĩ− â ⊗ â),

where the far-field pattern generators G̃r
b(a) and G̃t

b(a) are defined by (3.10) and (3.11),
respectively.

Theorem 5.2. If ũinc
a and ũinc

b are two incident point-source fields, then the following
relations hold:

lim
a→∞

G̃r
b(a) =

eikpa

2

√
π

a
(g̃r

b(−â) )� · (â⊗ â) , (5.8)

lim
a→∞

G̃t
b(a) =

eiksa

2

√
π

a

(
g̃t

b(−â)
)� ·

(
Ĩ− â ⊗ â

)
, (5.9)

lim
a→∞

G̃r(a; −b̂) =
eikpa

2

√
π

a

(
g̃r(−â; −b̂)

)�
· (â ⊗ â), (5.10)

lim
a→∞

G̃t(a; −b̂) =
eiksa

2

√
π

a

(
g̃t(−â; −b̂)

)�
·
(
Ĩ− â ⊗ â

)
. (5.11)

Proof. First of all, let us prove Eq. (5.8). Using (2.13) and (3.10), we can obtain the
following:

lim
a→∞

G̃r
b(a) =

(1 − i)
√

kp

4
lim

a→∞

∫
Ω

(g̃r
b(r̂))

� · (r̂⊗ r̂) eikpa·r̂ ds(r̂)

(5.12)
+

i
√

π

2
(g̃r

b(â) )� · (â⊗ â)
eikpa

√
a

.

We now want to find the limit of the integral in (5.12). Without loss of generality, we
choose polar coordinates so that the point source at a will be on the y-axis. Then we
note that for θ = π/2 we have r̂ = â, while for θ = 3π/2 we have r̂ = −â. We break the
above integral in (5.12) into a sum of two integrals,∫

Ω

(g̃r
b(r̂))

� · (r̂⊗ r̂) eikpa·r̂ ds(r̂) =
∫ π

0

(g̃r
b(r̂))

� · (r̂⊗ r̂) eikpa·r̂ ds(r̂)

(5.13)
+

∫ 2π

π

(g̃r
b(r̂))

� · (r̂⊗ r̂) eikpa·r̂ ds(r̂),
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each containing one stationary point, i.e., θ = π/2 and θ = 3π/2 for the intervals
[0, π] and [π, 2π], respectively. Applying the method of stationary phase to each of these
integrals [9, p. 254] and summing the results, we get

lim
a→∞

∫
Ω

(g̃r
b(r̂))

� · (r̂⊗ r̂) eikpa·r̂ ds(r̂)

=
√

π

kp a
(1 − i) eikpa (g̃r

b(â) )� · (â⊗ â) +
eikpa

2

√
π

a
(g̃r

b(−â) )� · (â⊗ â).

Combining the above relation with (5.12), the assertion of the theorem follows. With
similar arguments as before we can establish (5.9), (5.10) and (5.11). �

In what follows we formulate the next basic theorem, which can be proved following
the same steps as in the general scattering theorem (Theorem 3.2).

Theorem 5.3. Assume two point-source locations a and b in Be. If we let b → ∞, then
we have

G̃r(a; b̂) +
(
g̃r

a(−b̂)
)�

+ G̃t(a; b̂) +
(
g̃t

a(−b̂)
)�

= −kp(λ + 2µ)
√

π

∫
Ω

(
g̃r(r̂; −b̂)

)�
· g̃r

a(r̂) ds(r̂) (5.14)

−ksµ
√

π

∫
Ω

(
g̃t(r̂; −b̂)

)�
· g̃t

a(r̂) ds(r̂).

The following mixed reciprocity principle, due to an incident point-source field and an
incident plane field, is established in the next theorem.

Theorem 5.4. If ũinc
a is an incident point-source wave field and ũinc(r; −b̂) an incident

plane wave propagating in the direction −b̂, then the following relation holds:(
ũsct(a; −b̂)

)�
· (â ⊗ â) +

λ + µ

µ

(
ũsct(a; −b̂)

)�
· (Ĩ− â⊗ â)

=
((

g̃r
a(b̂)

)� eikpb

√
b

· (b̂ ⊗ b̂)
)�

+
λ + µ

µ

((
g̃t

a(b̂)
)� eiksb

√
b

· (Ĩ− b̂ ⊗ b̂)
)�

.

