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Abstract. We use a boundary perturbation technique based on the calculus of mov-
ing surfaces to compute the gravitational potential for near-spherical geometries with
piecewise constant densities. The perturbation analysis is carried out to third order
in the small parameter. The presented technique can be adapted to a broad range of
potential problems including geometries with variable densities and surface density dis-
tributions that arise in electrostatics. The technique is applicable to arbitrary small
perturbations of a spherically symmetric configuration and, in principle, to arbitrary
initial domains. However, the Laplace equation for an arbitrary domain can usually be
solved only numerically. We therefore concentrate on spherical domains which yield a
number of geophysical applications.

As an illustration, we apply our analysis to the case of a near spherical triaxial ellipsoid
and show that third order estimates for ellipticities such as that of the Earth are accurate
to ten digits. We include an appendix that contains a concise, but complete, exposition
of the tensor calculus of moving interfaces.

1. Introduction. This paper demonstrates how to use the calculus of moving sur-
faces to compute the gravitational potential for near spherical geometries based on a
perturbation theory approach. Our expressions apply equally well (with a minus sign!)
to the electrostatic potential when no surface charges are present.

The perturbation of the potential is induced by a small deformation of the boundary of
the domain. Our analysis applies to an arbitrary sufficiently smooth small deformation.
We consider the case of constant density which can be extended to piecewise constant by
the superposition principle. We do not consider the case of varying density, since the most
challenging and interesting part of the analysis deals with the density discontinuities at
the boundary of the domain. The presented technique can also be applied to boundary
density distributions that arise in the analysis of the electrostatic potential of a conductor.
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Fig. 1. A spherically symmetric “unperturbed” configuration.

Fig. 2. The spherically symmetric configuration is perturbed by a
slight shift of the inner sphere. Such perturbations arise in the anal-
ysis of the Slichter modes of a planet.
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Fig. 3. An ellipsoidal perturbation of the spherically symmetric con-
figuration. Such perturbations find applications in the analysis of the
librational modes of an ellipsoidal planet. Note that the inner sphere
can be arbitrarily turned relative to the shell.

Fig. 4. An arbitrary small perturbation of the spherically symmetric

configuration. Such perturbations may arise in the study of phase
transformations at the inner core boundary of a planet.
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The presented analysis has a number of geophysical applications:
a. The study of Slichter modes of the inner core. First studied in 1961 [9] by Slichter,

the modes refer to the translational motion of the inner core of a planet with respect
to the outer core and the mantle. Busse [1] presented an analytical treatment of this
problem in which he treated the constituents of the planet as constant density (Figure
1). A small translational displacement of the inner core (Figure 2) can be treated as a
small boundary perturbation of the unperturbed spherical configuration.

b. Libration of the inner core. An inner core and a mantle which are slightly ellipsoidal
(Figure 3) are coupled by a gravitational torque that is roughly proportional to the
ellipticities. As a result, the two parts of the planet oscillate about a stable equilibrium
configuration. Because the product of the (small) ellipticities is involved, the effect is
second order and requires a second order perturbation analysis.

c. Phase transformations at the inner core boundary. It is a well-accepted hypothesis
that the matter at the inner core - outer core boundary undergoes phase transformations
[4]. If the inner core is no longer assumed rigid, then potentially arbitrary deformations
of the interface may occur, as illustrated in the exaggerated Figure 4, and a technique
flexible enough to analyze such deformations is required.

2. Methodology.
2.1. A word about our notation. Throughout the paper we adhere to the indicial no-

tation of tensor calculus, [7], [6], [12]. In our experience, this language is best for the
calculus of moving surfaces outlined in the Appendix. For the sake of consistency we use
indicial expressions such as N i∇iψ even where the more conventional N ·∇ψ would have
been sufficient.

2.2. Evolution of geometries and the power series. The gravitational potential field is
determined by the distribution of mass densities. Since we consider piecewise constant
densities, the potential field is essentially determined by the geometry of the configura-
tion. We suppose that the geometry Ω′, for which the potential field is to be computed, is
close to a spherically symmetric configuration Ω. Then the desired gravitational potential
ψ′ (z) for Ω′ is close to ψ0 (z) for Ω. The letter z indicates a point in the three-dimensional
space.

We imagine a smooth evolution Ω (τ ) of Ω into Ω′ indexed by a time-like parameter τ

(sometimes conveniently thought of as having dimensions of time) such that

Ω (0) = Ω, (1)

Ω (1) = Ω′. (2)

The gravitational potential ψ also undergoes a smooth evolution ψ (τ, z) such that

ψ (0, z) = ψ0 (z) , (3)

ψ (1, z) = ψ′ (z) . (4)

We approximate ψ′ (z) by the first n terms of the power series

ψ′ (z) ≈ ψ0 (z) +
∂ψ (τ, z)

∂τ

∣∣∣∣
τ=0

+
1
2

∂2ψ (τ, z)
∂τ2

∣∣∣∣
τ=0

+ ... +
1

N !
∂Nψ (τ, z)

∂τN

∣∣∣∣
τ=0

(5)
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and calculate the first three terms explicitly. Note that by letting ∆τ = 1, we consider
slow evolutions over a finite period of time rather than an equivalent scenario with finite
velocities over a short period of time.

2.3. Two approaches to the problem. Our task is to compute ∂nψ/∂τn at τ = 0. At a
given time τ , the potential is given by the conceptual integral

ψ (τ, z) = −
∫

Ω

ρ (τ, z∗)
Distance (z, z∗)

dΩ∗, (6)

where ρ (τ, z) is the imaginary evolution of density distribution. This integral can in prin-
ciple be differentiated with respect to τ to obtain ∂ψn/∂τn. Since this approach requires
a complicated analysis of integrals with singularities, we prefer a different approach based
on Poisson’s equation.

Away from the surfaces of density discontinuities, the gravitational potential ψ satisfies
Poisson’s equation

∇i∇iψ = 4πGρ. (7)

In addition, ψ vanishes at infinity and is finite everywhere. Finally, across the interfaces
S of density discontinuities, ψ is continuous along with its derivatives

[ψ]S = 0, (8)

N i [∇iψ]S = 0, (9)

where
[X]S (10)

stands for the jump in quantity X across the surface S. We require continuity only
for the normal derivatives since the continuity of tangential derivatives follows from the
continuity of ψ.

