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Abstract. We consider a shape optimization problem related to a nonlinear system
of PDE describing the gas dynamics in a free air-porous domain, including gas concen-
trations, temperature, velocity and pressure. The velocity and pressure are described by
the Stokes and Darcy laws, while concentrations and temperature are given by mass and
heat conservation laws. The system represents a simplified dry model of gas dynamics
in the channel and graphite diffusive layers of hydrogen fuel cells. The model is coupled
with the other part of the domain through some mixed boundary conditions, involving
nonlinearities, and pressure boundary conditions. Under some assumptions we prove
that the system has a solution and that there exists a channel domain in the class of
Lipschitz domains minimizing a certain functional measuring the membrane temperature
distribution, total current, water vapor transport and channel inlet/outlet pressure drop.

1. Introduction. Position of the problem. In this paper we consider a two-
dimensional nonlinear PDE system which comprises Stokes and Darcy’s laws coupled
with a system of mass and heat conservation lows in a free air-porous domain. The
equations describe the fluid dynamics in the cathode channel and graphite diffusive layers
in hydrogen fuel cells (HFC).

HFC are useful devices, producing electricity by reacting the oxygen and hydrogen as
shown in Figure 1. Namely, this is realized by pumping fresh air (O2) in the cathode
channel and hydrogen in the anode channel. The oxygen in the cathode channels diffuses
through the cathode graphite diffusive layer (GDL), a porous domain, while hydrogen
diffuses through the anode GDL. The hydrogen, at the anode catalyst layer (CL) contact,
dissociates into ions. The electrons, through an external circuit, travel towards the
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cathode GDL, producing useful electric current, and ionize the oxygen molecules at the
cathode CL. Anode hydrogen ions diffuse through the membrane, and upon contact with
oxygen ions at the cathode CL and membrane, enter into reaction and produce heat and
water. It has been observed experimentally that the reaction is located at the CL layer,
on the cathode side, mainly close to the inlet (close to x1 = 0; see Figure 1), which
exposes this part of the HFC to high temperatures and thus reduces its lifetime. Thus,
it is required to operate the fuel cell at a uniform temperature. Meanwhile, it is required
to increase the total current produced, which is very closely related to water transport
to the cathode outlet (at x1 = l; see Figure 1). Also, for reducing the cost of current
production, it is required to reduce the cathode channel drop pressure to between x1 = 0
and x1 = l.

In this paper we deal with a two dimensional dry model in a cathode channel and
GDL layers, and we consider the optimal channel shape optimizing a shape functional,
motivated by the constraints mentioned in the previous paragraph.
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Fig. 1. a) The air (O2, H2O vapor) flows through the cathode chan-
nel and diffuses in the cathode GDL layer. The hydrogen flows
through the anode channel and diffuses through the anode GDL
layer. The reaction takes place in the cathode catalyst layer and
the membrane. b) A 2D (x1, x2) cross section

Moreover, we will consider the two-dimensional case in the (x1, x2) cross section, as
indicated in Figure 1b. We assume the gas contains oxygen and water vapor with mass
concentration respectively ĉo and ĉv. As ĉo + ĉv = 1 we can eliminate one of them, let’s
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say ĉv, from the analysis. Thus the unknowns are (ĉ, τ̂ , û, p̂), where ĉ = ĉo, τ̂ is the
temperature, û = (û1, û2) is the gas mixture velocity and p̂ is the pressure. The variable
ĉ obeys the mass conservation law, while τ̂ obeys the heat conservation law, both in
the channel and the GDL. Usually, the gas velocity û in the channel obeys the Stokes
equation to a good approximation, and the gas is considered incompressible; thus the
density ρ̂ = ρ0, ρ0 constant. In the GDL the velocity obeys the Darcy law. We will
assume that even in the GDL the gas is also incompressible.

The assumption for ρ̂ ensures the existence of a solution for our system of equations.
Otherwise, the resulting PDE system is not trivially with elliptic principal part. The
main difficulty is to establish an appropriate L∞ estimation for p̂, sufficient for making
the system unconditionally elliptic.

To couple the velocities in the channel and the GDL, we will impose u1(0−) = 0 on
the interface Σ at x2 = 0 separating the channel and the GDL, which physically states
the no-slip condition on the air-porous domain interface. Other boundary conditions
are used in [2], [10], and [11], where a slip condition is considered. This condition
is reported to better represent the underlying physics, though often it leads to several
analytic difficulties, mainly due to the control of tangential stress ∂2u1 on Σ. We consider
a no-slip condition and continuity of normal velocity and pressure, which is a common
choice in the engineering literature and leads to a more attractive mathematical analysis.

Let k > 0, α = (α1, α2), β = (β1, β2) be given satisfying α0 ≤ α1 < 0, β0 ≤ β1 < 0,
and consider O, the set of uniform Lipschitz functions, as follows:

O = {γ : [0, l] �→ (−∞, 0], |γ(x1) − γ(y1)| ≤ k|x1 − y1|,
α0 ≤ γ(0) ≤ α1, β0 ≤ γ(l) ≤ β1}. (1.1)

For γ ∈ O, set

Aγ = {(x1, x2), x1 ∈ (0, l), γ(x1) < x2 < 0)}, G = (0, l) × (0, h),

Γγ = {(x1, γ(x1)), x1 ∈ (0, l)}, Γi = {0} × (γ(0), 0), Γo = {l} × (γ(l), 0),
Σ = (0, l) × {0}, M = (0, l) × {h}, Γw = ({0} ∪ {l}) × (0, h),
Ωγ = Aγ ∪ Σ ∪ G.

Also, we define nγ , resp. n, and νγ (or simply ν when there is no confusion) to be the
exterior unit normal vector to Aγ , resp. G, Ωγ . From the mass and heat conservation
laws for ĉ, τ̂ and the Stokes and Darcy laws for û, with the assumption that the density
ρ̂ is constant, it follows that (ĉ, τ̂ , û) satisfies

∇ · (−D∇ĉ + ĉû) = 0 in Ωγ , (1.2)

∇(−κ∇τ̂ + τ̂ û) = 0 in Ωγ , (1.3)

(−µ∆û + ∇p̂)�Aγ + (
µ

K
û + ∇p̂)�G = 0 in Aγ ∪ G, (1.4)

∇ · û = 0 in Aγ ∪ G. (1.5)
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These equations are equipped with the following boundary conditions, which are common
in the HFC engineering literature:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ĉ − ci = τ̂ − τi = φ −
∫
Γi

û1 = û2 = p̂ − pi = 0, Γi,

∂ν ĉ = ∂ν τ̂ = û2 = p̂ − po = 0, Γo,
∂ν ĉ = ∂ν τ̂ + (τ̂ − τw) = û1 = û2 = 0, Γγ ,
[ĉ] = [∂2ĉ] = [τ̂ ] = [∂2τ̂ ] = û1(0

−) = [û2] = [p̂] = 0, Σ,
∂nĉ = ∂nτ̂ + (τ̂ − τw) = û1 = 0, Γw

∂nĉ + ĉ = ∂nτ̂ − ĉ = û2 + g(ĉ) = 0, M,

(1.6)

with g(ĉ) = ĉ
1+ĉ , D, κ, φ, po given constants and pi an unknown constant. As the

pressure is defined up to a constant we will take po = 0.
Here and throughout this paper, for a function ϕ defined in Aγ ∪G, [ϕ] : Σ �→ R denotes
the so-called slope function on Σ. If ϕ is smooth on each side of Σ, say ϕ ∈ C0(Aγ ∪Σ),
ϕ ∈ C0(G ∪ Σ), then

[ϕ](x1) = lim
x2→0,x2>0

ϕ(x1, x2) − lim
x2→0,x2>0

ϕ(x1,−x2), ∀x1 ∈ (0, l).

If ϕ is less regular, then the trace of ϕ on Σ, in any appropriate sense, will be considered.
For example, if ϕ ∈ H1(Aγ ∪ G), then [ϕ] ∈ H1/2(Σ) is defined as the difference of the
trace on Σ of ϕ ∈ H1(G) with the trace on Σ of ϕ ∈ H1(Aγ), and the above formula for
[ϕ](x) holds for almost all x1 ∈ (0, l).

In real applications, the O2 concentration ĉ on M has a large variation, which leads to
a non-uniform current production. This implies a non-uniform temperature distribution
with a maximum value near (0, h), which decreases the HFC lifetime. So, it is required to
control the ĉ concentration by making it as constant as possible, while making the ĉ total
membrane mass (L1(M) norm) as high as possible. Also, it is required to optimize the
water (vapor) transport through the outlet Γo (in order to maintain a stable reaction)
and to reduce the amount of pressure drop between Γi and Γo (in order to reduce current
production cost).

