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Abstract. We use a perturbational technique to compute the total gravitational
energy of a slightly ellipsoidal trilayer planet as a function of the two sets of Euler
angles. A second order computation is required since the torque is proportional to the
product of the ellipticities of the inner core and the mantle. Although we focus on
ellipsoidal perturbations, the intermediate analytical expressions are valid for arbitrary
small deformations of the spherical configuration.

The primary application of the expression for the total gravitational energy is in the
Lagrangian formulation of dynamics. As a by-product, we determine the gravitationally
stable equilibrium orientation of the rigid inner core. Due to symmetry, the six coaxial
configurations are equilibrium. We show how to identify the stable configuration and to
prove its uniqueness.

1. Introduction. The Earth and, quite likely, Mercury [3] are the solar system rep-
resentatives of the class of planets that have a solid inner core, a fluid outer core and a
solid mantle. For large planets these components are essentially spherical due to gravity,
but not quite, and it is the deviations from the spherically symmetric configurations
that are responsible for a number of interesting effects. A detailed description of a real
planet’s geometry is, of course, quite complicated — there are chemical inhomogeneities
in the interior, uneven heating by the planet’s star, and irregularities on the surface due
to the elastic resistance of matter. We ignore these effects and employ an idealization
that is designed to capture a specific small perturbation — the slight ellipticity of the
planet. Ellipticity of planets is interesting because it causes precessions of the spin axis
and librations which are deviations from uniform rotation. Ellipticity can be caused by
the planet’s rotation (the Earth) or heat convection (Mercury). While the Earth’s ellip-
soids are essentially axisymmetric, Mercury’s famous resonant rotation [5] indicates that
Mercury must be modeled as a triaxial ellipsoid.
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We consider a three-layer planet consisting of the rigid inner core Ω1, the fluid outer
core Ω2 and the rigid mantle Ω3. Each layer is bounded by concentric triaxial ellipsoids
of low eccentricity (of order of ε), and the boundaries of the mantle are coaxial. The
respective densities are ρ1, ρ2, and ρ3 (collectively, ρn). The configuration of the system
can be specified by two sets of Euler angles: Θ1, Φ1 and Ψ1 for the inner core and Θ3,
Φ3 and Ψ3 for the mantle.

We use a perturbational technique that utilizes the smallness of the parameter ε to
compute the total gravitational energy of the system as a function of Euler angles. A
second order computation is required — Euler angles first appear in the terms of order
ε2 since the torque is proportional to the product of the ellipticities of the inner core and
the mantle. Our technique is applied to arbitrary small deformations of the spherical
configuration although in general it is applicable to arbitrary configurations.

The expression for the total gravitational energy finds its primary use in the La-
grangian formulation of the dynamic equations of motion. As a secondary application,
we determine the stable equilibrium orientation of the rigid inner core. Due to symmetry,
the six coaxial configurations are gravitationally equilibrium. At least one of them must
be stable and it turns out that precisely one of them is. We show how to identify it and
prove its uniqueness.

1.1. A note about the employed technique. Our technique, based on the calculus of
moving surfaces, has many advantages. Our analytical expressions are short and have
concise derivations. Our methods are applicable to arbitrary perturbations and generalize
to any order in ε. Most importantly, the entire analysis is carried out by a formal
variation of the total energy and does not require any geometric ingenuity or physical
insight. (Some of the expressions below are large, but their complexity is due only to the
coupled trilayer nature of the system.)

At the same time we realize that the calculus of moving surfaces is a substantial
subject. To a reader not familiar with the technique, our approach may seem complicated.
Even so, we believe that our conclusions, as well as many of our intermediate expressions,
are easily interpretable without a thorough understanding of the calculus of moving
surfaces, as long as the reader has an intuitive understanding of the interface velocity C.
We do not include a description of the calculus of moving surfaces here, but it can be
found in [2], including the definitions of all the quantities that we use and a summary of
the key identities.

A more elementary derivation of the gravitational coupling in a triellipsoidal planet
can be found in Szeto and Xu, [4].