2.4. Outline of the procedure. We start by calculating the unperturbed potential ψ0 (r)
for the initial domain Ω. Since Ω is spherically symmetric, a sphere of radius R in our
case, this is a straightforward task. We then derive a system of equations for ∂nψ/∂τn

by repeatedly differentiating (or perturbing) the system (7)–(9) with respect to τ . Dif-
ferentiating the bulk condition (7) n times yields

∇i∇i
∂nψ

∂τn
= 0. (11)

The derivative of the right-hand side of (7) vanishes since ρ is presumed piecewise con-
stant.

The differentiation of the boundary conditions (8) and (9) is far more challenging and
requires an application of the so-called δ/δτ -derivative, a key operation in the calculus
of moving surfaces (see the Appendix).

The perturbed system needs to be solved for the initial configuration since the power
series (5) requires the values of ∂nψ/∂τn at τ = 0. The spherical symmetry of the initial
configuration allows us to solve the resulting systems by separation of variables.

We consider a single domain of density ρ. More complicated geometries with piecewise
constant densities can be obtained by superimposing solid domains. For example, a
planet with an inner core of density ρ1, an outer core of density ρ2 and a mantle of
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density ρ3 can be represented as a sphere of radius ρ3 with a smaller sphere (outer core)
of density ρ2 − ρ3 and an even smaller sphere (inner core) of density ρ1 − ρ2.

For a sphere of radius R and density ρ, the unperturbed potential ψ0 (z) is given by

ψ0 (r) = 4πGρ
R2

3

⎧⎪⎨
⎪⎩

1
2

(
r
R

)2 − 3
2 , z < Ω,

−
(

r
R

)−1
, z > Ω,

(12)

where z < Ω and z > Ω is a shorthand notation for “points inside Ω” and “points outside
Ω”.

3. First perturbation of the potential.
3.1. Solution of Laplace’s equation for a sphere. We noted that ∂nψ/∂τn satisfies

Laplace’s equation in R
3, i.e. ∂nψ/∂τn is harmonic. Here, we present the general

solution for the Laplace equation in R
3 that is finite at the origin, vanishes at infinity,

and satisfies the given boundary condition on the sphere of radius R.
Suppose that χ is a harmonic function

∇i∇iχ = 0 (13)

and that, in addition to being finite at the origin and zero at infinity, χ satisfies the
following discontinuity conditions across S, the boundary of Ω:

[χ]S = J, (14a)

N i [∇iχ]S =
H

R
. (14b)

Both J and H are determined by the evolution Ω (τ ), and the factor of R−1 was intro-
duced for nondimensionalization. If the fields J and H are represented as a series in
spherical harmonics Ylm (θ, φ)

J = J lmYlm (θ, φ) , (15a)

H = H lmYlm (θ, φ) , (15b)

then χ is given by

χ (r, θ, φ) =

{
(l+1)Jlm+Hlm

2l+1

(
r
R

)l
, z < Ω

−lJlm+Hlm

2l+1

(
r
R

)−l−1
, z > Ω

∣∣∣∣∣Ylm (θ, φ) . (16)

We usually prefer complex spherical harmonics Ylm (θ, φ) that are normalized to unity
on the unit sphere ∫

|r|=1

Yl1m1 (θ, φ)Y ∗
l2m2

(θ, φ) dS = δl1l2δm1m2 ,

where ∗ means complex conjugation.
As we compute successive perturbations of the system (7)–(9) we obtain Laplace sys-

tems of the type (13)–(14b), each with its own H and J . Denote the H and J appearing



GRAVITATIONAL POTENTIAL FOR NEAR-SPHERICAL GEOMETRIES 235

in the n-th perturbation by Jn and Hn and their spherical harmonic expansion coeffi-
cients by H lm

n and J lm
n . The power series approximation of the perturbation ∆ψ (r, θ, φ)

of ψ (r, θ, φ) (5) is then given by

∆ψ (r, θ, φ) ≈
N∑

n=1

⎧⎨
⎩

(l+1)Jlm
n +Hlm

n

(2l+1)n!

(
r
R

)l
, z < Ω

−lJlm
n +Hlm

n

(2l+1)n!

(
r
R

)−l−1
, z > Ω

∣∣∣∣∣∣Ylm (θ, φ) . (17)

The task that remains is to determine the surface fields Jn and Hn and to represent them
with respect to the spherical harmonics.

3.2. The δ
δτ -derivative and the interface velocity C. This paper relies heavily on the

calculus of moving surfaces, whose concise but complete exposition can be found in the
Appendix. This section briefly introduces the main concepts, enabling the reader to see
the big picture presented in the following section while using the Appendix as a reference.

The two primary concepts on the calculus of moving surfaces is the δ/δτ -derivative
and the interface velocity C. In the following sections, the boundary conditions for the
potential field perturbations are stated only in terms of this operator and this quan-
tity, plus the stationary surface fields such as the mean curvature. Therefore, while the
derivation of the perturbation equations requires the knowledge of the calculus of moving
surfaces, the interpretation of the resulting equations only requires the concepts introduced
in this section.

Consider a one parameter family of curves Sτ indexed by a time-like parameter τ . The
family Sτ can also be thought of as a time evolution of a single curve S. Let T (τ, Sτ ) be a
scalar field defined on Sτ , so T not only changes its values with time but also experiences
a change in its domain of definition.

We present a geometric definition of the δ/δτ -derivative at a point ξ on the surface
Sτ at time τ , illustrated in Figure 5. Consider two locations of the surface Sτ and Sτ∗

at nearby times τ and τ∗. Draw the straight line orthogonal to Sτ passing through the
point ξ. Mark the point ξ∗, where this straight line intersects Sτ∗ . Define

δT (τ, ξ)
δτ

= lim
τ∗→τ

T (τ∗, ξ∗) − T (τ, ξ)
τ∗ − τ

. (18)

An equivalent algebraic definition of the δ/δτ -derivative of a scalar is given by equation
(108) of the Appendix. A general definition applicable to tensors of arbitrary shape is
given by equation (111).