The only control we consider is γ. For given γ set ĉ(γ) = ĉ, ĉv(γ) := 1 − ĉ(γ),
τ̂(γ), û(γ), p̂(γ), let be the solution of (1.2)–(1.6) corresponding to the domain Aγ . The
discussion in the previous paragraph motivates the introduction of the following shape
functional

E(γ) = ‖ĉ(γ) −−
∫

M

ĉ(γ)‖2
L2(M) − λ

∫
M

ĉ(γ) − δ

∫
Γo

ĉv(γ) + σ(pi − po), (1.7)

where λ, δ, σ are positive parameters. We look for a γ∗ solution of

E(γ∗) = min{E(γ), γ ∈ O}. (1.8)

Let us point out that assuming (1.2)–(1.6) has a smooth solution, one can easily obtain

µ

∫
Aγ

|∇û(γ)|2 +
µ

K

∫
G

û2 =
∫

Γi

p̂(γ)û1(γ) −
∫

Γo

p̂(γ)û1(γ) −
∫

M

p̂(γ)û2(γ).

As p̂ = pi on Γi, from (1.6) it follows that
∫
Γi

p̂(γ)û1 = piφ, which gives

pi =
1
φ

(
µ

∫
Aγ

|∇û(γ)|2 +
µ

K

∫
G

û2 + po

∫
Γo

û1(γ) +
∫

M

p̂(γ)û2(γ)
)

. (1.9)
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Then, the functional E(γ) takes the form

E(γ) = ‖ĉ(γ) −−
∫

M

ĉ(γ)‖2
L2(M) − λ

∫
M

ĉ(γ) − δ

∫
Γo

ĉv(γ)

+
σ

φ

(
µ

∫
Aγ

|∇û(γ)|2 +
µ

K

∫
G

û2 + po

∫
Γo

û1(γ) +

∫
M

p̂(γ)û2(γ)

)
. (1.10)

2. Variational formulation. Assuming (1.2)–(1.6) has a smooth solution, we mul-
tiply (1.2)–(1.5) by smooth test functions ϕ, θ, v, with ∇ · v = 0, and integrate second
order derivative terms by parts. We get

∫
Ωγ

D(∇ĉ · ∇ϕ) + (û · ∇ĉ)ϕ =

∫
Γi

Dϕ∂ν ĉ +

∫
Γγ∪Γo∪Γw

Dϕ∂ν ĉ +

∫
M

Dϕ∂ν ĉ

=

∫
Γi

Dϕ∂ν ĉ −
∫

M

Dĉϕ, (2.1)∫
Ωγ

κ(∇τ̂ · ∇θ) + (û · ∇τ̂)θ =

∫
Γi

κ θ∂ν τ̂ +

∫
Γγ∪Γo∪Γw

κ θ∂ν τ̂ +

∫
M

κ θ∂ν τ̂

=

∫
Γi

κ θ∂ν τ̂ +

∫
Γγ∪Γw

κ θ(τw − τ̂) +

∫
M

κ ĉθ, (2.2)
∫

Aγ

µ(∇û · ∇v) +

∫
G

µ

K
(û · v) =

∫
∂Aγ

µ(v · ∂nγ û) −
∫

∂Aγ

p̂(v · nγ) −
∫

∂G

p̂(v · n)

=

∫
Γi

µ(−v1∂1û1 − v2∂1û2) +

∫
Γo

µ(v1∂1û1 + v2∂1û2)

+

∫
Γγ

µ(v · ∂nγ û) +

∫
Σ

µ(v1∂2û1 + v2∂2û2)

+

∫
Γi

piv1 −
∫

Γo

pov1 −
∫

Γγ∪Σ

p̂(v · nγ) −
∫

Σ∪Γw∪M

p̂(v · n)

= −
∫

Γi

µv2∂1û2 +

∫
Γo

µv2∂1û2 +

∫
Γγ

µ(v · ∂nγ û)

+

∫
Σ

µv1(·, 0−)∂2û1(·, 0−) +

∫
Γi

piv1 −
∫

Γγ∪Γw∪M

p̂(v · νγ). (2.3)

In the last equality we have used the boundary conditions (1.6), in particular the condi-
tion concerning the slope [·], so that the terms on Σ originating from both the Aγ and
G domain equations disappear. Also, we use the divergence free condition ∇ · u = 0,
assumed to be true on the closures Aγ and G, which implies ∂1û1 = −∂2û2 = 0 on Γi∪Γo

because û2 = 0, and ∂2û2 = −∂1û1 = 0 on Σ because û1 = 0 (let us note that û and v
are assumed smooth enough, say C2 functions). The boundary conditions (1.6) suggest
the choice of spaces associated to ĉ, τ̂ and û. Namely, let us introduce the following
spaces:

Ĉ(Aγ) = {ĉ ∈ D(R2), ĉ = ci on Γi}, C(Aγ) = Ĉ(Aγ) − ci,

Ĉ(Aγ) = Ĉ(Aγ)
‖·‖H1(Ωγ )

, C(Aγ) = C(Aγ)
‖·‖H1(Ωγ ) , (2.4)
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where the overline sign denotes the closure with respect to the corresponding norm.
Similarly, let us introduce the spaces for τ̂ and û.

T̂ (Aγ) = {τ̂ ∈ D(R2), τ̂ = τi on Γi}, T (Aγ) = T̂ (Aγ) − τi,

T̂ (Aγ) = T̂ (Aγ)
‖·‖H1(Ωγ)

, T (Aγ) = T (Aγ)
‖·‖H1(Ωγ )(= C(Aγ)), (2.5)

Û(Aγ) = {û = (û1, û2) ∈ D(R2; R2), ∇ · û = 0,∫
Γi

û1 = φ, û1|Γ∪Σ∩Γw
= 0, û2|Γ∪Γi∩Γo

= 0},

U(Aγ) = {v = (v1, v2) = û − û0, û, û0 ∈ Û(Aγ), û0 fixed, v2|M = 0},

Û(Aγ) = Û(Aγ)
‖·‖H1(Aγ )+‖·‖L2(G)

, U(Aγ) = U(Aγ)
‖·‖H1(Aγ )+‖·‖L2(G) .

(2.6)

We point out that the “hat”(̂ ) sets are affine spaces and the corresponding “non-hat”
sets are linear spaces.

Remark 2.1. From the construction of the space Û(Aγ), it follows that for all û =
(û1, û2) ∈ Û(Aγ), the trace û2(·, 0) on Σ is well defined and û2(·, 0) ∈ H1/2(Σ). Indeed,
let ûn = (ûn

1 , ûn
2 ) ∈ Û(Aγ) with ûn → û in Û(Aγ). It follows that ûn → û in H1(Aγ),

which implies ûn
2 (·, 0−) → û2(·, 0−) in H1/2(Σ). On the other hand, we have ûn → û

in L2(G). This implies that û2(·, 0+), the trace on Σ of û2 ∈ L2(G), is well defined
in H−1/2(Σ) because

∫
Σ

û2v2 =
∫

G
û · ∇v2, v = (v1, v2) ∈ U(Aγ); see [18]. This gives

ûn
2 (·, 0+) → û2(·, 0+) in H−1/2(Σ). But ûn

2 (·, 0−) = ûn
2 (·, 0+), which implies û2(·, 0−) =

û2(·, 0+) ∈ H1/2(Σ).
For the û1 component of û in general, unlike for û2, we do not have “continuity” on

Σ. In fact, we have

û1(·, 0−) = 0 in H1/2(Σ), ∂1û1(·, 0−) = ∂2û2(·, 0−) = 0 in H−1/2(Σ). (2.7)

Indeed, the first equality comes from the continuity of the embedding H1(Aγ) ⊂ H1/2(Σ).
For the second equality of (2.7), from ∇ · û = 0 and û · nγ ∈ H1/2(∂Aγ), it follows that
û ∈ C∞(Aγ). Therefore, we have ∂2û ∈ L2(Aγ)×L2(Aγ) and ∇·∂2û = ∂2(∇· û) = 0. It
follows that the map ∂2û ∈ L2(Aγ) × L2(Aγ) �→ (∂2û · nγ) ∈ H−1/2(∂Aγ) is continuous
(see [18]), which implies the continuity of the map ∂2û ∈ L2(Aγ) × L2(Aγ) �→ ∂2û2 ∈
H−1/2(Σ). As ∂1û1 = −∂2û2 in L2(Aγ) it follows that ∂2û = (∂2û1,−∂1û1) ∈ L2(Aγ) ×
L2(Aγ) �→ −∂1û1 ∈ H−1/2(Σ) is also continuous, and therefore ∂1û1 ∈ H−1/2(Σ) and
∂1û1 = −∂2û2 in H−1/2(Σ). Finally, we get ∂1û1 = ∂2û2 = 0 in H−1/2(Σ) because Û is
the H1(Aγ)×H1(Aγ) closure of free divergence elements û with 0 = û1 = ∂1û1 = −∂2û2

on Σ, and therefore the continuity of ∂2û ∈ L2(Aγ) × L2(Aγ) �→ ∂2û2 = −∂1û1 ∈
H−1/2(Σ) proves (2.7). �
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Using (1.6), (2.1)–(2.3) and the spaces (2.4)–(2.6), we get the following weak formu-
lation. Find (ĉ, τ̂ , û) ∈ Ĉ(Aγ) × T̂ (Aγ) × Û(Aγ) with û2 = −g(ĉ) on M , satisfying∫