1.2. The evolution approach. We imagine a smooth evolution Ω (τ ) from the spherical
configuration Ω to the nonspherical configuration Ω′. The evolution is indexed by a
time-like parameter τ such that Ω (0) = Ω and Ω (1) = Ω′. We could have chosen τ to go
from 0 to ε, but we prefer to imagine a slow evolution over a finite period of time rather
than finite velocities over a short period.

The total energy of the system E is also a smooth function of τ , E = E (τ ), and
can be approximated by the first few (in our case, two) terms of the power series
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at time τ = 1:

E (1) ≈ E (0) +
dE

dτ

∣∣∣∣
τ=0

+
d2E

dτ2

∣∣∣∣
τ=0

+ O
(
ε3

)
. (1)

Since the evolution is slow, the n-th derivative is O (εn).
We mention two key identities from the calculus of moving surfaces pertaining to the

time differentiation of volume and surface integrals:

d

dτ

∫
Ω

f (τ, Ω) dΩ =
∫

Ω

∂f (τ, Ω)
∂τ

dΩ +
∫

∂Ω

Cf (τ, S)dS, (2a)

d

dτ

∫
S

f (τ, S) dS =
∫

S

δf (t, S)
δτ

dS −
∫

S

CBα
αf (τ, S) dS. (2b)

In both identities C is the invariant velocity of the surface referenced to the outward
normal N.

In the volume identity (2a), ∂Ω is the sufficiently smooth boundary of Ω, f (τ, Ω)
indicates that f is a field (vector or scalar) that depends on time and position, and
f (τ, S) is the restriction of f onto ∂Ω. The identity can be interpreted as a moving
surface generalization of the Fundamental Theorem of Calculus.

In the surface identity (2b), S is a sufficiently smooth surface closed surface, and
f (τ, S) indicates that f is a field (also vector or scalar) that depends on time and
surface position. Bα

β is the curvature tensor, and its trace Bα
α is the mean curvature of

the surface referenced to the outward normal. Finally, δ/δt-derivative (although we have
τ rather than the usual t) is the key operation in the calculus of moving surfaces which,
for surface restrictions of spatial fields (such as the gravitational potential ψ), is defined
analytically as

δf

δτ
=

∂f (τ, Ω)
∂τ

+ CN · ∇f. (3)

The last identity is the moving surface equivalent of the classical Chain Rule.
Suppose that the field f (τ, Ω) is discontinuous along an internal interface S which

is evolving with velocity C and that S is the only moving surface. Let [f ]S denote the
amount by which f jumps across S, from the inside to the outside. Applying equation
(2a) to both subdomains of Ω, it is easy to obtain the following identity:

d

dτ

∫
Ω

f (τ, Ω) dΩ =
∫

Ω

∂f (τ, Ω)
∂τ

dΩ +
∫

S

C [f ]S dS. (4)

We frequently drop the subscript S from [f ]S , letting [f ] represent the collection of
jumps across the available interfaces, and use [f ]n to indicate the jump in quantity f

across the n-th interface, n = 1, 2, 3.

2. Energy variations. The total energy of the system is given as an integral over
the interior of the planet

E =
1
2

∫
Ω

dΩρψ, (5)

where the integration takes place cumulatively over Ω1, Ω2 and Ω3, ρ is the mass density
(ρ1, ρ2, or ρ3 depending on the domain) and ψ is the gravitational potential expressed
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conceptually by

ψ (z) = −G

∫
Ω

ρ∗

|z − z∗|dΩ∗, (6)

where G is the gravitational constant, z is the point at which ψ is being evaluated, z∗

varies of Ω and ρ∗ is shorthand for ρ (z∗).
2.1. The first variation. The first derivative of the energy E with respect to the time-

like parameter τ is obtained by applying identity (4) to the definition of energy (5):

dE

dτ
=

1
2

∫
Ω

dΩρ
∂ψ

∂τ
+

1
2

∫
∂Ω

dΩC [ρ] ψ.