Let ∆z be the vector connecting the point ξ to the point ξ∗. Then the velocity of the
interface C (also known as the normal velocity) is defined as

C = lim
τ∗→τ

∆z · N
τ∗ − τ

, (19)

where N is the unit normal to the surface Sτ . By construction, ∆z is aligned with N,
and the dot indicates that the sign of C depends on the choice of the normal. Obviously
C is a scalar, and it is called “velocity” rather than “speed” because the normal direction
is implied.
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ξ,Tτ(ξ)

ξ*,Tτ*(ξ*)

Fig. 5. Geometric definition of the δ/δτ -derivative as applied to a
scalar field T defined at time τ on the surface Sτ .

If z is the radius vector with respect to an arbitrary origin, then the definition of C

(19) can be rewritten as

C =
δz
δτ

·N.

The velocity field C completely determines the evolution of the interface, much like
prescribing the velocity field of a fluid completely determines its flow, with one significant
difference. In the flow of a fluid, the trajectories of individual particles are usually of
interest and the velocity field allows one to determine the flow. The velocity C, on the
other hand, describes the motion of the surface as a geometric object not keeping track
of individual points.

3.3. The first perturbation ∂ψ/∂τ . The perturbed bulk equation is obtained simply
by differentiating Poisson’s equation with respect to τ :

∇i∇i
∂ψ

∂τ
= 0. (20)

Since ρ is constant, the would-be right-hand side 4πG ∂ρ
∂τ vanishes. The effect of the

variation in the mass density is instead captured by the boundary conditions.
Taking a δ/δτ -derivative (see the Appendix) of

[
∂ψ
∂τ

]
S

= 0 we get

0 =
δ [ψ]S

δτ
=
[
δψ

δτ

]
S

, (21)

by eqn. (112) =
[
∂ψ

∂τ

]
S

+ CN i [∇iψ]S , (22)

where C is the velocity of the interface defined above.
Since the jump in the normal derivative of ψ vanishes, so does [∂ψ/∂τ ]S :

[
∂ψ

∂τ

]
S

= 0. (23)
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Taking the δ/δτ derivative of the second boundary condition, we have

0 =
δ
(
N i [∇iψ]S

)
δτ

=

[
δ
(
N i∇iψ

)
δτ

]
S

, (24a)

∗ =
δN i

δτ
[∇iψ]S + N i

[
δ∇iψ

δτ

]
S

, (24b)

& = −zi
α∇αC [∇iψ]S + N i

[
∇i

∂ψ

∂τ

]
S

+ CN iN j [∇i∇jψ]S . (24c)

∗Product Rule (24d)
&By eqns. (114e) and (112) (24e)

Since ∇iψ is orthogonal to the interface at τ = 0, the product zi
α∇iψ vanishes on both

sides of the interface, and we have

N i

[
∇i

∂ψ

∂τ

]
S

= −CN iN j [∇i∇jψ]S . (25)

It can be shown for a continuous function ψ with continuous derivatives that

[∇i∇jψ]S =
(
NkN l [∇k∇lψ]S

)
NiNj . (26)

In other words, the nine entries of [∇i∇jψ]S share a single degree of freedom (rather
than six for an arbitrary function). Raising one of the indices and contracting, we get[
∇i∇iψ

]
S

= 4πG [ρ]S . Therefore, the second boundary condition can be rewritten as

N i

[
∇i

∂ψ

∂τ

]
S

= −4πGCρ. (27)

Summarizing, the perturbed potential ∂ψ/∂τ is governed by

∇i∇i
∂ψ

∂τ
= 0, z ∈ Ω, (28)[

∂ψ

∂τ

]
S

= 0, (29)

N i

[
∇i

∂ψ

∂τ

]
S

= −4πGCρ. (30)

Therefore, the “jump” function J1 and the “hop” function H1 are given by

J1 = 0, (31a)

H1 = −4πGRCρ. (31b)

Let us now represent C as a series in spherical harmonics in a way similar to equations
(15b) and (15a) except with an additional parameter R for nondimensionalization:

C = RClmYlm (θ, φ) . (32)

As C is determined by the evolution Ω (τ ), so are the Clm. We think of the Clm as
the collection of small parameters that represent the given perturbation, and all relevant
expressions are given in terms of the Clm. Below, we shall explicitly calculate the Clm

for two specific perturbations of the sphere: a radial perturbation that preserves the
symmetry of the system and an ellipsoidal perturbation.
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Given equations (31a) and (31b), the coefficients J lm
1 and H lm

1 are easy to determine:

J lm
1 = 0, (33a)

H lm
1 = −4πGR2ρClm. (33b)

We have thus obtained the first order approximation to the gravitational potential:

∆ψ (r, θ, φ) ≈ −4πGρR2Clm

2l + 1

{ (
r
R

)l , z < Ω,(
r
R

)−l−1
, z > Ω,

Ylm (θ, φ) . (34)

4. Second and third perturbations. The system of equations for ∂2ψ/∂τ2 is ob-
tained by repeating the steps of the previous section, i.e. by differentiating equations
(28)–(30) we respect to τ :

∇i∇i
∂2ψ

∂τ2
= 0, z ∈ Ω, (35)[

∂2ψ

∂τ2

]
S

= 4πGρC2, (36)

N i

[
∇i

∂2ψ

∂τ2

]
S

= −4πGρ
δC

δτ
+ 4πGρC2Bα

α ,

where Bα
a is the mean curvature (102) which, for a sphere of radius R, equals −2/R. We

rewrite the last boundary condition as

N i

[
∇i

∂2ψ

∂τ2

]
S

= −4πGρ

(
2C2

R
+

δC

δτ

)
. (37)

J2 and H2 are therefore given by

J2 = 4πGρC2, (38a)

H2 = −4πGρ

(
2C2 + R

δC

δτ

)
. (38b)

The surface fields J2 and H2 cannot be as easily decomposed in spherical harmonics as
J1 (which was zero) and H1 (which was directly proportional to C). Therefore, for a
given perturbation they need to be explicitly computed and independently expressed in
spherical harmonics. Below we perform this task for radial and ellipsoidal perturbations.

Finally, we present the system for ∂3ψ/∂τ3, which is obtained analogously to ∂ψ/∂τ

and ∂2ψ/∂τ2:

∇i∇i
∂2ψ

∂τ2
= 0, z ∈ Ω, (39a)[

∂2ψ

∂τ2

]
S

= 4πGρ

(
3C

δC

δτ
− C3Bα

α

)
, (39b)

N i

[
∇i

∂2ψ

∂τ2

]
S

= −4πGρ

(
δ2C
δτ2 − 3C δC

δτ Bα
α − 3C2∇α∇αC − ...