Ωγ

D(∇ĉ · ∇ϕ) + (û · ∇ĉ)ϕ +

∫
M

Dĉϕ = 0, ∀ϕ ∈ C(Aγ), (2.8)
∫

Ωγ

κ(∇τ̂ · ∇θ) + (û · ∇τ̂)θ +

∫
Γγ∪Γw

κ τ̂θ −
∫

M

κ ĉθ =

∫
Γγ∪Γw

κ τwθ, ∀θ ∈ T (Aγ), (2.9)
∫

Aγ

µ(∇û · ∇v) +

∫
G

µ

K
(û · v) = 0, ∀v ∈ U (Aγ). (2.10)

The boundary terms of (2.3) disappear because of the choice of the space U . Finally, we
can look for the solution of (2.8)–(2.10) in the form

(c, τ,u) ∈ C(Aγ) × T (Aγ) × U(Aγ), ĉ = c + ci, τ̂ = τ + τi, û = u + uc,

uc = (uc
1, u

c
2) ∈ Û(Aγ), uc

2 = −g(ĉ) on M,
(2.11)

satisfying ∫
Ωγ

D(∇c · ∇ϕ) + (û · ∇c)ϕ +

∫
M

Dcϕ = −
∫

M

Dciϕ, ∀ϕ ∈ C(Aγ), (2.12)
∫

Ωγ

κ(∇τ · ∇θ) + (û · ∇τ)θ +

∫
Γγ∪Γw

κ τθ −
∫

M

κ cθ =

∫
Γγ∪Γw

κ (τw − τi)θ

+

∫
M

κciθ, ∀θ ∈ T (Aγ), (2.13)∫
Aγ

µ(∇u · ∇v) +

∫
G

µ

K
(u · v) =

∫
Aγ

µ(−∇uc · ∇v) +

∫
G

µ

K
(−uc · v),

∀v ∈ U (Aγ). (2.14)

Let us emphasize that the choice of the space U(Aγ) and the decomposition û = u + uc

are appropriate for proving the existence of the solution, as they eliminate the pressure
term (the integral on M) from the û equation (2.3).

Finally, problems (2.8)–(2.10) and (2.12)–(2.14) are equivalent in the following sense.
A solution (c, τ,u) of (2.12)–(2.14) gives a solution (ĉ, τ̂ , û) = (c + ci, τ + τi,u + uc) of
(2.8)–(2.10). On the other hand, a solution (ĉ, τ̂ , û) of (2.8)–(2.10) in general may give
many solutions (c, τ,u) of (2.12)–(2.14), depending on the decomposition û = u+uc. In
what follows, for a given (ĉ, τ̂ , û), we will consider a unique decomposition û = u + uc,
with uc given by Proposition 3.5.

3. Existence of the state solution and of the optimal shape. In this section we
consider the system of PDEs (2.11), (2.12)–(2.14), and the shape optimization problem
(1.8). We will prove that the system has a solution using a compactness argument.
Namely, we will first show that for a given û ∈ Lq(Ωγ), q > 2, there exists a unique
(ĉ, τ̂ ) ∈ Ĉ(Aγ) × T̂ (Aγ) solution of (2.8), (2.9), uniformly bounded in H1(Ωγ)2. Then,
(2.10) has a unique solution û uniformly bounded in H1(Ωγ). A compactness argument
gives an existence result for (2.8)–(2.10).

There is a large amount of literature for elliptic nonlinear PDE systems, for exam-
ple (certainly a non-exhaustive list) [3], [4], [12], [15]. The particularity of the system
(2.8)–(2.10) is that the principal part of the third equation does not involve the second
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derivatives in the whole domain and so, in general, the terms (û · ∇ĉ)ϕ and (û · ∇τ̂ )θ
are not well defined. Also, the set of boundary conditions requires particular attention
as they involve nonlinearities and the pressure boundary conditions. For these reasons
this system of equations needs a particular treatment.

Proposition 3.1. Let û ∈ Lq(Aγ ∪ G), q > 2, (c, τ) ∈ C(Aγ) × T (Aγ) satisfying (2.8),
(2.9). Then (c, τ) ∈ Cα(Ωγ), 0 < α < 1.

Proof. The function c satisfies, in the weak sense, −D∆c = f in Ωγ , f = −û·∇c , with
mixed Dirichlet and Neumann boundary conditions on ∂Ωγ . Moreover, f ∈ (W 1,p(Ωγ))′,
p = (2q)/(q − 2) > 2 because for ϕ ∈ W 1,p(Ωγ) we have∣∣∣∣∣

∫
Ωγ

fϕ

∣∣∣∣∣ ≤ ‖∇c‖L2(Ωγ)‖û‖Lq(Ωγ)‖ϕ‖Lp(Ωγ).

From [5] (Theorem 4), it follows that c ∈ W 1,p(Ωγ), for a p > 2, and from Morrey’s
theorem it follows that c ∈ Cα(Ωγ). The proof for τ is exactly as for c. �

Remark 3.2. (i) The continuity and Cα-regularity of c, τ may be proven in different
ways, for example using the techniques in [12] estimating osc (Sec. 4, Chapter 2).
(ii) The previous proposition provides C0 bounds for ĉ, τ̂ . In order to obtain a more
explicit dependence of all the constants involved on these bounds, we will prove directly
the C0 boundedness of ĉ, τ̂ .

Proposition 3.3. Assume û ∈ Lq(Aγ ∪ G), q > 2, (c, τ) ∈ C(Aγ) × T (Aγ) satisfying
(2.12), (2.13). Then ĉ = c + ci, τ̂ = τ + τi satisfy

0 ≤ ĉ ≤ ci, x ∈ Ωγ , 2 (3.1)

τ̂m := min{τi, inf τw} ≤ τ̂ ≤ τ̂M , x ∈ Ωγ , (3.2)

where τ̂M depends only on (ci, τi, τw, k, α, β, G).

Proof. The proof follows the techniques used in [6], [12].
a) ĉ ≥ 0. We can apply the technique used for proving the weak maximum principle
in [6]. Indeed, let m = inf{ĉ(x), x ∈ Ωγ}. Assume for a moment that m < 0. For
m < k < 0, set ck = min{ĉ − k, 0}. Then ck ∈ C(Aγ), ∇ck = ∇ĉ = ∇c in Zk := {ĉ < k},
and of course ck = c − k in Zk and ck = 0 in Ωγ\Zk. Taking ϕ = ck in (2.12), we get

0 ≤
∫

Zk

D|∇ck|2 = −
∫

M

Dĉck −
∫

Zk

(û · ∇c)ck

(as ĉck ≥ 0) ≤
∫

Zk

|(û · ∇ck)ck|(
p =

2q

q − 2

)
≤ ‖û‖Lq(Zk)‖1‖L2p(Zk)‖ck‖L2p(Zk)‖∇ck‖L2(Zk)

(from Sob. ineq.) ≤ C(Ωγ)‖û‖Lq(Zk)|Zk|
1
2p ‖∇ck‖2

L2(Zk),

which implies D ≤ C(Ωγ)‖û‖Lq(Zk)|Zk|1/(2p) with C(Ωγ) not depending on Zk. As
k �= m it follows that ‖∇ck‖L2(Zk) �= 0. This implies that 1 ≤ K|Zk|1/(2p), which is
impossible if we let k → m because |Zk|1/(2p) → 0. This proves m ≥ 0.
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b) ĉ ≤ ci. Let m = sup{ĉ(x), x ∈ Ωγ}. Assume for a moment that m > ci. Then for
ci < k < m, as in part a), set ck = max{ĉ− k, 0}, Zk = {ĉ > k}. Again, ck ∈ C(Aγ) and
cck ≥ 0. As in case a), we find that

0 ≤
∫

Zk

D|∇ck|2 ≤ ‖û‖Lq(Zk)‖1‖L2p(Zk)‖ck‖L2p(Zk)‖∇ck‖L2(Zk).

We proceed exactly as in part a) and we find that m > ci leads to a contradiction, which
implies ĉ ≤ ci.
c) τ̂ ≥ τm. The proof very closely follows the proof for part a). Indeed, let m =
inf{τ̂(x), x ∈ Ωγ} and assume for a moment that m < τ̂m. For m < k < τ̂m, set
τk = min{τ̂ − k, 0}. Then τk ∈ T (Aγ) and ∇τk = ∇τ̂ = ∇τ in Zk := {τ̂ < k}. Taking
θ = τk in (2.13) we get

0 ≤
∫

Zk

κ|∇τk|2 =
∫

M

κĉτk +
∫

Γγ∪Γw

κ(τw − τ̂)τk −
∫

Zk

(û · ∇τk)τk

(as ĉτk, (τw − τ̂)τk ≤ 0 in Zk) ≤
∫

Zk

|(û · ∇τk)τk|

≤ ‖û‖Lq(Zk)‖1‖L2p(Zk)‖τk‖L2p(Zk)‖∇τk‖L2(Zk).

Next, we proceed exactly as we did in part a).
d) τ̂ ≤ τM . The proof of this estimation is a little bit different, due to the boundary
conditions. However, in the case D = κ the proof is very easy by considering v = c + τ ,
v̂ = ĉ + τ̂ . Then∫

Ωγ

κ(∇v · ∇θ) + (u · ∇v)θ =
∫

Γ∪Γw

(2τw − v̂)θ, ∀θ ∈ T (Aγ).