Proof. The assertion easily follows with the aid of (2.13) and (5.2), by letting in (4.1),
b → ∞. �

We end this section by combining relations (5.3) and (5.6)–(5.11) . Hence,

lim
a→∞

lim
b→∞

G̃r
b(a) = lim

b→∞
lim

a→∞
G̃r

b(a)

(5.15)
=

eikpa

2

√
π

a

(
g̃r(−â; −b̂)

)�
· (â⊗ â)

and

lim
a→∞

lim
b→∞

G̃t
b(a) = lim

b→∞
lim

a→∞
G̃t

b(a)

(5.16)
=

eiksa

2

√
π

a

(
g̃t(−â; −b̂)

)�
·
(
Ĩ− â ⊗ â

)
.
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Let us note that when both point sources recede to infinity, then from (5.15) and (5.16),
one can get the known scattering theorems for plane-wave scattering. Analogous prop-
erties for acoustics and electromagnetics can be found in [5, 7], while for 3D-elasticity in
[13].

6. The optical theorem. In this section an expression for the scattering cross sec-
tion, due to an incident point-source field, will be established. Following a similar analysis
as the one for the 3D-case in [14]–[17], the energy flux vector for the scattered field in
the radiation zone is given by

Psct
a (r) = ˜̃Esct

a (r) : c⊗ c, (6.1)

where ˜̃Esct

a denotes the energy triadic defined by

˜̃Esct

a (r) = ω
[(

ũsct
a (r)

� · ˜̃Ssct

a (r)
)213

]
, (6.2)

where c is an arbitrary constant vector. The scattered field ũsct
a (r) due to the incident

point-source field at a, generates the stress triadic ˜̃Ssct

a (r) given by the relation

˜̃Ssct

a (r) = λ Ĩ⊗
(
∇r · ũsct

a (r)
)

+ µ∇r ⊗ ũsct
a (r) + µ

(
∇r ⊗ ũsct

a (r)
)213

, (6.3)

where 213 denotes the order of the tensorial product in the corresponding triadic.
Following the same proceedure as in [15], for r → ∞, we evaluate the quantities

∇r ·ũsct
a (r) and ∇r⊗ũsct

a (r) of (6.3). After lengthy calculations, we obtain the following:

˜̃Ssct

a (r) = ikp (λ Ĩ⊗ r̂ + 2µ r̂⊗ Ĩ) · g̃r
a(r̂)

eikpr

√
r

(6.4)
+ iks

[
µ r̂⊗ g̃t

a(r̂) + µ
(
r̂ ⊗ g̃t

a(r̂)
)213

] eiksr

√
r

+ O(r−3/2).

The energy flux of the scattered wave at point r̂ in the direction of observation, with the
aid of (6.1) and (6.2), is given by

r̂ · Psct
a (r) = r̂ · ω

[(
ũsct

a (r)
� · ˜̃Ssct

a (r)
)213

]
: c⊗ c. (6.5)

Hence, in view of (2.13), after lengthy calculations, and using the property of the left
transpose of a triadic [8], we obtain the following, as r → ∞:

r̂ · ˜̃Esct

a (r) =
ρ

r
�

(
c3
p k2

p g̃r
a(r̂)

� · g̃r
a(r̂) + c3

s k2
s g̃t

a(r̂)
� · g̃t

a(r̂)
)

+ O(r−3/2). (6.6)

By substitution of (6.6) in (6.5), the outward energy flux at the point r in the direction
r̂ is given by

r̂ · Psct
a (r) =

ρω3

r

(
1
kp

‖g̃r
a(r̂) · c‖2 +

1
ks

‖g̃t
a(r̂) · c‖2

)
+ O(r−3/2), r → ∞. (6.7)
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In what follows, we deal with the energy triadic and the energy flux vector for the incident
point-source field in order to define the corresponding differential scattering cross section
σsct

a .
Following the same steps as before and using (3.7), after some computational effort,

the stress triadic generated by ũinc
a is given by˜̃Sinc

a (r) = − ikp

4 (λ + 2µ)
H

(1)
1 (kp ε)