Next, substitute the definition of ψ (6) in the first term

dE

dτ
= −1

2
G

∫
Ω

dΩρ
∂

∂τ

∫
Ω

ρ∗
|z − z∗|dΩ∗ +

1
2

∫
∂Ω

dΩC [ρ]ψ,

and apply (4) one more time

dE

dτ
= −1

2
G

∫
Ω

dΩρ

∫
∂Ω

C
[ρ∗]

|z − z∗|dΩ∗ +
1
2

∫
∂Ω

dΩC [ρ]ψ.

In these identities,
∫

∂Ω
is the sum of integrals over each of the three interfaces, and the

discontinuity [ρ] in density ρ should be taken to be [ρ]n, depending on which interface is
being integrated. Similarly, C represents the collection C1, C2, C3.

We now exchange the order of integrations in the first integral — a delicate operation
considering the singular nature of the integrand — and arrive at the final analytical
expression for the first energy variation:

dE

dτ
=

∫
∂Ω

dSC [ρ]ψ. (7)

This expression applies to arbitrary initial geometries Ω and arbitrary perturbations C.
2.2. The second variation. The second variation of energy is obtained by differentiat-

ing equation (7) once more with respect to τ . An application of (2b) yields

d2E

dτ2
=

∫
S

dS [ρ]
δ (Cψ)

δτ
−

∫
S

dS [ρ] C2Bα
αψ,

and since the δ/δt-derivative satisfies the product rule, the first integral can be expanded
as

d2E

dτ2
=

∫
S

dS [ρ]
δC

δτ
ψ +

∫
S

dSC [ρ]
δψ

δτ
−

∫
S

dS [ρ] C2Bα
αψ.

The final expression is obtained by utilizing the chain rule (3) for δψ/δτ :

d2E

dτ2
=

∫
∂Ω

dS [ρ]
(

δC

δτ
ψ + C

∂ψ

∂τ
+ CN · ∇ψ − C2Bα

αψ

)
. (8)

Much like the first variation, this expression applies to arbitrary initial geometries Ω and
arbitrary perturbations C.
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2.3. Spherical configurations. From this point on, we restrict our attention to arbitrary
perturbations of initially spherically symmetric geometries with radii R1, R2 and R3.
This assumption eliminates all but one term in equation (8).

Note that in the power series estimate (1), the derivatives are evaluated only at τ = 0.
Therefore the integrations in equations (7) and (8) only need to be carried out over the
unperturbed spherical domains, and only the initial values of C, ψ, and Bα

α figure in the
computation. Importantly, for spherically symmetric configurations, ψ, N · ∇ψ and Bα

α

are constant over each interface. We can ignore the terms with no functional dependence
on the Euler angles, and that is every term except C∂ψ/∂τ . We use a small circle over
the equality sign (�) to indicate that terms independent of the Euler angles may have
been dropped or added to the equation:

E �
∫

∂Ω

dSC [ρ]
∂ψ

∂τ
. (9)

The assumption of spherical symmetry allows us to represent each Cn (at the initial
moment τ = 0) as a series in spherical harmonics Ylm (θ, φ)

Cn (θ, φ) = RnClm
n Ylm (θ, φ) (10)

with implied summation over l and m. The factor of Rn is introduced to nondimen-
sionalize the constants Clm

n . We take complex spherical harmonics Ylm (θ, φ) that are
normalized to unity: ∫

|r|=1

Yl1m1 (θ, φ)Y ∗
l2m2

(θ, φ) dS = δl1l2δm1m2 . (11)

We now turn our attention to ∂ψ/∂τ , the rate of change in the potential field ψ

induced by the simultaneous perturbations of the three boundaries. We employ a nondi-
mensionalization scheme for ψ and ∂ψ/∂t that introduces a length scale R∗ and a density
ρ∗. We define the dimensionless densities 	n and dimensionless radii Qn:

	n =
ρn

ρ∗
, Qn =

Rn

R∗
, (12)

and a convenient quantity

Ψ∗ =
4π

3
Gρ∗R

2
∗ (13)

that has dimensions of gravitational potential. G, again, is the gravitational constant.
The rate of change ∂ψ/∂τ in the potential field ψ at time τ = 0 can be expressed in

terms of Clm
n as follows [2]:

∂ψ

∂τ
(r, θ, φ) = Ψ∗

∑
l,m

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Alm
1

(
r

R∗

)l

, r ≤ R1

Alm
2

(
r

R∗

)l

+ Blm
2

(
r

R∗

)−l−1

, R1 ≤ r ≤ R2

Alm
3

(
r

R∗

)l

+ Blm
3

(
r

R∗

)−l−1

, R2 ≤ r ≤ R3

Blm
4

(
r

R∗

)−l−1

, R3 ≤ r

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ylm (θ, φ) ,
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where Alm
n and Blm

n are linear combinations of Clm
n :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Alm
1

Alm
2

Alm
3

Blm
2

Blm
3

Blm
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= − 3
2l + 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q−l+2
1 Q−l+2

2 Q−l+2
3

0 Q−l+2
2 Q−l+2

3

0 0 Q−l+2
3

Ql+3
1 0 0

Ql+3
1 Ql+3

2 0
Ql+3

1 Ql+3
2 Ql+3

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ [	]1 Clm

1

[	]2 Clm
2

[	]3 Clm
3

⎤
⎦ . (14)

Of particular interest is the value of ∂ψ/∂τ at the interfaces S1, S2, and S3:

∂ψ

∂τ
(θ, φ)

∣∣∣∣
S1,S2,S3

= Ψ∗

⎧⎨
⎩

Alm
1 Ql

1 at S1

Alm
2 Ql

2 + Blm
2 Q−l−1

2 at S2

Alm
3 Ql

3 + Blm
3 Q−l−1

3 at S3

∣∣∣∣∣∣ Ylm (θ, φ) . (15)

We now have all of the ingredients necessary to express the orientation-dependent
contribution to energy (9) as a quadratic form in Clm

n . We first expand the integral over
the three interfaces and take a formal complex conjugate of C in order to take advantage
of our choice of spherical harmonics (11):

E �
∫

S1

dSC∗
1 [ρ]1

(
∂ψ

∂τ

)
S1

+
∫

S2

dSC∗
2 [ρ]2

(
∂ψ

∂τ

)
S2

+
∫

S3

dSC∗
3 [ρ]3

(
∂ψ

∂τ

)
S3

. (16)

Due to the orthonormality of the spherical harmonics over the unit sphere (thus the
additional factors of R2

n), each integral becomes a sum

E � Ψ∗
∑
l,m

⎛
⎝ R3

1C
lm∗
1 [ρ]1 Alm

1 Ql
1

+R3
2C

lm∗
2 [ρ]2

(
Alm

2 Ql
2 + Blm

2 Q−l−1
2

)
+R3

3C
lm∗
3 [ρ]3

(
Alm

3 Ql
3 + Blm

3 Q−l−1
3

)
⎞
⎠ .

We nondimensionalize the above expression by factoring out ρ∗R
3
∗:

E � Ψ∗ρ∗R
3
∗
∑
l,m

⎛
⎝ Clm∗

1 [	]1 Alm
1 Ql+3

1

+Clm∗
2 [	]2

(
Alm

2 Ql+3
2 + Blm

2 Q−l+2
2

)
+Clm∗

3 [	]3
(
Alm

3 Ql+3
3 + Blm

3 Q−l+2
3

)
⎞
⎠ ,

or, in matrix form,

E � Ψ∗ρ∗R
3
∗
∑
l,m

⎡
⎣ Clm

1

Clm
2

Clm
3

⎤
⎦

∗ ⎡
⎣ [�]1 Ql+3

1 0 0 0 0

0 [�]2 Ql+3
2 0 [�]2 Q−l+2

2 0

0 0 [�]3 Ql+3
3 0 [�]3 Q−l+2

3

⎤
⎦

×

⎡
⎢⎢⎢⎢⎣

Alm
1

Alm
2

Alm
3

Blm
2

Blm
3

⎤
⎥⎥⎥⎥⎦ .
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Substituting the expressions for Alm
n and Blm

n in terms of Clm
n , equation (14), we obtain

the final expression for the angle dependent contribution to energy:

E � −Ψ∗�∗R
3
∗
∑
l,m

3

2l + 1

×

⎡
⎣ Clm

1

Clm
2

Clm
3

⎤
⎦
∗ ⎡
⎣ [�]21 Q5

1 [�]1 [�]2 Ql+3
1 Q−l+2

2 [�]1 [�]3 Ql+3
1 Q−l+2

3

[�]2 [�]1 Q−l+2
2 Ql+3

1 [�]22 Q5
2 [�]2 [�]3 Ql+3

2 Q−l+2
3

[�]3 [�]1 Q−l+2
3 Ql+3

1 [�]3 [�]2 Q−l+2
3 Ql+3

2 [�]23 Q5
3

⎤
⎦

⎡
⎣ Clm

1

Clm
2

Clm
3

⎤
⎦ .

These matrix products must be interpreted carefully since Clm
n are vectors of length

2l + 1. A less controversial way to write the above expression is

E � −Ψ∗	∗R
3
∗

∑
l,m,n1,n2

3
2l + 1

Ql+3
min(n1,n2)

Q−l+2
max(n1,n2)

[	]n1
[	]n2

Clm
n1

Clm
n2

. (17)

We now turn to the task of computing Clm
n for our specific perturbation.

3. Computing E for rotations in the horizontal plane. In this section we focus
on configurations for which the inner core and the mantle rotate about the z-axis and
only Φ1 and Φ2 are nonzero. The case of arbitrary orientations is considered in the next
section, but this case is sufficient to identify the stable orientation of the inner core.

Suppose that we have a near-spherical ellipsoid with semiaxes R (1 + εa), R (1 + εb),
R (1 + εc). Then an appropriate evolution of the semiaxes is R (1 + ετa), R (1 + ετb),
R (1 + ετc), which leads us to the following estimate of CGeneric at τ = 0 in polar
coordinates on the sphere when the semiaxes are aligned with corresponding Cartesian
coordinate axes (thus ”Generic”):

CGeneric|τ=0 = εR
(
a sin2 θ cos2 φ + b sin2 θ sin2 φ + c cos2 θ

)
. (18)

The decomposition of CGeneric with respect to spherical harmonics results in only two
sets of nonzero coefficients corresponding to l = 0 and l = 2:

C00
Generic = ε

√
4π

9
(a + b + c) , (19a)

C2m
Generic = ε

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
2π
15 (a − b)

0√
4π
45 (2c − a − b)

0√
2π
15 (a − b)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (19b)

If the ellipsoid is rotated counterclockwise about the z-axis by an angle Φ, then to obtain
its decomposition, we first represent it as a linear combination of “intermediate” likewise
rotated harmonics — and, of course, get the same values as (19a) and (19b) — and
then express the rotated harmonics with respect to the standard harmonics. This simple
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procedure yields the following coefficients Clm:

C00 = ε

√
4π

9
(a + b + c) , Φ �= 0, (20a)

C2m = ε

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
2π
15 (a − b) e−2iΦ

0√
4π
45 (2c − a − b)

0√
2π
15 (a − b) e2iΦ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Φ �= 0. (20b)

The idea of rotating harmonics to follow the rotation of the ellipsoid carries over to
the case of arbitrary orientation.

Let the three sets of coefficients obtained for the three interfaces of the planet be Clm
1 ,

Clm
2 , and Clm

3 . The coefficients C00
1 , C00

2 , and C00
3 corresponding to l = 0, m = 0 have

no angular dependence. Thus only l = 2 matters, and equation (17) simplifies to

E � −3
5
Ψ∗	∗R

3
∗

∑
m=−1,0,1

n1,n2=1,2,3

Q5
min(n1,n2)

[	]n1
[	]n2

C2m∗
n1

C2m
n2

. (21)

The nonzero contributions come only from the (n1, n2) pairs (1, 2), (2, 1), (1, 3), and
(3, 1), and because the quadratic form is symmetric and the product C2m∗

n1
C2m

n2
is real,

we get

E � −6
5
Ψ∗	∗ [	]1 R3

∗Q
5
1

∑
m

(
[	]2 C2m∗

1 C2m
2 + [	]3 C2m∗

1 C2m
3

)
.