... − 4C∇αC∇αC − C3Bα
β Bβ

α + C3Bα
αBβ

β

)
, (39c)
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where (having substituted Bα
α = −2/R and Bα

β Bβ
a = 2/R2)

J3 = 4πGρ

(
3C

δC

δτ
+

2C3

R

)
, (40a)

H3 = −4πGρ

(
R δ2C

δτ2 + 6C δC
δτ − 3RC2∇α∇αC − ...

... − 4RC∇αC∇αC + 2C3

R

)
. (40b)

We reiterate that the perturbation equations are started only in terms of the operator
δ/δτ and the velocity field C along with the stationary characteristics of the surface such
as the mean curvature Bα

α and the trace of the third groundform Bα
β Bβ

α.

5. Two examples.
5.1. Spherical expansion. We consider a spherical configuration with radius R (1 + εa),

where ε is a small quantity and a is on the order of unity. The gravitational potential
for this geometry can be obtained directly, and in fact it is available in equation (12):

ψ0 (ε, r) =
2π

3
Gρ

(
r2 − 3R2 (1 + εa)2

)
. (41)

Therefore, the perturbation ∆ψ = ψ0 (ε, r) − ψ0 (r) is given by

∆ψ = 2πGρR2
(
2εa + ε2a2

)
. (42)

This expression is a polynomial in ε, so we expect that our two-term Taylor series ap-
proximation will recover the correction exactly.

As prescribed by the recipe in the Appendix we specify an evolution of the initial
configuration into the perturbed one. We let the radius evolve according to R (1 + τεa).
The velocity of the interface for this evolution is given by

C (θ, φ) = Rεa, (43)

and their spherical harmonic expansions have the single l = 0, m = 0 term:

C00 =
√

4πεa. (44)

Therefore, we have
J00

1 = 0; H00
1 =

√
4πεa. (45)

Moving on to the second order perturbation, we have

J2 = −C2

R2
= −ε2a2, (46a)

H2 =
2C2

R2
+

1
R

δC

δτ
= 2ε2a2, (46b)

since it is clear that δC/δτ vanishes

J00
2 = −

√
4πε2a2, (47)

H00
2 = 2

√
4πε2a. (48)

Constructing the Taylor series inside the domain, we get

∆ψ ≈ −2πGρR2
(
2εa + ε2a2

)
, (49)

which is precisely equation (42).
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5.2. Ellipsoidal perturbation. We now turn to the computation of the potential inside
a near-spherical ellipsoidal domain. The potential outside this domain can be computed
analogously, but the results are not presented here for consideration of space.

The gravitational potential of a near-spherical ellipsoid can be estimated to any order
by a technique originally proposed by Migdal [8], [5] for the analysis of the energy splitting
of a quantum particle trapped in an ellipsoidal cavity. Migdal’s technique is simpler
than ours (although not shorter!) for lower order perturbations and can be used for an
independent verification of our results.

The gravitational correction inside a slightly ellipsoidal shell was also calculated to
second order in [10].

The boundary S is an ellipsoid with semi-axes R (1 + εa), R (1 + εb), R (1 + εc). As
before, we start by specifying the evolution from Ω0 (a sphere of radius R) to Ω1 (our
ellipsoid): ⎡

⎣ z1

z2

z3

⎤
⎦ = R

⎡
⎣ (1 + τa) sin θ cos φ

(1 + τb) sin θ sin φ

(1 + τc) cos θ

⎤
⎦ . (50)

5.2.1. Computing C. The marker velocity vi (107a) is given by

vi =
∂zi

∂τ
= R

⎡
⎣ a sin θ cos φ

b sin θ sin φ

c cos θ

⎤
⎦ , (51)

and the velocity C of the boundary at τ = 0 is constructed by projecting the marker
velocity onto the unperturbed normal N i = (a sin θ cos φ, b sin θ sin φ, c cos θ):

C|τ=0 = R
(
a sin2 θ cos2 φ + b sin2 θ sin2 φ + c cos2 θ

)
. (52)

This expression is easy to represent in terms of Ylm as in equation (32), since only a few
terms are nonzero:

C00 =

√
4π

9
(a + b + c) , (53a)

C2m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
2π
15 (a − b)

0

−
√

4π
45 (a + b − 2c)

0√
2π
15 (a − b)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (53b)

These coefficients can practically be obtained from equation (52) in a number of ways.
One is by integration:

Clm =
1
R

∫ π

−π

∫ π

0

C (θ, φ)Y ∗
lm (θ, φ) sin θdθdφ, (54)

where ∗ stands for complex conjugation.
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Alternatively, one can expand the harmonic series for C (32) as a single trigonometric
polynomial and form a linear system for Clm by matching up the terms of the trigono-
metric polynomials with the explicit expression (52) for C.

5.3. First order coefficients. Decomposing J1 = 0 and H1 = C/R, defined by equa-
tions (14a), (14b), with respect to spherical harmonics yields the following coefficients
(15a), (15b):

(l + 1)J lm
1 + H lm

1

−4πGR2ρ

∣∣∣∣
l=0

=
−lJ lm

1 + H lm
1

−4πGR2ρ

∣∣∣∣
l=0

=

√
4π

9
(a + b + c) , (55a)

(l + 1)J lm
1 + H lm

1

−4πGR2ρ

∣∣∣∣
l=2

=
−lJ lm

1 + H lm
1

−4πGR2ρ

∣∣∣∣
l=2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
2π
15 (a − b)

0

−
√

4π
45 (a + b − 2c)

0√
2π
15 (a − b)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (55b)

5.3.1. Computing δC/δτ . According to the definition of the δ/δτ -derivative (108), we
have

δC

δτ
=

∂C (τ, θ, φ)
∂τ

− vizα
i ∇αC. (56)

The term ∂C/∂τ contains a partial derivative of the normal N i with respect to τ . This
would be a very cumbersome computation, given the definition of the normal in equation
(95). It can be avoided by utilizing equations (111) and (114e) to eliminate the ∂N i/∂τ

term. The resulting expression is

δC

δτ
= −viz

i
α

(
Nk∇αvk + ∇αC

)
. (57)