We proceed as in a) and easily obtain an upper bound for v̂ and also for τ̂ .
In general, we use the result in [12] (Lemma 5.3, Chap. 2). Indeed, let k0 =

max{sup τw + ci, τi}. For k ≥ k0 set τk = max{τ̂ − k, 0}. From (2.13) we get∫
Zk

κ|∇τ |2

=
∫

M

κĉτk +
∫

Γγ∪Γw

κ(τw − τ̂ )τk −
∫

Zk

(û · ∇τk)τk

≤ κ

(
ci

∫
M

τk +
∫

Γγ∪Γw

(τw − τ̂ )τk

)
+

∫
Zk

|(û · ∇τk)τk|

= κ

(
ci

∫
Zk

∂2τk − ci

∫
Γγ

νγ
2 τk +

∫
Γγ∪Γw

(τw − τ̂)τk

)
+

∫
Zk

|(û · ∇τk)τk|

= κ

(
ci

∫
Zk

∂2τk +
∫

Γγ

(τw − ciν
γ
2 − τ̂)τk +

∫
Γw

(τw − τ̂ )τk

)
+

∫
Zk

|(û · ∇τk)τk|

≤ κci‖∂2τk‖L1(Zk) + ‖û‖Lq(Zk)‖1‖L2p(Zk)‖τk‖L2p(Zk)‖∇τk‖L2(Zk)

≤ κci(ε−1|Zk| + ε‖∇τk‖2
L2(Zk)) + ε−1|Zk|1/p + εC(α, β, G)‖û‖2

Lq(Zk)‖∇τk‖4
L2(Zk)

≤ ε−1(κci|Zk| + |Zk|1/p) + ε(κci + C(α, β, G)‖û‖2
Lq(Ωγ)‖∇τ‖2

L2(Ωγ))‖∇τ‖2
L2(Zk),
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because τw − νγ
2 ci ≤ τ̂ , τw ≤ τ̂ in Zk. In the previous estimations we have used the

Poincaré inequality in Ωγ which makes the constant C(k, α, β, G) appear. For ε > 0
small, it follows that ‖∇τ‖2

L2(Zk) ≤ K|Zk|1/p. From Lemma 5.3, Chap. 2, [12] follows
the upper boundedness of τ , and consequently of τ̂ . �

Proposition 3.4. For given û ∈ Lq(Aγ ∪ G), q > 2, the system (2.12), (2.13) has a
unique solution (c, τ) ∈ C(Aγ) × T (Aγ) satisfying

‖∇c‖L2(Ωγ) ≤ C(G)ci(1 + ‖û‖L2(Ωγ)), (3.3)

‖∇τ‖L2(Ωγ) ≤ C(k, α, β, G)(ci + |τi − τw| + τ̂M‖û‖L2(Ωγ)). (3.4)

Proof. If we assume uniqueness, then the existence of the solution is obtained following
the classical existence theory for second order elliptic linear PDE (systems), as in [6], [12].
For sake of completeness we will present a direct proof. Equation (2.12) is independent
from (2.13), so we can solve c first. We set L : C �→ C∗, where C∗ is the dual space of C,
defined by

Lc(ϕ) =
∫

Ωγ

D(∇c · ∇ϕ) + (û · ∇c)ϕ +
∫

M

Dcϕ, ∀ c, ϕ ∈ C

and L(c, ϕ) = Lc(ϕ). We point out that (2.12) is equivalent to L(c) = l, where l(ϕ) =
−

∫
M

ciϕ. To prove the existence of c we follow the technique used in [6] (Section 8.2).
The bilinear form L is continuous in C because

|L(c, ϕ)| ≤
∫
Ωγ

D|∇c · ∇ϕ| + |û · ∇c||ϕ|
≤ D‖∇c‖L2(Ωγ)‖∇ϕ‖L2(Ωγ) + ‖û‖Lq(Ωγ)‖ϕ‖Lp(Ωγ)‖∇c‖L2(Ωγ) ( 1

p + 1
q = 1

2 )

≤ D‖∇c‖L2(Ωγ)‖∇ϕ‖L2(Ωγ)

+‖û‖Lq(Ωγ)C(Ωγ)‖∇ϕ‖2
L2(Ωγ)‖∇c‖2

L2(Ωγ) (Sobolev ineq.)

≤ C‖∇c‖L2(Ωγ)‖∇ϕ‖L2(Ωγ).

Also, we have |L(c, c)| ≥ D‖∇‖2
L2(Ωγ) −

∫
Ωγ

|û · ∇c)c|. From the estimation∫
Ωγ

|û · ∇c)c| ≤ ‖û‖Lq(Ωγ)‖c‖Lp(Ωγ)‖∇c‖L2(Ωγ) ( 1
p + 1

q = 1
2 )

≤ ‖û‖Lq(Ωγ)(C(ε)‖c‖2
Lp(Ωγ) + ε‖∇c‖2

L2(Ωγ))

≤ ‖û‖Lq(Ωγ)

(
C(ε)

(
K(ε)‖c‖2

L2(Ωγ) + ε
C(ε)‖∇c‖2

L2(Ωγ)

)
(Ehrling’s ineq.)

+ ε‖∇c‖2
L2(Ωγ)

)
≤ ‖û‖Lq(Ωγ)

(
C(ε)K(ε)‖c‖2

L2(Ωγ) + 2ε‖∇c‖2
L2(Ωγ)

)
where we have used Ehrling’s inequality ‖c‖Lp(Ωγ) ≤ C(ε)‖c‖L2(Ωγ)+ε‖c‖H1(Ωγ), because
the embedding H1(Ωγ) ⊂ Lp(Ωγ) is compact and Lp(Ωγ) ⊂ L2(Ωγ) is continuous, and
|ab| ≤ K(ε)a2 + εb2. For ε small, it follows that |L(c, c)| ≥ K‖∇c‖2

L2(Ωγ) − λ‖c‖2
L2(Ωγ),

for any K, λ > 0. From the Lax-Milgram lemma it follows that the equation Lλc = l,
with Lλc = Lc + λc, has a unique solution in C. The equation Lc = l is equivalent to
(Lλ − λI)c = l, or (I − λL−1

λ I)c = L−1
λ l, where I : C :�→ C∗ is the identity operator,

which is compact, and L−1
λ is the inverse of Lλ, which is continuous. It follows that L−1

λ I

is compact. Assuming that Lc = l has at most one solution, it follows that the kernel of
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I −λL−1
λ I = L−1

λ L is reduced to {0}. From Fredholm alternatives for compact operators
follows the existence of c.

To prove the existence of τ we proceed in a similar way.
For uniqueness, let us assume that the system has at least two solutions and let

δc ∈ C(Aγ), resp. δτ ∈ T (Aγ), be the difference of two c, resp. τ solutions. Then δc

satisfies ∫
Ωγ

D(∇δc · ∇ϕ) + (û · ∇δc)ϕ +
∫

M

Dδcϕ = 0, ∀ϕ ∈ C(Aγ).

Using Proposition 3.3 for δc instead of ĉ, it follows that δc = 0 a.e. in Ωγ . Then, from
(2.13) we get∫

Ωγ

κ(∇δτ · ∇θ) + (û · ∇δτ )θ +
∫

Γγ∪Γw

κδτθ = 0, ∀θ ∈ T (Aγ).

Following exactly the same technique as in the proof of Proposition 3.3 it is easy to
deduce that δτ = 0, and thus uniqueness is proved.

Now let us prove (3.3), (3.4). Taking ϕ = c in (2.12) we get
∫

Ωγ

D|∇c|2 +
∫

M

Dc2 = −
∫

M

Dcic −
∫

Ωγ

(û · ∇c)c ≤ ci

(∫
M

|c| +
∫

Ωγ

|û · ∇c|
)

≤ C(G)ci(1 + ‖û‖L2(Ωγ))‖∇c‖L2(Ωγ),

where we have used trace inequality. Thus (3.3) is proved.
For the estimation of (3.4), taking θ = τ in (2.13) implies∫

Ωγ

κ|∇τ |2 +

∫
Γγ∪Γw

κτ2 =

∫
Γγ∪Γw

κ (τw − τi)τ +

∫
M

κ ĉτ −
∫

Ωγ

(û · ∇τ)τ

≤ (κ|τw − τi| + ci)

∫
∂Ωγ

|τ | +
∫

Ωγ

|û · ∇τ ||τ |

≤ C(k,α, β, G)
(
|τw − τi| + ci + τ̂M‖û‖L2(Ωγ)

)
‖∇τ‖L2(Ωγ),

which proves the proposition. �
Now, let us turn our attention to equation (2.14). For given c ∈ C(Aγ), the function

uc = (uc
1, u

c
2) can be constructed similarly to [12], [18]. Namely, we have

Proposition 3.5. Let ĉ = c + ci ∈ Ĉ(Aγ) be given. There exists uc = (û1, û2) ∈ Û(Aγ)
satisfying û2 = −g(ĉ) on M in the H1/2(Σ)-sense and

‖uc‖H1(Aγ) + ‖uc‖Lp(G) ≤ C(k, α, β, G)(φ + ‖ĉ‖Lp(M)), 1 ≤ p < ∞. (3.5)

Proof. For γ ∈ O, if we set

A0 = {(x1, x2), 0 < x1 < −α1
k , γ(x1) < x2 < 0},

Al = {(x1, x2), l + β1
k < x1 < l, γ(x1) < x2 < 0},

then A0 ∪ Al ⊂ Aγ . Now, let ϕ ∈ D(R2) be such that

supp(ϕ) ∩ {(0, 0), (l, 0), (0, γ(0)), (l, γ(l))} = empty, Aγ ∩ supp(ϕ) ⊂ A0 ∪ Al,∫
Σ

ϕ =
∫
Γi

ϕ =
∫
Γo

ϕ = 1.
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We can choose the velocity uc to satisfy the following boundary conditions:

uc
2 = −g(ĉ) on M,

uc
1 = 0 on Γw,

uc
1 = 0, uc

2 = −ϕ
∫

M
g(ĉ) on Σ,

uc
2 = 0, uc

1 = φϕ on Γi,

uc
2 = 0, uc

1 =
(
φ +

∫
M

g(ĉ)
)
ϕ on Γo,

uc
1 = 0, uc

2 = 0 on Γ.