Substituting coefficients (20a) and (20b), we obtain the nondimensionalized estimate

E � −6
5

2π

15
Ψ∗	∗ [	]1 R3

∗Q
5
1 (a1 − b1) ([	]2 (a2 − b2) + [	]3 (a3 − b3)) cos 2 (Φ1 − Φ2) .

Recalling the definition of Ψ∗ we present the final expression for the orientation dependent
contribution to energy:

E � 32
75

π2GR5
1 [ρ]1 (a1 − b1) ([ρ]2 (a2 − b2) + [ρ]3 (a3 − b3)) sin2 (Φ1 − Φ2) .

3.1. Stability analysis. The system is stable with respect to rotations about the z-axis
if the expression

[ρ]1 (a1 − b1) ([ρ]2 (a2 − b2) + [ρ]3 (a3 − b3))

is positive. Similar arguments for the x-axis and the y-axis show that the system is stable
in the overall sense if all of the following inequalities hold:

[ρ]1 (a1 − b1) ([ρ]2 (a2 − b2) + [ρ]3 (a3 − b3)) > 0, (22a)

[ρ]1 (b1 − c1) ([ρ]2 (b2 − c2) + [ρ]3 (b3 − c3)) > 0, (22b)

[ρ]1 (c1 − a1) ([ρ]2 (c2 − a2) + [ρ]3 (c3 − a3)) > 0. (22c)
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These expressions make it very easy to judge stability for a given orientation and to show
that only a single coaxial configuration is stable. Note that the three quantities

[ρ]2 (a2 − b2) + [ρ]3 (a3 − b3) ,

[ρ]2 (b2 − c2) + [ρ]3 (b3 − c3) ,

[ρ]2 (c2 − a2) + [ρ]3 (c3 − a3) ,

add up to zero. Therefore, two of them have one sign, and the third has the other. For
example, assume that the first two quantities are positive. Then equations (22a)-(22c)
indicate that the stable orientation is such that a1 > b1 > c1.

In particular, if we consider a typical planet such that ρ1 > ρ2 > ρ3, a2 > b2 > c2 and
a3 > b3 > c3, then the combination of signs just considered applies, and we conclude
that a stable orientation of the inner core is one for which a1 > b1 > c1. In other words,
the i-th longest semiaxis of the inner core must be aligned with the i-th longest semiaxis
of the mantle.

4. Computing E for arbitrary orientations. We now consider a general orien-
tation of a triaxial ellipsoid given by the Euler angles Θ, Φ, and Ψ. We use the same
approach as we did for rotations in the horizontal plane. That is, we decompose the
deformation with respect to appropriately rotated harmonics Y ′

lm (and obtain precisely
the same expressions (19a) and (19b)), and then express the rotated harmonics Y ′

lm with
respect to the standard harmonics Ylm. The second step is accomplished by a consecutive
application of three rotation matrices that correspond to the three Euler rotations. If
Y ′

2m are obtained by rotating Y2m by Euler angles Θ, Φ, and Ψ, then

Y
′

2m (θ, φ) = HZ (Φ)HY (Θ)HZ (Ψ)Y2m (θ, φ) , (23)

and therefore
C2m

n = HZ (Φ)HY (Θn)HZ (Ψn)C2m
n,Generic, (24)

where Θ1, Φ1, Ψ1 are taken for n = 1, and Θ3, Φ3, Ψ3 are taken for n = 2, 3, and

HZ (Ψ) =

⎡
⎢⎢⎢⎢⎣

e−2iΨ 0 0 0 0
0 e−iΨ 0 0 0
0 0 1 0 0
0 0 0 eiΨ 0
0 0 0 0 e2iΨ

⎤
⎥⎥⎥⎥⎦

and

HY (Θ)=
1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(cosΘ + 1)2 2 (cosΘ + 1) sinΘ
√