The shift tensor zi
α (87) is given by

zi
α = R

⎡
⎣ cos θ cos φ − sin θ sin φ

cos θ sin φ sin θ cos φ

− sin θ 0

⎤
⎦ . (58)

Since C is a scalar, the surface gradient (97) of C coincides with the ordinary gradient:

∇αC = R

[ (
1
2a − 1

2b
)
sin 2θ cos 2φ −

(
c − 1

2a − 1
2b
)
sin 2θ

− (a − b) sin2 θ sin 2φ

]
. (59)

The surface gradient of the marker velocity coincides with the ordinary gradient, since a
Cartesian metric is used in the embedding space:

∇αvi = R

⎡
⎣ cos θ cos φ − sin θ sin φ

cos θ sin φ sin θ cos φ

− sin θ 0

⎤
⎦ . (60)
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Putting everything together we obtain the following expression:

δC

δτ
= −

⎡
⎣ a sin θ cos φ

b sin θ sin φ

c cos θ

⎤
⎦

T ⎡
⎣ cos θ cos φ − sin θ sin φ

cos θ sin φ sin θ cos φ

− sin θ 0

⎤
⎦[ 1 0

0 sin2 θ

]−1
[

∂C
∂θ
∂C
∂φ

]

−

⎡
⎣ a sin θ cos φ

b sin θ sin φ

c cos θ

⎤
⎦

T ⎡
⎣ cos θ cos φ − sin θ sin φ

cos θ sin φ sin θ cos φ

− sin θ 0

⎤
⎦[ 1 0

0 sin2 θ

]
(61a)

×

⎡
⎣ a cos θ cos φ −a sin θ sin φ

b cos θ sin φ b sin θ cos φ

−c sin θ 0

⎤
⎦

T ⎡
⎣ sin θ cos φ

sin θ sin φ

cos θ

⎤
⎦ .

5.3.2. Second order coefficients. The following equations summarize the values for
(l + 1) J lm

n + H lm
n and −lJ lm

n + H lm
n , which were obtained using Mathematica [13]:

(l + 1)J lm
2 + H lm

2

4πGR2ρ

∣∣∣∣
l=0

=
2
15

√
π
(
3a2 + 3b2 + 3c2 − 8ab − 8bc − 8ca

)
, (62a)

(l + 1)J lm
2 + H lm

2

4πGR2ρ

∣∣∣∣
l=2

=

⎡
⎢⎢⎢⎢⎢⎣

√
30π

105 (a − b) (9a + 9b − 4c)
0

− 2
√

5π
105

(
9a2 + 9b2 − 18c2 − 8ab + 4bc + 4ca

)
0√

30π
105 (a − b) (9a + 9b − 4c)

⎤
⎥⎥⎥⎥⎥⎦ , (62b)

−lJ lm
2 + H lm

2

4πGR2ρ

∣∣∣∣
l=0

= −4
√

π

3
(a b + bc + ca) , (63a)

−lJ lm
2 + H lm

2

−4πGR2ρ

∣∣∣∣
l=2

=

⎡
⎢⎢⎢⎢⎢⎣

√
30π
15 (a − b) (3a + 3b + 2c)

0
− 2

√
5π

15

(
3a2 + 3b2 − 6c2 + 4ab − 2bc − 2ca

)
0√

30π
15 (a − b) (3a + 3b + 2c)

⎤
⎥⎥⎥⎥⎥⎦ , (63b)

−lJ lm
2 + H lm

2

4πGR2ρ

∣∣∣∣
l=4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
√

70π
35 (a − b)2

0
6
√

10π
35 (a − b) (a + b − 2c)

0
− 6

√
π

35

(
3a2 + 3b2 + 8c2 + 2ab − 8bc − 8ca

)
0

6
√

10π
35 (a − b) (a + b − 2c)

0
− 3

√
70π

35 (a − b)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (63c)

Interestingly, according to equation (62b) there is no contribution from the l = 4 harmon-
ics inside the ellipsoid, consistent with the fact that inside the ellipsoid with arbitrary
semi-axes the potential is a linear function of x2, y2, and z2, each of which can be
represented as a linear combination of r2Y2m.
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5.3.3. Third order coefficients. Finally, we present the coefficients for the third order
perturbation:

(l + 1) J lm
3 + H lm

3

4πGR2ρ

∣∣∣∣
l=0

= −8
√

π

35
(a + b − 2 c) (2 a − b − c) (a − 2 b + c) , (64a)

(l + 1) J lm
3 + H lm

3

4πGR2ρ

∣∣∣∣
l=2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
7

√
2 π
15 (a − b)

(
8 a2 + 8 b2 − 5 c2

+12 a b − b c − a c

)
0

4
21

√
π
5

⎛
⎝ 8 a3 + 8 b3 − 16 c3

−6 a2 b − 6 a b2 − 3 a c2 − 3 b c2

+9 b2 c + 9 a2 c

⎞
⎠

0

−2
7

√
2 π
15 (a − b)

(
8 a2 + 8 b2 − 5 c2

+12 a b − b c − a c

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (64b)

−lJ lm
3 + H lm

3

4πGR2ρ

∣∣∣∣
l=0

= 4
√

π a b c, (65a)

−lJ lm
3 + H lm

3

4πGR2ρ

∣∣∣∣
l=2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√

6 π
5 (a − b)

(
a2 + 4 a b + b2 + 3 a c + 3 b c

)
0

2
√

π
5

(
a3 + 3 a2 b + 3 a b2 + b3

+3 a2 c + 3 b2 c − 6 a c2 − 6 b c2 − 2 c3

)
0

−
√

6 π
5 (a − b)

(
a2 + 4 a b + b2 + 3 a c + 3 b c

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (65b)

−lJ lm
3 + H lm

3

4πGR2ρ

∣∣∣∣
l=4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−9 (a − b)2 (2 a + 2 b + c)
√

2 π
35

0

18
7

√
2 π
5 (a − b)

(
2 a2 + 2 b2 − 3 c2

+3 a b − 2 a c − 2 b c

)
0

−18
35

√
π

⎛
⎝ 6 a3 + 6 b3 + 16 c3 + 6 a2 b + 6 a b2

−9 a2 c − 9 b2 c − 4 a c2 − 4 b c2

−14 a b c

⎞
⎠

0

18
7

√
2 π
5 (a − b)