(3.6)

Let us point out that uc satisfies the divergence-free compatibility conditions
∫

∂Aγ uc ·
nγ =

∫
∂G

uc · n = 0. We look for uc in the form uc = (∂2ψ,−∂1ψ). Then such a ψ must
satisfy

ψ(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ on Γw ∩ {x1 = 0},
φ +

∫ x1

0
g(ĉ)(t, h)dt on M,

φ +
∫ l

0
g(ĉ)(t, h)dt on Γw ∩ {x1 = l},

φ +
∫

M
g(ĉ)

∫ x1

0
ϕ(t, 0)dt on Σ,

φ
∫ x2

γ(0)
ϕ(0, t)dt on Γi,(

φ +
∫

M
g(ĉ)

) ∫ x2

γ(l)
ϕ(l, t)dt on Γo,

0 on Γ.

(3.7)

An extension of uc in G can be constructed as follows. Let

ψ(x1, x2) = φ + ξ(x2)
∫ x1

0

g(ĉ)(t, h)dt + ξ(h − x2)
∫ x1

0

ϕ(t, 0)dt

∫
M

g(ĉ),

where ξ(t) ∈ C∞(R) is an appropriate function satisfying

ξ(t) = 1 − ξ(h − t) = ξ′(t) − ξ′(h − t), t ∈ R,

ξ(t) = ξ′(t) = 0, t ≤ h
6 .

The function ξ may be constructed as follows. Let η(t) be given by{
ξ(t) = ξ(h − t) − 1 = 0, t < h

3 ,

ξ(t) = 3
h t − 1, 1

3h ≤ t ≤ 2
3h,

let η(t) be the standard mollifier and let ηn(t) = n−2η(n−1t). Then ξ(t) = ηn ∗ ξ satisfies
the requirements. It follows that

uc
1 = ξ′(x2)

∫ x1

0
g(ĉ)(t, h)dt − ξ′(h − x2)

∫ x1

0
ϕ(t, 0)dt

∫
M

g(ĉ),

uc
2 = −ξ(x2)g(ĉ)(x1, h) − ξ(h − x2)ϕ(x1, 0)

∫
M

g(ĉ).

As ĉ is bounded and positive it follows that |g(ĉ)| ≤ ĉ, ‖g(ĉ)‖Lp(M) ≤ ‖ĉ‖Lp(M) and

uc ∈ Lp(G), ‖uc‖Lp(G) ≤ C(G)‖g(ĉ)‖Lp(M) ≤ C(G)‖ĉ‖Lp(M). (3.8)

Let us point out that the previous estimation does not depend on γ. Moreover, uc
2 is

differentiable w.r.t. x2 and u2
c(x1, h) = −g(ĉ) ∈ H1/2(Σ).
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The extension of ψ in Aγ may be constructed as follows. For x = (x1, x2) ∈
Aγ\(A0 ∪ Al) we set ψ(x) = 0. In A0 ∪ Al we set

ψ(x) =

⎧⎪⎨
⎪⎩

ψ(0, x2 − kx1)ξ
(

x2
2h

x2
1+x2

2

)
+ ψ(x1 − x2

k , 0)ξ
(

x2
1h

x2
1+x2

2

)
, x ∈ A0,

ψ(0, x2 + k(l − x1))ξ
(

x2
2h

(x1−l)2+x2
2

)
+ ψ(x1 + x2

k , 0)ξ
(

(x1−l)2h
(x1−l)2+x2

2

)
, x ∈ Al.

(3.9)
Let us point out that from the choice of supp(ϕ), in a neighborhood of (0, 0), resp.
(l, 0), we have ψ(x1, x2) = ψ(0, 0) = φ, resp. ψ(x1, x2) = ψ(l, 0) = φ +

∫
M

g(ĉ). Also,
uc

1 = 0 in a neighborhood of Σ because from the properties of ξ we have ψ(x1, x2) =
ψ(x1, 0). Similarly, we have uc

2 = 0 in a neighborhood of Γi and Γ0. From the extension
(3.9) it follows that ‖uc‖H1(Aγ) will be bounded only by ‖ψ(x1, 0)‖H2 , ‖ψ(0, x2)‖H2 ,
‖ψ(l, x2)‖H2 . From (3.7) it follows that ‖uc‖H1(Aγ) ≤ C(k, α, β, G)(φ + ‖ĉ‖L2(M)) (as ĉ

is bounded and positive), which with (3.8) proves the estimation (3.5).
Finally, let us point out that uc belongs to Û(Aγ). Indeed, first we may extend uc to

an H1(R2)2 function with compact support, because ∂Ω is Lipschitz. Next, consider the
sequence un = ηn ∗ uc + αnv, with v ∈ D(R2; R2), fixed, supp(v) ∩ Σ empty, ∇ · v = 0,∫
Γi

v1 = 1, and appropriate αn such that
∫
Γi

un
1 = φ. Of course ηn ∗ uc → uc in

Û(Aγ). It follows that
∫
Γi

un
1 →

∫
Γi

uc
1 = φ, and thus αn → 0. For n large we have

un ∈ Û(Aγ) because of the choice of the support of ϕ and the function ξ, which proves
that uc ∈ Û(Aγ). �

Remark 3.6. Assume û ∈ Lq(Aγ ∪ G)2, q > 2. From Proposition 3.1 we have
ĉ ∈ C0(Ωγ), and from Proposition 3.3 we get

‖uc‖H1(Aγ) + ‖uc‖Lp(G) ≤ C(k, α, β, G)(φ + ci). (3.10)

Proposition 3.7. For given ĉ ∈ Ĉ(Aγ) let uc = (uc
1, u

c
2) ∈ Û(Aγ), uc

2 = −g(ĉ) as in
Proposition 3.5. Then equation (2.14) has a unique solution u ∈ U(Aγ). Moreover,
û = u + uc ∈ Û(Aγ) ∩ H1(Aγ ∪ G)2 is the unique solution of (2.10) and

‖û‖H1(Aγ) + ‖û‖H1(G) ≤ C(k, α, β, G)(ci + (1 + ci)(φ + ‖ĉ‖L2(M))). (3.11)

Proof. The existence of the solution u ∈ U(Aγ) follows immediately from the Lax-
Milgram lemma. For the estimation (3.11), taking v = u in (2.14) yields

∫
Aγ

µ|∇u|2 +
∫

G

µ

K
|u|2 ≤ µ‖∇uc‖L2(Aγ)‖∇u‖L2(Aγ) +

µ

K
‖uc‖L2(G)‖u‖L2(G)

≤
(
µ‖∇u‖2

L2(Aγ) +
µ

K
‖u‖2

L2(G)

)1/2

(
µ‖∇uc‖2

L2(Aγ) +
µ

K
‖uc‖2

L2(G)

)1/2

, (3.12)

which implies ‖u‖U(Aγ) ≤ C‖uc‖U(Aγ). Combining this estimation with (3.5) gives

‖u‖U(Aγ) + ‖û‖U(Aγ) ≤ C(k, α, β, G)(φ + ‖ĉ‖L2(M)). (3.13)
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Now, let us prove û ∈ H1(G)2 and let us find an estimation for ‖∇û‖L2(G). From [12],
[15], [18], the decomposition L2 = H ⊕ H1 ⊕ H2 is valid for a Lipschitz domain. Here

L2 = L2(G) × L2(G), H = {û ∈ L2, ∇ · û = 0, tr(û) = 0},
H1 = {û = ∇p̂, p̂ ∈ H1(G), ∆p̂ = 0}, H2 = {û = ∇q̂, q̂ ∈ H1

0 (G)},
where “tr” is the trace operator on ∂G, well defined as G is Lipschitz domain, and L2(G),
H1(G), H1

0 (G) are the usual Sobolev spaces. For û = u + uc, with u being the solution
of (2.14), we have û ∈ L2 and

∫
G

û ·v = 0 for all v ∈ H. This implies û ∈ H1 ⊕H2, and
thus û = ∇p̂, p̂ ∈ H1(G). As ∇ · û = 0 it follows that ∆p̂ = 0, so û ∈ H1. Following the
construction of H1 in [15], [18] we find that

û = ∇p̂, p̂ ∈ H1(G), ∆p̂ = 0 in G, ∂np̂ = û · n on ∂G.