(
(λ Ĩ + 2µ R̂ ⊗ R̂) ⊗ R̂

)
− iks

4
H

(1)
1 (ks ε)

[
R̂ ⊗ Ĩ +

(
R̂ ⊗ Ĩ

)213

− 2 R̂ ⊗ R̂ ⊗ R̂
]

+
i

4 εµ(λ + 2 µ)

(
µH

(1)
2 (kpε) − (λ + 2µ) H

(1)
2 (ksε)

)
×

[
λ Ĩ⊗ ˜̂R − µR̂ ⊗ Ĩ− µ

(
R̂ ⊗ Ĩ

)213

+ 4µ R̂ ⊗ R̂ ⊗ R̂
]

, (6.8)

where “ × ” denotes standard multiplication. Then, the corresponding energy triadic is
given by the relation

˜̃Einc

a (r) = ω
[(

ũinc
a (r)

� · ˜̃Sinc

a (r)
)213

]
. (6.9)

Then, finding the asymptotic form of r̂ · ˜̃Einc

a for r → ∞, lengthy calculations lead to the
normal energy flux of the incident field in the radial direction far away from the scatterer
being given by

r̂ · Pinc
a (r) =

1
r

ω

8πρ

[
r̂ ⊗ r̂
c2
p

+
Ĩ− r̂ ⊗ r̂

c2
s

]
: c ⊗ c + O(r−3/2), r → ∞.

(6.10)

Following an analogous procedure as in [13], we are ready now to define the differential
scattering cross section due to a point source at a as follows:

σ(r̂) = lim
r→∞

2πr r̂ · Pinc
a (r)∫

Ωr

r̂ · Pinc
a (r) ds(r)

, (6.11)

where r̂ is the direction of observation, the product r̂ · Pinc
a (r) describes the normal

energy flux of the incident point-source field in the radial direction, while the integral in
the denominator is the total energy flux in all directions.

Combining relations (6.10) and (6.11), and after some calculations, we find for the
rigid scatterer case the following:

σ(r̂) = 16πω
cp ‖g̃r

a(r̂) · c‖2 + cs ‖g̃t
a(r̂) · c‖2

(c−2
p + c−2

s ) ‖c‖2 . (6.12)

If now we take the integral for σ(r̂) over the unit circle Ω, then we can define the
scattering cross section or total cross section, which is a measure of the disturbance
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caused by the scatterer to the propagation of the incident point-source field, i.e.,

σsct
a =

1
2π

∫
Ω

σ(r̂) ds(r̂); (6.13)

hence, with the aid of (6.12),

σsct
a =

8ω

(c−2
p + c−2

s ) ‖c‖2

∫
Ω

(
cp ‖g̃r

a(r̂) · c‖2 + cs

∥∥g̃t
a(r̂) · c

∥∥2
)

ds(r̂). (6.14)

In addition, if we set a = b in Theorem 3.2, contract (3.12) with a constant vector c
from the left, and then from the right, we can obtain the following:

2�
[
c · G̃r

a(a) · c
]

+ 2�
[
c · G̃t

a(a) · c
]

= −kp (λ + 2µ)
√

π

∫
Ω

‖g̃r
a(r̂) · c‖2 ds(r̂) − ks µ

√
π

∫
Ω

∥∥g̃t
a(r̂) · c

∥∥2
ds(r̂).

(6.15)

So, taking into account (6.14) and (6.15), we can obtain for the rigid scatterer case, the
following theorem:

Theorem 6.1. For a point source at a, and an arbitrary constant vector c, we have

σsct
a =

8
(c−2

p + c−2
s ) ‖c‖2 ×

[
−2�

(
c · G̃r

a(a) · c
)
− 2�

(
c · G̃t

a(a) · c
)]

.

Remark 6.2. This theorem is called the Optical Theorem or, often, the forward scat-
tering theorem. Furthermore, following a similar procedure to the above, we can obtain
the optical theorem for the cases of the cavity, or the penetrable obstacle.
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