(
2 a2 + 2 b2 − 3 c2

+3 a b − 2 a c − 2 b c

)
0

−9
√

2 π
35 (a − b)2 (2 a + 2 b + c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (65c)
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−lJ lm
3 + H lm

3

4πGR2ρ

∣∣∣∣
l=6

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√

143 π
21 (a − b)3

0√
26 π
7 (a − b)2 (a + b − 2 c)

0

−
√

13 π
105 (a − b)

(
5 a2 + 6 a b + 5 b2

−16 a c − 16 b c + 16 c2

)
0

2
21

√
13 π (a + b − 2 c)

(
5 a2 + 5 b2 + 8 c2

−2 a b − 8 a c − 8 b c

)
0

−
√

13 π
105 (a − b)

(
5 a2 + 6 a b + 5 b2

−16 a c − 16 b c + 16 c2

)
0√

26 π
7 (a − b)2 (a + b − 2 c)

0

−
√

143 π
21 (a − b)3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (65d)

5.3.4. Analysis of accuracy. We considered an ellipsoid of density ρ = 1 with semi-
axes 2 (1 + ε), 2 (1 + 2ε) , 2 (1 + 3ε), i.e. R = 2, a = 1, b = 2, c = 3. The potential inside
a uniform ellipsoid with semi-axes A, B, and C is given in closed form by the elliptical
integral

ψ (x, y, z) = πGρABC

∫ ∞

0

1 − x2

A2+q − y2

B2+q − z2

C2+q√
(A2 + q) (B2 + q) (C2 + q)

dq, (66)

which can be evaluated to arbitrary precision (we used 40 digits) by a number of software
packages. We selected a single point (r = 1/2, θ = π/3, φ = π/3) and compared the
“true” value obtained from the integral above to the Taylor series estimates for ε = 10−1,
10−2, 10−3, 10−4, 10−5, and 10−6.. Figure 6 shows the error with the Taylor series
estimates for zeroth, first, second, and third order estimates. Observe that the slopes
of the curves are respectively −1, −2, −3, and −4, indicating that the produced errors
behave as O

(
εn+1

)
, where n is the order of the Taylor estimate.

In the table below we present the true values and our best Taylor series estimates for
the potential at (r = 1/2, θ = π/3, φ = π/3):

ε True value to 40 digits Taylor estimate |Error|
10−1 −35.43708351803048697192025381012391736957 −18950357 π

1680000
1.20×10−7

10−2 −25.62255732018668419194698852443368280613 −856370897 π
105000000

1.37×10−9

10−3 −24.70978981647731607371769060209184738688 −943844446093 π
120000000000

1.54×10−13

10−4 −24.61920024789102747620130556538189421147 −6582689256227401 π
840000000000000

1.56×10−17

10−5 −24.61014816318116756083082018753515760828 −6580268907062274901 π
840000000000000000

1.56×10−21

10−6 −24.60924302343199898214889695992182000437 −6580026890520622749901 π
840000000000000000000

1.56×10−25
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Fig. 6. The error in the Taylor series estimate for ε = 10−2, 10−3,
10−4, 10−5, 10−6. The four curves correspond to the Taylor series
with zero, one, two, and three terms.

The ellipticity of the Earth is roughly on the order of 10−2. Since the density of
the Earth varies with distance from the center, our technique is not directly applicable.
However, an adaptation of our technique would be applicable, and Figure 6 indicates
that the second order estimate will produce a relative error on the order of 5 × 10−11.

6. First order perturbation for a triaxial planet. This section is concerned with
an example that has a number of geophysical applications related to the dynamics of the
inner core and also shows how to apply the obtained expressions to composite geometries.
Suppose that the configuration (before the perturbation) consists of an inner core Ω1 of
radius R1 and density ρ1, an outer core Ω2 of radius R2 and density ρ2, and a mantle
Ω3 of radius R3 and density ρ3. This configuration can be equivalently represented by
three superimposed spheres: one of radius R3 and density ρ3, another of radius R2 and
density ρ2 − ρ3, and a third one of radius R1 and density ρ1 − ρ2.

We construct the estimates for the resulting potential by adjusting expressions for the
unperturbed potential (12) and the first order perturbation (34) to each of the domains
and then combining them. In order to make equations (12) and (34) appear more generic,
introduce a radius R∗ and a density ρ∗. Also, define the dimensionless densities �n and
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radii Qn:

�n =
ρn

ρ∗
, Qn =

Rn

R∗
, (67)

and a convenient quantity Ψ∗ that has dimensions of gravitational potential:

Ψ∗ =
4π

3
Gρ∗R

2
∗. (68)

Consistent with the definition (10), let [�]1 = �1 − �2, [�]2 = �2 − �3, and [�]3 = �3.
6.1. The unperturbed potential. The unperturbed potential for a single domain (say

Ω1), equation (12), can now be rewritten as

ψ0 (r) = Ψ∗

⎧⎪⎨
⎪⎩

[�]1
2

(
r

R∗

)2

− 3
2 [�]1 Q2

1, z < Ω1,

− [�]1 Q3
1

(
r

R∗

)−1

, z > Ω1,

and the combined expression is easily obtained by replacing the subscript of 1 with 2
and 3:

ψ0 (r) = Ψ∗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[�]1
2

(
r

R∗

)2

− 3
2 [�]1 Q2

1, z < Ω1,

− [�]1 Q3
1

(
r

R∗

)−1

, z > Ω1,

+
[�]2
2

(
r

R∗

)2

− 3
2 [�]2 Q2

2, z < Ω2,

− [�]2 Q3
2

(
r

R∗

)−1

, z > Ω2,

+
[�]3
2

(
r

R∗

)2

− 3
2 [�]3 Q2

3, z < Ω3,

− [�]3 Q3
3

(
r

R∗

)−1

, z > Ω3.

Rewriting the sum in a single expression, we get

ψ0 (r) = Ψ∗

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�1
2

(
r

R∗

)2

+ A1, z < Ω1,

�2
2

(
r

R∗

)2

+ A2 + B2

(
r

R∗

)−1

, Ω1 < z < Ω2,

�3
2

(
r

R∗

)2

+ A3 + B3

(
r

R∗

)−1

, Ω2 < z < Ω3,

B4

(
r

R∗

)−1

, Ω3 < z,

(69)

where

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

A3

B2

B3

B4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
2 [�]1 Q2

1 − 3
2 [�]2 Q2

2 − 3
2 [�]3 Q2

3

−3
2 [�]2 Q2

2 − 3
2 [�]3 Q2

3

−3
2 [�]3 Q2

3

− [�]1 Q3
1

− [�]1 Q3
1 − [�]2 Q3

2

− [�]1 Q3
1 − [�]2 Q3

2 − [�]3 Q3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (70)
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6.2. The first order perturbation. We assume that each of the three domains Ωn is
perturbed in its own way according to Cn and that each Cn is represented as a series in
spherical harmonics

Cn = RnClm
n Ylm.