Let us recall that

û · n = −g(ĉ) on M, û · n = 0 on Γw, û · n = −û2(·, 0+) = −û2(·, 0−) on Σ.

It follows that p̂ ∈ H2(G). Indeed, the function p̂ can be extended by reflection to a
harmonic function in a domain, say R = {(x1, x2),−l < x1 < 2l, 0 < x2 < h}. The
extension is possible because ∂1p̂(0, ·) = ∂1p̂(l, ·) = 0. Let �̂ be the extension of p̂ in R

as follows:

�̂(x1, ·) = p(−x1, ·), x1 ∈ (−l, 0), �̂(x1, ·) = p(2l − x1, ·), x1 ∈ (0, 2l).

As we have

∂2�̂(x1, 0) =

⎧⎨
⎩

û2(−x1, 0), x1 ∈ (−l, 0),
û2(x1, 0), x1 ∈ (0, l),
û2(2l − x1, 0), x1 ∈ (l, 2l),

−∂2�̂(x1, h) =

⎧⎨
⎩

g(ĉ)(−x1, h), x1 ∈ (−l, 0),
g(ĉ)(x1, h), x1 ∈ (0, l),
g(ĉ)(2l − x1, h), x1 ∈ (l, 2l),

from the construction of the spaces C(Aγ) and U(Aγ) it follows that ∂2�̂(x1, 0), ∂2�̂(x1, h)
belong to H1/2(−l, 2l) because g(ĉ) ∈ H1(Ωγ), û ∈ H1(Aγ). From regularity results for
the Neumann problem, [7], [15], it follows that �̂ ∈ H2(R). Thus p̂ ∈ H2(G) and
‖p̂ − −

∫
2

G
p̂‖H2(G) ≤ C(G)‖û · n‖H1/2(∂G). From the boundedness of ĉ it follows that

‖g(ĉ)‖H1(G) ≤ ‖ĉ‖H1(G) and we get

‖û‖H1(G) ≤ ‖∇p̂‖H1(G) ≤ C(G)‖û · n‖H1/2(∂G)

≤ C(G)(‖ĉ‖H1(G) + ‖û‖H1(Aγ))

(using (3.3), ≤ C(G)(ci(1 + ‖û‖L2(Ωγ)) + ‖û‖H1(Aγ))

≤ C(G)(ci + (1 + ci)‖û‖U(Aγ))

using (3.13)) ≤ C(k, α, β, G)(ci + (1 + ci)(φ + ‖ĉ‖L2(M))), (3.14)

which completes (3.11). �
Remark 3.8. For K large, estimation (3.11) is independent of K. Indeed, estimation

(3.12) gives an estimation for ‖∇u‖L2(Aγ) independent of K because of the bounds (3.5)
or (3.10). We can proceed with the estimation of ‖u‖H1(G) given by (3.14), which is
given only in terms of û on Σ and of ĉ on M , independent of K.

Proposition 3.9. The system (2.8)–(2.10) has a solution (ĉ, τ̂ , û) ∈ Ĉ(Aγ) × T̂ (Aγ) ×
Û(Aγ), (ĉ, τ̂ , û) = (c + ci, τ + τi,u + uc). If ci, φ are small enough, then the solution is
unique.
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Proof. The existence of a solution follows by using a classical compactness argument.
Indeed, let (ĉ0, τ̂0) = (ci, τi) be given. For n ∈ N, we assume that (ĉn, τ̂n) is given and we
set ûn = un +ucn

, where ucn

is given by Proposition 3.5 for ĉ = ĉn and un is the solution
of (2.14). Moreover, we set (ĉn+1, τ̂n+1) = (cn+1 + ci, τ

n+1 + τi) where (cn+1, τn+1) is
the solution of (2.12), (2.13) for û = ûn. The estimations (3.1), (3.2), (3.3), (3.4), (3.5),
(3.10), (3.11) give uniform bounds for the sequence (ĉn, τ̂n, ûn) in H1(Ωγ)4. It follows
that the sequence of (ĉ, τ̂ , ûn) will converge weakly in H1(Ωγ)4, and strongly in Hs(Ωγ)4,
s < 1. It also follows that the sequence of the traces on ∂Ωγ of ĉn and τ̂n will converge
strongly in Hs−1/2(∂Ωγ), which also implies the convergence in L1(M) of the sequence
of g(ĉn). Then, we can pass to the limit in equations (2.8)–(2.10).

For uniqueness, let us assume that the system has at least two solutions (ĉm, τ̂m, ûm) =
(cm + ci, τm + τi,um + ucm), m = 1, 2, and let δc = ĉ1 − ĉ2, δτ = τ̂1 − τ̂2, δû = û1 − û2,
δuc = uc1 − uc2 . From (2.12), (2.14) it follows that δc and δu satisfy∫

Ωγ

D(∇δc · ∇ϕ) +
∫

M

Dδcϕ =−
∫

Ωγ

(û1 · ∇δc)ϕ + (δû · ∇c2)ϕ, (3.15)

∫
Aγ

µ(∇δu · ∇v) +
∫

G

µ

K
(δu · v) = −

∫
Aγ

µ(∇δuc · ∇v) −
∫

G

µ

K
(δuc · v), (3.16)

for all ϕ ∈ C(Aγ) and v ∈ U(Aγ). Now, with ϕ = δc in (3.15) we obtain

D‖∇δc‖2
L2(Ωγ) ≤

∫
Ωγ

|(û1 · ∇δc)δc| + |(δû · ∇c2)δc|

≤ ‖û‖L4(Ωγ)‖∇δc‖L2(Ωγ)‖δc‖L4(Ωγ) + ‖δû‖L4(Ωγ)‖∇c2‖L2(Ωγ)‖δc‖L4(Ωγ)

≤ C
(
‖û‖L4(Ωγ)‖∇δc‖L2(Ωγ) + ‖δû‖L4(Ωγ)‖∇c2‖L2(Ωγ)

)
‖∇δc‖L2(Ωγ). (3.17)

Let us estimate ‖δû‖L4(Ωγ) in terms of ‖∇δc‖L2(Ωγ). Equation (3.16) with v = δu gives
‖δu‖U(Aγ) ≤ C‖δuc‖U(Aγ). Proposition 3.5 with δc instead of ĉ gives

‖δuc‖H1(Aγ) + ‖δuc‖Lp(G) ≤ C(k, α, β, G)‖δc‖Lp(M), 1 ≤ p < ∞, (3.18)

because δc = 0 on Γi. It follows that

‖δû‖H1(Aγ) + ‖δû‖L2(G) ≤ C(k, α, β, G)‖δc‖L2(M) ≤ C(k, α, β, G)‖∇δc‖L2(Ωγ). (3.19)

It remains to find an estimation for ‖δû‖L4(G) in terms of ‖∇δc‖L2(Ωγ). Let us remember
that

∇ · δû = 0 in Ωγ ,

δû · n = −δg := − δc

(1+ĉ1)(1+ĉ2)
on M,

δû · n = 0 on Γw, δû · n = −δû2(·, 0+) = −δû2(·, 0−) on Σ.

From Proposition 3.3, 3.4, 3.7, it’s easy to prove that for 1 < q < 2 we have

‖δg‖W 1,q(G) ≤ C(q)(‖δc‖L2(G) + ‖∇c2‖L2(G)‖∇δc‖L2(G))

≤ C(q, k, α, β, G)Q(ci, φ)‖∇δc‖L2(Ωγ), (3.20)

where Q(ci, φ) is a polynomial function of (ci, φ). Then, from Lq regularity results for
the Neumann problem, as in Proposition 3.7 (but with 1 < q < 2 instead of q = 2, [1]),
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it follows that δû ∈ W 1,q(G) and

‖δû‖W 1,q(G) ≤ C(G)(‖δg‖W 1,q(G) + ‖δû‖W 1,q(Aγ))

(using (3.19), (3.20)) ≤ C(q, k, α, β, G)Q(ci, φ)‖∇δc‖L2(Ωγ),

which from the Sobolev inequality for q ≈ 2 gives

‖δû‖L4(G) ≤ C(q, k, α, β, G)Q(ci, φ)‖∇δc‖L2(Ωγ). (3.21)

From (3.17) we obtain

D‖∇δc‖2
L2(Ωγ) ≤ C(·)

(
‖û1‖L4(Ωγ)‖∇δc‖L2(Ωγ) + ‖δû‖L4(Ωγ)‖∇c2‖L2(Ωγ)

)
‖∇δc‖L2(Ωγ)

(using (3.21), ≤ C(·)Q(·)
(
‖û‖L4(Ωγ) + ‖∇c2‖L2(Ωγ)

)
‖∇δc‖2

L2(Ωγ)

using (3.3), ≤ C(·)Q(·)(‖û‖L4(Ωγ) + (1 + ci)‖û‖L2(Ωγ))‖∇δc‖2
L2(Ωγ)

≤ C(·)Q(·)‖û‖H1(Aγ∪G)‖∇δc‖2
L2(Ωγ)

using (3.11), (3.1)) ≤ C(·)Q(·)(ci + (1 + ci)(φ + ci))‖∇δc‖2
L2(Ωγ),

with C(·) = C(q, k, α, β, G) and Q(·) = Q(ci, φ) a polynomial function. If ‖∇δc‖2
L2(Ωγ) �=

0, this implies
D ≤ C(·)Q(·)(ci + (1 + ci)(φ + ci)).