6 sin2 Θ →
−2 (cosΘ + 1) sinΘ 2 (cosΘ + 1) (2 cosΘ − 1) 2

√
6 sinΘ cos Θ →√

6 sin2 Θ −2
√

6 sinΘ cosΘ −2 + 6 cos2 Θ →
2 (cosΘ − 1) sinΘ −2 (cosΘ − 1) (2 cosΘ + 1) −2

√
6 sinΘ cosΘ →

(cosΘ − 1)2 2 (cosΘ − 1) sinΘ
√

6 sin2 Θ →
→ −2 (cos Θ − 1) sinΘ (cosΘ − 1)2

→ −2 (2 cosΘ + 1) (cos Θ − 1) −2 (cosΘ − 1) sin Θ

→ 2
√

6 sin Θ cosΘ
√

6 sin2 Θ
→ 2 (cosΘ + 1) (2 cosΘ − 1) 2 (cosΘ + 1) sinΘ

→ −2 (cos Θ + 1) sinΘ (cosΘ + 1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Our analysis is now complete. Given the orientations of the inner core and the mantle
expressed in Euler angles, the perturbation expansion coefficients can be determined by
equation (24), where Θ1, Φ1, and Ψ1 are used to evaluate Clm

1 , and Θ3, Φ3, and Ψ3 are
used to evaluate Clm

2 and Clm
3 . Next, the energy perturbation can be computed by equa-

tion (17) for arbitrary perturbations and by equation (21) for ellipsoidal perturbations.
4.1. Conclusions. We have applied the method of moving surfaces to compute the

second order perturbation to the total gravitational energy of a slightly nonspherical
triaxial planet. The presented technique applies to arbitrary perturbations of the spher-
ical configuration. As an illustration we considered ellipsoidal perturbations that find
frequent applications in planetary dynamics.

The derived expressions can be employed in the Lagrangian formulation of dynam-
ics. The resulting expressions are quite complex, and it would be a challenging task to
derive the Lagrangian equations of motion analytically. It turns out that for ellipsoidal
perturbations, the Newtonian approach is simpler since the coupling torque can be com-
puted according to Szeto and Xu, [4], assuming no outer core. When the outer core is
accounted for, Szeto and Xu’s approach becomes quite complicated as well. Finally, if
nonellipsoidal perturbations are considered, the use of a general morphological technique
such as ours is unavoidable.

5. Appendix: Moment of inertia perturbation. We have provided an estimate
for the potential energy accumulated between the inner core and the mantle. The La-
grangian approach also requires an expression for the kinetic energy of the system. We
would therefore like to present a computation for the first order correction to the prin-
cipal moments of inertia of a rigid body of constant density. The total kinetic energy of
the rigid body can be expressed in terms of the tensor of inertia, Euler angles Θ, Φ, and
Ψ, and their time derivatives Θ̇, Φ̇, and Ψ̇.

The moments of inertia with respect to the x-, y-, and z-axes, usually denoted by A,
B, and C, are defined as

A = ρ

∫
Ω

dΩ
(
y2 + z2

)
,

B = ρ

∫
Ω

dΩ
(
z2 + x2

)
,

C = ρ

∫
Ω

dΩ
(
x2 + y2

)
.

The first perturbation of C is obtained by applying identity (2a):

dC

dτ
= ρ

∫
S

dSCas in (19a)!

(
x2 + y2

)
,

which, for an ellipsoidal perturbation (18), yields

dC

dτ
= ρ

∫ π

−π

∫ π

0

εR
(
a sin2 θ cos2 φ + b sin2 θ sin2 φ + c cos2 θ

) (
R2 sin2 θ

)
R2 sin θdθdφ

=
8
15

πρR5ε (2a + 2b + c) .
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For the unperturbed sphere C = 8
15πρR5, we have

dC

dτ
= ε (2a + 2b + c)C.

Therefore, the out-of-roundness parameter (B − A) /C is

B − A

C
=

(
C + dB

dτ + O
(
ε2

))
−

(
C + dA

dτ + O
(
ε2

))
C + dC

dτ + O (ε2)

= ε (2a + b + 2c) − ε (a + 2b + 2c) + O
(
ε2

)
= ε (a − b) + O

(
ε2

)
.

Thus, to first order
B − A

C
= ε (a − b) .
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