We first rewrite the first order perturbation for a single domain (say Ω1) as

∆ψ (r, θ, φ) ≈ − 3Ψ∗
2l + 1

⎧⎪⎨
⎪⎩

[�]1 Q−l+2
1

(
r

R∗

)l

Clm
1 , z < Ω1,

[�]1 Ql+3
1

(
r

R∗

)−l−1

Clm
1 , z > Ω1,

Ylm (θ, φ) ,

and the combined expression can be obtained similarly to the unperturbed potential:

∂ψ

∂τ
(r, θ, φ) = Ψ∗

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Alm
1

(
r

R∗

)l

, z < Ω1

Alm
2

(
r

R∗

)l

+ Blm
2

(
r

R∗

)−l−1

, Ω1 < z < Ω2

Alm
3

(
r

R∗

)l

+ Blm
3

(
r

R∗

)−l−1

, Ω2 < z < Ω3

Blm
4

(
r

R∗

)−l−1

, Ω3 < z

∣∣∣∣∣∣∣∣∣∣∣∣∣
Ylm (θ, φ) , (71)

where ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Alm
1

Alm
2

Alm
3

Blm
2

Blm
3

Blm
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= − 3
2l + 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q−l+2
1 Q−l+2

2 Q−l+2
3

0 Q−l+2
2 Q−l+2

3

0 0 Q−l+2
3

Ql+3
1 0 0

Ql+3
1 Ql+3

2 0
Ql+3

1 Ql+3
2 Ql+3

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ [�]1 Clm

1

[�]2 Clm
2

[�]3 Clm
3

⎤
⎦ . (72)

We have computed a first order correction to the graviational potential of a piecewise
constant density tri-layer planet for aribtrary small deformations of the three interfaces.
Such deformations are typically caused by the planet’s rotation (Earth) or by thermal
convection in the interior of the planet (Mercury). In both cases, the deformations may be
treated as ellipsoidal for a number of purposes. Therefore, the resulting corrections to the
gravitational field may be obtained by substituting the ellipsoidal expansion coefficients
Clm, equations (53a)–(53b), into the expressions for ∂ψ/∂τ, equations (71)–(72). The
resulting estimates are consistent with the estimates obtained by Szeto and Xu in [10]
for the gravitational potential inside an ellipsoidal cavity.

7. Appendix: A concise exposition of the δ/δτ -derivative.
7.1. Objects defined in a Euclidean space. The radius vector z extends from an arbi-

trarily selected pole O to points in the Euclidean space. In a coordinate system zi (i.e.(
z1, z2, z3

)
), the radius vector z becomes a (vector-valued) function of zi: z = z

(
zi
)
.

This definition overloads the symbol z—it now stands for both an invariant vector field
and its functional representation. We almost always omit the indices in the arguments
of a function and simply write

z = z (z) , (73)

implying z = z
(
z1, z2, z3

)
.
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The covariant basis zi is defined at every point in space as

zi =
∂z
∂zi

. (74)

The covariant basis is a (vector-valued) tensor which can be shown by a simple application
of the chain rule.

The covariant metric tensor zij is defined as

zij = zi · zj . (75)

Consistent with its name, it is a doubly covariant tensor which follows from the fact
that the dot product is a tensor operation. As a matrix it is symmetric and positive
(semi-)definite.

When it leads to no confusion, the determinant |zij | (not a tensor) is denoted by z.
The permutation tensors zijk and zijk are defined as

zijk =
√

zeijk, zijk =
1√
z
eijk, (76)

where

eijk, eijk =

⎧⎨
⎩

+1, if i, j, k is a positive permutation,

−1, if i, j, k is a negative permutation,

0, otherwise.
(77)

The contravariant metric tensor zij is defined as the matrix inverse of zij :

zijz
jk = δk

i . (78)

Linear algebra dictates that contraction by the other index (“commuting” in the language
of LA) also yields δi

j (“Identity” in LA):

zijz
ki = δk

j . (79)

The tensors zij and zij are used for raising and lowering indices. Raising the second
index of zij by zjk leads to z·ki , but it also leads to δ·ki ! Therefore, δ and z can be used
interchangeably (but then δij no longer has the Kronecker interpretation).

The inner product of two vectors a = aizi and b = bizi is given by

a · b = aizi · bizi = zija
ibj = aibi = ajb

j . (80)

The contravariant component ai can be extracted by dotting a with zi:

ai = a · zi. (81)

The covariant derivative ∇i, as applied to a typical tensor T j
·k, is defined as

∇iT
j
·k =

∂T j
·k (z)
∂zi

+ Γj
imTm

·k − Γm
ikT j

·m, (82)

where the Christoffel symbol Γi
jk (not a tensor) is defined as

Γi
jk =

∂zj

∂zk
· zi. (83)



GRAVITATIONAL POTENTIAL FOR NEAR-SPHERICAL GEOMETRIES 249

When applied to tensors, the covariant derivative yields tensors of one covariant order
higher. The covariant derivative reduces to the partial when applied to tensors of or-
der zero, or when applied to general tensors in affine coordinate systems. Covariant
differentiation in Euclidean spaces is commutative

∇i∇j = ∇j∇i (84)

and kills all metrics

∇mzij ,∇mδi
j ,∇mzij ,∇mz,∇mzi,∇mzi,∇mzijk,∇mzijk = 0. (85)

7.2. Objects defined on embedded surfaces. Consider a surface S given parametrically
in coordinates ξα as

zi = zi (ξ) . (86)

The shift tensor zi
α is defined as

zi
α =

∂zi

∂ξα
. (87)

It is a tensor with respect to both a change of coordinates in space and a change of
coordinates on the surface.