For ci and φ small enough, this inequality is impossible. It follows that ‖∇δc‖2
L2(Ωγ) = 0,

and thus δc = 0. The estimation (3.19) implies that δû = 0. Writing the equation for δτ

and using a similar technique as for δc, it’s easy to conclude that δτ = 0, which proves
the theorem. �

Now let us describe in more detail some properties of the weak solution (ĉ, τ̂ , û) ∈
Ĉ(Aγ) × T̂ (Aγ) × Û(Aγ) of (2.8)–(2.10).

Proposition 3.10. There exists p̂ ∈ L2(Ωγ) such that (ĉ, τ̂ , û, p̂) satisfies (1.2)–(1.5) in
the distribution sense.

Proof. The first two equations of the proposition follow immediately from (2.12)–
(2.13). The third equation follows from (2.3) and Lemma 2.1, [18]. �

The verification of boundary conditions in a stronger sense than that given by (2.8)–
(2.10) is a matter of regularity results, which is not the purpose of this paper. However,
in order to address the shape optimization problem (1.8), we will describe the boundary
conditions related to p̂ and prove the formula giving p̂ on Γi.

Proposition 3.11. There exists p̂ ∈ L2(Aγ) ∩ H2(G) satisfying (1.2)–(1.5) in the dis-
tribution sense and
i) p̂ = pi on Γi, pi ∈ R;
ii) p̂ = po(= 0) on Γo;
iii) the trace of p̂ ∈ L2(Aγ) on Σ is well defined in the H−1/2(Σ) × H

1/2
0 (Σ)-sense and

[p̂] = 0 on Σ in H−1/2(Σ);
iv) the constant pi is given by

pi =
1
φ

(
µ

∫
Aγ

|∇û|2 +
µ

K

∫
G

û2 +
∫

M

p̂û2

)
. (3.22)
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Proof. Equality (2.14) and Remark 1.9, [18], imply the existence of p̂ ∈ L2(Ωγ) such
that µ∆û = ∇p̂ in D′(Aγ) and µû +K∇p̂ = 0 in D′(G). Moreover, from the interior
regularity results for the Stokes equation it follows that û∈C∞

loc(A
γ∪G), p̂∈C∞

loc(A
γ∪G),

and from Proposition 3.7 we have p̂ ∈ H2(G).
Now, let us prove that the trace of p̂ ∈ L2(Aγ) on Γi ∪ Γo ∪ Σ exists. The function

û ∈ H1(Aγ)2 can be extended by reflections as follows. Let

�(x1) =

⎧⎨
⎩

γ(−x1), x1 ∈ (−l, 0),
γ(x1), x1 ∈ (0, l),
γ(2l − x1), x1 ∈ (l, 2l),

and set A
γ = {(x1, x2), x1 ∈ (−l, 2l), �(x1) < x2 < 0}. We can define �̂ = (�̂1, �̂2), an

extension of û in Aγ , by

�̂1(x1, x2)=

⎧⎨
⎩

û1(−x1, x2), x1 ∈ (−l, 0),
û1(x1, x2), x1 ∈ (0, l),
û1(2l − x1, x2), x1 ∈ (l, 2l),

�̂2(x1, x2)=

⎧⎨
⎩

−û2(−x1, x2), x1 ∈ (−l, 0),
û2(x1, x2), x1 ∈ (0, l),
−û2(2l − x1, x2), x1 ∈ (l, 2l).

It is trivial to prove that �̂ ∈ H1(Aγ)2, ∇ · �̂ = 0. Moreover, for � = (�1,�2) ∈ D(Aγ)2,
∇� = 0, we have

∫
Aγ ∇�̂ · ∇� = 0. Indeed, let us focus on the case supp(�) ⊂ {x1 < l}

(the general case being similar). We have (in all of the following calculus, all of the
partial derivatives ∂i are w.r.t. x, unless otherwise noted)∫

Aγ

∇�̂ · ∇� =
∫

Aγ

∇�̂(x1, x2) · ∇�(x1, x2)

+
∫

Aγ\Aγ

∇�̂1(x1, x2) · ∇�1(x1, x2) + ∇�̂2(x1, x2) · ∇�2(x1, x2)

=
∫

Aγ

∇û(x1, x2) · ∇�(x1, x2)

+
∫

Aγ\Aγ

∂1û1(−x1, x2)∂1�1(x1, x2) + ∂2û1(−x1, x2)∂2�1(x1, x2)

−∂1û2(−x1, x2)∂1�2(x1, x2) − ∂2û2(−x1, x2)∂2�2(x1, x2)

=
∫

Aγ

∇û(x1, x2) · ∇�(x1, x2)

(subs. y1 = −x1) +
∫

Aγ

∂1û1(y1, x2)∂1�1(−y1, x2) + ∂2û1(y1, x2)∂2�1(−y1, x2)

−∂1û2(y1, x2)∂1�2(−y1, x2) − ∂2û2(y1, x2)∂2�2(−y1, x2)

=
∫

Aγ

∇û(x1, x2) · ∇�(x1, x2)

+
∫

Aγ

∂y1 û1(y1, x2)∂y1�1(−y1, x2) + ∂2û1(y1, x2)∂2�1(−y1, x2)

+∂y1 û2(y1, x2)∂y1(−�2(−y1, x2))

+∂2û2(y1, x2)∂2(−�2(−y1, x2))

(from (2.10)) =
∫

Aγ

∇û(x1, x2) · ∇v(x1, x2) = 0,
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because v = (v1, v2) = (�1(x1, x2) + �1(−x1, x2),�2(x1, x2) − �2(−x1, x2)) belongs to
U(Aγ) as v2 = 0 and

0 =
∫

Aγ

∇ · v =
∫

∂Aγ

v · νγ =
∫

Γγ∪Γo∪Σ

v · νγ −
∫

Γi

v1 = −
∫

Γi

v1.

In previous equalities ∂i, resp. ∂∗i
, denotes the derivative w.r.t. the ith variable, resp.

∗i variable. Then, there exists �̂ ∈ L2(Aγ) such that −µ∆�̂ + �̂ = 0 in D′(Aγ). From
the interior regularity results for the Stokes equation it follows that �̂ ∈ C∞

loc(A
γ)2 and

�̂ ∈ C∞
loc(A

γ). Thus, p̂ ∈ C∞(Aγ\(Σ ∪ Γγ)), which implies p̂ ∈ C∞
loc(Γi ∪ Γo).

For the trace of p̂ ∈ L2(Aγ) on Σ, we proceed as follows. Let ε < 0 and set Aγ,ε =
Aγ ∩ {x2 < ε}, Σε = (0, l) × {ε}. For v ∈ D(Σ) let v = (v1, v2) ∈ U(Aγ), v2 = v on Σ,
v = 0 on Γi ∪ Γγ ∪ Γo. From −µ∆û + ∇p̂ = 0 in C∞

loc(A
γ)2, it follows that∫

Σε

p̂v =
∫

∂Aγ,ε

µ(v · ∂2û) −
∫

Γi∪Γγ∪Γo

p̂(v · nγ) −
∫

Aγ,ε

µ(∇û · ∇v)

→
∫

Σ

µ(v · ∂2û) −
∫

Aγ

µ(∇û · ∇v) = −
∫

Aγ

µ(∇û · ∇v), as ε → 0, (3.23)

because ∂2û2 = 0 in H−1/2(Σ) and v1 = 0 on Σ. By continuity, we define∫
Σ

p̂v = −
∫

Aγ

µ∇û · ∇v, ∀v ∈ H
1/2
0 (Σ), v = (v1, v2) ∈ U(Aγ), v2|Σ = v. (3.24)

The definition is consistent because if w ∈ U(Aγ), w2 = v on Σ, from (2.14) we have∫
Aγ ∇û · ∇(v − w) = 0. Equation (3.24) defines

∫
Σ

p̂v in the H−1/2(Σ)-sense.
Now, let v ∈ U(Aγ). For ε < 0 small, from (2.14) and local regularity of û, p̂ in Aγ ,

we have

−
∫

Γo

pov1 =
∫

Aγ

µ(∇û · ∇v) +
∫

G

µ

K
(û · v)

= lim
ε→0

∫
Aγ,ε

µ(∇û · ∇v) +
∫

G

µ

K
(û · v)

=
∫

Γi

−µ(v · ∂1û) + p̂v1 +
∫

Γo

µ(v · ∂1û) − p̂v1 + lim
ε→0

∫
Σε

µ(v · ∂2û) − p̂v2

−
∫

G

∇p̂ · v

=
∫

Γi

p̂v1 −
∫

Γo

p̂v1 −
∫

Σ

p̂(·, 0−)v2 −
∫

∂G

p̂(v · n)

=
∫

Γi

p̂v1 −
∫

Γo

p̂v1 −
∫

Σ

(p̂(·, 0−) − p̂(·, 0+))v2.