The covariant basis ξα is defined as

ξα =
∂z
∂ξα

. (88)

An application of the chain rule gives an alternative expression

ξα = zi
αzi (89)

and suggests the interpretation of zi
α as a projection operator. Any surface vector a =

aαξα can be decomposed with respect to the spatial basis zi as a = aizi, where ai = zi
αaα.

The covariant metric tensor ξαβ is defined as

ξαβ = ξα · ξβ (90)

and is also expressed as
ξαβ = zijz

i
αzj

β, (91)

which (running one sentence ahead) can be alternatively written as

zi
αzβ

i = δβ
α. (92)

The contravariant metric tensor ξαβ is defined as the matrix inverse of ξαβ :

ξαβξβγ = δγ
α; ξαβξγα = δγ

β . (93)

When it leads to no confusion, the determinant |ξαβ | (not a tensor) is denoted by ξ.
The permutation tensors εαβ and εαβ (reusing letter ξ is impossible) are defined as

εαβ =
√

ξeαβ , εαβ =
1√
ξ
eαβ , (94)

where e12 = −e21 = 1 and e11 = e22 = 0.
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The normal N i is defined as

N i =
1
2
zijkεαβzα

j zβ
k . (95)

It is of unit length, N iNi = 1, and is orthogonal to the surface N izα
i = 0.

The tensor zi
αzα

j is interpreted as the projection onto the surface. This interpretation
is firmly justified by the following identity:

zi
αzα

j = δi
j − N iNj . (96)

The covariant derivative ∇γ as applied to a typical tensor T j·α·
·k·β is defined as

∇γT i·α·
·j·β =

T i·α·
·j·β

∂ξγ
+ zk

γΓi
kmTm·α·

·j·β − zk
γΓm

kjT
i·α·
·m·β + Γα

γδT
i·δ·
·j·β − Γδ

γβT i·α·
·j·δ , (97)

where the Christoffel symbol Γα
βγ (not a tensor) must now be defined traditionally:

Γα
βγ =

1
2
ξαω

(
∂ξωγ

∂ξβ
+

∂ξωβ

∂ξγ
− ∂ξβγ

∂ξω

)
. (98)

When applied to a surface restriction of a spatial tensor T i
·j we have the chain rule

∇αT i
·j = zk

α∇kT i
·j . (99)

The covariant surface derivative kills many of the metrics (but not the bases):

∇λξαβ , ∇λδβ
α, ∇λξαβ, ∇λεαβ ,∇λεαβ = 0. (100)

The chain rule tells us that the covariant surface derivatives kills all spatial metrics:

∇γzij ,∇γδi
j ,∇γzij ,∇γz,∇γzi,∇γzi,∇γzijk,∇γzijk = 0. (101)

The curvature tensor Bα
β is defined as

Bαβ = Ni∇αzi
β . (102)

Multiplying both sides by N j and applying the projection formula, we get N jBαβ =

N jNi∇αzi
β =

(
δj
i − zγ

i zj
γ

)
∇αzi

β = ∇αzj
β − zj

γ∇αδγ
β . Since the second term is zero, we

obtain the formula for differentiating the shift tensor:

∇αzi
β = N iBαβ . (103)

Once again taking the definition of Bαβ and multiplying both sides by zj
β , we get

zjβBαβ = Niz
jβ∇αzi

β = −zjβzi
β∇αNi =

(
−δij + N iNj

)
∇αNi = −∇αN j +NjN

i∇αNi.
Since N iNi ≡ 1, the second term vanishes and we obtain the formula for differentiating
the normal

∇αN i = −ziβBαβ . (104)

Gauss’s Theorema Egregium

|B..| ενµεαβ = BανBβµ − BβνBαµ (105)

can be interpreted as saying that the tensor Bαβ has only two degrees of freedom (the
mean curvature and the intrinsic curvature).
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7.3. The δ/δτ -derivative for moving surfaces. Let the motion of the surface Sτ be
described by

Sτ : zi = zi (τ, ξ) . (106)

Define the marker velocity vi (not a tensor) and its projection vα onto the surface (also
not a tensor) as

vi (τ, ξ) =
∂zi (τ, ξ)

∂τ
, (107a)

vα = zα
i vi. (107b)

For a tensor of order zero T , the derivative δT
δτ is defined as [11]

δT (τ, ξ)
δτ

=
∂T (τ, ξ)

∂τ
− vα∇αT. (108)

The physical interpretation of this definition is shown in Figure 5.
The velocity of the interface C is defined as

C =
δz
δτ

· N. (109)

It is clear from Figure 5 that δz
δτ is normal to the surface, so δz

δτ = CN. We also have

C = viNi. (110)

The definition (108) applies only to scalars and not more general tensors such as zi
α and

Bα
β . For an arbitrary tensor T i·α·

·j·β , the definition of δ/δτ -derivative was given in [2]:

δT i·α·
·j·β (τ.ξ)

δτ
=

∂T i·α·
·j·β (τ.ξ)

∂τ
− vγ∇γT i·α·

·j·β (111)

+vmΓi
mkT k·α·

·j·β − vmΓk
mjT

i·α·
·k·β + ∇γvαT i·γ·

·j·β −∇βvγT i·α·
·j·γ ,

where ∇γvα and ∇βvγ are formal applications of the covariant surface derivative to the
non-tensor vα.

For restrictions of spatial tensors T i·
·j , we find very useful the chain rule

δT i·
·j

δτ
=

∂T i·
·j

∂τ
+ CNk∇kT i·

·j . (112)

The chain rule indicates that the δ
δτ -derivative kills all spatial metrics

δzij

δτ
,
δδi

j

δτ
,
δzij

δτ
,
δz

δτ
,
δzi

δτ
,
δzi

δτ
,
δzijk

δτ
,
δzijk

δτ
= 0. (113)

It is also clear for such tensors that δ
δτ commutes with the covariant space derivative ∇i.

7.4. Properties of δ/δτ . The key properties of the δ/δτ -derivative, sufficient for the
derivation of all relationships in the text, are given in the following table:

δzi
α

δτ
= ∇α

(
CN i

)
, (114a)

δ

δτ
δα
β = 0, (114b)

δξαβ

δτ
= −2CBαβ, (114c)
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δξαβ

δτ
= 2CBαβ , (114d)

δN i

δτ
= −zi

α∇αC, (114e)

δBα
β

δτ
= ∇β∇αC + CBα

γ Bγ
β . (114f)
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