By continuity it follows that∫
Γi

p̂v1 =
∫

Γo

(p̂ − po)v1 =
∫

Σ

[p̂]v2 = 0, ∀v ∈ U(Aγ). (3.25)

As p̂ ∈ C∞
loc(Γi∪Γo), (i) and (ii) follow. Moreover, we get [p̂] = 0 on Σ in the H−1/2(Σ)×

H1/2(Σ)-sense.
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The proof of (3.22) starts with the estimation of
∫

Aγ µ|∇û|2 +
∫

G
µ
K û2 . Namely, let

v̂n ∈ Û(Aγ), v̂n → û. Then∫
Aγ

µ(∇û · ∇v̂n) +
∫

G

µ

K
(û · v̂n)

= lim
ε→0

∫
Aγ,ε

µ(∇û · ∇v̂n) +
∫

G

µ

K
(û · v̂n)

=
∫

Γi

−µ(v̂n · ∂1û) + p̂v̂n
1 +

∫
Γo

µ(v̂n · ∂1û) − p̂v̂n
1

+ lim
ε→0

∫
Σε

µ(v̂n · ∂2û) − p̂v̂n
2 −

∫
G

∇p̂ · v̂n

=
∫

Γi

p̂v̂n
1 −

∫
Γo

p̂v̂n
1 −

∫
Σ

[p̂]v̂n
2 −

∫
M

p̂v̂n
2

=
∫

Γi

p̂v̂n
1 −

∫
Γo

p̂v̂n
1 −

∫
M

p̂v̂n
2 .

This gives

p1

∫
Γi

v̂n
1 =

∫
Aγ

µ(∇û · ∇v̂n) +
∫

G

µ

K
(û · v̂n) + po

∫
Γo

v̂n
1 +

∫
M

p̂v̂n
2 ,

which by letting n → ∞ gives (3.22). �
Now, let us return to the shape optimization problem (1.8). Let us consider (c(γ) +

ci, τ + τi(γ),u(γ) + uc(γ)) a solution of (2.8)–(2.10) in Ωγ , p̂(γ) = p̂ with p̂ given by
Proposition 3.11 and ĉv(γ) = 1 − ĉ(γ), and consider the shape functional E(γ) given by
(1.10). We have the following results.

Theorem 3.12. There exists a solution γ∗ ∈ O of (1.8).

Proof. Let γn ∈ O be a minimizing sequence of E(γ), and as γ(0), γ(l) are bounded
and γn are uniformly Lipschitz functions, there exists a rectangle R = (0, l) × (0, h), for
any r < 0, such that Ωn := Aγn ∪ Σ ∪ G ⊂ R ∪ Σ ∪ G =: ΩR. As γn is Lipschitz, we can
extend ẑn := (ĉn, τ̂n, ûn) to V := H1(ΩR)2×H1(R∪G)×H1(ΩR) functions. In fact, ûn

is extended simply by zero in ΩR\Ωn. We denote these extensions with the same letters.
From estimations (3.3), (3.4), (3.5), (3.10), and (3.11), the sequence ẑn is uniformly

bounded in V , and from the fact that γn are uniformly Lipschitz functions, there exists
a subsequence of ẑn converging to ẑ∗ strongly in V s := Hs(ΩR)2×Hs(R∪G)×Hs(ΩR),
s < 1, [14], weakly in V , and a subsequence of γn converging to γ∗ ∈ O strongly in
C0([0, l]), so that the sequence of domains Ωn converges to Ω∗ = Aγ∗ ∪ Σ ∪ G in the
sense of Hausdorff, of compacts and of characteristic functions, [8], [9]. We use the same
notations for these subsequences as for the original sequences.

It is easy to prove that (ĉ∗, τ̂∗, û∗) ∈ Ĉ(Aγ∗) × T̂ (Aγ∗) × Û(Aγ∗). Indeed, from
the construction of the spaces Ĉ(Aγn), T̂ (Aγn), Û(Aγn), we can find (c̃n, τ̃n, ũn) ∈
Ĉ(Ãγn) × T̂ (Ãγn) × Û(Ãγn), where Ãγn = {(x1, x2), x1 ∈ (0, l), γn(x1) + δn < x2 < 0},
where δn = min{‖γ∗ − γn‖C0([0,l]), 0}, such that

‖ĉn − c̃n‖C(Aγn ) + ‖τ̂n − τ̃n‖T (Aγn ) + ‖ûn − ũn‖U(Aγn ) ≤ σn,
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with δn, σn tending to zero as n → ∞. It follows that for n large (c̃n, τ̃n, ũn) ∈ Ĉ(Aγ∗)×
T̂ (Aγ∗) × Û(Aγ∗) and converges to (ĉ∗, τ̂∗, û∗) in Ĉ(Aγ∗) × T̂ (Aγ∗) × Û(Aγ∗), which
proves the claim.

As ẑn converges strongly in V s, s < 1, and weakly in V , it follows trivially that ĉ∗, τ̂∗

solve (2.8), (2.9) and û∗ satisfies (2.10) with Aγ∗ rather than Aγ . Of course, u∗
2 = −g(c∗)

on M due to the strong convergence of the sequence ẑn in V s, s < 1. Thus, we have
proved that (ĉ∗, τ̂∗, û∗) satisfy (2.8)–(2.10) with Aγ∗ instead of Aγ . This means that the
map γ → (ĉ(γ), τ̂(γ), û(γ)) is compact from O to V weakly, and to V s, s < 1, strongly.
From the continuity of the trace operator ϕ ∈ V s → ϕ ∈ L2(M) × L1(Γo), s < 1, s ≈ 1,
and lower semi-continuity of

∫
Aγ |∇û(γ)|2, it follows that the functional γ → E(γ) is

lower semi-continuous in O, which proves that γ∗ is a minimizer of E(γ) in O. �
Let us finish this paper with a result giving more information on the optimal do-

main Aγ∗ .

Proposition 3.13. Let γK be the solution of (1.8) for a given K. Then, for K large
enough we have γK < 0; thus the boundary ΓγK

does not intersect Σ.

Proof. For a given K, let γK be the solution of (1.8). Assume for a moment that there
exists a sequence {K}, K → ∞, such that ΓγK

∩ Σ is not empty. As in Theorem 3.12,
let ẑK := (ĉK , τ̂K , ûK) be the solution of (2.8)–(2.10) in AγK .

Like in Theorem 3.12, from the uniformity of the bounds (3.3), (3.4), (3.5), (3.10)
and (3.11) (also Remark 3.8), there exists a subsequence of ẑK converging weakly in V

and strongly in V s, s < 1, and a subsequence of γK converging in C0([0, l]), so that
the sequence of domains ΩK := AγK ∪ Σ ∪ G converges to Ω∗ = Aγ∗ ∪ Σ ∪ G in the
sense of Hausdorff, of compacts and of characteristic functions, [8], [9]. We use the same
notations for these subsequences as for the original sequences.

From (2.10) for γ = γK
∗ we get

µ

∫
AγK

(∇ûK · ∇v) +
µ

K

∫
G

(ûK · v) = 0, ∀v ∈ U(AγK ).

Letting K tend to ∞, from the weak convergence of uK and uniform (w.r.t. K, Remark
3.8) bound (3.11) we get ∫

Aγ∗
∇û∗ · ∇v = 0, ∀v ∈ U(Aγ∗).

Again, like in Theorem 3.12, we have û∗ ∈ Û(Aγ∗), and similarly to Proposition 3.7 we
have u∗ ∈ H1(Aγ∗)2. Moreover, it follows trivially that Γγ∗ ∩Σ is not empty,

∫
Γi

û∗
1 = φ.

We can extend û∗ to H1(Aγ∗)2, where A
γ∗ = {(x1, x2), −l0 < x1 < l0, |x2| < |γ∗(|x1|)|},

l0 = min{y1, γ∗(y1) = 0}. Namely, we set

�̂1(x1, x2) = −sign(x2)û1(|x1|, |x2|),
�̂2(x1, x2) = sign(x1)û2(|x1|, |x2|).

As û∗ = 0 on Γγ∗ , it follows that �̂∗ ∈ H1
0 (Aγ∗)2 because (0, 0) has zero capacity, [9].

As in Proposition 3.11, it is easy to prove that
∫

R2 ∇�̂∗ · ∇v = 0, for v ∈ H1
0 (Aγ∗)2. It

follows that �̂∗ = 0, which implies
∫
Γi
�̂
∗
1 = 0. This is a contradiction and completes the

proof. �
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[5] T. Gallouët, A. Monier. On the regularity of Solutions to Elliptic Equations. Rendiconti di
Matematica, Serie VII, Volume 19, Roma (1999), 471-488. MR1789483 (2001i:35065)

[6] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-
Verlag, Berlin, 1983. MR0737190 (86c:35035)

[7] P. Grisvard. Singularities in boundary value problems. Masson, Springer-Verlag, 1992.
MR1173209 (93h:35004)
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